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For a set S of real numbers we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the one of Z-almost automorphic functions. This enables us to study the existence of almost automorphic solutions of a differential equation with piecewise constant argument of generalized type. 0

Introduction

The almost periodic functions have been introduced by Bohr in 1925 and describe phenomenons that are similar to the periodic oscillations which can be observed in many fields, such as celestial mechanics, nonlinear vibration, electromagnetic theory, plasma physics, engineering. An important generalization of the almost periodicity is the concept of the almost automorphy introduced in the literature [START_REF] Bochner | Continuous mappings of almost automorphic and almost periodic functions[END_REF]- [START_REF] Bochner | On compact solutions of operationaldifferential equations[END_REF] by Bochner. In [START_REF] Guérékata | Almost Automorphic and Almost Periodic Functions in Abstract Spaces[END_REF], the author presents the theory of almost automorphic functions and their applications to differential equations. The study of differential equations with piecewise constant argument (EPCA) is an important subject because these equations have the structure of continuous dynamical systems in intervals of unit length. Therefore they combine the properties of both differential and difference equations. There have been many papers studying DEPCA, see for instance [START_REF] Schah | Advanced differential equations with piecewise constant argument deviations[END_REF], [START_REF] Wiener | A Second-Order delay differential equation with multiple Periodic solutions[END_REF]- [START_REF] Wiener | Generalized solutions of functional differential equations[END_REF] and the references therein. Some papers deal with the existence of asympotically ω-periodic solutions (see for instance [START_REF] Dimbour | Asymptotically ω-periodic function in the Stepanov sense and its applications for an advanced differential equation with piecewise constant argument in a Banach space[END_REF]), S-asymptotically ω-periodic solutions of DEPCA (see [START_REF] Dimbour | S-asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument via Sasymptotically ω-periodic functions in the Stepanov sense[END_REF]). Other articles deal with the existence of almost automorphic solutions of EPCA (see [START_REF] Dimbour | Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space[END_REF], [START_REF] Van-Minh | On the almost automorphy of bounded solutions of differential equations with piecewise constant argument[END_REF]). In this paper, we study the existence of almost automorphic solutions of the following differential equation with piecewise constant argument of generalized (DEPCAG) type (see [START_REF] Akhmet | On the reduction principle for differential equations with piecewise constant argument of generalized type[END_REF], [START_REF] Akhmet | Stability of differential equations with piecewise constant arguments of generalized type[END_REF], [START_REF] Chiu | Periodic solutions of differential equations with a general piecewise constant argument and applications[END_REF])

x (t) = A(t)x(ϕ(t)) + f (t, x(ϕ(t))), t ∈ R (1)
where ϕ is a step function, A : R → R q×q is continuous in R \ S and f : R × R q → R q is continuous. More precisely, there exists a strictly increasing sequence of real numbers t i , i ∈ Z, such that t i → + -∞ as i → + -∞ and on each interval [t i , t i+1 [, ϕ(t) is constant:

ϕ(t) = g n , t n ≤ t < t n+1 .
In order to give sufficient conditions of existence and uniqueness of almost automorphic solutions of the equation ( 1), we introduce the concept of S-almost automorphic functions that generalizes the one of Z-almost automorphic ones, where S is a subset of R. We refer to [START_REF] Chávez | Discontinuous almost automorphic functions and almost automorphic solutions for differential equations with piecewise constant argument[END_REF] to have more information about this. The paper is organized as follows. In Section 2, we recall definitions and properties about almost automorphic functions and introduce the concept of S-almost automorphic functions. In Section 3, we also study the existence and uniqueness of almost automorphic solutions of the equation ( 1) considering the concept of S-almost automorphic functions and using the Banach fixed point Theorem.

Almost automorphic functions with respect to a set

Let S denote a subset of R. For every non zero real number r we consider the function ϕ r : R → R such that for every (t, s) ∈ R × S:

ϕ r (t + s) = ϕ r (t) + rs. (2) 
In particular for all s ∈ S we have:

ϕ r (s) = rs + ϕ r (0). Definition 2.1. A subset A of R is said to be r-stable if it is invariant
under the homothety of ratio r and center 0.

We give an example of such a set S and an associated function ϕ r .

Example 2.1. Let S be a discrete subgroup of R, then S = αZ for some (non negative) real α, and S is obviously r-stable for all non zero integer r. Set ϕ r (t) = [rt/α]α + c where [.] is the integer part function and c is a constant; then it is easily seen that ( 2) is satisfied.

