Akanksha Agrawal
email: akanksha.agrawal.2029@gmail.com

Arindam Biswas
email: arindam.b@ftml.net

Edouard Bonnet
email: edouard.bonnet@ens-lyon.fr

Nick Brettell
email: nbrettell@gmail.com

Radu Curticapean
email: radu.curticapean@gmail.com

Dániel Marx
email: dmarx@cs.bme.hu

Miltzow Tillmann

Venkatesh Raman
email: vraman@imsc.res.in

Saket Saurabh

Édouard Bonnet

Tillmann Miltzow
email: t.miltzow@googlemail.com

Parameterized Streaming Algorithms for Min-Ones d-SAT

Keywords: 2012 ACM Subject Classification Theory of computation → Streaming models, Theory of computation → Fixed parameter tractability, Theory min, ones, sat, d-sat, parameterized, kernelization, streaming, space, efficient, algorithm, parameter Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.8

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The satisfiability problem (SAT) is among most studied NP-complete problems and serves as the canonical problem for NP, being the first problem which was shown to be NP-complete [START_REF] Cook | The Complexity of Theorem-proving Procedures[END_REF][START_REF] Richard | Reducibility among combinatorial problems[END_REF]. It is an important problem in both theory and practice, and together with its variants, it appears in nearly every domain of Computer Science (see for example [START_REF] Du | Satisfiability problem: theory and applications: DIMACS Workshop[END_REF][START_REF] Fortnow | The Status of the P Versus NP Problem[END_REF][START_REF] Gong | A survey of SAT solver[END_REF][START_REF] Gu | Algorithms for the satisfiability (sat) problem[END_REF][START_REF] Stützle | A review of the literature on local search algorithms for MAX-SAT[END_REF]). Because of this, the problem has been studied in various paradigms such as classical Complexity Theory [START_REF] Arora | Computational complexity: a modern approach[END_REF], Approximation Algorithms [START_REF] David | Approximation algorithms for combinatorial problems[END_REF][START_REF] Yannakakis | On the approximation of maximum satisfiability[END_REF], Exact Algorithms [START_REF] Fedor | Exact Exponential Algorithms[END_REF][START_REF] Woeginger | Exact algorithms for NP-hard problems: A survey[END_REF], Parameterized Complexity [START_REF] Cygan | Parameterized algorithms[END_REF][START_REF] Szeider | On fixed-parameter tractable parameterizations of SAT[END_REF], and Heuristics [START_REF] Gong | A survey of SAT solver[END_REF].

A variant which frequently appears in the literature is d-SAT (d ≥ 1), where problem instances have at most d variables per clause. While d-SAT is NP-complete for d ≥ 3, 2-SAT is a classic example of a tractable, i.e. polynomial-time-solvable problem. In this work, we study an optimization version of d-SAT in the framework of parameterized streaming, which combines streaming algorithms and parameterized algorithms.

The streaming framework was formulated to study the behaviour of algorithms that process large amounts of data in a sequential manner. The input appears as a sequence of items and the assumption is that the amount of read-write memory available to the algorithm is very limited, typically logarithmic in the total size of the input. Because of this, the algorithm is unable to store the entirety of its input in memory, and since the input appears in a sequence, the algorithm does not have random access to the it. It may however make multiple passes over the input. The goal in the streaming framework is to process the input by making as few passes (ideally, just one) over it as possible while using as little memory as possible. The study of problems in this framework dates back to the 1980s [START_REF] Flajolet | Probabilistic counting[END_REF]28], although the framework was formally established only in 1996 [START_REF] Noga Alon | The Space Complexity of Approximating the Frequency Moments[END_REF][START_REF] Rauch Henzinger | Computing on data streams[END_REF]. The other player in the combined framework that we employ is Parameterized Complexity -an approach pioneered by Downey and Fellows [START_REF] Downey | Fundamentals of Parameterized complexity[END_REF]. For details on Parameterized Complexity, we refer the reader to the books of Downey and Fellows [START_REF] Downey | Fundamentals of Parameterized complexity[END_REF], Flum and Grohe [START_REF] Flum | Parameterized Complexity Theory[END_REF], Niedermeier [START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF], and the recent book of Cygan et al. [START_REF] Cygan | Parameterized algorithms[END_REF]. Appendix A provides a short introduction to the subject.

It should be noted here that the problem 2-SAT admits a polynomial-time algorithm [START_REF] Aspvall | A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas[END_REF][START_REF] Even | On the complexity of timetable and multicommodity flow problems[END_REF][START_REF] Melven R Krom | The decision problem for a class of first-order formulas in which all disjunctions are binary[END_REF]. Its minimization version however, being a generalization of Vertex Cover is NP-hard [START_REF] Yannakakis | Node-and Edge-Deletion NP-Complete Problems[END_REF]. Indeed, the graph in a Vertex Cover instance can be seen as a formula in which the vertices are variables and each edge is a monotone clause containing the two endpoints as (positive) literals.

Fafianie and Kratsch [START_REF] Fafianie | Streaming Kernelization[END_REF] considered the question of kernelizing d-Hitting Set, d-Set Matching and Edge Dominating Set in the streaming model. Chitnis et al. [START_REF] Chitnis | Parameterized Streaming: Maximal Matching and Vertex Cover[END_REF] studied the problems Maximal Matching and Vertex Cover in the parameterized streaming model. The space used by these algorithms is O(f (k) log n), where k is the parameter, n is the size of the input, and f : N → N is a computable function.

The parameterized streaming model relaxes the space constraint of the usual streaming model to f (k) log n, and allows the algorithm to make at most g(k) passes over its input, where g : N → N is a (preferably slowly-growing) computable function. The goal now is to make as few passes over the input as possible, relative to the parameter. Under these new constraints, it is possible to construct streaming algorithms that have more refined space requirements, and we can also perform a more delicate analysis of the streaming complexity of the problem in question. Our results here illustrate this fact.

Our Results. In Section 2, we describe a parameterized streaming algorithm for Min-Ones d-SAT (d ≥ 2) that solves instances (F, k) using O (kd ck + k d) log n (c > 0, a constant) bits of space and makes k + 1 passes. We then show that by carefully simulating the execution stack of the standard branching algorithm for Min-Ones d-SAT, a (d + 1) k -pass, O(k log n)space algorithm can be obtained. We believe that such an approach will be useful in the design of parameterized streaming algorithms for other problems as well. As an application, we show how the two algorithms can be used to solve IP 2 (a restricted Integer Programming problem) in the parameterized streaming model.

Section 3 describes a streaming kernelization for Min-Ones 2-SAT and an application of the algorithm to IP 2 . By making k + 2 passes over the input formula, it produces a kernel with O k 6 clauses while using O k 6 log n bits of space. It is known that for d ≥ 3, Min-Ones d-SAT does not admit a polynomial kernel [START_REF] Kratsch | Two Edge Modification Problems without Polynomial Kernels[END_REF] under certain (fairly reasonable) assumptions, ruling out a generalization of this result to larger values of d. Our algorithm also provides an alternative to the known kernelization [START_REF] Misra | Solving Min Ones 2-Sat as Fast as Vertex Cover[END_REF] for the problem, since it can also be executed in the less restrictive random-access machine (RAM) model.

