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Cohesive slump

The Slumping of a Cohesive Granular Column:
Continuum and Discrete Modelling

Anais Abramian,1, a) Lydie Staron,1 and Pierre-Yves Lagrée1

Sorbonne Université, CNRS - UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris,
France

Cohesion forces strongly alter the flow properties of a granular material. To investigate this influence, we focus on
a simple configuration: the collapse of a cohesive granular column. To do so, we adopt a numerical approach and
implement a peculiar rheology in a Navier-Stokes solver (Basilisk) : the so-called µ(I)-rheology, usually used for
dry granular materials, supplemented by a yield stress for cohesion. With this approach, we recover the stability
of the column, assuming the classical Mohr-Coulomb criterion for failure. We then compare this approach with a
code based on Contact Dynamics, which implies forces at the grain scale: we recover as well the stability of the
column. Furthermore, this comparison enables us to estimate the macroscopic yield stress based on the cohesive
contacts between grains, which bridges the gap between continuous and discrete approaches of cohesive granular matter.

I. INTRODUCTION

Cohesion forces strongly alter the flow properties of a gran-
ular material. Instead of flowing homogeneously, grains ag-
gregate and flow intermittently. In Nature, a loss of cohesion
in soils can trigger catastrophic landslides2. In industrial pro-
cesses, cohesion sometimes prevent materials, like gypsum or
plaster, to flow properly. In the worst cases, it can clog and
stop the flow during a process chain. Techniques have been
devised to characterize these materials, and in particular de-
termine their “flowability”. Although these measurements can
be useful to compare two powders or give qualitative proper-
ties of the material, they still lack of a physical base.

To this end, cohesive forces have been modeled at the grain
scale, theoretically and numerically. These cohesion forces
can be either Van der Waals forces1, electrostatic forces, or
induced by capillary bridges13. However, it is not an easy task
to link these properties to the macroscopic flow of an assem-
bly, and in particular to the friction coefficient or the yield
stress. Recently, Gans et al.5 elaborated a coating agent based
on a polymer which enables them to get a stable and repro-
ducible cohesive granular material. Doing so, they linked the
force between two grains with the macroscopic rheology of
the material.

In the wake of these results, we investigate, numerically, the
link between the rheology of cohesive material and cohesive
forces at the grain scale. To do so, we develop two numerical
implementations, based on different approaches: a continuum
approach based on the macroscopic, material scale, and a dis-
crete approach based on the grain scale.

From the macroscopic point of view, we describe the mate-
rial as a fluid of a peculiar rheology. In the first instance, the
µ(I)-rheology is a good candidate as it succesfully modelled
the flow of dry granular materials16,27,29. According to the lat-
ter, the shear stress τ is related to the pressure P through4,6,14

|τ|= µ(I)P (1)

where µ(I) is the friction, which can involve the static friction
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FIG. 1. 2-dimensional cohesive column of height h in a gravity field.
At equilibrium, friction and cohesion balances the weight of the up-
per corner along the surface of length h/sinα . This surface of incip-
ient rupture forms an angle α with the horizontal.

coefficient µs as well as a complex dependence on the shear
rate, encapsulated by the inertial number I.

To take into account cohesion in the material, we introduce
a yield stress τc in the rheology, such that

τ = τc +µ(I)P , (2)

and then solve the flow with a Navier-Stokes solver
(Basilisk)16.

We compare these simulations with a code based on Con-
tact Dynamics15,17, solving the motion of individual grains
and giving access to individual grain-scale quantities, such as
the forces between grains or the number of cohesive contacts.

In this article, we test our numerical implementations on
a simple configuration: a granular column (Fig. 1). This
is a challenging test because it covers a large range of flow
regimes; meanwhile, its duration is short enough for the sim-
ulations. We expect the column to remain stable below a
threshold height, due to the yield stress induced by cohesion.
The column then flows when its initial height H0 exceeds the
threshold value:

Hy =
4`c√

µ2
s +1−µs

, (3)

where g is gravity, and `c is a cohesive length defined as:

`c =
τc

ρg
, (4)
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whith ρ the density of the material.
Equation (3) is easily shown by considering the upper cor-

ner above the column, of mass M = ρh2/2tanα , sliding with
friction and cohesion along a slope of angle α . The Mohr-
Coulomb failure criterion on the Mohr circle sets this angle of
rupture α equal to30:

α =
arctan(µs)

2
+

π

4
, (5)

For example, with µs = 0.3, the column must exceed about
5`c to flow. Although this length controls the granular macro-
scopic cohesion from a continuum point of view, it is not
well-defined at the grain scale. In the following, we attempt
to bridge the gap by relating its value to the discrete contact
forces.