Proposition 2.1. The function ϕ r satisfies the following properties i)

∀(t, s) ∈ R × S, ϕ r (t -s) = ϕ r (t) -rs. i) ∀(s 1 , s 2 , • • • , s p ) ∈ S p , ∀(m 1 , m 2 , • • • , m p ) ∈ Z p : ϕ r (m 1 s 1 + • • • + m p s p ) = r(m 1 s 1 + • • • + m p s p ) + ϕ r (0).
Proof. Substituting t -s for t in (2), gives i); and ii) is obtained by induction from ϕ r (t + m p s p ) = ϕ r (t) + m p rs p where t = m 1 s 1 + • • • + m p-1 s p-1 and noticing that ϕ r (m 1 s 1 ) = m 1 rs 1 + ϕ r (0).

In all the sequel X denotes a real or complex Banach space.

Definition 2.2. A function f : R → X is said to be S-continuous if it is continuous in R \ S, which is refered as an S-continuous function.

The set of all S-continuous functions f : R → X will be denoted by SC(R, X) and the set of those that are bounded by SC b (R, X). Clearly SC b (R, X) is a closed subspace of the Banach space C b (R, X) of bounded continuous functions and then it is also a Banach space.

Definition 2.3. A bounded S-continuous function f : R → X is said to be almost automorphic with respect to the set S if for every real sequence s valued in S, there are a subsequence s and a function g : R → X such that for all t ∈ R:

lim n→∞ f (t + s n ) = g(t) and lim n→∞ g(t -s n ) = f (t). ( 3 
)
Such a function f is called S-almost automorphic and if the above limits are uniform, it is called S-almost periodic.

The set of all S-almost automorphic (resp. almost periodic) functions will be denoted by SAA(R, X) (resp. SAP (R, X)). Clearly SAA(R, X) is a subspace of the Banach space SC b (R, X); we have the following:

Theorem 2.2. The space SAA(R, X) is a Banach space.

Proof. We have just to show that SAA(R, X) is a closed set in the Banach space SC b (R, X). For this purpose we use a diagonal process. Let (f p ) denote a sequence in SAA(R, X) which converges to a function f in SC b (R, X) and let s be any sequence of elements of S. It follows from Definition 2.3 that there exist a subsequence s 1 of s and a function g 1 such that (3) holds when we replace s ang g by s 1 and g 1 respectively.

Then, by induction we can build a sequence (s k ) extracted from s k-1 , where s k-1 is a subsequence of s , and a sequence of functions g k such that lim

n→∞ f k (t + s k n ) = g k (t) and lim n→∞ g k (t -s k n ) = f k (t). Let t ∈ R
and take ε > 0. For p, q, k, n ∈ N * , we have:

g p (t) -g q (t) ≤ g p (t) -f p (t + s k n ) + f p (t + s k n ) -f q (t + s k n ) + f q (t + s k n ) -g q (t) . Since (f k ) converges to f in SC b (R, X), there is q 0 ∈ N * such that f p (u) -f q (u) ≤ ε 3 , ∀p, q ≥ q 0 , ∀u ∈ R.
Therefore, if p, q ≥ q 0 , k = p + q and n ∈ N * , it follows that:

g p (t) -g q (t) ≤ g p (t) -f p (t + s k n ) + f q (t + s k n ) -g q (t) + ε 3 .
The condition k = p + q implies that k ≥ max(p, q); then s k is a subsequence of both s p and s q . Then, (f p (t + s k n )) and (f q (t + s k n )) converge to g p (t) and g q (t) respectively as n → +∞. Consequently there exists n 0 ∈ N * depending on p and q such that max g p (t) -

f p (t + s k n ) , f q (t + s k n ) -g q (t) ≤ ε 3 if n ≥ n 0 .
Thus, given t ∈ R and ε > 0, we have found q 0 ∈ N * such that g p (t) -g q (t) ≤ ε if max(p, q) ≥ q 0 . This means that (g k (t)) is a Cauchy sequence of real numbers. Thus (g k ) converges to a bounded measurable function g. On the other hand, if n ∈ N * and t ∈ R, we can write:

