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In many natural granular systems, the interstitial pores are filled with a fluid. Deforma-
tion of this two-phase system is complex, is highly coupled, and depends on the initial
and boundary conditions. Here we study granular compaction and fluid flow in a saturated,
horizontally shaken, unconfined granular layer, where the fluid is free to flow in and out of
the layer through the free upper surface during shaking (i.e., drained boundary condition).
The geometry, boundary conditions, and parameters are chosen to resemble a shallow soil
layer, subjected to horizontal cyclic acceleration simulating that of an earthquake. We
develop a theory and conduct coupled discrete element and fluid numerical simulations.
Theoretical and simulation results show that under drained conditions and above a critical
acceleration, the grain layer compacts at a rate governed by the fluid flow parameters of
permeability and viscosity and is independent of the shaking parameters of frequency and
acceleration. A compaction front develops, swiping upward through the system. Above
the front, compaction occurs and the fluid becomes pressurized. Pressure gradients drive
fluid seepage upward and out of the compacting layer while supporting the granular
skeleton. The rate of compaction and the interstitial fluid pressure gradient coevolve until
fluid seepage forces balance solid contact forces and grain contacts disappear. As an
outcome, the imposed shear waves are not transmitted and the region is liquefied. Below
the compaction front (i.e., after its passage), the grains are well compacted, and shaking is
transmitted upward. We conclude that the drained condition for the interstitial pore fluid
is a critical ingredient for the formation of an upward-moving compaction front, which
separates a granular region that exhibits a liquidlike rheology from a solidlike region.

DOI: 10.1103/PhysRevFluids.5.054301

I. INTRODUCTION

Deformation of densely packed granular media is a subject of great complexity, with applications
ranging from industry to natural hazards. In particular, the mechanics of shearing granular media
has been shown to control earthquakes (e.g., [1–5]), lead to soil liquefaction (e.g., [6–8]), and
control the initiation and movement of landslides (e.g., [9–14]). Granular shear exhibits rich and
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not-well-understood behavior even when the grain layers are dry [15–22]. The deformation becomes
more complicated when a viscous fluid is present in the pore space between grains, as occurs in most
geological systems (e.g., [7,23,24]). Interstitial pore fluid may greatly affect granular deformation
because shear deforms the granular skeleton, causing pore-space compaction and dilation [25–27].
These porosity variations lead to pore pressure changes [28], which drive fluid flow [24] and feed
back into the granular deformation by imposing forces on grains [29]. These coupled interactions
have been studied in various geometrical settings, including continuous horizontal shear under
imposed normal stresses [25,30–33], compaction and decompaction due to fluid flow [34,35],
vertical discrete tapping [36], impacting intruders [37], vertical continuous shaking [38], and cyclic
horizontal shear [8,39] of a horizontally confined layer.

Here, we aim to study the coupled interactions between grains and interstitial pore fluid in a
setting that corresponds to saturated soils undergoing earthquake shaking. The soil is represented
as a horizontally unconfined layer, with a finite thickness and a free surface at the top. The fluid
fully occupies the pore space in the layer. The earthquake shaking is represented as horizontal
cyclic shear at accelerations that are well below the gravitational acceleration. In this paper, we
use the terms “cyclic shear” and “horizontal shaking” interchangeably to describe this boundary
condition.

Natural soils under low overburden stresses, as exist at the shallow subsurface, tend to compact
during cyclic shear [40]. We expect that when a viscous interstitial fluid is present, compaction will
be accompanied by fluid outflow and pressurization [38]. Here, the fluid drainage conditions (i.e.,
its ability to flow in and out of the layer) play a key role in controlling both the grain layer dynamics
and the fluid pressure and flow. It is usually believed that during the rapid shaking that characterizes
earthquakes, fluid cannot drain out of the layer and hence fluid flow does not play an important
role in the development of pore pressure or in the compaction process [7]. However, recently it has
been suggested [24,33,39,41,42] that even during rapid cyclic shearing, upward fluid flow may be
crucial for the coupled deformation, motivating a reevaluation of the effect of fluid flow on pressure
changes and compaction during horizontal cyclic shear.