To do so, we first test this threshold with the continuous
approach (section II), and then the contact dynamics simula-
tions (section III). We finally compare them and discuss about
the relation between the material and the grain-scale cohesion
(section IV).

II. CONTINUOUS APPROACH

A. Rheology

We describe here our continuous approach to model cohe-
sion in the granular material. As mentioned in the introduc-
tion, we consider the granular column as a fluid of a peculiar
rheology, namely a dry granular material supplemented by a
yield stress (equation (2)).

For dry granular materials, the so-called µ(I)-rheology is
commonly used to model dense flows. This rheology takes
into account the granular threshold to initiate the flow, and, in-
volves a complex dependence on the shear rate, encapsulated
by the inertial number6,7:

I =
γ̇d√
P/ρ

. (6)

We defined γ̇ =
√

2D2 where D2 =
√

D : D is the second in-
variant of the rate of strain tensor D, P the pressure, d and ρ ,
the grains’ diameter and density, respectively.

Then, the friction coefficient evolves as the following func-
tion of I:

µ(I) = µs +
∆µ

I0/I +1
(7)

where µs is the static friction coefficient, ∆µ the difference
between the dynamic and static friction coefficient and I0 an
initial inertial number. This rheology, first introduced by MiDi
(2004)6 for stationary flows, was shown to be valid in the
intricate flow configuration of dry granular collapse by La-
caze & Kerwell4 and implemented successfully in continuum
models3,8,27,29 since Lagrée et al. (2011)16.

Now, to account for the cohesion, we supplement this rhe-
ology by a yield stress τc, which is classically used for visco-
plastic fluids such as Bingham fluids. This threshold, on the

FIG. 2. Adaptive mesh refinement during a simulation of the collapse
of a cohesive granular column (continuous approach). The color in-
dicates the phase of the fluid. In red: cohesive granular material. In
green: surrounding air.

contrary to the granular one, does not depend on the pressure.
Overall, this peculiar rheology for our cohesive granular ma-
terial translates in a relation between shear stress and pressure:

|τ|= µ(I)P+ τc , (8)

More generally, we assume that the internal stress tensor fol-
lows

σ =−PI+2ηD, with η =
τc +µP√

2D2
. (9)

where η is an effective viscosity.
This rheology assumes that frictional properties, described

by µ(I) are independent of cohesive properties, encapsulated
by τc only. This may not be the case for real cohesive material,
where, for example, µs may vary with cohesion5. For lack of a
comprehensive theory, we do not take this effect into account
in the following.

In our simulations, we start by using the values of Jop
et al.14 for the static coefficient µs = 0.38, ∆µ = 0.26, and
I0 = 0.279. We also fix the grain size, such that we have 30
grains in a column radius (d = R0/30, with R0 the radius of
the column). However, this grain size does not have a physical
meaning in our description.

B. Numerical implementation and parameters

We now solve the Navier-Stokes equations for this fluid,
using the flow solver Basilisk which is based on a projection
method and a Volume-Of-Fluid approach11,16. Thus, we de-
fine two phases: the granular column and its surrounding air.
The properties of the surrounding air does not affect the col-
umn dynamics provided that its viscosity and density are small
enough compared to the column’s ones16.

This solver uses an adaptive mesh refinement method12.
Thus, we maximally refine the grid in the column and de-
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FIG. 3. Runout of the column as a function of time, for different reg-
ularization viscosity (continuous approach) ηmax (with `c/H = 0.1).
Inset. Final velocity of the material against the boundary viscosity
ηmax.

Length Pressure Velocity Time
R0 ρgR0

√
gR0

√
R0/g

TABLE I. Parameters used for the dimensional analysis.

crease its size in the surrounding fluid, which optimizes the
time of computation (Fig. 2).