f (t + s n n ) -g(t) ≤ f (t + s n n ) -f n (t + s n n ) + g n (t) -g(t) + f n (t + s n n ) -g n (t) . For each k ∈ N * , f k (t + s k n ) -g k (t) converges to 0 as n → +∞, it follows that the diagonal sequence f n (t + s n n ) -g n (t) also converges to 0. Since the sequence (f k ) converges uniformly to f and g k (t) converges to g(t), it follows that lim n→0 f (t + s n n ) = g(t). It remains to show that (g(t -s n n )) converges to f (t).
It is sufficient to prove that the sequence (g k ) converges uniformly since we can deal as before where we proved that lim n→+∞ f (t + s n n ) = g(t). To do that, we keep the above notation with p, q ∈ N and k = p + q. Then, from (3) we have

lim n→∞ [g p (t -s k n ) -g q (t -s k n )] = f p (t) -f q (t).
Let ε > 0. Using the uniform convergence of the sequence (f k ), we get q 0 ∈ N such that f p (t) -f q (t) ≤ ε 2 for min(p, q) ≥ q 0 and all t ∈ R. From the definition of the limit, there is n 0 ∈ N depending on p and q such that:

g p (t -s k n ) -g q (t -s k n ) ≤ f p (t) -f q (t) + ε 2 , n ≥ n 0 .
It follows that

g p (t -s k n ) -g q (t -s k n ) ≤ ε, ∀n ≥ n 0 , ∀t ∈ R. (4) 
Now replacing t by t+s k n in (4) yields g p (t)-g q (t) ≤ ε for min(p, q) ≥ q 0 and all t ∈ R. The uniform convergence of (g k ) is thus established. Then f belongs to SAA(R, X) proving the theorem Proposition 2.3. Let S be r-stable and ϕ r ∈ SC(R, X).

If f ∈ AA(R, X) (resp. AP (R, X)), then f •ϕ r ∈ SAA(R, X) (resp. SAP (R, X)). If f ∈ SAA(R, X) (resp. SAP (R, X)) and S ∩ ϕ r (R \ S) = ∅, the same conclusion holds.
Proof. We keep the notation of Definition 2.3. For the given sequence s we consider the sequence rs . Then we get an associate subsequence rs together with a function g. It follows from (3) and the properties of the function

ϕ r that f •ϕ r (t+s n ) = f (ϕ r (t)+rs n ) converges to g •ϕ r (t) and g • ϕ r (t -s n ) = g(ϕ r (t) -rs n ) converges to f • ϕ r (t)
. These convergences are uniform if it is the case in (3). This proves the first part of the Proposition; the second part can be deduced straightforwardly.

Corollary 2.4. Let S = αZ for some real α. There exist an infinity of S-almost automorphic functions which are not almost automorphic.

Proof. Let f ∈ AA(R, X)/AP (R, X) and Θ c (t) = [ t α ]α + c. Consider the function l c (t) = f (Θ c (t))
. Since l c is not continuous then l c is not almost automorphic. According to Proposition 2.3, we deduce that for all c ∈ R, the function l c is S-almost automorphic.

We associate to the subset S the following property:

(P1) There is a bounded set K 0 in R such that all real t can be written as t = α + ξ where α ∈ K 0 and ξ ∈ S.

Then we have the following:

Proposition 2.5. Let S satisfy (P1) and let f be an S-almost automorphic (resp. S-almost periodic) function. If f is uniformly continuous, then f is almost automorphic (resp. almost periodic).

Proof. As above we use the notation of Definition 2.3. Since K 0 is a compact set we may assume that s n = α n + ξ n for each n ∈ N * with α n ∈ K 0 , ξ n ∈ S and lim n→∞ α n = α. Then we have

f (t + s n ) -g(t + α) ≤ f (t + α n + ξ n ) -f (t + α + ξ n ) + f (t + α + ξ n ) -g(t + α) .
The uniform continuity of f shows that the first term on the right side tends to zero. Since f is S-almost automorphic, it follows that the second term also converges to zero. On the other hand, f being uniformly continuous, the same holds for g. Then writing:

g(t+α-s n )-f (t) ≤ g(t-ξ n +(α-α n ))-g(t-ξ n ) + g(t-ξ n )-f (t)
shows that (g(t+α-s n )) converges to f (t) which proves that f is almost automorphic. The almost periodic case follows straightforwardly.