We then exhibit various lower bounds in Section 4 to complement the positive results above. For d ≥ 2, we show that any k-pass streaming algorithm for Min-Ones-d-SAT requires Ω max n 1/k /2 k , log (n/k) bits of space in the worst case. This result is obtained by combining a well-known lower bound for the DISJ k [START_REF] Kushilevitz | Communication Complexity[END_REF] problem from Communication Complexity and a lower bound for the streaming problem POT Pointer Chasing [START_REF] Guha | Tight Lower Bounds for Multi-Pass Stream Computation Via Pass Elimination[END_REF]. This (unconditional) lower bound implies, among other things, that the k + 1 pass Min-Ones d-SAT (d ≥ 2) algorithm of section 2 is pass-optimal.

The next result in the section shows that even for d = 1, any 1-pass algorithm for Min-Ones d-SAT requires space Ω(n). This is in contrast to the results of Fafianie and Kratsch [START_REF] Fafianie | Streaming Kernelization[END_REF] and Chitnis et al. [START_REF] Chitnis | Parameterized Streaming: Maximal Matching and Vertex Cover[END_REF], who independently showed that there are 1-pass parameterized streaming algorithms for the Vertex Cover problem (a restriction of Min-Ones 2-SAT). Finally, we show that any p-pass algorithm for Min-Ones d-SAT (d ≥ 1), where p may be a function of both n and k, requires space O(n/p). Note 1.1. Although we do not provide an explicit accounting of the time used by our algorithms, it is not difficult to see that the streaming FPT algorithms all run in FPT time overall and the kernelizations, in polynomial time. [START_REF] Gusfield | A Bounded Approximation for the Minimum Cost 2-Sat Problem[END_REF], who gave a polynomial-time 2-approximation algorithm for the problem. Misra et al. [START_REF] Misra | Solving Min Ones 2-Sat as Fast as Vertex Cover[END_REF] exhibited an equivalence between Min-Ones-2 AT and Vertex-Cover via a polynomialtime parameter-preserving reduction. Fafianie and Kratsch [START_REF] Fafianie | Streaming Kernelization[END_REF], and Chitnis et al. [START_REF] Chitnis | Parameterized Streaming: Maximal Matching and Vertex Cover[END_REF] showed that Vertex Cover admits a single-pass, O k 2 -space algorithm. As noted earlier, Min-Ones 2-SAT generalizes Vertex Cover. Analogously, Min-Ones d-SAT generalizes d-Hitting Set. The question of kernelizing d-Hitting-Set was studied by Abu-Khzam [START_REF] Faisal | Kernelization Algorithms for D-Hitting Set Problems[END_REF], and Fafianie and Kratsch [START_REF] Fafianie | Streaming Kernelization[END_REF], who gave a single-pass algorithm that produces a kernel with O k d sets.

F S T T C S

Preliminaries. Here we introduce some basic concepts and notation used in the rest of the paper. A conjunction (AND) of clauses is called a CNF formula. When each clause has at most d literals, it is called a d-CNF formula. An assignment for a CNF formula F over the variable set V is a subset S ⊆ V . The assignment satisfies a clause if there is a variable in S that appears unnegated in the clause or a variable in V \ S that appears negated in the clause. An assignment which satisfies all clauses in a formula is called a satisfying assignment for the formula.

Streaming FPT Algorithms

The main result of this section is an algorithm that solves instances (F, k) of Min-Ones d-SAT in k + 1 passes using space O (kd ck + k d) log n (c > 0, a constant). We also describe how to simulate the execution of the standard branching algorithm for the problem to solve in instances in (d + 1) k passes using space O(k log n) (see Appendix B.1).

Using these algorithms as subroutines, we then show how IP 2 , a restricted version of the Integer Programming problem, where every constraint has at most two variables, can be solved in the parameterized streaming model (see Appendix D). The (k + 1)-pass algorithm begins by a making a single pass over the formula and obtains a set of minimal assignments for certain "essential" monotone clauses in the formula. In the next k -1 passes, these assignments are extended as much as possible using the implications appearing in the formula. Finally, the algorithm makes an additional pass to check if the formula as a whole is satisfied by one of the extended assignments.

Let (F, k) be an instance of Min-Ones 2-SAT on the variable set V = {x 1 , x 2 , . . . , x n }. The next result shows how a streaming kernelization for d-Hitting Set (defined below) can be used to enumerate minimal solutions for a certain hitting set problem. The following result follows from Observation 1, Theorem 1 and Lemma 7 of [START_REF] Fafianie | Streaming Kernelization[END_REF].

d-Hitting Set

Proposition 2.2.

There is a 1-pass streaming algorithm called Stream-HS for d-Hitting-Set, which given an instance I = (X , U, k) with u max as the maximum element of U , returns an (equivalent instance) We note that in item 1 of Proposition 2.2, the size of I can be bounded by O k d log k , by relabeling, but we want to preserve the exact variables, so we do not use relabeling.

I = (X , U ⊆ U, k) using O k d log
Next, we apply the algorithm Stream-HS of Proposition 2.2 to obtain a set, which we call a set of essential monotone clauses, C 1 , and the set S 1 of all minimal assignments (as sets of variables set to 1) for them of size at most k, as follows. Observation 2.4. S 1 is the set of all minimal satisfying assignments of size at most k for both F + and F + 1 .

Pass 1. For each monotone clause

C = (x 1 ∨x 2 ∨• • •∨x d) (where d ≤ d) seen in the stream, pass the set {x 1 , x 2 , . . . , x d } to Stream-HS. Let I t = (X t , U t , k)
The next observation relates satisfying assignments to F and the family S 1 .

Observation 2.5 (♠). Let S be the set of all minimal satisfying assignments of size at most k for F. Then for each S ∈ S, there is S ∈ S 1 , such that S ⊆ S. Now we describe the next k -1 passes. The algorithm constructs a set S prm of prime partial assignments, which will be enough to resolve the instance. Initially, we set S prm = S 1 .

Pass (2 ≤ ≤ k). Consider a non-monotone clause

C = (x C 1 ∨ x C 2 • • • ∨ x C d1 ∨ ¬y C 1 ∨ ¬y C 2 ∨ . . . ¬y C d2) (where d 1 + d 2 ≤ d) seen in the stream. For each S ∈ S prm , such that {y C 1 , y C 2 , . . . y C d2 } ⊆ S and {x C 1 , x C 2 , . . . x C d1 } ∩ S = ∅ we do the following. If |S| = k, then remove S from S prm . Otherwise, |S| ≤ k -1. Let S prm = S prm , and for i ∈ [d 1], let S i = S ∪ {x C i }. Set S prm = (S prm \ {S}) ∪ {S i | i ∈ [d 1]}.
Clearly, Pass , where 2 ≤ ≤ k, on reading a clause C uses time O(|S 1 |dk). Moreover, it modifies the sets in S prm (increasing |S prm | by at most a factor of d), by either removing a set S ∈ S 1 completely, or adding one more element to S (when the size is less than k). The above procedure is executed only for k -1 passes. Thus, it always maintains that |S prm | ∈ O d O(k) (see Proposition 2.1) and each set in S prm has at most k elements (each representable by log n bits). Thus, the (total) space used by the algorithm is bounded by O

(k d + d O(k))k log n .
For simplicity of description, we introduce the following notation. We set S 1 prm = S 1 and for each ∈ [k], we let S prm denote the the set S prm after the execution of Pass . We let ρ = (Q 1 , Q 2 , . . . , Q t) be the sequence of non-monotone clauses in F, where the ordering is given by the order of their appearance in the stream. For ∈ [k] \ {1}, i ∈ [t], we let S prm (i) be the set S prm (after modification, if any) at Pass after reading the clause Q i . Furthermore, we let S prm (0) be the set S -1 prm . Next, we prove some results that will be useful in establishing the correctness of the algorithm. Lemma 2.6. Let S be the set of all minimal assignments for F of size at most k. For each ∈ [k] and S ∈ S, there is S ∈ S prm , such that S ⊆ S.