A critical application of the geometry and dynamics that we study here is the hazardous natural
phenomenon called “soil liquefaction,” which is often triggered by earthquakes. During liquefaction,
soils exhibit an abrupt rheological change where they transition from elastoplastic stress-supporting
solid layers to a liquidlike granular phase that flows easily under small applied shear stresses [43,44].
Observations indicate that liquefaction is associated with soil compaction and settlement [45], and
pore fluid pressurization is considered as a major driving mechanism for this rheological change
[40]. The coupled dynamics that emerge from our idealized shaken saturated grain layer is thus
highly relevant to the process of liquefaction.

In the following, we develop a theory for such systems, i.e., unconfined saturated grain layers
subjected to horizontal cyclic shear. We establish the conditions under which the proximity to
the surface allows fluid to flow in and out of the layer during the imposed deformation, namely,
when the grain layer is effectively well drained. These drainage conditions impose a particular
form of fluid-grain coupling. We then present a numerical discrete element method (DEM) and
computational fluid dynamics framework to study the coupling between compacting grains and
fluid flow and pressurization. The agreement between simulation results and theory allows us to
present a fully consistent framework of drained granular dynamics in response to cyclic horizontal
shaking.

II. GRAIN-FLUID COUPLING UNDER DRAINED CONDITIONS

To identify the dominant interactions between a compacting grain layer and the interstitial fluid
flow and pressurization, we develop a theory for the pore fluid response to a general deformation
of the grain skeleton. Previous general formulations [24,33] are adopted to the setting of a shallow
saturated soil column: The nondimensional analysis is tailored for low stresses with respect to the
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fluid bulk modulus. Based on this analysis, the dominant interactions under well-drained conditions
are identified.

We start with mass conservation equations over a representative elementary volume for the solid
[Eq. (1)] and the fluid [Eq. (2)] phases:

∂[(1 − φ)ρs]

∂t
+ ∇ · [(1 − φ)ρsus] = 0, (1)

∂[φρ f ]

∂t
+ ∇ · [φρ f u f ] = 0, (2)

where ρs and ρ f are the solid and fluid material densities, respectively, φ is the porosity, us and u f

are the solid grain and fluid velocities, respectively, and t stands for time (vectors are represented in
boldface). Grains are assumed to be incompressible with respect to the pore fluid. This assumption
is valid, for example, for quartz grains and interstitial water with compressibilities of 2.7 × 10−11

and 4.5 × 10−10 Pa−1, respectively. With this assumption, Eq. (1) is rewritten as

∂φ

∂t
= ∇ · [(1 − φ)us]. (3)

Further assuming that fluid inertia is negligible compared to the viscous forces, the fluid momentum
equation reduces to the Darcy flux law [46]. When the solid grain skeleton is deformable, this law
is expressed as

φ(u f − us) = −κ

η
∇P′, (4)

where κ is the permeability, η the fluid dynamic viscosity, and P′ the fluid pressure deviation from
hydrostatic values such that ∇P′ = ∇P − ρ f g. The right-hand side of Eq. (4) is commonly referred
to as the “Darcy flux.” The fluid density is described by a state equation of the form

ρ f = ρ f ,0(1 + βP′), (5)

where ρ f ,0 is the fluid density under hydrostatic conditions, with atmospheric pressure on top, and
β = (1/ρ f )(∂ρ f /∂P) is the adiabatic fluid compressibility. Next we assess the magnitude of βP′
in Eq. (5) for the shallow, saturated, and cohesionless soil layer considered here. The pore water
compressibility is O(10−10) Pa−1, and P′ cannot significantly exceed the value of the effective static
normal stress. To evaluate its value we assume that the top of the water column is exactly at the
surface and consider a reference case without dynamic pressure,