According to the rheology, the fluid then flows with an ef-
fective viscosity. However, as granular matter must stop when
its viscosity diverges, we thus regularize its motion by intro-
ducing a maximum viscosity, ηmax. As a result, the column
freezes and slowly creeps at the end of the simulation. We
then have the following expression for the viscous stress and
the the effective viscosity16:

τ = 2ηD, where η = min
(

τc +µ(I)P√
2D2

,ηmax

)
. (10)

There is not a unique manner to regularize the viscosity8,9,
but we chose the simplest one by limiting the viscosity with
a maximum, as did Lagrée et al.16. They found that, for dry
granular material, the values of ηmax does not affect the final
shape of the deposit as long as it is larger than 100.

We checked this dependency for our cohesive material by
measuring the creeping velocity of the front, when it reached
its final shape, and thus after typically t = 5

√
R0/g. We

observe that for ηmax of above 100, this variation remains
smaller than about 10−5R0, which we find to be negligible.

C. Simulations

We now show a first example for the slumping of a gran-
ular column with ηmax = 100 (Fig. 4). In this example, we
fix the domain size to L = 10, and chose H0 = 1 and R0 = 2
for the initial geometry of the column. At its maximum, the
grid size is then L/28. We take the cohesive length equal to
`c/H0 = 0.1, which remains small compared to the height of
the column; the column thus releases and flows.
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FIG. 4. Slumping of the cohesive granular column (continuous ap-
proach) with time. The colorbar indicates the intensity of the veloc-
ity. (a) & (d): t = 0. (b) & (e): t = 1.5
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R0/g, (e) & (f): t = 3

√
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FIG. 5. Rupture angle as a function of the friction coefficient (con-
tinuous approach). Dashed red line: Mohr-Coulomb theory (equa-
tion (5)). Blue points: for granular columns without cohesion. Grey
points: for cohesive columns, with a cohesion length of `c/H0 = 0.1.

By plotting the intensity of the inertial number I, we ob-
serve that a band appears, where the shear rate is maximum. In
the corner above this band, the shear remains negligible, such
that the corner does not deform and is almost undisturbed in
the final shape. The final runout of the collapse, defined as the
maximum distance travelled by the front of the flow, is then
smaller than that of a cohesionless column.

This band makes an angle α with the horizontal. We expect
that this angle is a function of the friction coefficient, through
equation (5).

To measure this angle properly, we detect where the mate-
rial moved from 10−2√gR0 (dashed line, Fig. 4). Although
this trend is well reproducible for a cohesionless granular ma-
terial, it is not the case for a cohesive one (Fig. 5). In partic-
ular, theory systematically overestimates it. This may come
from the uncertainty in the detection of the angle, which re-
quires a local threshold criterion. Overall, as the trend is
smooth, the angle has the good order of magnitude, and we
will see that it does not affect the threshold of slumping, on
which we focus in the following.
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FIG. 6. Stability map. Grey dashed line: analytical limit (equation
(3)). Points : numerical simulations with Basilisk (continuous ap-
proach). In blue: the pile is stable and never collapses. In red: the
column collapses.

D. Stability of the column

We perform now a series of simulations where we vary the
height of the column and the yield stress, and thus the cohe-
sion length `c.

First, we add a small cohesion (`c = 0.1), and we vary the
column’s height (Vertical line in Fig. 6). If the column is high
enough, it releases, then flows and acquires a stationary shape
after approximately t = 5

√
R0/g. Conversely, if the height is

too small, the column does not flow and is cohesive enough to
remain in its initial shape. This threshold follows equation (3)
for a given cohesion.

This threshold depends on cohesion. Thus, we now keep
a constant aspect ratio of the initial column (equal to 1), and
we vary the dimensionless cohesion of the granular material
`c (Horizontal line in Fig. 6). We recover the threshold in
cohesion over which the column remains stable.

On the same figure, we plot the theoretical threshold given
by equation (3), which provides a good agreement, without
any fit parameter (dashed line, Fig. 6). This limit validates the
implementation of cohesion in the granular column for small
to moderate cohesion lengths.