Proof. We prove this using induction on . The claim follows for = 1 from Observation 2.5. This forms the base case of our induction. Next, we assume that the claim holds for each ≤ z (for some 1 ≤ z ≤ k -1) and then we prove it for = z + 1. At the beginning of th pass when no non-monotone clause is read from the stream, we have for each S ∈ S, there is S ∈ S prm (0), such that S ⊆ S. This follows from the fact that S prm (0) = S -1 prm . Next, we assume that at Pass , the claim holds after reading the clause

Q i , for each i ≤ p, where p ∈ [t -1] ∪ {0}. Now we prove the claim for Q p+1 = (x p+1 1 ∨ x p+1 2 • • • ∨ x p+1 d1 ∨ ¬y p+1 1 ∨ ¬y p+1 2 ∨ . . . ¬y p+1 d2
). Consider S ∈ S and let Ŝ ∈ S prm (p), such that Ŝ ⊆ S. We will show that there is a set S ∈ S prm (p + 1), such that S ⊆ S. Let X = {x p+1

For i ∈ [d 1], let Ŝi = Ŝ ∪ {x p+1 i }. Recall that S prm (p + 1) = (S prm (p) \ { Ŝ}) ∪ { Ŝi | i ∈ [d 1]}.
From the above we can conclude that Ŝi * ⊆ S and Ŝi * ∈ S prm (p + 1). This concludes the proof.

Q = (x 1 ∨ x 2 • • • ∨ x d1 ∨ ¬y 1 ∨ ¬y 2 ∨ . . . ¬y d2), such that {y 1 , y 2 , . . . , y d2 } ⊆ S and {x 1 , x 2 , . . . , x d1 } ∩ S = ∅.
But we also encountered Q at (-1)th pass, and S should have been modified/deleted, which is a contradiction. Lemma 2.8. Let S be the set of all assignments for F of size at most k. For every S ∈ S, there is S ∈ S prm , such that S ⊆ S and S satisfies every clause of F.

Proof. Consider S ∈ S and let S ∈ S prm = S k

prm be a set such that S ⊆ S. The existence of S is guaranteed by Lemma 2.6. We will show that S satisfies all the clauses of F. By the construction of S prm , there is a set Ŝ ∈ S 1 , such that Ŝ ⊆ S . Thus, S satisfies each monotone clause of F (see Proposition 2.1 and 2.

= (x 1 ∨ x 2 • • • ∨ x d1 ∨ ¬y 1 ∨ ¬y 2 ∨ . . . ¬y d2
) be a non-monotone clause in F which is not satisfied by S , and let X = {x 1 , x 2 , . . . , x d1 } and Y = {y 1 , y 2 , . . . , y d2 }. Since S does not satisfy C, we have Y ⊆ S and X ∩ S = ∅. Notice that Y ⊆ S as S ⊆ S. As S satisfies C, we have S ∩ X = ∅. This together with the fact that X ∩ S = ∅ implies that |S | ≤ k -1. We can assume that Ŝ = ∅, as S prm can be assumed to contain only non-empty sets, otherwise, ∅ is a solution to F. The above discussions together with Observation 2.7 and the fact that

|S | ≤ k -1, implies that S ∈ S k-1
prm (and we have S ∈ S k prm). But then at the kth pass, we would have encountered C, and S would be replaced by d 1 many sets, namely S ∪ {x i }, for each i ∈ [d 1]. This concludes the proof.

In the (k + 1) th pass, the algorithm performs the following steps, whose correctness is established by the discussion above.

Pass k + 1. Consider a clause C seen in the stream. If there is S ∈ S prm , such that S does not satisfy C, then remove S from S prm . When the stream is over, if S prm = ∅, then return yes, and otherwise, return no.

We now have the following theorem.

Theorem 2.9.

Instances (F, k) of Min-Ones d-SAT (d ≥ 2) can be solved in k + 1 passes using space O (kd ck + k d) log n (c > 0, a constant).
By carefully adapting the standard branching algorithm for Min-Ones-d-SAT, we obtain the following theorem. k passes using space O(k log n).

Using Theorem 2.9 and 2.10 we can obtain the following result for IP 2 , a restricted Integer Programming problem in which every constraint has at most 2 variables (see Appendix D for details).

Theorem 2.11 (♠). IP 2 admits algorithms that solve instances (P, k) in k + 1 passes using space O(f (k) log n) (f : N → N, a computable function), and in 3 k passes using space O(f (k) log n).

Streaming Kernelizations

In this section, we describe a kernelization for Min-Ones 2-SAT that makes k + 2 passes over instances (F, k) using space O k 6 log n and produces a kernel with O k 6 clauses. In the first pass, the algorithm computes a set of monotone clauses as in Section 2. Then over k more passes, for each variable x appearing in these clauses, the algorithm computes a set of variables which must be set to one if x is set to 1, and the implications that force this. In the last pass, it collects all anti-monotone clauses which only contain variables that also appear in the stored clauses. We now formally describe our algorithm. Let (F, k) be an instance of Min-Ones 2-SAT on n variables. In the first pass we apply the algorithm Stream-HS of Proposition 2.2 to obtain a set of monotone clauses, C 1 . That is, we do the following.

F S T T C S 2 0 1 9

Pass 1. Obtain a set C 1 of monotone clauses of F using the same procedure as the first pass of Section 2.

Let V be the set of variables appearing in F, V 1 be the set of variables appearing in C 1 . For each variable v ∈ V 1 , we maintain a set of variables P v and a set of clauses P v . Initially, P v = {v} and P v = ∅, for v ∈ V 1 . Now we are ready to describe our next k passes.

Pass . Consider a non-monotone clause C = (x ∨ ¬y) seen in the stream. For each v ∈ V 1 such that y ∈ P v , x / ∈ P v , C / ∈ P v , and |P v | ≤ k, add x and C to the sets P v and P v , respectively.

For v ∈ V 1 and ∈ [k + 1], by P v () we denote the set P v at the end of pass (or at the beginning of pass + 1, when = 1). Furthermore, we let P = ∪ v∈V1 P v and P = ∪ v∈V1 P v .

