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Abstract

High Reynolds number supersonic flows require accurate predictions, in the one
hand, for the design of industrial devices, and on the other hand, for the physical
understanding and modeling of these high speed flows that still raise numerous sci-
entific issues. To this end, Direct Numerical Simulations (DNS) are nowadays an
adequate tool since all characteristic time and space scales are computed without
using any modeling. Among the great variety of high-order numerical schemes using
shock-capture features developed for DNS, high-order One-Step (OS) Monotonicity-
Preserving (MP) schemes have been developed [1,2] that control the total truncation
error involving both errors due to time integration and spatial discretization. The
objective of this paper is to check the ability of the high-order OSMP scheme to
accurately compute turbulent compressible flows with a special focus on the ef-
fect of the MP constraints on solutions of wall bounded turbulent shocked flows.
Two canonical test cases are first performed to check separately the ability of the
scheme to accurately compute turbulent and shocked flows: (i) the classical 3-D
Taylor-Green vortex test case [3] is used for evaluating the accuracy of the solver
to compute continuous turbulent solutions; (ii) the steady 2D shock-wave laminar
boundary layer interaction is used for evaluating the shock capturing procedure
of the solver. The OSMP scheme is then used to compute an emblematic case of
wall bounded turbulent shocked flow where a shock wave interacts with a turbulent
boundary layer. A compressible version of the Synthetic Eddy Method is developed
for prescribing inflow conditions. We showed that these specific conditions greatly
lower the adaptation length compared to more classical inflow conditions. As dif-
fusion in the near wall region is one of the key phenomena, the influence of the
viscous flux discretization is reviewed with 2nd-order and 4th-order centered ap-
proximations. Compared to reference solutions from the literature, we showed that
the OSMP scheme produces reliable solutions that are in very good agreements with
references from literature. Even for bounded flows, the use of an order of accuracy
higher than the 2nd-order for approximating the diffusive fluxes was shown to have
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a negligible influence on solutions. We conclude that the OSMP scheme coupled
with a centered 2nd-order approximation for the diffusive fluxes constitutes a reli-
able numerical tool for the DNS of compressible turbulent shocked flows, that is
completely competitive compared to other approaches since the overall errors are
lowered of about one order of magnitude for the same grid resolution.

Key words: High-order scheme, shock-capturing feature, compressible flow,
Taylor-Green vortex, Turbulent boundary layer, Shock-Wave Boundary Layer
Interaction.

1 Introduction

High Reynolds number supersonic flows are involved in many applications
of industrial fields such as chemical, energy, aeronautical and space indus-
tries. In particular in such high speed flows, discontinuities (as shock waves or
contact discontinuities), shear layer, turbulence and their interactions occur.
They require accurate predictions, mainly in the design of industrial devices
since these phenomena can greatly affect their operation and the subsequent
aerodynamics loads. Moreover, the physical understanding and modeling of
these high speed flows still raise numerous scientific issues. As an example, we
can cite shock wave boundary layer interactions (SWBLI) that can possibly
occur in flows around supersonic aircrafts, in turbojets, in supersonic air in-
takes or in rocket nozzles. The dynamics features of such flows are still not
fully understood and remains an active field of research. Indeed, SWBLIs are
subjected to low frequency longitudinal oscillations called “the unsteadiness”
of the SWBLI. The SWBLI unsteadiness stresses solid structures to oscillat-
ing loads that can lead to damages of these structures, and therefore needs a
very careful attention. Nevertheless, even if this phenomenon is well known,
the related physical mechanisms are still debated within the scientific commu-
nity ([4,5]). Addressing such issues requires fine physical analysis. To this end,
the Direct Numerical Simulation (DNS) is a powerful tool since all the scales
of the different quantities are computed in the simulation without using any
modeling (turbulence modeling, for instance).

DNS of such high Reynolds number compressible flows involving shock waves
is a challenging task. High Reynolds number flows are often turbulent and
therefore one must use a numerical scheme that represents small scale turbu-
lent structures with the minimum of numerical dissipation. For this purpose,
high order schemes are often used, because of “their potential in delivering
higher accuracy with lower cost than low order methods" as stressed in Wang
et al.[3]. Nevertheless, high order schemes are known to produce spurious oscil-
lations in the vicinity of stiff discontinuities such as shock waves (known as the
Gibb’s phenomenon). On the opposite of a Fully Resolved Simulation (FRS)
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approach [6], limited to weak discontinuities where all the scales (including
the internal solution of the shock-wave) are resolved, one must then follow
a DNS approach where a shock capturing procedure is used to avoid these
spurious oscillations. Shock capturing procedures consist in adding artificial
diffusion more or less explicitly in the vicinity of discontinuities. They must
be restricted to regions near discontinuities without spoiling the accurate pre-
dictions away from discontinuities in smooth regions. Mainly, the procedure
must be robust enough to maintain the accuracy of the scheme near extrema
of the solution.

A review of the high order schemes and shock capturing procedures used for
the simulation of turbulent compressibles flows has been performed in [7]. A
classical approach consists in the method-of-lines where time and space dis-
cretizations are considered separately. Time integration of the semi-discrete
form of the Navier-Stokes equations is generally handled by a multistage time
integration such as the Runge-Kutta time integration for instance. At each
stage of the time integration, high order spatial schemes, equipped with a
shock capturing feature for the convective terms that ensures non-oscillatory
and conservation properties, are applied for the discretization of the spatial
operators (convection and diffusion) of the compressible Navier-Stokes equa-
tions. Among the different alternatives, high order Finite Difference (FD) or
Finite Volume schemes are frequently used, especially in the academic com-
munity for DNS and Large Eddy Simulation (LES) of compressible turbulent
flows such as shock wave tubulent boundary layer interactions ([8,9,10,11,12]).
Due to their non-dissipative properties, central schemes are often privileged.
Nevertheless, these schemes are known to produce numerical instabilities and
must be coupled with stabilization methods. The Method-of-lines bears two
major drawbacks. The support of high order spatial discretization being rela-
tively wide, applying it in each stage of the time integration leads to very large
stencils and hence to high computational efforts and costs. Another drawback
of the Runge-Kutta integrations comes from the difficulty to recover Total
Variation Diminishing (TVD) properties, to control the development of spuri-
ous oscillations, with time integrations greater than the 4th order of accuracy
because solving adjoint problems are required that makes resolution much
more cumbersome and prohibitively expensive.

Alternatively, following the Lax-Wendroff approach leads to coupled time and
space integrations. In this framework, high-order One-Step (OS) schemes have
been developed [1,2,13] that control the total truncation error involving both
errors due to time integration and spatial discretization. As the integration is
only performed in a single step, one of the main advantage of the OS approach
is that the global stencil of the scheme is much more compact than integration
supports used in the method-of-lines for the same order of accuracy. This
makes the OS scheme much more competitive in terms of CPU time and
memory space consumption. However, solving multi-D equations is much more
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delicate since it requires solving a Cauchy-Kovalevskaïa problem [14] that is
a complex problem expensive to solve. Alternatives have been proposed to
overcome this drawback, and a simplest way to deal with directional operator
splitting that is generally retained is the Strang procedure [15,16,17,2]. This
procedure allows to recover the good properties of the high order 1D scheme
although the overall integration error is dominated by the permutation error
of the operators, which is generally of low amplitude.

Whatever the approach used, the high order numerical scheme needs a shock
capturing procedure to avoid spurious oscillations arising from the high order
discretization near discontinuities. Different shock capturing procedures have
been introduced in the literature. The Total Variation Diminishing (TVD)
constraints ([18]) are efficient in computing shock waves. Nevertheless, they
are known to affect the accuracy of the scheme also in smooth regions of
the flow as the TVD constraints are responsible for the so-called clipping
of extrema. A way of circumventing this drawback has been introduced by
Suresh and Huynh in [19] and further adapted by Daru and Tenaud in [2].
Authors enforced the Monotonicity Preserving (MP) constraints at the discrete
level by enlarging the admissible TVD intervals at extrema. The high order
flux reconstruction is then preserved everywhere in smooth regions of the
flow except near discontinuities where TVD constraints act to avoid spurious
oscillations.

Another family of classical shock capturing procedure includes the Essen-
tially Non-Oscillatory (ENO) introduced in [14], and Weighted Essentially
Non-Oscillatory (WENO) schemes developed in [20]. These approaches were
developed to avoid the spurious oscillations near discontinuities while main-
taining high order discretization in smooth regions of the flow (mainly near
extrema). Nevertheless, these approach are costly since the flux reconstruction
at cell interface must be computed from different competing stencils. Another
drawback of the ENO approach is the use of an adaptive stencil that can be
the source of numerical artefacts in the results. WENO schemes have been de-
veloped to overcome this disadvantage [20] while increasing the accuracy of the
approximation by using all possible stencils in the regular region of the solu-
tion. Numerical experiments showed [21] that, depending on the Runge-Kutta
time integration, the semi-discrete approach based on a high-order WENO
scheme can however give oscillatory solutions. Hence, Monotonicity Preserv-
ing constraints must be added (named MP-WENO scheme, see Balsara and
Shu [21]) to recover a greater stability of this approach.

This explains why, in the context of turbulent shocked flows, a high order One-
Step Monotonicity-Preserving (OSMP) scheme [2] has been developed by fol-
lowing a Lax-Wendroff approach. For discontinuity capturing, Monotonicity-
Preserving (MP) conditions have been derived to locally relax the TVD con-
straints in the vicinity of extrema. It was already demonstrated on various
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classical 2D test-cases [2,22,23] that this scheme gives very accurate results
(in particular, the MP constraint is efficient in canceling the spurious oscil-
lations near discontinuities) at a very low-cost in terms of CPU time since it
uses one-step integration, and is therefore very competitive compared to clas-
sical high-order method-of-lines coupled with ENO/WENO shock capturing
procedures, for instance.

The objective of this paper is to check the ability of the high-order OSMP
scheme to accurately compute wall bounded turbulent shocked flows. Two
canonical test cases are first performed to check separately the ability of the
scheme to accurately compute turbulent and shocked flows: (i) the classical
3-D Taylor-Green vortex test case and (ii) the steady 2D shock wave laminar
boundary layer interaction (SWLBLI). The classical 3-D Taylor-Green vortex
test case ([3]) that allows to simulate a turbulent energy cascade in the frame-
work of isotropic homogeneous turbulence, is used for evaluating the accuracy
of the solver to compute continuous turbulent solutions. In particular, as far
as it acts in regions with extrema, the effect of the MP constraints on solutions
of turbulent flows without shock wave is evaluated to study the influence of
the shock capturing procedure in “smooth" regions. The steady 2D shock-wave
laminar boundary layer interaction is used for evaluating the shock captur-
ing procedure of the solver. The influence of the accuracy order of the viscous
flux approximation, between the 2nd-order and the 4th-order centered schemes,
has also been reviewed on these test cases. The OSMP scheme is then used
to compute a shock wave turbulent boundary layer interaction, which is an
emblematic case of wall bounded turbulent shocked flow. A Synthetic Eddy
Method (SEM) [24,25] that we adapted to compressible flows is employed at
the inlet of the domain in order to lower the computational costs associated
to the simulation of turbulent boundary layer. This method is extensively
presented in appendix A where the simulation of a compressible turbulent
boundary layer is presented. The influence of the order of accuracy of the
viscous flux discretization is also studied in this context where the diffusion
phenomenon are dominant in the near wall region.

The paper is then organized as follows: in section 2, we first recall the governing
equations relevant for the simulation of compressible flows, namely the dimen-
sionless form of the compressible Navier-Stokes equations for an ideal gas con-
sidered as a newtonian fluid. We then describe the numerical approaches used
for discretizing the governing equations in section 3. The OSMP approach is
described for computing the non linear advection terms. Regarding the viscous
flux approximations, 2nd or 4th-order centered approximations are employed.
The simulation of the 3D Taylor-Green Vortex is presented in section 4, and
the results are discussed compared to reference solutions. The section 5 is
devoted to the simulation of the 2D steady Shock-Wave Laminar Boundary
Layer Interaction (SWLBLI) and its comparison with reference solutions. The
section 6 is dedicated to the simulation of a Shock-Wave Turbulent Boundary
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Layer Interaction (SWTBLI). Both mean properties and dynamical features
of the flow are presented. The turbulent inflow implemented in order to lower
the numerical costs associated to this simulation (Synthetic Eddy Method) is
presented in appendix A. We then conclude on the contributions of this work
and address some prospects in the last section.