Remark 2.1. We note that S = Z satisfies the condition (P1): it suffices to take K 0 = [0, 1[, since for every real number x, x-[x] ∈ [0, 1[. Definition 2.4. A continuous function f : R × X → X is said to be almost automorphic in t ∈ R for each x ∈ X, if for every sequence of real numbers (s n ), there exists a subsequence (s n ) such that for each t ∈ R and x ∈ X,

lim n→∞ f (t + s n , x) = g(t, x) and lim n→∞ g(t -s n , x) = f (t, x).
Then we have the following result.

Theorem 2.6. [13, Theorem 2.2.5] If f is almost automorphic in t ∈ R for each x ∈ X and if f is Lipschitzian in x uniformly in t, then g satisfies the same Lipschitz condition in x uniformly in t.

Using the above theorem we obtain:

Theorem 2.7. Let f : R × X → X be almost automorphic in t ∈ R for each x ∈ X. Assume that f satisfies a Lipschitz condition in x uniformly in t ∈ R. Let also φ : R → X be almost automorphic. Then the function F : R → X defined by F (t) = f (t, φ(ϕ r (t)) is S-almost automorphic.

Proof. Let (s n ) be a sequence of S. Using Proposition 2.3, we can extract a subsequence s n such that i) lim n→∞ f (t + s n , x) = g(t, x) for each t ∈ R and x ∈ X,

ii) lim n→∞ g(t -s n , x) = f (t, x) for each t ∈ R and x ∈ X, iii) lim n→∞ φ(t + s n ) = Φ(t) for each t ∈ R, iv) lim n→∞ Φ(t -s n ) = φ(t) for each t ∈ R, v) lim n→∞ φ(ϕ r (t + s n )) = Φ(ϕ r (t)) for each t ∈ R, vi) lim n→∞ Φ(ϕ r (t -s n )) = φ(ϕ r (t)) for each t ∈ R.
Consider the function G : R → X defined by G(t) = g(t, Φ(ϕ r (t))).

From the Lipchitz condition on f , there exists a constant L > 0 such that

F (t + s n ) -G(t) = f (t + s n , φ(ϕ r (t + s n ))) -g(t, Φ(ϕ r (t))) ≤ f (t + s n , φ(ϕ r (t + s n ))) -f (t + s n , Φ(ϕ r (t))) + f (t + s n , Φ(ϕ r (t))) -g(t, Φ(ϕ r (t))) ≤ L φ(ϕ r (t + s n )) -Φ(ϕ r (t)) + f (t + s n , Φ(ϕ r (t))) -g(t, Φ(ϕ r (t))) .
We deduce from i) and v) that

lim n→∞ F (t + s n ) = G(t).
Similarly, we have

G(t -s n ) -F (t) = g(t -s n , φ(ϕ r (t -s n )) -f (t, Φ(ϕ r (t))) ≤ g(t -s n , φ(ϕ r (t -s n )) -g(t -s n , Φ(ϕ r (t))) + g(t -s n , Φ(ϕ r (t))) -f (t, Φ(ϕ r (t))) ≤ L φ(ϕ r (t -s n )) -Φ(ϕ r (t)) + g(t -s n , Φ(ϕ r (t))) -f (t, Φ(ϕ r (t))) .
Then we deduce from ii) and vi) that

lim n→∞ G(t -s n ) = F (t).
Now, we show that the function

F (t) = f (t, φ(ϕ r (t))) is bounded. Since f is almost automorphic in t, then f (•, 0) ∞ = sup t∈R f (t, 0) < +∞.
Then we have

f (t, φ(ϕ r (t))) = f (t, φ(ϕ r (t))) -f (t, 0) ≤ L φ(ϕ r (t)) + f (t, 0) .
We deduce that for every t ∈ R

f (t, φ(ϕ r (t))) ≤ L φ ∞ + f (•, 0) ∞ .
Remark 2.2. Let f : R × X → X satisfy the conditions of the previous theorem. We have that the function G : R → X defined by G(t) = g(t, φ(ϕ r (t))) is bounded.

A differential equation with a general piecewise constant argument

We consider the differential equation ( 1) where ϕ is a step function, A : R → R q×q is continuous in R \ S and f : R × R q → R q is continuous. Thus, in the sequel X = R q . Moreover, in addition to (P1), we consider the two following conditions:

(P2) ∀(t, s) ∈ R × S, ϕ(t + s) = ϕ(t) + s and ϕ(t) ≤ t.