Observation 3.1 (♠). Let i ∈ [k] and v ∈ V 1 , such that |P v (i)| = |P v (i + 1)|. For all ∈ {i, i + 1, . . . , k + 1}, we have |P v ()| = |P v (i)|.
Lemma 3.2. Let S be an assignment which satisfies all clauses in P.

For each v ∈ V 1 ∩ S, we have P v ⊆ S.
Proof. Consider v ∈ V 1 ∩S and let ρ = (C 1 = (x 1 ∨¬y 1), C 2 = (x 2 ∨¬y 2), . . . , C t = (x t ∨¬y t)) be the order in which the clauses in P v were added. Note that P x = {x i | i ∈ [t]}. We will show by induction on the index i ∈ [t] that each x i ∈ S. Before reading C 1 , the only element in P v was v. As C 1 was added to P v , it must hold that y 1 = v. Since v ∈ S, and S satisfies each clause in P, S must contain x 1 . For the induction hypothesis, we suppose that for some p ∈ [t -1], we have {x i | i ∈ [p]} ⊆ S. We will now show that x p+1 ∈ S. Since C p+1 ∈ P v and C p+1 appears after C i in ρ, for each i ∈ [p], there exists z ∈ {x i | i ∈ [p]}, such that z = y p+1 . But since z ∈ S and S satisfies each clause in P, we have that x p+1 ∈ S.

Let F be the 2-CNF formula containing all the anti-monotone clauses of F and all the clauses in C 1 ∪ P.

Lemma 3.3. (F, k) is a YES instance of Min-Ones 2-SAT if and only if (F , k) is a YES instance of Min-Ones 2-SAT.
Proof. The forward direction follows from the fact that each clause in F is also a clause in F. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F , k), and S = v∈V1∩S P v . We show that S is a solution to Min-Ones-2-SAT in (F, k). Since V 1 ∩ S ⊆ S , from Proposition 2.2 we have that S satisfies each monotone clause of F. From Lemma 3.2 we have S ⊆ S. Thus, S satisfies each anti-monotone clause of F (F contains all of them). If S satisfies each non-monotone clause of F, then the claim follows. Otherwise, we have a non-monotone clause C = (x ∨ ¬y) in F, which is not satisfied by S . We have that x / ∈ S and y ∈ S . Let

V y = {v ∈ V 1 | y ∈ P v }.
The construction of S implies that there is v * ∈ V y such that v * ∈ S. From the construction of S we have that x / ∈ P v * . The above discussions together with Observation 3.1 implies that we would have encountered C at a pass i ≤ k, and we did not add x to P v * . This means that |P v * | ≥ k + 1. But this contradicts the fact that S has size at most k (note that from Lemma 3.2 we have P v * ⊆ S).

Let V 2 = V 1 ∪ v∈V1 P v .
We will construct a set B of anti-monotone clauses. Initially, B = ∅. We now describe the (k + 2) th pass of our algorithm, which constructs the set B.

Pass k + 2. For each anti-monotone clause C = (¬x ∨ ¬y) in the stream with {x, y} ⊆ V 2 and C / ∈ B, add C to B. Then forget the sets P v , where v ∈ V 1 . Let F be the 2-CNF formula obtained from F by removing all anti-monotone clauses that are not in B.

Lower Bounds

We begin this section by exhibiting a reduction from the POT Pointer Chasing problem (defined later) to Min-Ones 2-SAT and use it to prove the following theorem. For some background on DISJ k and other problems (INDEX and DISJ) appearing in the proofs below, the reader is referred to Kushilevitz and Nisan's standard work on Communication Complexity [START_REF] Kushilevitz | Communication Complexity[END_REF].

Using the bound of Proposition 4.2, it is possible to prove the intuitively obvious notion that a streaming algorithm which needs to keep track of locations in its input must use space Ω(log n), where n is the size of its input. The process is repeated for as many passes as the algorithm requires over F S ∧ F T . Once the algorithm halts, Bob returns its output as his answer. 2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) f(11) f(12) f(13) Since MOdSSolve outputs YES if and only if (F S ∧ F T , k) is a YES instance, the protocol is valid. The amount of communication per pass between Alice and Bob is at most 2g(n, k), so the total amount of communication is at most 2pg(n, k). From Proposition 4.2, we have 2pg(n, k) = Ω log n k , i.e. g(n, k) = Ω (1/p) log n k .

F S T T C S

The above result shows an Ω(log n) lower bound on the space used by any algorithm that solves instances (F, k) of Min-Ones d-SAT in Ω(k) passes. This is quite weak, but it is possible to strengthen the result substantially using a lower bound for the following POT Pointer Chasing problem.

Consider a complete t-ary tree T with l + 1 levels rooted at the vertex r. Let the levels be numbered from 1 to l + 1, with the root being on level 1. For each non-leaf vertex v, define v i to be the i th child of v (in the lexicographic ordering of its children). Given a function f : V(T) → {0, . . . , t -1}, define f * (v) = v f (v) for non-leaf vertices v and f * (v) = f (v) for leaf vertices. For i ∈ N, (f *) i (r) denotes the result of applying f * to r repeatedly, i times.

POT Pointer Chasing

Instance: (T, f), where T is a complete t-ary tree with l + 1 levels rooted at r, encoded as a post-order traversal of its vertices, and f : V(T) → {0, . . . , t -1}. Question: Is (f *) l (r) = 1?

Figure 1 shows an instance with parameters t = 3 and l = 2. The following result exhibits a tradeoff between the number of passes made by a streaming algorithm for POT Pointer Chasing and the space it requires. Proposition 4.4 (Guha and McGregor [18], Theorem 1). Any p-pass streaming algorithm that solves POT Pointer Chasing instances over t-ary trees with (p + 1) levels requires space Ω(t/2 p) in the worst case. Proof. The tree T has levels 1, . . . , k + 1, with the root r on level 1 and the leaves on level k + 1. Since each internal vertex has t children,

|V (T)| = t k+1 -1 t-1 = O t k . Consider the following boolean formula F with n = t k -1 t-1 = Θ t k-1 variables.
Let w = f * (r), i.e. the f (r) th child of r, and T w be the subtree of T rooted at w. The variable set of

F is {x v | v ∈ V(T w)}. For each vertex v on level i = 2, . . . , k of T , F has the clause x v → x f * (v) ≡ ¬x v ∨ x f * (v) .
For each leaf vertex v, F has the clause ¬x v ∨ ¬x v if and only if f (v) = 0. In addition, F has the clause x w ∨ x w .

We now show that (F, k) is an equivalent instance of Min-Ones 2-SAT. Consider the leaf vertex z = (f *) k (r), i.e. the vertex reached by chasing pointers from the root of T . If (T, f) is a YES-instance, i.e. f (z) = 1, then F can be satisfied by setting k variables (corresponding to variables on the w-z path in T) to 1, i.e. (F, k) is a YES instance. In the other case, i.e. f (z) = 0, F is unsatisfiable: F contains the clause x w ∨ x w , a chain of implications from w to z, and the clause ¬x z ∨ ¬x z , which cannot be satisfied simultaneously. Thus, (F, k) is a NO instance.

Observe that the implication x v → x f (v) can be produced by simply reading off the value f (v). This is because in the stream, the values of f appear as in the (lexicographic) post-order traversal of T , and knowing the value f (v) and the position of f (v) in the stream is enough to determine the f (v) th child of v. Thus, the clauses can be produced on the fly while making a pass over the post order traversal of T .