2 The governing equations

We consider here the dimensionless compressible Navier-Stokes equations ex-
pressed in a cartesian coordinate system:

∂U
∂t

+∇ · F(U)−∇ · Fv(U,∇U) = 0, (1)

where U is the vector of conservative variables, F(U) the convective fluxes,
and Fv(U,∇(U)) the diffusive fluxes that write respectively:

U =


ρ

ρu

ρE

 , F =


ρu

ρu⊗ u + P I

(ρE + P )u

 ,

and Fv =


0

1
Re0

σ

1
Re0

u.σ + µ

(γ − 1)Re0Pr0M2
0
∇T

 .
(2)

I stands for the identity matrix. ρ is the density, u is the velocity vector, E
is the total energy per unit of mass. P is the thermodynamic pressure related
to the conservative variables by the following relationship:

P = (γ − 1)
(
ρE − 1

2
(ρu) · (ρu)

ρ

)
,

and T is the static temperature expressed following the dimensionless equation
of state in the ideal gas assumption:

T = γM2
0
P

ρ
. (3)

Re0 = ρ0U0L0

µ0
is the Reynolds number, M0 = U0

c0
is the Mach number, and
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Pr0 = µ0Cp

λ0
the Prandtl number. γ = Cp

Cv
is the ratio of heat capacities, at

constant pression (Cp) and constant volume (Cv).

The viscous stress tensor is expressed as:

σ = µ(∇u +∇Tu)− 2
3µ∇ · u.

We assume that the dynamic viscosity only depends on the temperature
through the Sutherland’s law. The thermal conductivity is then deduced from
the dynamic viscosity once the Prandtl number (Pr0) is prescribed: λ = µCp

Pr0
.

The reference quantities (noted with a subscript 0) are chosen so as to represent
the flow characteristics: L0 is the reference length (m), ρ0 is the reference
density (kg.m−3), U0 the reference velocity (m.s−1), c0 is the speed of sound.
Specific values of the reference variables will be given in the followings for each
test case.

Finally, for a given fluid, i.e. for a given value of heat capacity ratio γ, the
problem is completely defined as far as 3 dimensionless numbers are prescribed,
namely, the Reynolds number (Re0), the Mach number (M0) and the Prandtl
number (Pr0).

3 Numerical approaches

The Navier-Stokes equations (1, 2, 3) have been solved using a high order
finite volume approach on cartesian meshes. We denote by Un

i,j,k the discrete
quantity U(x, t) estimated at a grid point xi,j,k = (i δx, j δy, k δz)T and at a
time t(n) = n δt (δt, δx, δy and δz are respectively the time step and the grid
spacing in each direction).

An operator splitting procedure is employed that splits the resolution into
the Euler part and the viscous problem. The Euler part is discretized by
means of a high-order one-step Monotonicity Preserving scheme, namely the
OSMPp scheme [2], based on a Lax-Wendroff approach, which ensures a pth-
order accuracy in both time and space in the regular regions. Besides, the
discretization of the diffusive fluxes is obtained by means of a classical centered
(2nd-order or 4th-order) scheme that has been coupled to a 2nd-order Runge-
Kutta time integration.
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3.1 The One-Step Monotonicity-Preserving (OSMP) scheme.

3.1.1 The unlimited OS scheme.

We first present the unlimited scheme on the one dimensional Euler equation:

∂U
∂t

+ ∂F(U)
∂x

= 0. (4)
This equation is discretized using the following conservative approximation:

Un+1
i = Un

i −
δt

δx
(Fi+1/2 − Fi−1/2). (5)

The numerical flux Fi+1/2 is approximated by a pth-order One-Step scheme
(OSp) developed in [2] :

Fi+1/2 = FRoe
i+1/2 + 1

2
∑
k

(Φp
k(1− |νk|) δαk |λk| .rk)i+1/2, (6)

where FRoe
i+1/2 is the Roe flux at the cell interface:

FRoe
i+1/2 = 1

2
(
F(Un

i ) + F(Un
i+1)

)
− 1

2
∑
k

(|λk| δαk.rk)i+1/2 .

δαki+1/2 = lki+1/2 ·
(
wni+1 − wni

)
is the kth Riemann invariant. λki+1/2, lki+1/2,

and rki+1/2 are respectively the kth eigenvalue, and the corresponding left
and right eigenvectors of the Jacobian matrix of the Euler flux (∇UF(U)),
expressed at the cell interface. νki+1/2 = δt

δx
λki+1/2 is the local CFL number

evaluated at cell interfaces.

Since in the One Step procedure the even derivatives are expressed using
centered approximations while the odd ones use upwind approximations, the
pth-order accuracy functions (Φk

p
i+1/2) are split into even and odd contributions

following:

Φk
p
i+1/2 =

m∑
n=1

Ψk
2n
i+1/2 − js

m1∑
n=1

Ψk
2n+1
i+1/2−js/2, (7)

where m = bp/2c, m1 = b(p− 1)
2 c (b c is the integer division symbol), and

js = sign(λki+1/2). The even and odd functions Ψk
2n
i+1/2 and Ψk

2n+1
i+1/2−js/2 are

given by the recurrence formula (for n ≥ 1):

Ψk
2n
i+1/2 =

2n−2∑
l=0

(−1)lC l
2n−2.(ck(2n)δαk)i+1/2+n−1−l, (8)

Ψk
2n+1
i+1/2 =

2n−1∑
l=0

(−1)lC l
2n−1.(ck(2n+1)δαk)i+1/2+(n−1−l).js; (9)
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where C l
r = r!

(r − s)!s! .

The coefficients ck(q) depend on the local CFL number (νki+1/2), and are given
by:

(ck(q+1))i+1/2 =
|νk|i+1/2 + (−1)qb (q+1)

2 c
q + 1 .(ck(q))i+1/2, q > 2. (10)

with
ck

2
i+1/2 = |λk|i+1/2 (1− |νk|i+1/2) (11)

Using the accuracy function Φp (7), the scheme is pth-order accurate in both
space and time. This scheme has been derived up to the 11th-order and more
detailed information can be found in Daru & Tenaud [2] and Daru & Gloer-
felt [26]. In the following, accuracy functions of 5th-order and 7th-order have
been used for computing test-case solutions.

3.1.2 The limited OSMP scheme.

In a classic way for high order approximations, spurious oscillations could
occur in the vicinity of discontinuities. Total Variation Diminishing (TVD)
constraints are commonly employed to cure this problem. Nevertheless, as it
is well known, the TVD constraints clip the extrema although the solution is
smooth [2]. To overcome this drawback, we employ Monotonicity-Preserving
(MP) constraints that locally relax the TVD constraints near extrema. These
constraints, first developed by Suresh and Huynh [19] and further extended
by Daru and Tenaud [2], are applied on the accuracy function (Φp−MP ) to
recover a scheme that is pth-order in time and space everywhere except near
discontinuities where the scheme is Monotonicity-Preserving [2].

3.1.3 Extension to 3D systems of equations.

The extension in the multidimensional case is delicate as far as a coupled time
and space approach is used. In fact, we need to consider cross derivative terms
that appear in the second and higher order terms, which are left uncontrolled
if one applies a direction by direction MP correction to a Lax-Wendroff unsplit
scheme. We also need to guarantee that the resulting scheme is non-oscillatory.
The simplest way to avoid solving a Cauchy-Kovalevskïa problem to account
for cross derivatives and to recover good properties of the one-dimensional
scheme is to use a Strang directional splitting strategy [15,16,17,2] which is
unfortunately only second order accurate when directional operators do not
commute. However, this error is of low amplitude since it is only related to
the permutation error when operators do not commute. While the order of
accuracy is lowered compared to the tensorial multistage approach, the OSMP
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scheme with the Strang algorithm provides results with very small error level
at low cost [2,22].

In three dimensions, the splitting of the system of equations can be constructed
to give symmetric accurate solution every six time steps:

Un+6
i,j,k = (Lδx(δt) · Lδy(δt) · Lδz(δt)) (Lδx(δt) · Lδz(δt) · Lδy(δt))

(Lδy(δt) · Lδz(δt) · Lδx(δt)) (Lδy(δt) · Lδx(δt) · Lδz(δt))
(Lδz(δt) · Lδy(δt) · Lδx(δt)) (Lδz(δt) · Lδx(δt) · Lδy(δt)) ·Un

i,j,k.

Here Lδx, Lδy and Lδz are discrete approximations of the Euler operators
in each space direction. For instance, Lδx denotes the Euler operator of the
following problem:

Lδx(δt)
(
Um
i,j,k

)
= Um

i,j,k −
δt

δx

(
Fm
i+1/2 − Fm

i−1/2

)
j,k

3.2 Approximation of the viscous fluxes.

The temporal discretization of the diffusive fluxes is obtained by means of
a 2nd-order Runge-Kutta time integration. In each sub step of the Runge-
Kutta integration, a classical central finite difference scheme is applied to
approximate the divergence of the viscous fluxes. To study the influence of
the order of accuracy of the viscous fluxes especially in case of wall bounded
flows, two spatial approximations have here been checked: a 2nd-order accurate
centered scheme and a 4th-order centered scheme.

3.2.1 2nd-order approximation:

Considering the direction (ξ) normal to the cell interface, we look for a numer-
ical approximation of the viscous flux Fξ

v(U,∇U) at the cell interface (i+1/2)
that satisfies the relationship:

∂Fξ
v

∂ξ
|i,j,k = 1

δξ

(
Fvi+1/2 − Fvi−1/2

)
j,k

+O(δξ2).

This is fulfilled once the velocity and temperature gradients involved in the
numerical viscous fluxes satisfy the following relationships:

• in the normal to the cell interface (ξ), considering the cell centered variable
φ, the gradient at the cell interface is:

∂φ

∂ξ

∣∣∣i+1/2,j,k = 1
δξ

(φi+1,j,k − φi,j,k) +O(δξ2);
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• in tangential directions (represented by η), lying in the plane of the cell
interface, the gradient is expressed as:

∂φ

∂η

∣∣∣i+1/2,j,k = 1
4.δη (φi+1,j+1,k + φi,j+1,k − φi+1,j−1,k − φi,j−1,k) +O(δη2).

3.2.2 4th-order approximation:

Considering the direction (ξ) normal to the cell interface, we look for a numer-
ical approximation of the viscous flux Fξ

v(U,∇U) at the cell interface (i+1/2)
that satisfies the relationship:

∂Fξ
v

∂ξ
|i,j,k = 1

δξ

(
Fvi+1/2 − Fvi−1/2

)
j,k

+O(δξ4).

This is fulfilled once the velocity and temperature gradients involved in the
numerical viscous fluxes satisfy the following relationships:

• in the normal to the cell interface (ξ), considering the cell centered variable
φ, the gradient at the cell interface is:

∂φ

∂ξ

∣∣∣i+1/2,j,k = 1
12.δξ (φi−1,j,k − 15.φi,j,k + 15.φi+1,j,k − φi+2,j,k) +O(δξ4);

• in tangential directions (represented by η), lying in the plane of the cell
interface, the gradient is expressed as:

∂φ

∂η

∣∣∣i+1/2,j,k = 1
12.δη

(
φ̂i+1/2,j−2,k − 8.φ̂i+1/2,j−1,k + 8.φ̂i+1/2,j+1,k − φ̂i+1/2,j+2,k

)
+O(δη4),

with
φ̂i+1/2,j,k = 1

12. (−φi−1,j,k + 7.φi,j,k + 7.φi+1,j,k − φi+1,j,k) .