σ0 = ρeffgy − ρ f gy

= [(1 − φ)ρs + φρ f − ρ f ]gy

= (1 − φ)(ρs − ρ f )gy, (6)

where ρeff is the effective density of a saturated porous layer and y is the downward vertical
coordinate, zeroed at the surface. In Eq. (6), σ0 increases with the depth and its maximal value
within a vertically finite domain occurs at depth h, the base of the domain, σ h

0 = σ0(y = h). For
a layer with quartz grains (ρs = 2640 kg m−3) that extends down to 1 km (much deeper than the
systems we consider here), σ h

0 � O(107) Pa, and therefore βP′ � 1 and

(1 + βP′) ≈ 1. (7)

Multiplying Eq. (3) by ρ f , subtracting it from Eq. (2), and combining it with Eqs. (4), (5), and (7)
leads to

φβ
∂P′

∂t
+ φβus · ∇P′ − ∇ ·

[
κ

η
∇P′

]
+ ∇ · us = 0. (8)
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In Eq. (8), the first term describes the temporal derivative of the dynamic pore fluid pressure, the
second term describes the dynamic pore pressure advection, the third term is the dynamic pore
pressure Laplacian, corresponding to the divergence of the Darcy flux, and the last term describes
the effect of the granular skeleton deformation on the fluid pressure via compaction and dilation.

The relative importance of the different terms in Eq. (8) is evaluated using a nondimensional
analysis. We choose the system height, h, as the length scale such that ∇ = ∇̂/h, where a caret
denotes nondimensional operators and variables. The time and permeability scale factors are t0 and
κ0, respectively, such that t = t̂ t0 and κ = κ̂κ0. The pore pressure is scaled with the maximum
effective static normal stress as P′ = P̂′σ h

0 . The velocity scale factor, u0 = (κ0σ
h
0 )/(φηh), is chosen

based on Darcy’s flux [Eq. (4)] when ∇P′ = ∇σ0 = σ h
0 /h, such that us = ûsu0. This choice reflects

our expectations for the importance of fluid flow in our system. In other settings, where fluid flow
is vanishingly small with respect to the rate of deformation, a different velocity scale factor should
be used [24,33]. Following these definitions, Eq. (8) becomes

∂P̂′

∂ t̂
+ κ0t0σ h

0

φηh2
ûs · ∇̂P̂′ − κ0t0

φβηh2
∇̂ · [κ̂∇̂P̂′] + κ0t0

φ2βηh2
∇̂ · ûs = 0. (9)

The parametric group td = (h2βηφ)/(κ0) = h2D−1 has the meaning of a diffusion time scale
over the layer depth, where D = (κ0)/(βηφ) is the pore pressure diffusion coefficient. With this
definition, Eq. (9) is written as

∂P̂′

∂ t̂
+ t0

td
βσ h

0 ûs · ∇̂P̂′ − t0
td

∇̂ · [κ̂∇̂P̂′] + t0
td

1

φ
∇̂ · ûs = 0. (10)

Since we focus on a setting where βσ h
0 � 1, the second term in Eq. (10) becomes negligible relative

to the third and fourth terms, and Eq. (10) is approximated as

td
t0

∂P̂′

∂ t̂
− ∇̂ · [κ̂∇̂P̂′] + 1

φ
∇̂ · ûs = 0. (11)

We choose t0 to represent the process time scale, which in the current system relates to the
deformation of the grain skeleton [the third term in Eq. (11)]. A natural choice is the periodicity of
the imposed cyclic shear, t0 = T . The coefficient in front of the first term of Eq. (11) then becomes
the Deborah number (De) [47], which is the ratio between the relaxation time scale of a system and
the process time scale:

De = td
t0

= h2βηφ

t0κ0
. (12)

Hence, Eq. (11) is written as

De
∂P̂′

∂ t̂
− ∇̂ · [κ̂∇̂P̂′] + 1

φ
∇̂ · ûs = 0. (13)