We now prove Theorem 4.1.

Proof. Let MOdSSolve be a k-pass streaming algorithm for Min-Ones 2-SAT that uses space g(n, k) on inputs (F, k) over n variables. Consider an algorithm that takes as input an instances (T, f) of POT Pointer Chasing over trees with k + 1 levels, producing instances (F, k) (over n = Θ t k-1 variables) of Min-Ones 2-SAT on the fly as above, and feeding them as input to MOdSSolve. Because of Lemma 4.5, the output of A on (F, k) correctly decides (T, f). The algorithm makes k passes over its input and the amount of space used overall is O(g(n, k) + log n). This value is Ω t/2 k , by Proposition 4.4. Since n = Θ t k , we have g(n, k) + log n = Ω n 1/k /2 k . Consider the case k ≥ √ log n. The expression n 1/k /2 k is o(1), so g(n, k) = Ω n 1/k /2 k holds trivially. In the other case, i.e. k < √ log n, we have g(n, k) = Ω(log n) by Lemma 4.3, so g(n, k)

+ log n = O(g(n, k)), i.e. g(n, k) = Ω n 1/k /2 k .
Observe that the bound g(n, k) = Ω log n k holds for any k ≤ n/2 (Lemma 4.3), and for k > n/2 , g(n, k) = Ω log n k holds trivially. Therefore, we have g

(n, k) = Ω max n 1/k /2 k , log n k . Suppose a streaming algorithm for Min-Ones 2-SAT uses space O f (k)n 1/k-(> 0, a constant) to decide instances (F, k) over n variables. Observe that lim n→∞ f (k)n 1/k- n 1/k /2 k = 0
for any function f . Thus, we have the following corollary. Corollary 4.6. Let > 0 be a number. Any streaming algorithm for Min-Ones 2-SAT that uses space O f (k)n 1/k-must make at least k + 1 passes over its input.

The preceding corollary shows that the algorithm of Theorem 2.9, which makes k + 1 passes over (F, k), is the best possible inasmuch as the number of passes is concerned. We now exhibit two lower bounds on the space complexity of Min-Ones 2-SAT using Communication Complexity similar to those in Lemma 4.

F = a[i]=1 ¬x i ∧ (x b). (F, 1) is a NO instance if and only if a[b] = 1.
Suppose there is a 1-pass algorithm for Min-Ones d-SAT that uses space f (k)g(n) on n-variable inputs with parameter k. Alice runs the algorithm on a[i]=1 ¬x i and passes the algorithm's memory to Bob. Bob resumes executing the algorithm on the memory and feeds it the additional clause x b . Using the output of the algorithm, Bob can determine the value a [b].

It is known that any deterministic 1-pass protocol for INDEX requires Ω(n) bits of communication (Kushilevitz and Nisan [26], Example 4.19). Because Alice passes the algorithm's memory to Bob, the size of this memory must be Ω(n), i.e. f (1)g(n) = Ω(n). Thus, there are no 1-pass parameterized streaming algorithms for Min-Ones d-SAT (d ≥ 1) that use space O(f (k)g(n)) with g = o(n).

The above theorem shows that even in the case where every clause consists of exactly one literal, it is not possible to solve an instance of Min-Ones d-SAT in a single pass without using space Ω(n). Unlike Theorem 4.1, the next result holds in cases where p, the number of passes made by the algorithm, is a more general function of k.

Conclusion

In this work, we have proved a variety of results that together provide a complete picture of the parameterized streaming complexity of Min-Ones d-SAT. One of the main results is the streaming algorithm for Min-Ones d-SAT which solves instances (F, k) in (k + 1) passes using space O (kd ck + k d) log n (c > 0, a constant). The matching (k + 1)-pass lower bound shows that in terms of the number of passes, this result is the best possible.

It is pertinent to note that such results, i.e. which show a sharp tradeoff between the space complexity of a parameterized streaming problem and the number of passes allowed, are quite scarce in the literature. It would be interesting to see which other parameterized streaming problems exhibit such behaviour.

Proof of Observation 2.5

Any minimal satisfying assignment S ∈ S is also a satisfying assignment for F + . From Observation 2.4 we know that S 1 is the set of all minimal satisfying assignments of size at most k for F + . Hence, it follows that there is S ∈ S 1 , such that S ⊆ S. Let (F, k) be an instance of Min-Ones-d-SAT. By S, we denote the stream of clauses in F. We give our (O d k , O(k))-streaming-FPT algorithm Stream-MOS, for Min-Ones-d-SAT algorithm in Algorithm 2. In the following, we describe various functions of the algorithm Stream-MOS. We note that each of the functions have access to the stream S and a global variable called pass-count.

The function FinishScan takes no input and returns no output (only updates pass-count).

Its goal is only to read the stream till the end and update pass-count, which stores the number of passes we have made through S. When we enter this function, the pass number is updated. If we are already at the end of the stream S, then it exits without doing any other operation. Otherwise, it read S till the end and exits. The purpose of defining this function (and maintaining pass-count) is to simplify the analysis of the algorithm. 2. The function TestSatisfiability takes as input a set S, and its objective is to determine whether or not S satisfies each clause of F. A call to TestSatisfiability, makes a complete scan through S and we explicitly ensure that whenever it is called, we are at the beginning of the stream. Whenever we find a clause unsatisfied by S in the stream, the function calls FinishScan to complete the scanning through remaining clauses of S and update pass-count, and then it exits after returning 0. In the case when there is no clause which is not satisfied by S, it makes a call to FinishScan to update pass-count, and exits after returning 1.

3.

The function FindBranchClause takes as input a set S. Its objective is to find a clause C which cannot be satisfied (by just) setting variables in S to 1. More precisely, it returns a clause C (if it exists) which satisfies two conditions (to be stated, shortly). Let X and Y be the sets of variables which appear positively and negatively in C, respectively. It must hold that Y ⊆ S and X ∩ S = ∅. Notice that for a satisfying assignment S for F, such that S ⊆ S , it must hold that S ∩ X = ∅. Moreover, as S ∩ X = ∅, S must contain at least one more vertex (from X), which is not present in S. We will later see how we use C to progress our branching procedure. To find C, FindBranchClause makes a complete scan through S. If it finds a clause C with the desired properties, it makes a call to FinishScan to complete the scan through S and update pass-count, and then it exits after returning C. If a clause with the desired properties is not found even when we reach the end of the stream S, it makes a call to FinishScan to update pass-count, and then exits after returning ♦ (indicating that a clause with the desired property could not be found). 4. The function DetectSolution takes as input a set S, and its objective is to determine whether or not there is a solution for (F, k) which sets each variable in S to 1. This function is defined because our algorithm is a recursive procedure, and as the algorithm progresses, we maintain a set of variables that have already been set to 1. We note that at any point of time we allocate memory only for one such set, and whenever we make calls to other functions, we send the memory location, instead of a separate copy of the set itself. At some steps we call other functions with a modified set (with an element added to S), in this case also we send the memory address after appending the new element (in the front). The above can be achieved by using appropriate memory pointers. Next, we describe the working of DetectSolution. If |S| > k, then it (correctly) return 0, indicating that there is no satisfying assignment of size at most k containing S. Hereafter, we assume that |S| ≤ k. Now the function checks if S is a satisfying assignment for F, by making a call to TestSatisfiability with (memory location of) S as the argument.