3.2.3 Check of the order of accuracy on a manufactured solution.

The approximation of the viscous fluxes introduced above has been validated
using a manufactured solution corresponding to the initial flow field of the
well known three-dimensional Taylor-Green vortex test case (see the section
§ 4 for the initial state). The following 3-D diffusive problem has been solved
with an initial flow field at rest:

∂U
∂t
−∇ · Fv (U,∇U) = S (U,∇U) , (12)

where S (U,∇U) is the source term equal to the viscous flux computed an-
alytically from the reference flow field of the Taylor-Green vortex test case.
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The solution of equation (12) converges towards the initial flow field of the
Taylor-Green vortex test case with a zero machine residual. Figure 1 shows
the L2 norm of the error on the longitudinal velocity component between the
reference Taylor-Green vortex solution (i.e. the initial state) and the steady
solution obtained with the 2nd- or the 4th-order approximations of the viscous
fluxes. These errors are plotted versus the grid spacing h = 1

N
(N being the

number of equally spaced grid points in each direction).

We clearly observe that the theoretical order of accuracies (i.e. 2nd and 4th
orders) are clearly retrieved with however a slight over-convergence observed.
These results clearly validate the implementation of the 2nd- and 4th-order
approximations of the viscous fluxes.

Fig. 1. The L2 norm of errors on the longitudinal velocity component, versus the
grid spacing, of the Taylor Green vortex between the reference and the computed
solution using either the 2nd-order or the 4th-order approximations of the viscous
fluxes.

Equivalent results were also obtained for the other components of the velocity.

4 Direct numerical Simulation of the 3D Taylor-Green vortex

First, the well documented 3-D Taylor-Green vortex is considered at a Reynolds
number of Re = 1600 [27,3]. The Taylor-Green vortex is a simple configura-
tion allowing to simulate a turbulent energy cascade with charateristics very
close to those of the Isotropic Homogeneous Turbulence (IHT). This prob-
lem allows us to evaluate the ability of the numerical procedure to compute
transitional solutions in decaying IHT.
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A 3D periodic domain (Ω) of 2π non-dimensional side length is considered,
in which a non dimensional initial flow field, which is an analytic solution of
the Navier-Stokes equations, is given. This initial flow field, consisting in eight
planar vortices, writes:

u = sin(x)cos(y)cos(z),

v = −cos(x)sin(y)cos(z),

w = 0,

P = 1
γM0

+ 1
16(cos(2x) + cos(2y))(cos(2z) + 2),

T = 1,

ρ = γPM2
0

T
,

E = 1
(γ − 1)γM2

0
T + 1

2(u2 + v2 + w2).

(13)

Nonlinear interactions between these initial vortices create smaller and smaller
vortices until kinetic energy dissipation into heat occurs following the so called
Kolmogorov energy cascade.

The flow is completely characterized by the following set of non dimensional
values:

M0 = U0

c0
= 0.1,

γ = 1.4,

Re0 = ρ0U0L0

µ0
= 1600,

P r0 = µ0Cp0

λ0
= 0.71,

(14)

where the reference variables (index 0) refer to the flow at the initial state. U0
is the greatest value of the flow speed in the domain. c0 is the speed of sound,
given by the uniform initial temperature T0. L0 = 2π is the characteristic size
of the domain. µ0 and λ0 are respectively the initial dynamic viscosity and
thermal conductivity of the fluid, given by the uniform temperature T0. As the
flow is considered almost incompressible (M0 = 0.1), µ and λ are considered
as constant.

Several uniform grids have been used to study grid convergence (namely, 323,
643, 1283, 2563 and 5123). To judge of the quality and accuracy of the solu-
tion, several integral quantities have been computed to be compared to the
literature:

• The integral of the kinetic energy over the domain (Ω) is calculated at every
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time step during the simulation as follows:

Ek = 1
|Ω|

∫
Ω
ρ

u · u
2 dΩ, (15)

where |Ω| is the measure of the domain (Ω).
• The kinetic energy dissipation at every time step is defined as:

ε = −dEk
dt

. (16)

The kinetic energy dissipation is computed using equation (16) by first order
time derivatives of the kinetic energy.
• The enstrophy integral over the domain Ω is given by:

ε = 1
|Ω|

∫
Ω
ρ

ω · ω
2 dΩ, (17)

where ω = ∇× u. The vorticity components are calculated from the veloc-
ity derivatives approximated by using a 4th-order Pade scheme [28].

The time evolution of the kinetic energy, its dissipation and the enstrophy pro-
duction in the domain are pivotal quantities representative of both the energy
cascade between turbulent scales and the turbulent vorticity production.

4.1 Results using the unlimited OS scheme and the 2nd-order viscous fluxes
approximation.

As this flow does not exhibit discontinuity, simulations are first performed
using the unlimited OS-7 scheme and a 2nd-order spatial discretization for the
diffusive terms. A constant CFL number value of 0.5 is used.
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Fig. 2. History of the kinetic energy (on the left) and the kinetic energy dissipation
(on the right) obtained using the OS-7 scheme on several mesh sizes (323, 643, 1283,
2563 and 5123.): present solutions are compared to the reference solution [3].
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Figure 2 shows respectively the evolution with time of the kinetic energy (on
the left) and its dissipation (on the right) for several mesh sizes (323, 643,
1283, 2563 and 5123). Results are compared to a reference solution obtained
by a de-aliazed pseudo-spectral spatial discretization coupled with a three-step
Runge-Kutta scheme for the time integration, on a 5123 grid [3]. We observe
the convergence of the solution toward the reference solution when the mesh is
refined. The decrease of the kinetic energy in the domain can be split into two
separate zones. In the first zone between times 0 and 9, the kinetic energy dissi-
pation increases until it reaches a maximum value of almost 0.013 around time
9. This growth of kinetic energy dissipation is related to the transition towards
turbulence creating smaller and smaller structures through the Kolmogorov
energy cascade until the energy dissipation into internal energy occurs. The
maximum of kinetic energy dissipation corresponds to an inflection point in
the history of the kinetic energy. As far as no energy has been injected into
the domain (Ω) from the initial time, this maximum dissipation is followed by
a second period where the dissipation decreases as the flow relaxes.

On the one hand, it is clearly visible in figure 2 that simulations on meshes
323 and 643 completely fail to recover the right behavior since the histories of
kinetic energy and kinetic energy dissipation computed on these two meshes
largely differ from the reference solution. As meshes are not fine enough to
capture small scales, the maximum of the kinetic energy dissipation, acting at
small scales, occurs too early.

Simulations on meshes 1283 and 2563 exhibit rather good agreement with the
reference solution for both the kinetic energy and the dissipation, as shown in
figure 2. Results obtained on 2563 grid points are almost superposed with the
reference solution except near t ' 15−16. Mainly, the values of the maximum
of the kinetic energy dissipation and its time location obtained on 2563 grid
points are clearly in accordance with the reference and largely better computed
than using 1283 points. The results obtained on 5123 grid points are better
than the results obtained on the other meshes. It highlights the importance
of the mesh refinement on the accuracy of the solution. Results obtained on
5123 grid points are almost perfectly superposed with the reference solution. It
shows that with the same resolution, the OS scheme reaches the same precision
than the pseudo spectralcode.

The same simulations have secondly been performed using the 5th-order One
Step scheme (OS-5). In order to quantify the grid convergence, we define the
L∞ and L2-norms error of a quantity s with respect to the reference solution
sref as:

ErrorL∞(tk∈[0;10]) = max(tk∈[0;10]) | sk − srefk |, (18)

ErrorL2(tk∈[0;20]) =
√√√√ 1

20
∑
k

| sk − srefk |2 dt, (19)
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where sk is the value of s at time tk = k.δt (with δt the time step and k ∈ N),
and srefk is the reference value (pseudo-spectral spatial discretization on a
5123 grid [3]) of s at time tk. The L∞ norm is computed considering only the
first half of the simulation time as it was defined in the 4-th International
Workshop on High-Order CFD Methods (HiOCFD4) [29], while the L2 norm
is computed considering the whole simulation time. Linear interpolation is
used to evaluate the value of s at the same discrete times tk as the reference
solution sref . The L2 and L∞ error norms on the kinetic energy dissipation
are plotted in figure 3 versus the grid spacing h = 1

N
(N is the number

of grid points in each direction). Since errors are calculated with respect to
an approximated solution (de-aliased pseudo-spectral solution on 5123 grid),
slopes do not correctly reflect on the order of accuracy.

On the L2 error norms (figure 3-left), the higher the order of accuracy of
the One-Step scheme, the lower the error level with respect to the reference
solution for the same mesh size. It is then possible to obtain the same error
level with a lower order of accuracy if a finer grid is used. For instance, to
recover the same error level on the L2 norm as the one obtained with the 7th-
oder One-Step scheme using 323 grid points, we need 423 grid points with the
5th-order OS scheme. To know if it is relevant to use a higher order scheme,
we computed the CPU time of the simulation for each case. The OS-7 scheme
on 323 grid points needs only 90 % of the CPU time used by the OS-5 scheme
on 423 grid points. We conclude and claim that the use of the highest order
tested of the OS scheme is relevant in term of simulation time and accuracy
compromise.

To compare with, best results obtained in the HiOCFD4 workshop [29] using
the DG-4 scheme are also plotted on the right part of figure 3, regarding the
L∞ error norms. Results obtained using the OS-5 and OS-7 schemes compare
very favorably with one of the best results obtained by the HiOCFD4 workshop
participants [29,3] since L∞ error norms of the OS schemes are more than one
order of magnitude smaller than the one obtained using the DG-4 scheme. To
recover the same error levels, the DG-4 scheme therefore needs far more points
than the OS-7 scheme.
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Fig. 3. On the left, L2 error norms on the kinetic energy dissipation with respect to
the reference [3] versus the grid spacing (h). On the right, comparison on the L∞
error norms between the 5th-order and 7th-order One-Step schemes and the DG-4
scheme [29].

The enstrophy, is then computed by equation (17). The history of the enstro-
phy production is plotted in figure 4 on the left. As for the kinetic energy
dissipation, it is splitted in two different areas. The first region corresponds
to the transition towards turbulence; the enstrophy increases until it reaches
a maximum value of 10.25 around time equal 9. Then, in the second region,
the enstrophy decreases as the flow relaxes. Again, the finer the mesh, the
closer to the reference the estimation of the enstrophy production. The time
when maximum enstrophy occurs and its maximum value are not well pre-
dicted when using the 323 and 643 meshes. The prediction of the time of
maximum enstrophy is correct when 2563 grid points are used, but its value is
slightly underestimated. The enstrophy obtained on 5123 grid points is almost
perfectly superposed with the reference solution. Results obtained with the
One-Step approach on the enstrophy production compare well with results of
the HiOCFD4 workshop [29,3] as shown in figure 4-right, where the L∞ entro-
phy dissipation error with respect to the reference solution is plotted versus
the mesh size. The grid convergence is clearly visible in figure 4-right. We see
that the higher the order of the OS scheme, the lower the error. The discrep-
ancies between the error obtained with the DG-4 scheme and the OS scheme
is not as large as for the kinetic energy dissipation error. The DG-4 scheme
still needs however far more points than the OS schemes to recover the same
error level on enstrophy dissipation.
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Fig. 4. On the left, history of the enstrophy obtained by using the OS-7 scheme on
several mesh sizes (323, 643, 1283, 2563 and 5123): present solutions are compared
to the reference solution [3]. On the right, L∞ error norms on the kinetic energy
dissipation with respect to the reference [3] versus the grid spacing (h): comparison
between the 5th-order and 7th-order One-Step schemes and the DG-4 scheme [29].

4.2 Effect of the MP constraint on the results.

The previous simulations have also been performed using the shock capturing
procedure to check the influence of the Monotonicity-Preserving constraints
on a smooth solution since this procedure, inherently diffusive, could spoil the
solution obtained through an accurate scheme.