We chose to rescale the height of the column and the cohe-
sion length with the initial radius of the column R0, that we did
not vary from a simulation to another other. We also could use
the cohesive length, or the grain diameter d, but the latter does
not have a physical signification in this continuous approach;
it is involved only in the µ(I)-rheology, which does not evolve
significantly with d. However, it will be better to do so when
we compare our results with the discrete approach, which we
do in the next section.

III. DISCRETE APPROACH

A. Contact dynamics simulations

Cohesive granular matter is simulated applying the Con-
tact Dynamics (CD) algorithm15,17,19, already applied for col-

FIG. 7. An example of the discrete collapse of a cohesive column
with the initial state (top picture) and the final state (bottom picture).
The number of grains is 1500, the Bond number is 100.

umn collapse problems in16,25,26. The basic ingredients of this
method are Coulombic solid friction and hardcore repulsion.
Solid friction imposes locally that the normal contact force fn
and tangential contact forces ft satisfy ft ≤ µc fn, where µc is
the coefficient of friction at contact, while hardcore repulsion
ensures that the values of normal forces computed are such
that the overlap characterising contacts existence remains as
small as possible. In the case of non-cohesive material, forces
at contacts are exclusively compressive; in the cohesive case,
forces in extension are allowed. This implies the introduction
of a contact adhesive force Fadh that imposes the maximum
value attainable by a force in extension before the contact is
disrupted and opens. Based on the literature18,21, we set the
value of the Fadh proportional to a granular Bond number and
the mean weight of the grains involved in the contact.

Fadh =−Bondmi jg (11)

with mi j = (2/mi +2/m j)
−1, and i and j are the two grains

involved. Its value is systematically changed and its influence
analysed in subsection IV.
The contact friction µc was set to 0.5 and its value/influence
was not investigated nor discussed here. We may just make
clear that the friction forces are computed for the normal
forces without any cohesive contribution. Moreover, a coef-
ficient of restitution e set the amount of energy dissipated in
collisions. Its value was set to e = 0.1 (namely rather inelas-
tic) and not varied.
Further technical details of the algorithm are not given in this
paper, but may be found elsewhere22.

B. Numerical set-up

The systems simulated in this contribution are columns in
2D, as shown in Fig 7. The columns are made of circular
beads of mean diameter d = 0.005m. uniformly distributed
in the range [0.004, 0.006] to avoid geometrical ordering that
may strongly dominate the failure and stability of the granular
construction. The column are prepared by random rain in
containers with initially a zero cohesion to ensure a volume
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Simulations Initial height Initial radius Initial radius Number of Cohesion number
series H0 R0 a grains Bond
simu A (I) 31d [10d;42d] [0.72, 3.06] [580, 2500] [0, 200]
simu B (H) [10d,46d] [10d,46d] 1.00±0.02 [186, 4228] [0, 250]
simu C (G) [6d,43d] 16d [0.377, 2.667] [153, 1326] [0, 200]

TABLE II. Table of discrete simulations performed.

fraction, or compacity, such as expected in a random packing
with this size disparity; we obtain φ = 0.85±0.03. Once the
packing has reached his final equilibrium state, a last series
of computation time steps with Bond 6= 0 are performed;
this ensures that the initial condition for slumping (once
the container walls are no longer there) is compatible with
cohesion and the first few time steps of the computations do
not see grains losing equilibrium because contact open before
computation may restore their viability through cohesion.
We should recall here that DC does not rely on an explicit
formulation of the cohesive contact law using very small time
steps, but on a non-smooth condition requiring going through
an implicit iteration.

The dimension of the columns, namely initial height H0 and
initial radius R0, are both changed. The intensity of the con-
tact cohesive threshold is also systematically varied (through
varying the Bond number, equation (14) in section IV). We es-
sentially performed 3 series of simulations, with dimensions,
number of grains, and cohesive threshold (Bond number) all
independently varied; a summary of the values adopted is
given in table III B. Considering these values, the behaviour
obtained in each series varies from collapse with spreading
of most of the material, to slumping of part of the material
following a well-defined failure zone, to equilibrium/stability
with slow creeping. Figure 8 shows these three occurrences
for a Bond number of successively 50, 100 and 150.