If TestSatisfiability(S) returns 1, then the function exits after (correctly) returning 1. Otherwise, it makes a call to FindBranchClause with (memory location of) S as the argument, and stores the output of it in C. Next, it considers the case when C = ♦. Let X and Y be the sets of variables appearing positively and negatively in C, respectively. By the properties of the clauses returned by FindBranchClause, we know that X ∩S = ∅ and Y ⊆ S. Thus, for any satisfying assignment S for F with S ⊆ S , S ∩ X = ∅ must hold. As X ∩ S = ∅, S must contain at least one vertex from X and this vertex does not belong to S. If |S| = k, then there cannot be a satisfying assignment of size at most k containing S, as otherwise, it will not satisfy C. Thus, in the above case, the function correctly returns 0, and exits. Next, the function deals with the case when |S| < k. For any x ∈ X, it checks if there is a satisfying assignment for F of size at most k containing S ∪ {x}. This is done by making a recursive call to DetectSolution with (the memory location of) S ∪ {x} as the argument. If for any x ∈ X, DetectSolution(S ∪ {x}) returns 1, then the function exits after (correctly) returning 1. If for no x ∈ X, DetectSolution(S ∪ {x}) returns 1, then the function exits after (correctly) returning 0. If none of the above statements could be used to return an answer, then the algorithm returns 0 and exits. 5. The function MainMOS is the main function of the algorithm, where the algorithm begins its execution. The objective of MainMOS is to return 1 if (F, k) is a yes-instance of Min-Ones-d-SAT and return 0, otherwise. Thus, we have only statement, namely, DetectSolution(∅) in this function. The correctness of this function follows from the correctness of DetectSolution.

Next, we state a lemma regarding Stream-MOS, which will be used to establish the main theorem of this section. Proof. The correctness of Stream-MOS is immediate from the correctness of each of its functions (which is apparent from their respective descriptions). We now bound the space used by the algorithm and the number of passes it makes over S. The space bounds follows from the facts that at any point of the time, we have at most O(k) active instances of DetectSolution and whenever we pass a set as an argument to a function, its memory is passed, rather than a copy of the set itself. To bound the number of passes that the algorithm makes over S, it is enough to bound pass-count. Recall that pass-count is updated only when TestSatisfiability or FindBranchClause is called by DetectSolution. In the above, the pass-count is updated by TestSatisfiability or FindBranchClause by making a call to FinishScan, which increments pass-count exactly by 1. Observe that the total number of (recursive) calls to TestSatisfiability or FindBranchClause, made by DetectSolution is bounded by O d k . Thus, pass-count is bounded by O d k . This concludes the proof.

The proof of Theorem 2.10 follows from Lemma B.1.

2 0 1 9 8: 4 Parameterized

 94 Streaming Algorithms for Min-Ones d-SAT Related Results. Min-Ones 2-SAT was first studied by Gusfield and Pitt

 Instance: (U, F, k), where F is a family of subsets of U of size at most d, and k ∈ N. Question: Is there a set S ⊆ U of size at most k such that S ∩ A = ∅ for all A ∈ F ? Proposition 2.1 (♠ 1). There is an algorithm Enum-d-HS, that finds the set S k , of all minimal d-hitting sets of size at most k, for an instance I = (X , U, k) of d-Hitting Set in time O d k |I| . Moreover, |S k | ∈ O d k and the algorithm uses space O k|I| + kd k b U , where |I| is the size of I and b U is maximum size of the elements of U in bits.

 be the output of Stream-HS once the entire stream has been read. Set C 1 = X t . Using Proposition 2.1, compute the set S 1 , of all minimal d-hitting sets of size at most k for I t . The next lemma bounds the time and the space used in Pass 1. Lemma 2.3 (♠). Pass 1 uses space O (k d + d k)k log n and time O d k k d log n after reading each clause from the stream. Let C + be the set of all monotone clauses of F, let F + = ∧ C∈C + C and F + 1 = ∧ C∈C1 C. Recall that C 1 is the set of clauses computed in Pass 1. We have the following observation, which follows from Proposition 2.1 and item 3 of Proposition 2.2.

1 , x p+1 2 , 1 , y p+1 2 , 1 , x p+1 2 ,

 121212 . . . , x p+1 d1 } and Y = {y p+1 . . . , y p+1 d2 }. If Y ⊆ Ŝ or X ∩ Ŝ = ∅, then Ŝ ∈ S prm (p + 1). Hence, S = Ŝ is a set such that S ⊆ S. Otherwise, we have Y ⊆ Ŝ and X ∩ Ŝ = ∅. Since S satisfies Q p+1 , it must contain a variable, say x p+1 i * from {x p+1 . . . , x p+1 d1 }. As X ∩ Ŝ = ∅, Ŝ ⊆ S, |S| ≤ k, and x p+1 i * ∈ S, we have that |S| ≤ k-1.

 2). Next, consider an anti-monotone clause C = (¬y 1 ∨ ¬y 2 ∨ . . . ¬y d) (where d ≤ d), and let Y = {y 1 , y 2 , . . . , y d }. Since S satisfies C, Y S = Y \ S is a non-empty set. As S ⊆ S, we have S ∩ Y S = ∅. Thus, S satisfies C. If S satisfies all the non-monotone clauses of F, then the claim follows. Otherwise, let C

Theorem 2 .

 2 10 (♠). Instances (F, k) of Min-Ones d-SAT (d ≥ 2) can be solved in (d + 1)

Lemma 3 . 4 Theorem 3 . 5 .

 3435 (♠). (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (F, k) is a yes-instance of Min-Ones 2-SAT. Notice that we have stored the sets of clauses C 1 , P, and B, of sizes O k 2 , O k 3 , and O k 6 , respectively. This results in the instance (F, k) of Min-Ones 2-SAT. The above discussions together with Lemma 3.4 implies the following theorem. Min-Ones-2-SAT admits an algorithm that kernelizes instances (F, k) in k + 2 passes using space O k 6 log n and produces a kernel with O k 6 clauses.

Theorem 4 . 1 .

 41 Any streaming algorithm that solves instances(F, k) of Min-Ones d-SAT (d ≥ 2) in k passes requires space Ω max n 1/k /2 k , log n k, where n is the number of variables in F .The well-known truncated disjointness problem of Communication Complexity has the following lower bound.

Proposition 4 . 2 (

 42 Kushilevitz and Nisan [26], Example 2.12). Let n, k ∈ N with 0 ≤ k ≤ n/2 . Any deterministic protocol for DISJ k requires Ω log n k bits of communication overall .

Lemma 4 . 3 .