The comparison between the time evolution of the kinetic energy dissipa-
tion computed with the unlimited scheme (OS-7) and with the MP procedure
(OSMP-7) on the 2563 and 5123 meshes is plotted in figure 5. Results are al-
most the same with very small discrepancies, visible for the simulation using
2563 grid points, demonstrating that the MP constraints have a very little
influence on a smooth solution. These small discrepancies vanish when the
mesh is sufficiently refined with 5123 grid points.
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Fig. 5. History of the kinetic energy dissipation obtained with and without a schock–
capturing procedure on a meshes with 2563 and 5123 grid points. OS-7 and OSMP-7
solutions are compared to the reference solution [3]. On the left: mesh with 2563

grid points. On the right: mesh with 5123 grid points.

The comparison between the time evolution of the kinetic energy dissipa-
tion computed using only TVD constraint (OSTVD-7) or the MP procedure
(OSMP-7) on the 2563 and 5123 meshes is plotted in figure 6. The results show
that the use of the TVD constraint spoils the smooth solution (clipping of ex-
trema of the solution [2,22]) and the MP procedure efficiently circumvent this
drawback. Indeed regarding the TVD results, on the 2563 mesh, discrepancies
between the solutions are visible for t > 8−9. Discrepancies are also obtained
on the 5123 mesh for t > 12− 13.
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Fig. 6. History of the kinetic energy dissipation. The results obtained using the
TVD constraint (OSTVD-7) and the MP constraint (OSMP-7) are compared to
the reference solution [3]. On the left: mesh with 2563 grid points. On the right:
mesh with 5123 grid points.

The L2 error norms with respect to the reference, obtained with and without
the MP procedure are plotted in figure 7 for the kinetic energy dissipation
(on the left) and for the enstrophy (on the right). Similar level of errors are
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recovered in both cases. The use of the shock capturing procedure has a very
weak influence on the computation of the kinetic energy dissipation and on
the enstrophy in the domain. These results show that the MP constraint can
efficiently be used to simulate regular flows.
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Fig. 7. L2 error norms with respect to the reference [3] versus the grid spacing
(h), on the kinetic energy dissipation (on the left) and on the enstrophy (on the
right): comparison between the unlimited (OS-7) and the MP (OSMP-7) 7th-order
One-Step schemes.

4.3 Influence of the accuracy order of approximation of the diffusive fluxes.

Simulations have also been performed using a 4th order centered finite dif-
ference approximation for the diffusive fluxes as far as the high order ap-
proximation might have an influence on the dissipation process occurring at
small scales. This scheme is coupled with a OSMP-7 scheme for the advection
approximation.

The history of the kinetic energy dissipation obtained with a 4th-order cen-
tered viscous fluxes on the 2563 and 5123 meshes is compared with the results
obtained using a 2nd-order centered finite difference approximation for the dif-
fusive fluxes in figure 8. The use of an order higher than second order for the
diffusive fluxes have a negligeable influence on the results for such well resolved
simulations at relatively high Reynolds number. Very small discrepancies are
only visible for the simulation on the 2563 mesh in the second part of the
distribution where dissipation plays a key role in the turbulence relaxation.
These discrepancies are not relevant to justify the use of high-order viscous
discretization especially since they completely vanish on the 5123 mesh.
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Fig. 8. History of the kinetic energy dissipation obtained using the OSMP-7 on the
2563 mesh. Comparison between results obtained with a second 2nd-order and a
4th-order discretization for the diffusive fluxes. Present solutions are also compared
to the reference solution [3].

The L2 errors are nearly the same in both cases as shown in figure 9. The use
of the 4th-order discretization of the viscous fluxes leads to a drastic increase
of the computational time of 65 % with respect to the one of a 2nd-order
approximation of the viscous fluxes. These results demonstrate that using
approximations of order higher than the 2nd-order for the diffusive fluxes is
not relevant for such unbounded high Reynolds number configurations.
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Fig. 9. L2 error norms with respect to the reference [3] versus the grid spacing (h),
on the kinetic energy dissipation (on the left) and on the enstrophy (on the right):
comparison between the 2nd-order and the 4th-order approximations of the viscous
fluxes.

5 Shock-wave laminar boundary layer interaction.

Secondly, the ability of the present numerical procedure to compute discon-
tinuous solutions have been reviewed. We consider the interaction between
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an incident oblique shock wave impinging a laminar boundary layer develop-
ing over a flat plate. The interaction produces a separation of the flow and
a subsequent recirculation bubble. This flow which here is steady has been
experimentally and numerically studied in [30].

Fig. 10. Sketch of the computational domain for the shock-wave boundary layer
interaction: non-dimensional dimensions and boundary conditions. The dashed line
represents the inviscid incident shock-wave location [31].

The flow consists in a supersonic uniform flow over a flat plate leading to
the development of a laminar boundary layer. Sketch of the computational
domain is given in figure 10. A supersonic uniform flow is imposed at the
inlet. At a height (y0), the Rankine-Hugoniot relationships are prescribed, so
that a shock-wave at an angle σ = 30.8◦ is created in the domain that impinges
the wall at xsh = 1 (i.e. the length from the leading edge of the plate at which
the shock impacts the plate in the non viscous regime is taken as the reference
length). No-slip and adiabatic wall conditions are prescribed for y = 0 and
x > 0 whereas a symmetry boundary condition is imposed in front of the
leading edge of the flat plate. Outlet time dependent non-reflecting boundary
conditions are prescribed at the top and at the outlet boundaries [32] (see
Fig. 10).

The flow in the region inlet 0 (y < y0) is prescribed by using the similitude
numbers that completely characterize the flow:

M0 = U0

c0
= 2.15,

Re0 = ρ0U0xsh
µ0(T0) = 105,

P r0 = µ0Cp0

λ0(T0) = 0.71,

γ = 1.4,

(20)
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where subscript 0 denotes values prescribed at the inlet boundary region inlet
0. The dynamic viscosity µ0 and the thermal conductivity λ0 is given by the
Sutherland’s law, once the inlet temperature (T0) prescribed.

The domain is discretized by using a cartesian mesh with non uniform spacing
in both x and y directions. In the longitudinal direction, the mesh is refined
in the vicinity of the flat plate leading edge and in the vicinity of the shock
wave impact abscissa (xsh). In the vertical direction, the mesh is tightened
close to the wall using a hyperbolic tangent law to obtain a minimum grid
spacing over the plate of ∆ymin = 10−4.

The presence of the impinging shock wave imposes a sharp adverse pressure
gradient to the boundary layer. As accurately described by Delery in [4], in the
configuration presently studied, the adverse pressure gradient is strong enough
to initiate a separation of the boundary layer that reattaches further down-
stream forming a closed separation bubble. This kind of shock wave boundary
layer interaction is called strong interaction because of the large separation
occurring (on the contrary of a weak interaction without a separation). The
flow being subsonic in the wall vicinity, the pressure rise due to the incident
shock is sensed upstream to the location where the incident shock would im-
pact the wall because of slow acoustic waves, explaining the location of the
separation point upstream of the impact location. At the separation point, the
deviation of the supersonic flow due to the separation leads to the formation of
the so called reflected shock wave. In fact, the incident shock is reflected at the
boundary edge as expansion waves. At the reattachment point, the deviation
of the supersonic flow due to the presence of the wall leads to compression
waves that also coalesce to form the so called reattachment shock-wave. In this
configuration, the viscosity at play in the boundary layer leads to a complete
restructuring of the flow even in the outer region where a different system of
shock waves is created, with respect to the inviscid Mach shock wave reflexions
on a wall. For a more complete description of the flow topology, reader could
refer to the work of J. Delery in [4].

The extent of the recirculation bubble is driven by the intensity of the incident
shock wave, let say the pressure ratio from each side of the shock, and by the
incoming boundary layer velocity profile. Indeed, the stronger the shock, the
stronger the adverse pressure gradient leading to the separation of the bound-
ary layer. Furthermore, the larger the normal to the wall velocity gradient
within the boundary layer, the better the boundary layer is able to resist to
the separation caused by the adverse gradient pressure. For instance, a lam-
inar boundary layer is more prone to separation than a turbulent one when
subjected to a steep adverse pressure gradient. The separation bubble extent
then characterizes the interaction studied. The skin friction coefficient Cf is
hence an important quantity as it allows us to determine the locations of the
separation (where Cf becomes negative) and the reattachment points (where
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Cf becomes positive again). The skin friction coefficient is defined as follows:

Cf = 2. τw
ρ0U2

0
, (21)

where τw = µw
∂u

∂y

∣∣∣∣∣
y=0

is the shear stress at the wall.

As described in [4] and recalled above, due to the strong shock wave boundary
layer interaction studied here, a complex system of shock waves, compression
and expansion waves is formed in the supersonic part of the flow. The accuracy
of the calculation in this part of the flow depends greatly on the ability of the
numerical scheme to capture discontinuities (shock waves) without spoiling
the accuracy of the solution in the vicinity of discontinuities. In the following,
we evaluate the efficiency of the present shock capturing procedure to predict
the pressure distribution in the supersonic part of the flow.

All the following results of the steady laminar SWBLI are obtained after a
complete convergence towards steady solutions up to the machine precision.

5.1 Grid convergence study.

Figure 11 shows the wall pressure and the skin friction coefficient distribu-
tions while figure 12 presents the pressure distribution at an altitude y = 0.1
for different mesh sizes obtained by using the OSMP-7 scheme coupled with
a 2nd-order centered scheme for the viscous fluxes. The different mesh sizes
considered are 80×40, 200×100, 280×140, 360×180, and 480×240. The use
of the limited version of the scheme OSMP-7 is first favored since a shocked
flow is considered here.

A typical wall pressure distribution for such strong interaction is characterized
by a first steep rise of the pressure associated with the reflected shock wave
with a foot located at the separation point, followed by a plateau like of
pressure characteristic of the closed separation bubble. A second wall pressure
rise then occurs that is associated with the reattachment process, leading to
the same pressure downstream of the reattachment as in the inviscid case. The
wall pressure distribution is then an important quantity to assess the accuracy
of the simulations.

The 80 × 40 mesh fails to recover the right behavior previously described
since the mesh is not fine enough to capture the interaction. Regarding other
meshes, the wall pressure distribution estimated by the numerical scheme is in
good agreement with the theoretical considerations previously reminded: two
steep rises of the wall pressure separated by a plateau like pressure. The wall
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pressure values before and after the interaction are the same for each mesh size
used and corresponds to the non-viscous values. Discrepancies between several
meshes on the wall pressure distribution are noticeable inside the region of
interaction. The finer the mesh, the earlier the first pressure rise, and the later
the second pressure rise. A grid convergence is however observed towards a
unique solution as the mesh is refined. The value and the extent of the plateau
of pressure is nearly the same for every meshes.

We also observe a grid convergence towards a unique steady solution for the
skin friction coefficient distribution shown in figure 11-right. The same obser-
vations as for the pressure distribution hold for the locations of the separation
and the reattachment points in accordance with the mesh refinements.

The pressure distribution at y = 0.1 is shown in figure 12 for different meshes.
At y = 0.1, which is in the non viscous region away from the separation, the
pressure distribution clearly exhibits the locations of compression and expan-
sion waves: a sharp compression corresponding to the incident shock followed
by a continuous compression corresponding to the reflected compression waves.
This continuous compression is followed by a sharp decrease of the pressure
corresponding to the expansion waves coming from the top of the detachment
bubble. This is followed by a continuous compression due to the compression
waves relative to the reattachment of the boundary layer. Meshes of 80 × 40
and 200 × 100 grid points are not fine enough to correctly capture the rapid
pressure evolutions, namely the shock wave and the expansion waves. For finer
meshes, results converge towards a unique steady solution.