C. Evaluating the equilibrium of the discrete columns

We need a criteria to decide whether a column is stable or
unstable. Although this may sound an obvious thing to do,
discrete columns do not always fall clearly into one category
or the other, but might simply lose a small part of an edge, or
see only few grains rolling down while the rest of the pile re-
mains static, or see one angle perfectly static while the other
loses equilibrium. To avoid to have to decide case by case
who is stable and who is not (and then risk introducing sub-
jective random criteria), we just quantify the slumping as the
relative distance travelled by the secondary centres of mass G
and G′ (i.e. centres of mass of each half of the initial column)
following both axis, namely vertical slumping and horizontal

FIG. 8. An example of the final slumping of a discrete cohesive
column with a Bond number of 50, 100 and 150 (top to bottom). In
black are particles whose total displacement is greater than 5d; the
gray scale for the other grains is linear in cumulative displacement.

FIG. 9. Vertical slumping ∆Y against horizontal outspread ∆X for
all discrete simulations. We chose the value ∆Y = 0.1 to distinguish
columns at equilibrium (� symbols) from those slumping (© sym-
bols) although there are few simulations who do gather around this
value. The gray scale are for the 3 series of simulations A, B, C
presented in table III B.
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FIG. 10. Initial height H0 (normalised by d) as a function of the
Bond number for the 3 series of discrete simulations A, B, C pre-
sented in table III B. The full line which divides stable columns ( �
symbols) and unstable ones (© symbols) verifies H0/d = 0.45Bond .
The dotted line shows the favorable case of the "Rumpf-Richefeu"
prediction20 (section IV C) with µ = 0.3 (equation (20)).

outspread, computing:

∆X =
|x(G,∞)− x(G,0)|
|x(G,0)|

, (12)

∆Y =
|y(G,∞)− y(G,0)|

y(G,0)
, (13)

where x(G,0) and x(G,∞), and y(G,0) and y(G,∞) (respectively
x(G′,0), x(G′,∞), y(G′,0) and y(G′,∞)), are the initial and final co-
ordinates of the secondary centre of mass G (respectively G′).
For each simulation, ∆X and ∆Y are computed for both sec-
ondary centres of mass G and G′ and then simply averaged.
The vertical slump ∆Y is plotted as a function of the horizontal
outspread ∆X in log-log coordinates for all simulations from
table III B in Figure 9. We obtain two very distinct clouds
of points for stable and unstable columns, joined by a hand-
ful of more uncertain realisations where only few grains roll
down, creating a more ambiguous group closing the gap be-
tween two clear well-separated clouds of points. Nevertheless,
these points are distinct enough to be distributed to one group
or the other, so that we can now map out a stability graph
plotting for each group, namely stable or unstable, the initial
height H0 (normalised by d) as a function of the Bond number,
and compare it with the theoretical prediction (3), and with
continuum simulations.

Using this criteria, we determine the behaviour (stable or
not) of all simulations presented in table III B. The result is
displayed in Figure 10, where two well-defined spaces for
stable or unstable (H0,Bond) pairs come out. From visual
inspection, the linear dependence H0/d = 0.45Bond forms a
satisfactory boundary between both states, defining a discrete
yielding height.
We can now compare the discrete granular failure behaviour
with the continuous one.

IV. STABILITY ANALYSIS OF DISCRETE AND
CONTINUUM COLUMNS

A. Comparing continuum and discrete approaches

As reminded above, the stability of a continuum cohesive
column of rheology τ = τc + µ(I)P requires that the height
of the wedge remains below the yield value Hy defined by
equation (3). This threshold height, however, depends on
the term τc referring to the macroscopic cohesion, or yield
stress, valid over any representative volume of the continuum,
at any rate valid for a whole column or wedge. No such
quantity is readily available for the discrete counterpart of a
cohesive column; indeed, the sole fully controlled ingredient
in the discrete method is the cohesive contact force, namely
hardly a quantity that one may identify with a "macroscopic
cohesion". The effective macroscopic cohesion of a granular
packing will of course reflect the value of contact cohesive
forces at first order, but not only. The orientation of the con-
tacts, the volume fraction of the system, and micro-textural
aspect such as particle shape, will certainly play a role, as
discussed in20,23. Meanwhile, determining computationally a
quantity equivalent to τc would require a systematic analysis
of the stress tensor for well defined configurations (such as
shear cells), and this for steady flows, so that the friction
could be unambiguously computed. This is hardly feasible in
the transient complex dynamics studied here. Hence, in a first
step, we will stick to the contact cohesion Fadh, and discuss
how to relate the Bond number to the macroscopic yield stress
τc.