 43 Let MOdSSolve be a streaming algorithm for Min-Ones d-SAT (d ≥ 2) that solves instances (F, k) of Min-Ones d-SAT on n variables using space g(n, k). For any k ∈ {1, . . . , n/2 }, if MOdSSolve makes p passes to solve instances (F, k), then g(n, k) = Ω (1/p) log n k . Proof. Consider the following protocol for DISJ k , in which Alice receives the set S ⊆ {1, . . . , n} and Bob receives the set T ⊆ {1, . . . , n} (|S|, |T | = k). Alice constructs the forumla F S = i∈S ¬x i ∨ ¬x i and Bob constructs the formula F T = i∈T x i ∨ x i . Observe that (F S ∧ F T , k) is a YES instance of Min-Ones 2-SAT if and only if S ∩ T = ∅. Now alice runs MOdSSolve with parameter k and F S as partial input, and passes its memory r S to Bob. Bob resumes execution of MOdSSolve on the memory r S and feed it the formula F T . With this, the algorithm makes the first pass over F S ∧ F T . Bob then passes the algorithm's memory r T back to Alice. Using r T , Alice resumes execution of MOdSSolve.

Figure 1

 1 Figure[START_REF] Faisal | Kernelization Algorithms for D-Hitting Set Problems[END_REF] An instance of POT Pointer Chasing with parameters t = 3 and l = 2. The stream consists of t, k and the values of f appearing as in the lexicographic post-order traversal of the tree. In the tree, labels appear in black next to vertices, and the corresponding values of f appear in grey. The chain of pointers leads to the vertex labelled 3, with f (3) = 0.

Lemma 4 . 5 .

 45 Let (T, f) be an instance of POT Pointer Chasing, where T is a t-ary tree with k + 1 levels. A boolean formula F can be constructed such that (T, f) is a YES instance of POT Pointer Chasing if and only if (F, k) is a YES instance of Min-Ones 2-SAT.

1 . 4 . 7 .F

 147 3, which apply to Min-Ones d-SAT even when d = Theorem There are no 1-pass streaming algorithms for Min-Ones d-SAT (d ≥ 1) that use space f (k)g(n) (f, g : N → N, computable functions; g = o(n)) on instances (F, k) with n variables. for Min-Ones d-SAT Proof. Observe that any instance (a, b) of INDEX can be encoded as the formula

Theorem 4 . 8 .

 48 Any p-pass streaming algorithm for Min-Ones d-SAT (d ≥ 1) requires space Ω(n/p). Proof. The claim follows from the fact that instances of DISJ can be encoded as SAT formulas in which every clause comprises one literal. Consider the formula F = (C S ∪ C T), where C S = {x i | i ∈ S} and C T = {¬x i | i ∈ T }. S ∩ T = ∅ if and only if F is satisfiable. By standard arguments from Communication Complexity, any p-pass streaming algorithm for Min-Ones 2-SAT must use space Ω(n/p).

B. 1 (

 1 O d k , O(k))-streaming-FPT Algorithm for Min-Ones-d-SAT In this section, we design an (O d k , O(k))-streaming-FPT algorithm for Min-Ones-d-SAT. The algorithm closely follows the standard O d k (n + m) O(1) branching algorithm for Min-Ones-d-SAT, where n and m are the number of variables and clauses in the input instance.

Algorithm 2 4 if 5 return; 6 while 7 8 return; 9 Function 10 while 13 FinishScan 17 Function 18 while 21 FinishScan 29 C 30 if C = ♦ then 31 if |S| = k then 32 return 0; 33 Let X = {x 1 34 ans = 0; 35 for i = 1 to d do 36 ans

 24567891013171821293031331343536 Algorithm Stream-MOS. Input: A stream of clauses S for an instance (F, k) of Min-Ones-d-SAT. 1 pass-count=0; 2 Function FinishScan() 3 pass-count = pass-count+1; at end of the stream S then end of the stream S is not reached do Read the next clause in the stream; TestSatisfiability(Set S) end of the stream S is not reached do 11 Read the next clause C in the stream; 12 if C is not satisfied by S then FindBranchClause(Set S) end of the stream S is not reached do 19 Read the next clause C in the stream, and let X and Y be the sets of variables in C appearing positively and negatively, respectively; 20 if Y ⊆ S and S ∩ X = ∅ then = FindBranchClause(S); , x 2 , . . . , x d } (where d ≤ d) be the set of variables appearing positively in C; = ans ∨ DetectSolution(S ∪ {x i });

Lemma B. 1 .

 1 Stream-MOS correctly resolves an instance Min-Ones-d-SAT (presented as a stream S, of clauses). Moreover, it uses space bounded by O(k log n) and makes at most O d k passes over S.

 For n ∈ N, [n] denotes the set {1, 2, . . . , n}. Let x ∈ {0, 1} n and i ∈ [n]. The i th coordinate of x is denoted by x[i]. Consider a set of variables V = {x 1 , . . . , x n }. A literal is a variable x i (called an unnegated literal) or its negation ¬x i (called a negated literal). A clause is a disjunction (OR) of literals, e.g. (x 1 ∨ ¬x 2 ∨ ¬x 3). It is called monotone if it consists entirely of unnegated literals, and is called anti-monotone if it consists entirely of negated literals. Clauses containing both negated and unnegated literals are called non-monotone.

 |U | bits of memory and O k d time at each step, such that the following conditions are satisfied. 1. |X | ∈ O k d and the bit size of I is bounded by O k d log |U | . 2. Elements of U are represented using log |U | bits. 3. S ⊆ U (or U) of size at most k is a solution to I if and only if it is a solution to I .

Observation 2.7. For

 i+1 prm . Let ∈ {i + 2, i + 3 . . . , k} be the lowest integer, such that S / ∈ S prm (if such an does not exist, the claim trivially holds). Since S ∈ S -1 prm and S / ∈ S prm , there is a non-monotone clause

i ∈ [k -1] and a set S ∈ S i prm , if S ∈ S i+1

prm , then for each ∈ {i, i + 1, . . . , k}, we have S ∈ S prm .

Proof. Consider i ∈ [k -1] and a set S ∈ S i prm , such that S ∈ S

Proofs of results marked with a ♠ can be found in the appendices.F S T T C S

0 1 9

A A Brief Introduction to Parameterized Complexity

A parameterized problem Π is a subset of Γ * × N, where Γ is a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a classical problem instance and k is an integer, which is called the parameter. The framework of parameterized complexity was originally introduced to deal with NP-hard problems, with the aim to limit the exponential growth in the running time expression to the parameter alone. A central notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a parameterized problem Π, there is an algorithm that given an instance (x, k), decides whether or not (x, k) is a YES instance of Π in time f (k) • p(|x|), where f is a computable function of k and p is a polynomial in the input size. Another central notion in parameterized complexity is kernelization, which mathematically captures the efficiency of a data preprocessing. A typical goal of a kernelization algorithm is to store only "small" amount of information, which is enough to recover the answer to the original instance. The "smallness" of the stored information is quantified by the input parameter. Formally, a kernelization algorithm or a kernel for a parameterized problem Π is given an input (x, k), and the goal is to obtain an equivalent instance (x , k) of Π in polynomial time, such that |x | + k ≤ g(k). Here, g is some computable function whose value only depends only on k, and depending on whether it is a linear, polynomial, or exponential function, the kernel is called a linear, polynomial, or exponential kernel, respectively. It is well known that a parameterized problem is FPT if and only if it admits a kernel. Thus, in the literature, the term "kernel" is used for polynomial kernels (unless stated otherwise). For more details on parameterized complexity, we refer the reader to the books of Downey and Fellows [START_REF] Downey | Fundamentals of Parameterized complexity[END_REF], Flum and Grohe [START_REF] Flum | Parameterized Complexity Theory[END_REF], Niedermeier [START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF], and the recent book by Cygan et al. [START_REF] Cygan | Parameterized algorithms[END_REF].