When De � 1 the diffusion time scale is significantly larger than the process time scale, and the
pore pressure will not relax significantly during a single shaking period, leading to “undrained”
conditions. When De � 1 the diffusion time scale is significantly smaller than the periodicity,
leading to “drained” conditions. The De number dictates the relative importance of the terms
in Eq. (13). Leaving the third term aside as the source for any dynamics that originates from
deformation of the grain skeleton, we note that when De � 1 (undrained), the second term in
Eq. (13) can be neglected and the temporal evolution of the pore pressure directly correlates with
the overall compaction and dilation of the grains skeleton. When De � 1 (drained), the first term in
Eq. (13) becomes negligible, and Eq. (13) reduces to a Poisson-type equation of the form

∇̂ · [κ̂∇̂P̂′] = 1

φ
∇̂ · ûs, (14)
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and in a dimensional form,

∇ ·
[
κ

η
∇P′

]
= ∇ · us. (15)

Integrating Eq. (15) while assuming that κ ≈ κ0 leads to

κ0

η
∇P′ = us + C(t ). (16)

Equation (16) reveals the dominant solid-fluid coupling in the drained setting studied here. The
equation predicts that the solid velocity depends linearly on the dynamic fluid pressure gradient.
When combined with Eq. (4) it becomes a statement of mass conservation, where any solid flux must
be compensated by an equal and opposite fluid flux. The details of this dependency in a horizontally
shaken layer is the focus of the current work.

III. A COUPLED GRAIN-FLUID MODEL

A. The model

We implement a numerical model that fully couples two phases: a solid phase, which is modeled
using the discrete element method [48], and a fluid phase, which is modeled as a continuum on a
superimposed Eulerian grid [24,33,49–63]. The core functionality of the code has been verified and
used in previous studies. The granular dynamics module was used in [13,14,16–18,64] and coupling
with the continuum module was used in [33,59,60,65].

The grains are simulated as interacting spheres using a linear elastic frictional contact model. A
velocity-dependent damping is added to the normal contact force, and a threshold friction law based
on the ratio of tangential and normal forces between grains is considered, allowing sliding when the
shear force surpasses a frictional criterion [16–18]. Grain motion is determined by time integration
of the linear [Eq. (17)] and rotational [Eq. (18)] momentum conservation equations,

miu̇s,i = mig − Vimm,iρ f g + 	 jFi j − ∇P′ · Vi

1 − φ
, (17)

Iiω̇s,i = 	 jRin̂i j × Fi j, (18)

where u̇s,i and ω̇s,i are the translational and rotational accelerations of grain i (an overdot indicates a
time derivative) and mi and Ii are the mass and moment of inertia of grain i. In Eq. (17), the first term
on the right-hand side is the gravitational force, and g is the gravitational acceleration. The second
term is the buoyancy force, induced by the hydrostatic fluid pressure gradient, whose magnitude
depends on the immersed volume of the grain Vimm,i and the fluid density ρ f [66]. The third term
is the sum of contact forces (Fi j) of all grains j that are in contact with grain i. The fourth term is
the drag force exerted by the fluid dynamic pressure gradient (∇P′), where Vi is the volume of grain
i. In Eq. (18), Ri is the radius of grain i and n̂i j is a unit vector along the direction connecting the
centers of grains i and j.

The evolution of the dynamic pore fluid pressure is found by an implicit numerical solver of
Eq. (13) over a square grid, with a grid spacing of two average grain diameters [24,33,54,55].
Importantly, we do not a priori assume the state of drainage, and the full three-term equation is
solved.