The definition of Fadh as used locally for each contact of the
discrete systems in the CD simulations is given by:

Fadh =−Bond mpg. (14)

In the following, we rather consider the mean contact adhe-
sive force, replacing the weight of the two grains precisely in
contact mi j by the mean particle weight mp = πd2/4, d being
the mean grains diameter: In order to compare quantitatively
the behaviour of discrete slumping collapses with their con-
tinuum counterparts, we a priori define a macroscopic cohe-
sive stress representative for the granular packing simulated
with the mean contact cohesive force Fadh. Therefore, we in-
troduce a characteristic length L which we assume to be the
macro/meso-scale over which cohesive stress applies:

|Fadh|
L

=
Bond

L
πd2

4
ρg, (15)

which, if we write τc ' Fadh/L, gives readily:

τc

ρg
=

πd2

4L
×Bond . (16)

The characteristic length L is unknown; we may only guess
that it probably is greater than a grain diameter (the smallest
length scale in the system if we omit the explicit description
of contacts), and of the order of few grains diameters by anal-
ogy with the often besought force chains. These are however,
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FIG. 11. Stability map with discrete and continuous data. Empty
symbols: discrete simulations with Basilisk. Filled symbols: contin-
uous simulations with Contact Dynamics. Grey dashed line: analyti-
cal limit (equation (3)). In blue: the pile is stable and never collapses.
In red: collapse of the granular pile occurs.

if reasonable, yet only guesses, which ignore the fundamental
role of the granular fabric when trying to model the mean me-
chanical properties of a granular sample. In the absence of a
clear idea, we will merely assume that L = nd, where n would
be the typical number of grains onto which macroscopic co-
hesive stress builds up, and we will derive its value from the
stability analysis of the simulated discrete columns shown in
Figure 11.
The latter shows that the linear dependence H0/d = 0.45Bond
forms a satisfactory boundary between both states, defining a
discrete yielding height that can be confronted with prediction
(3). We can rewrite (3) using (16), so that:

Hy

d
=

π√
µ2

s +1−µs
× 1

n
×Bond , (17)

where µs is the macroscopic friction, whose value for our
systems is unknown. Considering that the contact friction is
µc = 0.5, a reasonable estimate is µs = 0.324, which leads
readily to hy/d = 4.22/n×Bond , which gives n = 9, namely
L = 9d, which seems a reasonable value. Note that assuming
µs = 0.5 leads to L = 11d, so that the result is poorly
depending on the details of the friction coefficient (whose
value remains generally bounded in a small interval)24.

B. Comparing discrete and continuum

From the analysis above, we found that the stability analy-
sis based on Mohr-Coulomb applies to discrete piles providing
the cohesive stress is determined over a characteristic length
of L = 9d. Injecting this result in equation (16) gives

`c

d
=

π

36
Bond ,

which we can use to plot on a single graph both discrete and
continuum data points for stable and unstable piles. Note that

the grain diameter, in continuum simulations, plays a role only
through the rheological model which accounts for the depen-
dence on the inertial number I, inducing the frictional prop-
erties to vary with d. Verifying that this dependence is very
small (since the I-dependence is virtually nil at the onset of
the failure), we neglected it and varied d in order to allow the
normalised height H/d for continuum piles to fall in the same
interval as for discrete piles. Doing so, we can map discrete
and continuum simulations onto a single final graph in Figure
11.