For the three quantities described (figures 11 and 12), very weak discrepancies
can be exhibited between results on the 360 × 180 mesh and the 480 × 240
mesh. Therefore, we believe that the solution on the 480×240 mesh is the fully
converged solution of this steady problem and the following analyses consider
this configuration.
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Fig. 11. Wall pressure (on the left) and skin friction coefficient (on the right) distri-
butions obtained by using the OSMP-7 scheme coupled with a 2nd-order centered
scheme for the viscous fluxes, on several mesh sizes.
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Fig. 12. On the left, numerical schlieren visualization obtained by using the OSMP-7
scheme coupled with a 2nd-order centered scheme for the viscous fluxes, on 480×240
grid points: the red line indicates the height y = 0.1. On the right, pressure distri-
bution at y = 0.1 obtained by using the OSMP-7 scheme coupled with a 2nd-order
centered scheme for the viscous fluxes, on several mesh sizes.

5.2 Effect of the MP constraints on the results.

The effect of using the OSMP-7 instead of the unlimited OS-7 scheme is high-
lighted in figures 13 and 14 in which results obtained using the OS-7 and
OSMP-7 are plotted for the 480×240 mesh. As expected, the pressure distribu-
tion at y = 0.1 (figure 13-left) highlights that the use of the OS-7 scheme leads
to spurious oscillations in the vicinity of discontinuities. These oscillations are
almost cancelled when the shock capturing procedure (MP constraints) is ac-
tivated, namely when the OSMP-7 scheme is used. No noticeable difference
is observed for the wall pressure distribution between results obtained using
the OS-7 and the OSMP-7 schemes away from shock waves. Thus, spurious
pressure oscillations produced around the shock wave do not influence the wall
pressure distribution. On the contrary, the skin friction calculated with the
OS-7 scheme differs slightly from the skin friction coefficient calculated using
the OSMP-7 scheme in the recirculation zone (figure 14), where oscillations are
observed for the result using the unlimited scheme. It shows that the spurious
oscillations created in the vicinity of the discontinuities influence the solution
in the entire domain.

These results show that the MP constraints are efficient to recover a good
quality of solutions without an extra cost since the simulation time when the
MP constraints are used is only 2,7 % greater than for the unlimited OS
scheme. This additional cost is almost negligible.
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Fig. 13. Pressure distribution at y = 0.1 (on the left) and along the wall (on the
right) for the 480× 240 mesh: influence of the MP constraints.

Fig. 14. Skin friction coefficient distribution along the wall for the 480× 240 mesh:
influence of the MP contraints.

5.3 Comparison of present results with numerical and experimental results
from the literature.

Previous results are compared with either experimental or numerical results
from the literature. Experimental results come from Degrez et al. [30] who
designed the present test case. Degrez et al. also provided numerical results
[30]. Other high-order numerical results have also been selected to compare
with as they have been obtained with two numerical schemes commonly used
to simulate compressible flows: the DNS of Gross and Fasel using a 9th accurate
WENO method based on the Van Leer (VL) flux vector splitting [33], and the
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DNS of Blanchard and Renac performed in the framework of the HIOCFD
workshop using a 6th order Discontinuous Galerkin (DG) scheme [31].

The comparison of the wall pressure distributions is plotted in figure 15-left. It
is noteworthy that the pressure levels before and after the interaction are the
same for every results. The results using the OSMP-7 scheme match perfectly
the results obtained by Blanchard and Renac [31], even in the interaction zone.
Gross and Fasel [33] obtained results that seem more in agreement with the
experimental results. The difference must be attributed to the inlet boundary
condition that are based on a laminar boundary layer similarity solution on the
opposite of uniform flow conditions prescribed for Blanchard and Renac and
the present results. Besides, the pressure distribution at y = 0.1 obtained with
OSMP-7 scheme is compared with the distribution provided by Blanchard and
Renac [31] in figure 15-right. No shock capturing technique is used in the DNS
of Blanchard and Renac explaining the spurious oscillations in the vicinity of
discontinuities. Slopes of the pressure variations as well as locations of the
shock wave, the expansion waves and the reattachment recompression agree
very well in both simulations.

Streamwise distributions of the skin friction coefficient are compared in figure
16. Experiments of Degrez et al. [30] only provided measured locations of the
separation and the reattachment points. Results obtained using the OSMP-7
scheme is one more time in good agreement with results of Blanchard and
Renac [31]. One more time, results provided by Gross and Fasel [33] agree
well with the experiments. The fact that the inlet conditions used by Gross
and Fasel are different from ours influence the development of the boundary
layer and then the distribution of the shear stress along the plate.
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Fig. 15. Streamwise pressure distribution obtained either from experiments or by
using several schemes: wall pression on the left, and pressure at y = 0.1 on the right.
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Fig. 16. Streamwise skin friction coefficient distribution obtained either from exper-
iments or by using several numerical approaches.

5.4 Influence of the order of accuracy of the diffusive fluxes

Results obtained using the OSMP-7 scheme coupled with a 4th-order centered
finite difference approximation for the diffusive fluxes are compared with those
using a 2nd-order centered finite difference approximation. The comparison is
only performed on the skin friction coefficient distribution because it is more
sensitive than the pressure to the order of accuracy of the viscous fluxes dis-
cretization. No difference is noticeable between these results, even for quanti-
ties calculated close to the wall where viscosity plays a dominant role. It shows
that, using this mesh, a 2nd-order centered finite difference approximation for
the diffusive fluxes is sufficient to accurately simulate the present flow at such
high Reynolds number.
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Fig. 17. Skin friction coefficient distribution for the 480 × 240 mesh obtainted by
using either a 2nd-order or a 4th-order approximation for the diffusive fluxes.

6 Shock wave turbulent boundary layer interaction (SWTBLI)

In previous sections (4 and 5), the ability of the solver to compute turbulent
and shocked flows has been evaluated separately on canonical test cases. In
this section, we aim at evaluating the ability of the solver to compute a flow in
which these two characteristics interact: namely a strong shock wave turbulent
boundary layer interaction (SWTBLI).

6.1 Dynamics of the SWTBLI

The flow organization introduced in section 5 corresponds to the mean orga-
nization of strong interactions. The strong SWTBLI are however unsteady.
The dynamic features of strong SWTBLIs are characterized by several un-
steady phenomena whose characteristic scales spread over a large broadband
spectrum range. Main phenomena are listed below.

6.1.1 High frequency features

For SWTBLI, the incoming boundary layer is turbulent with the most en-
ergetic fluctuations at high frequencies characterized by a Strouhal number
Stδ = fδ

Ue
∼ 1 (where f , δ and Ue are respectively the main frequency of
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the fluctuations, the boundary layer thickness before the interaction and the
free stream velocity). Low amplitude oscillations of the reflected shock wave
have been observed in several numerical simulations of strong SWTBLIs (for
instance [34]) at the same frequency scale as the most energetic fluctuations
of the incoming boundary layer (i.e. at high frequency). As explained in [35],
these small unsteady ripples of the reflected shock waves were also observed
in simulations of weak interactions, for which no separation of the boundary
layer occur. These high frequency oscillations of the reflected shock waves are
then linked to the incoming turbulence whose most energetic scales excite the
reflected shock wave.

6.1.2 Medium frequency features

The dynamics of subsonic separated and reattached flows have been exten-
sively studied and characteristic frequency ranges have been educed ( [36,37,38]).
In particular these studies highlighted that the shear layer bounding the up-
per part of the separation bubble, is subjected to two instabilities of medium
characteristic frequencies. The shear layer is submitted to a convective insta-
bility (Kelvin-Helmholtz waves) whose non-linear evolution leads to a vortex
shedding at a Strouhal number around StL = fL

Ue
' 0.6 − 0.8 based on the

length (L) of the recirculation bubble. The shear layer is also submitted to an
absolute instability called "flapping" of the shear layer that has the charac-
teristic frequency StL = fL

Ue
' 0.12− 0.15. This flapping phenomenon comes

from successive enlargement and shrinkage of the recirculation bubble. The
shrinkage is associated to a vortex shedding downstream of the recirculation
bubble.

6.1.3 Low frequency features

For supersonic flows, a low frequency flapping mode of the recirculation bubble
has also been observed in addition to the medium frequency flapping at a
Strouhal number of StL = fL

Ue
' 0.03 − 0.04 ([39] [40]). This low frequency

flapping mode is also called the "breathing" of the separation bubble. A low
frequency oscillation of the whole SWTBLI system (the recirculation bubble
in phase with the system of shock waves) is also observed in simulations and
experiments ([4]). This instability, called the "unsteadiness" of the SWTBLI,
consists in an oscillation of the recirculation bubble coupled to the shock
wave system. This low frequency phenomenon has the same characteristic
Strouhal number as the breathing of the separation bubble, namely StL =
fL

Ue
' 0.03− 0.04 [4].
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6.2 Physical parameters, computational domain and mesh.

For this simulation, the OSMP 7th order scheme has been employed. Following
results obtained in sections 4 and 5, a 2nd-order approximation is also used
for the viscous flux discretization. The negligible influence of higher order dis-
cretization of the viscous fluxes is further confirmed in appendix A for wall
bounded flows.
A sketch of the flow is given in figure 18. No-slip and adiabatic conditions are
prescribed at the wall of the flat-plate. Outlet time dependent non-reflecting
boundary conditions are imposed at the outlet boundary. Periodic bound-
ary conditions are imposed in the spanwise direction (z). In order to lower
the numerical cost associated to the simulation of turbulent boundary layers,
synthetic turbulent boundary conditions have been employed at the inlet of
the domain. It consists in a Synthetic Eddy Method (SEM) [24,25] that we
adapted to compressible flows. The flow conditions are taken from [41] and
physical parameters of the boundary layer are summarized in table 1. The in-
let conditions are extensively presented in appendix A, where the simulation
of a compressible turbulent boundary layer with the same physical parameters
as the one considered in [41].

A shock wave with an angle of 33.2◦ (corresponding to a flow deviation of
9.25◦ through the shock wave) is created by imposing the Rankine-Hugoniot
relationship at the top boundary of the domain at x/δ = 14.07 (see figure 18).
The shock wave impinges the boundary layer at x/δ ' 39.5. At this abscissa
along the flat plate, the boundary layer created using the SEM is in a fully
turbulent state (see appendix A).

Fig. 18. Sketch of the flow.
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Table 1
Flow conditions for the DNS of the SWTBLI.

M∞ U∞ (m/s) P∞ (Pa) T∞ (K) Tw (K)

2.33 556 2351.11 141.71 269.75

δ (m) θ (m) Reδ Reθ

5.3× 10−3 7.68× 10−4 17520.21 2538.78

A structured mesh of size 785×313×113 cells in (x×y×z) is used to discretize
a 3D domain of simulation that has an extent of 60.4 δ ×16.7 δ× 3 δ, with
δ the boundary layer thickness at the inlet of the domain (see Table 1). The
mesh used is refined near the wall in the normal to the wall direction (y).
The minimum grid spacing at the wall is ∆y+

w ' 0.9 in the boundary layer
before the interaction region (for x/δ = 20). A uniform mesh is used in the
longitudinal and spanwise directions (respectively x and z) with a grid spacing
of ∆x+ ' 18.3 and ∆z+ ' 6.3. This grid resolution is similar to the grid
resolution used in appendix A for the validation of the SEM.

6.3 Numerical results

6.3.1 Turbulent boundary layer state upstream of the interaction.

A compressible turbulent boundary layer has been simulated using the SEM
procedure that is extensively presented in appendix A. To present the state
of the turbulent boundary layer upstream of the interaction, figure 19 shows
a comparison between results obtained in the current DNS and results of [41]

for the velocity profile and the Reynolds stress tensor (Rij =
ρu′iu

′
j

ρwu
2
τ

) profile

with respect to y+ (in wall units). Both the velocity and the Reynolds stress
profiles are in good agreement with the reference values obtained from [41].
The trends generally admitted for the Reynolds stress profiles in the inertial
region [42] are also very well recovered, mainly for R33 that better fits the
trend than Mullenix and Gaitonde results [41], and for R12 that recovers a
plateau evolution at a value −1 that is fully consistent with the energetic
equilibrium assumption.
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Fig. 19. Comparison between the SEM and the results from [41] for Reθ ' 3500
and x/δ = 62.5. Left: Velocity profiles in the Van Driest transformed coordinates.
Right: Density-scaled Reynolds stresses. The trend lines are from [42].