In order to achieve a two-way coupling between the solid and the fluid phases, the grain volumes
and velocities are interpolated via a bilinear interpolation scheme into smooth velocity (us) and
porosity (φ) fields on the grid. Those quantities are used for solving the fluid equation [Eq. (13)].
To solve the solid grain linear momentum equation [Eq. (17)], the dynamic pore pressure gradient
(∇P′) along with the local average porosity (φ) is interpolated using an inverse scheme, from the
grid to each grain (Fig. 1). In the model, the permeability and the porosity are related by the three-
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FIG. 1. Schematic of the forces in the model. Dynamic pore pressure gradients exert forces on each grain
[−(∇P′Vi )/(1 − φ)]. These forces are inferred based on an interpolation scheme that interpolates the pressure
gradients from grid nodes to the individual grains. As stated in Eq. (17), this force is added to the gravity (mig),
the buoyancy (−Vimm,iρ f g), and the sum of contact forces (	 jFi j).

dimensional (3D) Kozeny-Carman relationship [67],

κ = κ1κ
′(x, y, t ) = αr̄2

φ3

(1 − φ)2
, (19)

where r̄2 is the spatial average of the squared grain radii in the surroundings. κ1 = α〈r〉2 is a
constant prefactor, while κ ′ = r′2 f (φ) captures permeability variations in space and time (〈r〉 is
the mean grain radius in the system and r′ is the local deviation from it, such that r = 〈r〉r′).
In the original Kozeny-Carman relation, α = 1/45 [67] is a geometrical prefactor for spheres.
In our simulations, we vary α to directly control the order of magnitude of the permeability
between different simulations, independent of the grain size. This approach was suggested in
[50–53,56] and allows us to overcome the numerical limitations on the usage of small numerical
grains, with realistic radii, representative of experiments or field conditions. Varying α allows us to
combine numerically feasible grain sizes with permeability values that represent natural systems.
We stress that permeability changes due to skeleton deformation are accurately resolved through
changes in the porosity. Appendix A presents numerical relations between grain size, time step, and
permeability and discusses the validity of the grain size–permeability decoupling.

B. Setup of the numerical simulations

The numerical system (Fig. 2) represents a thin Hele-Shaw cell of spherical grains with grain
radii between 0.8 and 1.2 cm drawn from a distribution with a mean of 1 cm and a standard deviation
of 1 cm. The system horizontal dimension is L = 0.8 m, and its height is h ≈ 0.28 m. We ran
simulations under two distinct modes: The first mode is hydrostatic pore pressure (HPP), in which
the fluid exerts a buoyancy force due to the constant hydrostatic pressure gradient on the grains
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FIG. 2. Numerical system setup. The domain represents a Hele-Shaw cell. The bottom wall is constructed
of half-grains, glued together. At the top, there is no wall and the grains are free to move. The grains’ color
code corresponds to their relative solid normal stress. The dashed line marked by the triangle denotes the fluid
level. In “hydrostatic pore pressure” simulations, the fluid exerts only buoyancy on the grains. In “dynamic pore
pressure” simulations, deviations from hydrostatic conditions develop. The bottom wall is a no-flow boundary
and the upper fluid interface is a zero-pressure boundary, allowing the fluid to drain. In the horizontal direction
(x), the system is periodic. The dynamics is induced by cyclic shearing (horizontal shaking) of the bottom solid
wall at a preset amplitude (A) and frequency (ω). Vertical displacement of the bottom wall is not allowed.

(−ρ f g), regardless of the grain dynamics. In this mode, we do not solve the fluid Eq. (13) and
the last term in Eq. (17) is omitted, i.e., we neglect the dynamic forces between the fluid and the
solid. The second mode is dynamic pore pressure (DPP), in which the fluid and the grains are
fully coupled. The local compaction/dilatation affects the fluid pressure and the local dynamic fluid
pressure gradients exert forces on the grains in addition to the constant buoyancy force.

The bottom wall is constructed of half-grains (drawn from the same distribution as the internal
grains) glued together and a sinusoidal cyclic shear (horizontal shaking) is imposed on it, X =
A sin(ωt ), where X is the bottom wall horizontal displacement, A is the amplitude, and ω = 2π f
is the angular frequency ( f = T −1 is the temporal frequency and T is the periodicity). Vertical
displacement of the bottom wall is not allowed. At the top boundary, there are no normal or
shear stresses on the solid phase. For the fluid phase, the bottom wall imposes a no-flow boundary
condition (∂P′/∂y = 0) and the top is a constant-pressure boundary (P′ = 0). The water level is set
to be approximately equal to the height of the top grains in the initial configuration, and due to mass
conservation, it does not change during the simulations. For both phases, the horizontal direction
is periodic, allowing us to simulate a laterally extensive and unconfined layer. The dynamics are
limited to a 2D space but the porosity in the simulations is calculated as a 3D porosity, assuming a
monolayer of spheres occupying a cell one mean grain diameter in width.