C. Discussion

Alternatively, we can adapt the analysis developed by
Richefeu et al20 from Rumpf equation23 for 3D wet granular
media, merely modifying it for 2D dry quasi-mono-disperse
systems, and using expression (14) for contact cohesive forces
Fadh rather than capillary forces. Following20, the density of
cohesive contacts is given by half the mean number of co-
hesive contacts per particle Zc divided by the free volume in
2D, i.e. the mean volume of a Voronoi cell surrounding the
particle, i.e. the average particle volume Vp = πd2/4 divided
by the solid fraction φ . Considering the cohesive forces to
be Fadh = mgBond = ρgVpBond , we obtain for the theoretical
tensile strength for an assembly of cohesive particles:

σc =
d
4

φZc×ρg×Bond (18)

with φ the packing volume fraction and Zc the mean number
of cohesive contacts per particle. Hence, the theoretical cohe-
sion τc = µsσc, gives readily:

τc

ρg
=

d
4

µsφZc×Bond . (19)

Replacing theoretical expression (19) in the theoretical stabil-
ity condition (3), we obtain:

Hy

d
=

µs√
µ2

s +1−µs
×φZc×Bond , (20)

which we can confront to the stability graph 10.
We need therefore to evaluate Zc; in Richefeu et al20, Zc

(the number of capillary bounds in 3D) is assumed to be 6. In
our system, Zc is simply the mean number of contacts bearing
negative forces per grain; its value for a 2D system counting
4228 grains with Bond = 125 is Zc = 1.3 (the mean number of
contacts irrespective of the force transmitted is between 3 and
3.5). Taking φ = 0.82 (as measured), and assuming µ = 0.3,
prediction (20) yields hy/d = 0.426Bond , in good agreement
with what is observed from numerical simulations (graph 10).
However, the result is sensitive to the value of µ chosen; tak-
ing µ = 0.5 leads to hy/d = 0.86Bond , in a much lesser agree-
ment with observations.
More to the point, prediction (20) is very dependent on the
value taken by φ and Zc; a rapid inspection of the simula-
tions shows that both quantities are dependent on the Bond
number. For simulations taken from series B (table III B), we
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find that φ varies between 0.78 (for Bond = 100) and 0.82 (for
Bond = 125), namely a modest 5% variations; but the mean
number of cohesive contacts per particle varies between 0.75
(for Bond = 50) and 1.3 (for Bond = 125), creating alone a 40%
uncertainty in expression (20) (see Figure 12). A dedicated
work would be needed to clarify this aspect.

V. CONCLUSION

In this article, we investigated how cohesion influences the
release of a granular column. We first developed a code
where we solve Navier-Stokes equation with a VOF solver
(Basilisk). We checked this code by investigating the thresh-
old height over which a column flows or not. We found a good
agreement with the Mohr-Coulomb criterion which predicts
this threshold, without any fit parameter.

We then compared this approach with a code of Contact
Dynamics, which models the dynamics of the column at the
grain scale. By comparing the height threshold, we link co-
hesion forces at the grain scale with the macroscopic cohesive
length, and thus the yield stress, as following:

`c

d
= (0.087±0.005)Bond , (21)

for the given granular material simulated. This prefactor,
however, depends on the grain-scale parameters used in our
contact-dynamics algorithm, as the contact friction, or the
grain-size distribution. Thus, we estimated this relationship
in the light of the work of Rumpf-Richefeu, which provides
an expression for the macroscopic cohesive length, as a func-
tion of the number of cohesive contacts, the compacity, and
the friction coefficient:

`c

d
=

µsφZc

4
Bond . (22)

0 25 50 75 100 125

Bond

0.0

0.5

1.0

1.5

Z
c

FIG. 12. Mean number of cohesive contacts (i.e. mean number of
contacts bearing negative forces) per particle Zc as a function of the
normalised cohesive force Bond = Fadh/mg, for simulations from se-
ries B (table III B), with R0 = H0 = 46d, counting 4228 grains.

We measured Zc and φ in our contact dynamics simulations,
and calculated the friction coefficient based on the contact
friction coefficient. This expression yields thus a coefficient
of 0.08± 0.01, which is in good agreement with our simula-
tions. Still, the time step of computation could also have an
influence in the discrete simulations, as shown by Abramian
& Staron22.

Now that cohesion is numerically validated for the stability
threshold of a column, much remains to be done to under-
stand how cohesion alters the dynamics of the collapse, and
the final shape of the deposit. To do so, we will likely need
to compare numerics with experiments. Ideally, experiments
would be conducted with a controlled-cohesive granular ma-
terial, recently developed by Gans et al.5 This would provide
new insights on the flow properties of a cohesive material and,
hopefully, on the concept of “flowability".
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