B Missing Proofs from Section 2

Proof of Proposition 2.1

The algorithm Enum-d-HS is given in Algorithm 1. We start by proving the correctness of the algorithm by induction on k. When k ≤ 0, then the algorithm correctly computes the set S k (see . Let us assume that the algorithm returns the correct output for all k ≤ t, where t ∈ N. We will now prove that the output of the algorithm is correct for

14 Remove those sets from S k which are not minimal solutions to (X , U, k);

If there is no non-empty set in X , then the algorithm returns the correct output (Steps 1-2 and 5-6). Hereafter, we assume that Steps 1-6 are not executed (otherwise, we already have the correct output). Also, we have that k ≥ 1 and there is a non-empty set X = {x 1 , x 2 , . . . , x d } ∈ X . Any d-hitting set must contain at least one element from X. By induction hypothesis, for each i ∈ [d], we (correctly) compute the set S i of all minimal d-hitting sets of size at most k -1, for the instance (X i , U \ {x i }, k -1). Notice that each set S ∈ S i , intersects each set in X i and may not intersect X. Moreover, S ∪ {x i } is a d-hitting set for (X , U, k). From the above discussion (together with the induction hypothesis), we obtain that

k is a set containing all minimal d-hitting sets for (X , U, k). Moreover, by construction we have that

k with non-minimal solutions removed, is the output returned by the algorithm at Step 17. This concludes the proof of correctness of the algorithm.

We now move to the running time analysis of the algorithm. Notice that the running time of the algorithm is given by the recurrence:

Proof of Lemma 2.3

From Proposition 2.2, Pass 1 can compute I t = (X t , U t , k) after reading all the clauses from the stream using O k d log n space, and using O k d time after reading a clause from the stream. Furthermore, |X t | ∈ O k d , and elements of U t are represented using log n bits (by Proposition 2.2 and our assumption that variables of F are x 1 , x 2 , . . . , x n). Now using Enum-d-HS of Proposition 2.1, the algorithm computes

, there is a non-monotone clause Q = (x ∨ ¬y), such that y ∈ P v (-1) and x / ∈ P v (-1). But we also encountered C in pass (-1), and P v should have been modified, which is a contradiction.

Proof of Lemma 3.4

From Lemma 3.3, it is enough to show that (F , k) is a yes-instance of Min-Ones-2-SAT if and only if (F, k) is a yes-instance of Min-Ones 2-SAT.

The forward direction follows from the fact that each clause in F is also a clause in F. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F, k). Notice that S satisfies all monotone and non-monotone clauses of F . For an anti-monotone clause C = (¬x ∨ ¬y), if at least one of x or y is not in V 2 , say x / ∈ V 2 , then x / ∈ S (since S ⊆ V 2). Otherwise, x, y ∈ V 2 , and then C is also a clause in F. Thus, C is satisfied by S.

D Streaming FPT Algorithm for IP 2

In this section, we consider a restriction of the integer programming problem, IP 2 (defined below). We show how to convert an instance of IP 2 to an instance of Min-Ones 2-SAT under parameterized streaming constraints, using the approach of Hochbaum et al. [START_REF] Hochbaum | Tight Bounds and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality[END_REF]. This allows us to use the algorithms for Min-Ones 2-SAT to solve IP 2 . We consider integer programs on n variables and m constraints that have the following form.

Minimize n j=1 w j x j , subject to

), and

where the coefficients appearing in the constraints are integers, and for all j ∈ [n], w j ∈ N. Such integer programs (hereafter called bounded integer programs) were considered by Hochbaum et al. [START_REF] Hochbaum | Tight Bounds and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality[END_REF], who showed that by applying a transformation to the variables of the program, the problem of finding a feasible solution becomes equivalent to 2-SAT. We consider the following problem.

IP 2

Input: A bounded-IP P, where we want to minimize n j=1 w j x j , subject to a i x pi +b i x qi ≥ c i , for i ∈ [m] and 0 ≤ x j ≤ u j , for j ∈ [n], and an integer k ∈ N. Question: Is there a is feasible solution for P, such that n j=1 w j x j ≤ k? Let (P, k) be an instance of bounded-IP, where P is provided as a stream of w i , for i ∈ [n], followed by the constraints. As a constraint arrives, we show how we create 2-CNF clauses for it. This will give us an instance of (F, k), such that (P, k) is a yes-instance of IP 2 if and only if (F, k) is a yes-instance of Min-Ones-2-SAT. We note that both the construction and the equivalence of the instances follows from [START_REF] Hochbaum | Tight Bounds and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality[END_REF], therefore, we only briefly explain the construction of F. We use the approach described in Section 4 of [START_REF] Hochbaum | Tight Bounds and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality[END_REF] to construct F. Consider the variable constraint 0 ≤ x p ≤ u p , for p ∈ [n]. By replacing x p with u p binary variables x p,l (l ∈ [u p]) and introducing the constraints x p,l ≥ x p,l+1 (l ∈ [u p -1]), we obtain an injective correspondence between x p and (x p,1 , . . . , x p,ui): x p = up l=1 x p,l . To model these constraints, we add the clause (x p,l ∨ ¬x p,l+1) to F, for each l ∈ [u p -1].

Let a i x p + b i x q ≥ c i be a constraint. We only state the case where a p , b q > 0 (for more details, see [START_REF] Hochbaum | Tight Bounds and 2-Approximation Algorithms for Integer Programs with Two Variables per Inequality[END_REF]). For i ∈ [m] and l ∈ {0, . . . , u p }, let α i,l = (c i -la i)/b i -1. The constraint can be expressed by adding the clauses to F as follows.

x p,l+1 ∨ x q,α k,l+1 , for every l ∈ {0, . . . u p -1} with 0 ≤ α i,l < u q .

x p,l+1 , for every l ∈ {0, . . . , u p -1} with α k,l ≥ u q .

x q,α i,l for l = u p with α k,up ≥ 0.

Next, we state how weights (and the function to be minimized) are encoded. Note that the weights appearing in the objective function are nonnegative integers. Let x p be a variable with w p > 1. To express the effect of setting x p to 1 on the objective function, we introduce w p -1 additional variables y p,1 , . . . , y p,wi-1 and the clauses (¬x p ∨ y p,j) to F, for all j ∈ [w i -1].

Producing the clauses as a stream. Under the reasonable assumption that the clauses of P can each be stored in working memory, i.e. in O(f (k) log n) bits of space, and by the construction of F, it is easy to see that as a constraint of P arrives, we can construct the of corresponding clauses for that constraint in space bounded by O(g(k) log n). The above discussions together with the algorithms of Section 2 and B.1, implies the proof of Theorem 2.11.