Figure 20 shows a comparison between the temperature profile obtained in
the current DNS and the reference result of [41]. The profiles are in good
agreement showing the ability of the numerical approach (numerical scheme
+ fine mesh + SEM) to accurately compute thermodynamic fields. We can
note that the gradient of T in the normal wall direction is clearly zero at the
adiabatic wall.

Fig. 20. Comparison between the SEM and the results from [41] for Reθ ' 3500.
Temperature profile.

6.3.2 Mean flow organization

A numerical Schlieren visualization (2D (x, y) plane located at z/δ = 1.5) is
shown in figure 21. We clearly see the development of the turbulent bound-
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ary layer, that is progressively thickened before the interaction zone occurs. A
Mach line is also visible, originating from the flat plate at the upstream inlet
boundary. This Mach line is present because of the adaptation of the modeled
turbulent profile to the presence of the wall. This visualization also highlights
the brutal increase of the boundary layer thickness through the interaction.
The overall shock wave system organization of a SWTBLI described in [4],
briefly recalled in section 5, is recovered. Indeed, due to the strong incident
shock-wave impingement, the boundary layer separates. A closed recirculation
bubble (highlighted in figure 22 of the mean streamwise velocity) is created as
well as the subsequent reflected shock wave. The reattachment of the bound-
ary layer leads to compression waves that are clearly visible in the numerical
Schlieren visualization.

Fig. 21. Numerical schlieren visualization (2D slice located at the middle of the
domain).

Figure 22 shows a comparison between the time mean streamwise and normal
to the wall velocities averaged in the spanwise direction in the interaction
region obtained for the current DNS. The current results are compared to
results of simulations of [43] of the SWTBLI between the same compressible
turbulent boundary layer and a shock wave characterized by a deviation of the
flow of 9◦ (the strength of the shock is slightly lower than in our simulation).
Velocities are scaled using U∞ and the spatial coordinates are scaled using the
inlet boundary layer thickness (δ). Computations of the time means of fields
are performed over a simulation time of about 12 cycles of the low frequency
unsteadiness corresponding to ∆t = 360 L

U∞
. The time averaging is started

after the transient phase corresponding to the creation of the shock wave
system and the recirculation bubble. The presence of a mean separation bubble
is highlighted by the reverse flow region characterized by negative longitudinal
velocity. An overall agreement is found between the two simulations. Moreover,
some details obtained by [43] using the finer mesh are caught by the current
DNS. It is particularly visible in the expansion fan after the shock impingement
where the velocity variations computed in the current DNS match the details
captured by the fine grid in the simulations of [43].
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Fig. 22. Time mean velocity averaged in the spanwise direction in the interaction
zone. Up left: longitudinal velocity (current DNS), Up right: vertical velocity (cur-
rent DNS), Bottom left: longitudinal velocity (from [43]), Bottom right: vertical
velocity (from [43]). For the results from [43], the color contours correspond to a
coarser mesh (∆x+ = 23.5, ∆y+

w = 0.4, ∆z+ = 8.9), whereas the dashed contour
lines correspond to a finer mesh solution (∆x+ = 16.4, ∆y+

w = 0.4, ∆z+ = 6.1).

The time mean value of the skin friction coefficient (Cf ) averaged in the span-
wise direction is shown in figure 23. The mean abscissa of the separation point
can be defined as the abscissa for which this curve becomes negative, and we
obtain Xs = 34.21δ. The mean abscissa of the reattachment point can be
defined as the abscissa for which this curve becomes positive again, and the
location is Xr = 39.13δ. The mean separation length can then be defined as
the difference Xr − Xs. We obtain L = 4.92δ. This value is to be compared
to the mean separation length of 4δ obtained by [43]. The lower value of the
mean separation length obtained by [43] is consistant with the lower strength
of the shock in their simulation than in our present configuration.
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Fig. 23. Time mean Cf averaged in the spanwise direction with respect to x/δ. L
denotes the mean separation length, Xs denotes the mean separation point and Xr

denotes the mean reattachment point.

The time mean values of the wall pressure and the skin friction coefficient
averaged in the spanwise direction are respectively shown in figures 24 and
25. Values are compared with results from [43]. The strength of the shock
wave being slightly smaller in the SWTBLI simulated by [43] than in the cur-
rent DNS, some discrepancies are observed. The pressure rise is sharper in the
current simulation than in [43], which is consistent with the higher pressure
ratio of the SWTBLI. The skin friction coefficient upstream of the interaction
appears to be lower in the simulation of [43] than in the current DNS. This
discrepancy between values of the skin friction coefficient upstream of the in-
teraction is in contradiction with results from [41], presented in appendix A for
the same boundary layer in which perfect agreement was obtained for the skin
friction coefficient. Results from [43] are therefore not consistant with results
from [41] and must therefore be interpreted with caution. Within the separa-
tion, discrepancies are also recorded between skin friction distributions. The
skin friction distribution within the separation bubble reported in [43] is more
intense (with lower skin friction values) than the one obtained in our DNS.
Moreover, two local minima are observed in the skin friction distribution ob-
tained in our DNS. This behavior, not observed in the results reported by [43]
is also observed in other studies such as [8]. Discrepancies observed between
skin friction coefficients can be attributed to the difference in the grid resolu-
tion between the two simulations. Indeed, the mesh used in [43] (∆x+ = 23.5,
∆y+

w = 0.4, ∆z+ = 8.9) is coarser than our mesh in the longitudinal and span-
wise directions. In [44], a study of the skin friction variability between different
studies concluded that the skin friction distribution in the separated zone is
particularly sensitive to the grid refinement in the longitudinal direction.
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Fig. 24. Time mean pressure averaged
in the spanwise direction with respect to
(x− xr)/(xr − xs).

Fig. 25. Time mean Cf averaged in
the spanwise direction with respect to
(x− xr)/(xr − xs).

These results show that the OSMP scheme is able to recover mean properties
of the SWTBLI consistent with the results from the literature (mainly, for
instance, with [8,44]).

6.3.3 Dynamics of the interaction

We now focus on results obtained for the dynamics of the interaction. In
particular, we are interested in verifying the ability of the OSMP scheme to
recover commonly admitted dynamics behavior of strong SWTBLIs such as
the low frequency breathing of the recirculation bubble and the low frequency
unsteadiness of the reflected shock wave.

Histories of the separation and reattachment point abscissa averaged in the
spanwise direction (respectively xs and xr ) are plotted in figure 26. xs cor-
responds to the most upstream abscissa at which the skin friction coefficient
becomes negative. xr corresponds to the most downstream abscissa at which
the skin friction coefficient becomes positive again. Alternatively to the defini-
tions of the mean abscissa of the separation and reattachment point previously
given in the description of figure 23, these quantities can be defined respec-
tively as the time mean of xs and xr. We obtain xs ' 34.25δ and xr ' 40.9δ.
The amplitude of the reattachment point motion is significantly larger than
the amplitude of the separation point motion. This is in accordance with re-
sults obtained by other authors ([8], [44]). The power spectral densities of
these two signals have been computed and are shown in figure 27. The reat-
tachment point is dominated by frequencies characteristic of the medium fre-
quency (StL ' 0.15) and low frequency (StL ' 0.03 − 0.05) flapping of the
shear layer, the medium frequency being more energetic. The motion of the
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separation point is dominated by the low frequency activity of the recircula-
tion bubble and is characterized by the presence of very low frequency activity
(StL ' 0.015).

Fig. 26. Time history of the spanwise av-
eraged locations of the separation point
xs(t) and the reattachment point xr(t)

Fig. 27. Power spectral density of the
time history of the spanwise averaged lo-
cation of the separation point xs(t) (red)
and the time history of the spanwise av-
eraged location of the reattachment point
xr(t) (blue).

Figure 28 shows the history of the separation point location along the flat plate
and the history of the position of the reflected shock waves foot Xshock. As in
[44], the position of the shock wave is identified at each time of acquisition as
the abscissa for which the wall pressure becomes 30% bigger than P∞. The
standard deviation of Xshock is 0.16δ. The covariance of Xs(t) and Xshock(t)
is shown in figure 29 highlighting the high correlation between the motions of
the separation point and the reflected shock wave.
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Fig. 28. Time history of the span-
wise averaged location of the separation
point xs(t) and the reflected shock foot
Xshock(t).

Fig. 29. Distribution of the covariance be-
tween xs(t) and Xshock(t) as a function of
the non dimensionalized time lag τU∞/L.

These results show that the medium and low frequencies of the recirculation
bubble is recovered by our simulation, associated to the low frequency un-
steadiness of the reflected shock wave.

7 Conclusion and perspectives

In the present study, the ability of the high order OSMP scheme to accurately
compute wall bounded turbulent shocked flows has been studied.

As a first step, the ability of the scheme to compute turbulent and shocked
flows has been studied separately. It has first been performed by simulating
an unbounded turbulent flow which fairly closely mimics the energy cascade
found in Homogeneous Isotropic Turbulence (HIT): namely the 3D Taylor-
Green vortex. Results demonstrate the correct accuracy of the OSMP scheme
to predict turbulent features. In particular, the effect of the MP constraint
on results has been shown to be negligible for a such unbounded “smooth"
turbulent flow. It testifies to the robustness of the MP procedure that doesn’t
degrade the accuracy of the solution away from discontinuities. Moreover, an
order of accuracy higher than 2nd-order for approximating the diffusive fluxes
seems to have a negligible influence on the solution for such relatively high
Reynolds numbers. We also showed that the OSMP scheme is completely com-
petitive compared to the best result obtained on this well-known test case at
the 4-th High-Order CFD Workshop [29] with an overall error on the kinetic
energy dissipation of about one order lower for the same grid resolution.
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Secondly, the simulation of a 2D steady SWLBLI has shown the great ef-
ficiency of the MP procedure to capture discontinuity without spoiling the
solutions.
The DNS of a wall bounded turbulent shocked flow has then been undertaken.
A Synthetic Eddy Method, that we adapted to the compressible regime, has
been implemented to prescribe an inlet boundary condition capable of initiat-
ing a fully developed turbulent boundary layer without prohibitive additional
computational costs. The results are in very good agreement with the reference
results. An adaptation length of about 20 initial boundary layer thicknesses
(δ) has been found sufficient to recover realistic values of the skin friction coef-
ficient, realistic velocity and Reynolds stress profiles, that is found to be very
small compared to other existing methods. Moreover, even for this bounded
flow, the use of an order of accuracy higher than the 2nd-order for approx-
imating the diffusive fluxes was shown to have a negligible influence on the
solution, even close to the wall. Results obtained for the SWTBLI simulation
are in accordance with reference solutions from the literature, both for the
mean properties and the dynamics features of the flow. In particular, the low
frequency breathing of the recirculation bubble and the low frequency oscilla-
tions of the reflected shock wave have been captured by our simulation.

The OSMP scheme with a 2nd-order approximation of the diffusive fluxes and
the SEM adapted for compressible flows is then a reliable numerical tool for the
simulation of wall bounded turbulent shocked flows. It is then with confidence
that we can undertake much deeper physical analyses of the interaction of
shock waves with turbulent boundary layer that will be the next step of this
work.
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Appendices

A Direct numerical Simulation of a compressible turbulent bound-
ary layer

In this appendix, we evaluate the ability of the OSMP scheme to compute
wall bounded compressible turbulent flows. Namely, the simulation of a com-
pressible turbulent boundary layer is presented. We first present the turbulent
inflow implemented in order to lower the numerical costs associated to this
simulation. The results are then presented and compared to a reference solu-
tion.

A.1 Turbulent inflow

In order to lower the numerical cost associated to the simulation of turbulent
boundary layers, turbulent inlet boundary conditions have been developed
and are available in the literature. Some methods consist in accelerating the
destabilization of a laminar boundary layer imposed at the inlet of the domain
[10,8]. Other methods consist in feeding the inlet of the domain with unsteady
boundary conditions representative of the turbulent boundary layers. Reviews
on this subject can be found in [45,46,47]. Among these methods, the Synthetic
Eddy Method (SEM) has first been developed for incompressible flows [24]
and then been improved by [25] for its use in the context of wall bounded
flows. In this study, we implemented the SEM presented in [25], adapted for
compressible flows.