(P3) f : R × X → X is almost automorphic in t ∈ R for each x ∈ X and f satisfies a Lipschitz condition in x uniformly in t ∈ R.

We give a consequence of (P1) that will be useful for the sequel.

Proposition 3.1. Assume that (P1) is satisfied, then there exists a bounded set

K 1 in R such that: ∀t ∈ R, t -ϕ(t) ∈ K 1 .
Proof. Assume that (P1) is satisfied. For each t ∈ R there exists (α, s) ∈ K 0 × S, such that t = α + s. Hence, we have ϕ(t) = ϕ(α + s) = ϕ(α) + s and then:

t -ϕ(t) = α -ϕ(α).
Since ϕ is a step function, it is bounded on each bounded subset of R. Therefore

K 1 = {α -ϕ(α) : α ∈ K 0 } is a bounded set such that t -ϕ(t) ∈ K 1 for all t ∈ R.
The proposition is thus proved Definition 3.1. A solution of ( 1) is a function x(t) defined on R for which the following conditions hold:

(1) x(t) is continuous on R.

(2) The derivative x (t) exists at each point t ∈ R, with possible exception at the points t i , i ∈ Z, where one-sided derivatives exist.

(3) The equation (1) is satisfied on each interval [t i , t i+1 [, i ∈ Z.
Theorem 3.2. Let f satisfy (P2) and (P3). Then the solution of (1) satisfies

x(t) = x(ϕ(t)) + t ϕ(t) A(s)x(ϕ(s))ds + t ϕ(t) f (s, x(ϕ(s))ds. Proof. Considering the integral of            x 1 (t) = a 11 (t)x 1 (ϕ(t))) + ... + a 1p (t)x p (ϕ(t))) + f 1 (t, x(ϕ(t))) . . . x p (t) = a p1 (t)x 1 (ϕ(t))) + ... + a pp (t)x p (ϕ(t))) + f p (t, x(ϕ(t))) on [ϕ(t), t[, we obtain                      x 1 (t) = x 1 (ϕ(t))) + t ϕ(t) a 11 (s)x 1 (ϕ(s)))ds + ... + t ϕ(t) a 1p (t)x p (ϕ(s)))ds + t ϕ(t) f 1 (s, x(ϕ(s)))ds . . . x p (t) = x 1 (ϕ(t))) + t ϕ(t) a p1 (s)x 1 (ϕ(s)))ds + ... + t ϕ(t) a pp (t)x p (ϕ(s)))ds + t ϕ(t) f p (s, x(ϕ(s)))ds
Lemma 3.3. Assume that (P2) and (P3) are satisfied and that A(t) is an S-almost automorphic operator. Then

(∧φ)(t) = φ(ϕ(t)) + t ϕ(t) A(s)φ(ϕ(s))ds + t ϕ(t) f (s, φ(ϕ(s)))ds maps SAA(X) into itself.
Proof. Let (s n ) be a sequence of elements of S. We have from (P2)

that ϕ(t + s) = ϕ(t) + s and ϕ(t -s) = ϕ(t) -s for (t, s) ∈ R × S.
Then, there exists a subsequence (s n ) of (s n ) such that: i) lim n→∞ φ(t

+ s n ) = Φ(t) for each t ∈ R, ii) lim n→∞ Φ(t -s n ) = Φ(t) for each t ∈ R, iii) lim n→∞ φ(ϕ(t + s n )) = Φ(ϕ(t)) for each t ∈ R, iv) lim n→∞ Φ(ϕ(t -s n )) = φ(ϕ(t)) for each t ∈ R, v) lim n→∞ A(t + s n ) = B(t) for each t ∈ R, vi) lim n→∞ B(t -s n ) = A(t) for each t ∈ R, vii) lim n→∞ f (t + s n , φ(ϕ(t + s n ))) = g(t, Φ(ϕ(t))) for each t ∈ R, viii) lim n→∞ g(t -s n , Φ(ϕ(t -s n ))) = f (t, φ(ϕ(t))) for each t ∈ R.
We put

F (t) = φ(ϕ(t)) + t ϕ(t) A(s)φ(ϕ(s))ds + t ϕ(t) f (s, φ(ϕ(s)))ds, and 
V (t) = Φ(ϕ(t)) + t ϕ(t) B(s)Φ(ϕ(s))ds + t ϕ(t)
g(s, Φ(ϕ(s)))ds.