In the following, the variables are decomposed using a Reynolds decomposition
f = f + f ′ where f denotes the ensemble average of f and f ′ fluctuations of
f centered on the mean (f).

A.1.1 Prescription of the velocity at the inlet of the domain

The SEM uses the Cholesky decomposition Aij(y) of a prescribed Reynolds
stress tensor Rij(y) to assign second order moments to a normalized stochastic
signal ũj(y, z, t) superimposed to a mean velocity profile ui(y) at the inlet of
the domain. The velocity signal at the inlet of the domain then writes:

ui(y, z, t) = ui(y) +
∑
j

Aij(y)ũj(y, z, t)︸ ︷︷ ︸
u′
i(y,z,t)

, i = 1, 2, 3, (A.1)
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where u′i(y, z, t) are velocity fluctuations in each direction.

This operation proposed in [48] allows to prescribe both first and second order
moments at the inlet of the domain if ũj(y, z, t) is a centered random sequence
with unit variance and zero covariance: ũiũj = δij, where δij is the Kronecker
symbol (δij = 1 if i = j, δij = 0 otherwise).

A =



√
(R11) 0 0

R21/A11

√
(R22 − A2

21) 0

R31/A11
R32 − A21A31

A22

√
R33 − A2

31 − A2
32

 , (A.2)

where Rij = u′iu
′
j denotes the components of the Reynolds stress tensor. As

seen in equation A.1, the SEM needs three inputs: the mean velocity profile,
the Reynolds stress tensor at the inlet of the domain and a random signal
ũj(y, z, t). In the following, we will introduce these three inputs of the SEM
as they have been implemented for this study.

The mean velocity profile of the boundary layer at the inlet of the domain is
prescribed using the analytical approximation introduced in [49] as detailed
in appendix C.

The determination of the Reynolds stress tensor at the inlet of the domain
requires knowing the fluctuating velocity field. As this information is not avail-
able, we impose approximate Reynolds stress components derived from the
mean velocity profile using the Boussinesq hypothesis:

−u′v′ = νt(
∂U

∂y
), (A.3)

where νt is the turbulent viscosity.

The mixing length model is used in order to evaluate the turbulent viscosity:

νt = l2D2∂U

∂y
, (A.4)

where l is the mixing length and D is the wall damping function. These func-
tions are evaluated as follows [50]:

l = 0.085δtanh( χ

0.085
y

δ
) with χ = 0.41, (A.5)

D = 1− e(y+/26), (A.6)
where δ is the boundary layer thickness at the inlet of the domain. δ is defined
as the distance from the wall at which the velocity reaches 0.99U∞.
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The value of the turbulent kinetic energy profile k = 1
2

3∑
i=1

u′2i is then derived

using the assumption of [51] and [52] that the ratio between k and u′v′ is a
constant:

k = −u
′v′√
Cµ

, (A.7)

where the structure parameter Cµ has a generally admitted value Cµ = 0.09.

We then use the Wilcox’s hypothesis [53] to evaluate the value of the diagonal
components of the Reynolds stress tensor.

u′2 = 4
92k, v′2 = 2

92k, w′2 = 1
32k. (A.8)

Finally, we impose u′w′ = 0 and v′w′ = 0. The Wilcox’s hypothesis allows to
take into account the turbulence anisotropy in a boundary layer and has been
shown to provide good approximations throughout the log-law layer and most
of the defect layer for zero pressure gradient boundary layer [53].

To generate the random signal ũj(y, z, t), we follow the approach introduced
in [25], where the original SEM has been extended to account for the inho-
mogeneity of scales in the direction normal to the wall for boundary layer
computations. Using this approach, the inlet plane is split into Þ zones in
which the random signal has different scales.

The random signal ũj(y, z, t) is then computed as a sum over the Þ zones,

ũj =
Þ∑
p=1

ṽjp, (A.9)

where ṽjp are normalized random signals that have compact support on the
pth zone and are referred to as modes. The construction of these modes is
introduced in details in appendix D.

A.1.2 Prescription of the temperature and the density fields at the inlet of
the domain

As a compressible Navier-Stokes system is solved, turbulent inflow conditions
have to be provided also for the density and the temperature.

The mean temperature profile prescribed at the domain inlet is deter-
mined from the mean velocity profile using the Crocco’s formula [50]. Assum-
ing that the Prandtl number Pr = 1 and the turbulent number Prt = 1, this
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formula links the mean static enthalpy profile with the mean velocity profile
following:

h = hw + (hi∞ − hw) U
U∞
− (hi∞ − h∞)( U

U∞
)2 (A.10)

where h is the static enthalpy, hi is the total isentropic enthalpy, the index “w"
denotes the variable estimated at the wall location, and the index ∞ denotes
the free stream quantities.

Assuming an adiabatic wall, hw = hi∞ and the Crocco’s formula (A.10) be-
comes:

h = hi∞ + (hi∞ − h∞)( U
U∞

)2 (A.11)

This hypothesis is convenient. Indeed, avoiding hw allows to impose the en-
thalpy profile knowing only the free stream conditions.

As we assume a perfect gas, equation (A.11) relates directly the mean tem-
perature profile and the mean velocity profile.

The mean density profile is then derived from the mean velocity profile,
using the perfect gas equation of state. For supersonic boundary layers over
adiabatic walls, there is an experimental evidence of quasi constant total en-
thalpy profile if the Mach number is not too high (let sayM∞ < 5). It can then
be assumed a zero total enthalpy fluctuations in the boundary layer (h′i = 0).
This hypothesis leads to the Strong Reynolds Analogy (SRA) [[50]]:

T ′

T
' −(γ − 1)M2u′U (A.12)

where T ′ is the temperature fluctuation and u′ the longitudinal velocity fluc-
tuation.

Moreover, for compressible turbulent boundary layers untilM∞ 6 5 the veloc-
ity fluctuations are subsonic and experimental evidences show that pressure
fluctuations and ρ′T ′ are second order terms. This leads to:

ρ′ = −ρT
′

T
(A.13)

where ρ′ are the density fluctuations.

Relations (A.12) and (A.13) are used for prescribing temperature and density
fluctuations at the inlet. This approach has also been used by [9] and [54].
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A.2 Numerical results

A compressible turbulent boundary layer has been simulated using the SEM
procedure introduced in the previous section. The OSMP-7 scheme is here
employed. Following results obtained in section 4.3, 2nd-order discretization
is used for the viscous fluxes. The flow conditions are taken from [41] and
summarized in table 1.

We employ a structured mesh of size 1033 × 105 × 113 in (x × y × z) to
discretize the domain of simulation that has an extent of 80δ × 4δ × 3.0δ.
In the normal to the wall direction, the mesh is tightened close to the wall
using a hyperbolic tangent law to ensure a minimum grid spacing at the wall
∆y+

w = 0.9 (at x/δ = 20). A uniform mesh is used in the longitudinal and
spanwise directions (respectively x and z) with a grid spacing of ∆x+ ' 18.3
and ∆z+ ' 6.3.

A snapshot (Q criterion colored by the longitudinal velocity between x = 0
and x = 40δ) of the turbulent boundary layer obtained using this method
is shown in figure A.1. The injection of eddies at the inlet of the domain is
visible. As show in figure A.2, where the longitudinal velocity contours are
plotted in a (x, z) plane at y+ ' 15 above the wall, the boundary layer is pop-
ulated by structures elongated in the streamwise direction close to the wall.
Eddy ejections within the boundary layer is also clearly visible in figure A.1
in the form of hairpin vortices. The qualitative aspect of the structure pat-
terns populating the boundary layer is consistant with a realistic compressible
turbulent boundary layer.
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Fig. A.1. Q criterion ( δ
2

U2
∞
Q = 0.1) colored by the velocity magnitude between x = 0

and x = 40δ.

Fig. A.2. Isocontours of the velocity magnitude in a (x, z) plane at y+ ' 15 above
the wall, between x = 0 and x = 40δ.

The mean skin friction coefficient, averaged in both time and in the spanwise
direction is plotted along the flat plate in figure A.3. The adjustment distance
needed to recover the right value of the skin friction coefficient is approxi-
mately ∆ ∼ 10δ − 15δ. This adjustment distance appears to be very small
compared to the one obtained in [41], in which a steady counterflow actuator
with properties based on a dielectric barrier discharge is employed to trip an
incoming laminar boundary layer. The simulation of [41] was performed using
2 meshes: a coarse mesh (∆x+ = 23.5, ∆y+

w = 0.4, ∆z+ = 8.9 at x = 65δ)
and a finer mesh (∆x+ = 16.4, ∆y+

w = 0.4, ∆z+ = 6.1 at x = 65δ). Our mesh
is comparable to the finest mesh of [41]. The adaptation distance obtained
using the implemented SEM compares also well with respect to other tur-
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bulent inflow conditions. For instance, the digital filter-based approach used
in SWTBLI by [9] needed an adaptation of about 20δ to recover good skin
friction coefficient. Moreover, the mean skin friction coefficient obtained here
is in accordance with the values obtained in other studies for comparable
compressible turbulent boundary layer simulations [10,8,9].

Fig. A.3. Time mean skin friction coefficient (Cf ) averaged in the spanwise direction
along the flat plate (x/δ).

Figure A.4 shows the Van Driest velocity profile and the Reynolds stress pro-
files with respect to y+ obtained at x = 20δ. The profiles correspond to time
mean values averaged in the spanwise direction. The velocity is transformed
into an equivalent non-dimensional incompressible velocity using the Van Dri-
est transformation [50]:

u+
V D = U∞

uτ

1
A

[arcsin( 2A2u−B√
(4A2 +B2)

) + arcsin( B√
(4A2 +B2)

)] (A.14)

where
A2 = γ−1

2 M2
∞
T∞
Tw

B = (1 + γ−1
2 M2

∞)T∞
Tw
− 1

(A.15)

The Reynolds stresses are density-scaled and normalized by the friction veloc-
ity as follows:

Rij =
ρu′iu

′
j

ρwu
2
τ

(A.16)

The Van Driest velocity profile obtained at x = 20δ corresponds to a turbulent
profile with a linear evolution close to the wall, followed by a logarithmic law
evolution in the inertial region with the right parameters (300 6 y+ 6 2000)
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and by a wake region for (2000 6 y+). The Reynolds stress profiles obtained at
x = 20δ are also realistic profiles for a compressible turbulent boundary layer.
In particular, the value and the location of the peak of streamwise normal
stress fall within the range reported in other studies ([41]: R11 = 9.24 at
y+ = 18.11, [9]: R11 = 8.75 at y+ ' 18, [55]: R11 = 8 at y+ ' 15). Moreover,
the profile of R12 recovers a plateau-like evolution in the inertial range that is
around −1 which is in accordance with the boundary layer theory.

An adaption length of about 20δ is then enough to recover realistic values of
the skin friction coefficient, a realistic streamwise velocity profile and Reynolds
stress profiles.

Fig. A.4. Left: Velocity profiles in the Van Driest transformed coordinates for
x = 20δ. Right: Density-scaled Reynolds stresses for x = 20δ.

A line of probes oriented in the spanwise direction with one probe in each mesh
cell has been placed at x = 10δ and y+ = 113 (y/δ ' 0.28). The spanwise
autocorrelations of ρ, u, v, w and p fluctuations are plotted in figure A.5-left.
These autocorrelations are computed as follows (see [55]):

Cαα(rz = kr∆z) =
Nz−1∑
k=1

α′kα
′
k+kr , kr = 0, 1..., Nz − 1 (A.17)

where Nz is the number of grid points in the z direction and α is the variable
considered.

v fluctuations have a much wider correlation than u, which is larger than
w, which has the narrowest correlation. The density fluctuation correlations
are slightly wider than the correlations of v, whereas the pressure is the
widest correlation. Figure A.5-left confirms that the spanwise extent of the
domain is large enough such that the fluctuations at the midway point are
de-correlated with fluctuations near the boundaries. The Taylor scales can be
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calculated from the autocorrelation profiles. Regarding the longitudinal ve-
locity (u), the Taylor microscale is λ = 7.10−4m and the Taylor macroscale
is Λ = 1.05.10−3m. These values then give following ratios with grid spac-
ings: λ/∆x ' 1.7 and λ/∆z ' 4.95. The grid spacing in the longitudinal and
spanwise direction is then significantly smaller than the characteristic scale
of the smaller turbulent structures. Moreover Λ/Lz ' 6.6.10−2 (with Lz the
spanwise extent of the computational domain) indicating that the largest tur-
bulent structures present in the domain are significantly small with respect to
the spanwise extent of the computational domain.

The 1-D power spectra of ρ, u, v, w and p in the spanwise direction at x = 10δ
and y+ = 113 are plotted in figure A.5-right. The energy of these variables
versus the spanwise wave number are computed as follows (see [55]):

Eαα(kz = n

(Nz − 1)
1

∆z ) = 1+2
(Nz−1)/2∑
kr=1

Cαα(kr∆z)cos( 2πnkr
Nz − 1), n = 0, 1..., (Nz−1)/2

(A.18)

These spectra show that no spurious energetic length scale is introduced due
to the SEM in the boundary layer. This point is crucial to judge the quality
of the method. The spectral content is realistic for a compressible turbulent
boundary layer. Moreover, for the velocity components, there is a significant
region where the spectra follow a k−5/3 profile.

Fig. A.5. Left: Spanwise autocorrelations of the fluctuations at x = 10δ and
y+ = 113 (y/δ ' 0.28). Right: Power spectra in the spanwise direction at x = 10δ
and y+ = 113 (y/δ ' 0.28).

Moreover, as mentioned in the core of this paper, both the streamwise veloc-
ity and the Reynolds stress profiles are in very good agreement with reference
values obtained from [41] (see Fig. 19). Especially, trends generally admitted
for the Reynolds stress profiles in the inertial region [42] are very well recov-
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ered, mainly for R33 that better fits the trend than the Mullenix and Gaitonde
results [41], and for R12 that recovers a plateau evolution at a value −1 that
is fully consistent with the energetic equilibrium assumption. The profile of
the mean temperature (T ) is also in good agreement with [41] showing the
ability of the numerical approach (numerical scheme + fine mesh + SEM) to
accurately compute thermodynamic fields.

A.2.1 Influence of the accuracy order of approximation of the diffusive fluxes.

In section 4.3, the influence of the accuracy order of approximation of the dif-
fusive fluxes have been studied for the 3D Taylor-Green vortex at Re = 1600.
It has been shown that using approximations of order higher than the 2nd-
order for the diffusive fluxes is not relevant for such unbounded high Reynolds
number configurations. In order to check whether this conclusion also holds
for a wall-bounded flow, the simulation of the same boundary layer on the
same mesh has been performed using a 4th-order centered finite difference
approximation for the diffusive fluxes.

The results obtained with 2nd or a 4th-order approximations for the diffusive
fluxes are compared for several quantities. The time mean skin friction coeffi-
cient, averaged in the spanwise direction is plotted along the flat plate in figure
A.6. Figure A.7 shows the Van Driest velocity profile and the Reynolds stress
profiles with respect to y+. The temperature profile is shown in figure A.8.
For all of these quantities, no or at least very little discrepancies are observed
between results. It confirms the conclusion of section 4.3. Using approxima-
tions of order higher than the 2nd-order for the diffusive fluxes is not relevant
also for the simulation of such turbulent compressible boundary layer.
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Fig. A.6. Comparison between the results obtained with a 2nd order and a 4th
order discretization of the diffusive fluxes. Time mean skin friction coefficient (Cf )
averaged in the spanwise direction along the flat plate (x/δ).

Fig. A.7. Comparison between the results obtained with a 2nd order and a 4th order
discretization of the diffusive fluxes for Reθ ' 3500 and x/δ = 62.5. Left: Velocity
profiles in the Van Driest transformed coordinates. Right: Density-scaled Reynolds
stresses. Right: Density-scaled Reynolds stresses.
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Fig. A.8. Comparison between the results obtained with a 2nd order and a 4th order
discretization of the diffusive fluxes. Temperature profile.

B Some characteristic quantities of the boundary layer

We here recall the definitions of some characteristic quantities of the boundary
layer:

• the boundary layer momentum thickness θ =
∫ ∞

0

ρu

ρ∞U∞
(1− u

U∞
)dy

• the displacement thickness δ∗ =
∫ ∞

0
1− ρu

ρ∞U∞
dy

• the shape factor H = δ∗

θ

• the friction velocity uτ =
√
τw
ρw

, where τ is the shear stress and the subscript

w refers to the value of variables evaluated at the wall

C Prescribed mean velocity profile at the inlet of the domain

The mean velocity profile of the boundary layer at the inlet of the domain
is prescribed using the analytical approximation introduced in [49]. Only the
longitudinal component u1 is not null. It is build from prescribed values of the
free stream velocity U∞, the skin friction coefficient Cf , the boundary layer
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momentum thickness θ and the shape factor H:

u1(y) = uτ
1

0.09atan(0.09y+) + (| Cf2 |
−1/2 − π

0.18)(tanh(a(y
θ

)b))1/2, (C.1)

where y+ = uτy

νw
is the vertical coordinate in wall units characterizing the

viscous sublayer and:

uτ = U∞ |
Cf
2 |

1/2

a = (arctanh(g2(2)))/2b

b = (ln(arctanh(g2(2))
arctanh(g2(5))))/ln(2

5),

g(2) = ( U
U∞

(2)− 1
0.09( | Cf |2 )1/2atan(0.18Reθ(

| Cf |
2 )1/2))/(1− π

0.18( | Cf |2 )1/2),

g(5) = ( U
U∞

(5)− 1
0.09( | Cf |2 )1/2atan(0.45Reθ(

| Cf |
2 )1/2))/(1− π

0.18( | Cf |2 )1/2),

U

U∞
(2) = (arctanh(8.5−H

7.5 )− 0.364)/1.95,

U

U∞
(5) = 0.155 + 0.795cosh(0.51(H − 1.95)),

(C.2)

Even if the formulation uτ = U∞ |
Cf
2 |

1/2 holds only for an incompressible
boundary layer, we use this relationship to prescribe the mean velocity profile
at the inlet of the simulation domain without knowing ρw.

D Generation of the random signal ũj(y, z, t)

To generate the random signal ũj(y, z, t), we follow the approach introduced
in [25], where the original SEM has been extended to account for the inho-
mogeneity of scales in the direction normal to the wall for boundary layer
computations. Using this approach, the inlet plane is split into Þ zones in
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which the random signal has different scales.

The random signal ũj(y, z, t) is then computed as a sum over the Þ zones,

ũj =
Þ∑
p=1

ṽjp, (D.1)

where ṽjp are random velocity signals that have compact support on the pth
zone and are referred to as modes.

Each mode is the superposition of N(p) structures. Each structure of the mode
have a random time of appearance tk and a random location of its center
(yk, zk) in the pth mode’s zone, namely in [ylowp ; yupp ][0;Lz] where yupp − ylowp
defines the wall normal extent of the pth zone and Lz is the width of the inlet
plane. The number of structures per mode N(p) is chosen so that the pth zone
of the inlet plane is statistically covered by structures:

N(p) = Sp
Ss
, (D.2)

where Sp is the surface of the pth zone (Sp = Lz(yupp −ylowp )) and Ss is the surface
of a structure of the pth mode projected onto the inlet plane (SS = 4lyplzp).

Each mode is characterized by the length scales in each direction that are
assigned to the structures and that are noted lxp , lyp and lzp. Using the Taylor’s
frozen turbulence hypothesis, lxp is related to a time scale of the structure ltp
that characterizes the time necessary for a structure to fully pass through the
inlet plane:

ltp =
lxp
cp
, (D.3)

where cp is the convection velocity of structures that depends on the mode.

The shape of structures is characterized by shape functions in each direction
gjp depending on the mode. These shape functions depend on time and space
coordinates through a product of mono-dimentional functions Ξ(t̃), Φ(ỹ) and

Ψ(z̃) where t̃ =
t− tk − ltp

ltp
, ỹ = y − yk

lyp
and z̃ = z − zk

lzp
are the reduced vari-

ables for time, wall-normal and spanwise directions respectively. The random
signal writes finally:

ũj = ∑P
p=1 ṽjp = ∑P

p=1
1√
N(p)

∑N(p)
k=1 εkΞjp(t̃)Φjp(ỹ)Ψjp(z̃),

= ∑P
p=1

1√
N(p)

∑N(p)
k=1 εkgjp(t̃, ỹ, z̃),

(D.4)
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where εk is a random sign (i.e. ±1) assigned to each structure in order to de-
correlate the components and to match the zero covariance condition (ũiũj |i 6=j=
δij).

Using the formulation D.4, each structure is convected through the inlet plane.
When (t− tk − ltp)/ltp = 1, the structure k has completely passed through the
inlet plane and a new structure is built with a random location (yk, zk) and a
new random time of appearance chosen in [t; t+ ltp].

In order to prescribe a random signal with unit variance, the shape functions
are normalized as follows:

1
23

∫
[−1;1]3

[gjp]2(t̃, ỹ, z̃)]2dt̃dỹdz̃ = 1, (D.5)

with [−1; 1] the support of the shape functions that depend on normalized
variables.

The inlet boundary conditions are completely defined when the scales ltp, lyp
and lzp are chosen and when the functions Ξ(t̃), Φ(ỹ) and Ψ(z̃) are defined for
each mode. These scales and functions are defined in order to mimic the shapes
and scales of the turbulent structures in a boundary layer. This approach is
also used in [56] and the parameters and shape functions used in our imple-
mentation are extracted from [56]. The inlet plane is divided into 4 zones, the
1st zone being the closest to the wall and the 4th zone being the farthest from
the wall. The low and up limits of the 4 zones expressed in wall units are given
in table D.2. Close to the wall (1st mode), structures injected in the domain
have a long and a thin streamwise structure as in an real boundary layer. The
2nd mode just above the first one, corresponding to the logarithmic layer, is
populated by shorter and thicker structures reproducing the shape of hairpin
vortices characteristic of the logarithmic layer. The rest of the boundary layer
(3rd and 4th modes), are filled with Gaussian isotropic structures.

The shape functions corresponding to each mode are given in the table D.1
where:

H(ξ) = 1− cos(2πξ)
2πξ
√

0.214
(D.6)

and

G(ξ) = A(σ)e−
ξ2

2σ2 (D.7)

with A(σ) = 1
σ
√
π

2

erf( 1
σ

) and σ = 1
3 .
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Table D.1
Analytical expression of the shape functions. ε1, ε2 and ε3 are random signs (i.e.
±1).

g1p g2p g3p

p=1,2 G(t̃)G(ỹ)H(z̃) −G(t̃)G(ỹ)H(z̃) G(t̃)H(ỹ)G(z̃)

p=3,4 ε1G(t̃)G(ỹ)G(z̃) ε2G(t̃)G(ỹ)G(z̃) ε3G(t̃)G(ỹ)G(z̃)

The length scales and the convection velocity of turbulent structures associ-
ated with each mode, expressed in wall units are given in table D.2.

Table D.2
Low and up limits, length scales and convection velocity of turbulent structures
associated with each mode, expressed in wall units.

(ylowp )+ (yupp )+ (lyp)+ (lxp)+ (lzp)+ c+
p

p=1 20 40 20 100 30 15

p=2 40 0.188 δ 40 80 40 18

(ylowp ) (yupp ) (lyp) (lxp) (lzp) cp

p=3 0.188 δ 0.72 δ 0.125 δ 0.125 δ 0.125 δ 0.76 U∞
p=4 0.4 δ 1.7 δ 0.227 δ 0.227 δ 0.227 δ 0.76 U∞
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