Then, we have

F (t + s n ) -V (t) ≤ φ(ϕ(t + s n )) -Φ(ϕ(t)) + t+sn ϕ(t+sn) A(σ)φ(ϕ(σ))dσ - t ϕ(t) B(σ)Φ(ϕ(σ))dσ + t+sn ϕ(t+sn) f (σ, φ(ϕ(σ)))dσ - t ϕ(t) g(σ, φ(ϕ(σ)))dσ
Using a change of variable and (P2), we find

F (t + s n ) -V (t) ≤ φ(ϕ(t) + s n ) -Φ(ϕ(t)) + t ϕ(t) A(σ + s n )φ(ϕ(σ + s n ))dσ - t ϕ(t) B(σ)Φ(ϕ(σ))dσ + t ϕ(t) f (σ + s n , φ(ϕ(σ + s n ))) -g(σ, φ(ϕ(σ))
) dσ which can be written as

F (t + s n ) -V (t) ≤ φ(ϕ(t) + s n ) -Φ(ϕ(t)) + t ϕ(t) A(σ + s n ) -B(σ) φ(ϕ(σ + s n )) +B(σ) φ(ϕ(σ + s n )) -Φ(ϕ(σ)) dσ + t ϕ(t) f (σ + s n , φ(ϕ(σ + s n ))) -g(σ, φ(ϕ(σ)
)) dσ . Now, using ϕ(t) ≤ t, we can write

F (t + s n ) -V (t) ≤ φ(ϕ(t) + s n ) -Φ(ϕ(t)) + t ϕ(t) A(σ + s n ) -B(σ) φ ∞ dσ + t ϕ(t) φ(σ + s n ) -Φ(σ) B ∞ dσ + t ϕ(t) f (σ + s n , φ(ϕ(σ + s n ))) -g(σ, φ(ϕ(σ))) dσ.
Hence, using the Lebesgue Dominated convergence theorem, we deduce that lim n→∞

F (t + s n ) -V (t) = 0.
Similarly, taking into account (P2), we get

V (t -s n ) -F (t) ≤ Φ(ϕ(t -s n )) -φ(ϕ(t)) + t-sn ϕ 1 (t-sn) B(σ)φ(ϕ(σ))dσ - t ϕ(t) A(σ)Φ(ϕ(σ))dσ + t-sn ϕ 1 (t-sn) g(σ, φ(ϕ(σ)))dσ - t ϕ 1 (t) f (σ, φ(ϕ(σ)))dσ V (t -s n ) -F (t) ≤ Φ(ϕ(t) -s n ) -φ(ϕ(t)) + t ϕ(t) B(σ -s n )Φ(ϕ(σ -s n ))dσ - t ϕ(t) A(σ)φ(ϕ(σ))dσ + t ϕ(t) g(σ -s n , φ(ϕ(σ -s n ))) -f (σ, φ(ϕ(σ))) dσ V (t -s n ) -F (t) ≤ Φ(ϕ(t) -s n ) -φ(ϕ(t)) + t ϕ(t) B(σ -s n ) -A(σ) Φ(ϕ(σ -s n )) +A(σ) Φ(ϕ(σ -s n )) -φ(ϕ(σ)) dσ + t ϕ(t) g(σ -s n , φ(ϕ(σ -s n ))) -f (σ, φ(ϕ(σ))) dσ .
Since ϕ(t) ≤ t, it follows that

V (t -s n ) -F (t) ≤ Φ(ϕ(t) -s n ) -φ(ϕ(t)) + t ϕ(t) B(σ -s n ) -A(σ) Φ ∞ dσ + t ϕ(t) Φ(σ -s n ) -φ(σ) A ∞ dσ + t ϕ(t) g(σ -s n , Φ(ϕ(σ -s n ))) -f (σ, φ(ϕ(σ))) dσ.
Hence, using the Lebesgue Dominated convergence theorem, we deduce that

lim n→∞ V (t -s n ) -F (t) = 0.
We set M 1 = sup(K 1 ), where K 1 is the bounded subset of R introduced in Proposition 3.1. Note that, if ϕ(t) ≤ t, then M 1 ≥ 0. 

+ t ϕ(t) A(s)ds + M 1 L < 1, then (1 
) has a unique S-almost automorphic solution which is also the unique almost automorphic solution of (1).

Proof. First Step

We define the nonlinear operator Γ by the expression

(Γφ)(t) = φ(ϕ(t)) + t ϕ(t) A(s)φ(ϕ(s))ds + t ϕ(t) f (s, φ(ϕ(s)))ds.
According to Theorem 2.7, the function t → f (t, φ(ϕ(t))) belongs to SAA(R, X). According to Lemma 3.3 the operator Γ maps SAA(R, X) into itself. Since t -ϕ(t) ≤ M 1 for all t ∈ R, we have:

(Γφ)(t) -(Γψ)(t) = I + t ϕ(t) A(s)ds φ(ϕ(t)) -ψ(ϕ(t)) + t ϕ(t) f (s, φ(ϕ(s))) -f (s, ψ(ϕ(s)))ds ≤ I + t ϕ(t) A(s)ds φ(ϕ(t)) -ψ(ϕ(t)) + t ϕ(t) f (s, φ(ϕ(s))) -f (s, ψ(ϕ(s)))ds ≤ I + t ϕ(t) A(s)ds φ -ψ ∞ + t ϕ(t) L φ(ϕ(s))) -ψ(ϕ(s)) ds (Γφ)(t) -(Γψ)(t) ≤ I + t ϕ(t) A(s)ds + M 1 L φ -ψ ∞ .
This proves that Γ is a contraction. We conclude that Γ has a unique fixed point in SAA(R, X). We denote by z the unique S-almost automorphic solution of (1).

Second Step

We show that z is an almost automorphic solution of (1). Since z is S-almost automorphic, using Proposition 2.3, it suffices to prove that z is uniformly continuous. Consider the set D := {t i : i ∈ Z} of possible points of discontinuity of z . We have z (t) = A(t)z(ϕ(t)) + f (t, z(ϕ(t)), and then z (t) ≤ A(t) z(ϕ(t)) + f (t, z(ϕ(t))) -f (t, 0) + f (t, 0) for all t ∈ R \ D. If we set

M = A ∞ z ∞ + L z ∞ + f (•, 0) ∞ ,
it follows that z (t) ≤ M for all t ∈ R \ D. Therefore, since z is continuous and D is countable, the mean value Theorem (see [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF]Theorem 8.5.2.]) asserts that z(t 2 ) -z(t 1 ) ≤ M (t 2 -t 1 ) for all t 1 , t 2 ∈ R with t 1 < t 2 . This means that z is lipschitzian and then uniformly continuous. Thus, z is an almost automorphic function. The function z is necessarily the unique almost automorphic solution of (1). In fact, an almost automorphic function is also S-almost automorphic and (1) has a unique such solution. The theorem is thus proved. 

Theorem 3 . 4 .

 34 Assume that (P1), (P2) and (P3) are satisfied and that y → ϕ(y) is constant on the interval [ϕ(t), t]. If

I

  

Corollary 3 . 5 .

 35 Let A(t) be a Z-almost automorphic operator and assume that (P3) is satisfied. IfI + t [t]A(s)ds + L < 1, then the following equationx (t) = A(t)x([t]) + f (t, x([t]))dt, t ∈ Rhas a unique Z-almost automorphic solution which is also his unique almost automorphic solution.Proof. We have ϕ(t) = [t] ≤ t, K 0 = K 1 = [0, 1[ and M 1 = 1

  Corollary 3.6. Suppose that A(t) is a αhZ-almost automorphic operator and that (P3) is satisfied. If has a unique αhZ-almost automorphic solution which is also its unique almost automorphic solution.Proof. We have that ϕ(t) = [ t αh ]αh. Then ϕ is constant on each interval [nαh, (n + 1)αh[ where n ∈ Z. We observe also that

		t			
	I +		A(s)ds + αhL < 1,
		[ t αh ]αh		
	then the following equation			
	x (t) = A(t)x(	t αh	αh) + f (t, x(	t αh	αh))dt, t ∈ R,
	ϕ(t + αhn) =	t + αhn αh	αh =	t αh	+ n αh
		=	t αh	αh + αhn = ϕ(t) + αhn.

If t ∈ [nαh, (n + 1)αh[ where n ∈ Z, then ϕ(t) = αhn, ϕ(t) ≤ t t -ϕ(t) ∈ [0, αh] and M 0 = αh. All real t can be written as t = β + ζ where β ∈ [0, αh] and ζ ∈ αhZ.
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