All of our simulations start with the same initial configuration, characterized by a porosity
of φ0 = 0.434, which is denser than a 3D random loose packing. This initial configuration is
generated by sedimenting grains on top of the bottom wall, shaking it for 0.53 s at a low normalized
acceleration of  = Aω2/g = 0.042 (g = 9.81 m s−2), and allowing complete relaxation. Each
simulation is characterized by a single shaking frequency (ω) and by a single low horizontal
displacement amplitude of A = 0.0431 cm or A = 0.431 cm, corresponding to 4.31% or 43.1%
of the mean grain diameter. Different combinations of frequency and amplitude provide a range of
normalized accelerations of  = 0.06–0.3.

The DPP simulations target drained conditions, characterized by De � 1. To achieve this, we
modify α in Eq. (19) and choose relatively high permeabilities, though still within the natural range
for soils (κ0 ranges between 3.1 × 10−12 and 6.1 × 10−11 m2). With η = 10−3 Pa · s as the water
dynamic viscosity and t0 = T (single shaking period), De ranges between O(10−4) and O(10−2),
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TABLE I. Physical values used in the model.

Parameter Value

Grain density ρs = 2640 kg m−3

Grain Young’s modulus E = 1010 Pa
Grain mean radius rs = 0.5 cm
Grain friction coefficient μ = 0.5
Grain normal stiffness kn = 108 N m−1

Grain tangential stiffness ks = 2.64 × 108 N m−1

Grain damping coefficient γ = 2.16 × 105 s−1

Fluid density ρ f = 1000 kg m−3

Fluid compressibility β = 4.5 × 10−10 Pa−1

Fluid dynamic viscosity η = 10−3 Pa s
Gravitational acceleration g = 9.81 m s−2

which means that our simulations indeed represent well-drained systems. Table I summarizes the
parameter values used in the model.

IV. RESULTS

Figure 3 depicts trends of grain layer compaction in our simulations. The compaction is presented
as the deviation of the average porosity from its initial value, �〈φ〉 = 〈φ(t )〉 − φ0, normalized by
the initial value, φ0. The observed compaction trends may be categorized into two representative end
members divided by c � 0.15: At low accelerations ( < c; red and blue curves in Fig. 3), neither
simulation setup, of hydrostatic pore pressure [Fig. 3(a)] or dynamic pore pressure [Fig. 3(b)], shows
significant compaction. At  � c (black, gray, pink, and green curves in Fig. 3) both HPP and
DPP simulations show significant compaction, where the porosity decreases by more than ∼1%
with respect to its initial value.

The dynamics of the compaction (that occurs for  � 0.15) differs between the HPP and the DPP
cases: In HPP simulations, the rate of compaction decreases with time, and the compaction trend
varies between simulations. In contrast, the initial compaction rate of DPP simulations is constant
and approximately the same across runs, despite the different shear parameters. The linear trend
continues for about 5 s, after which the rate of compaction gradually decreases. For  � c, the
DPP compaction trend is amplitude dependent. For a low shaking amplitude [solid black curve in
Fig. 3(b)], both the final compaction and the transient time are lower. Importantly, all the simulations
shown in Fig. 3(b) were conducted with a permeability of the same order of magnitude. When the
permeability is changed, the compaction curves change dramatically, as we demonstrate next.

Figure 4 shows the compaction curves of high-acceleration DPP simulations ( = 0.2–0.25),
with amplitudes A = 0.0431–0.431 cm and variable characteristic permeabilities κ0 = 3.1 × 10−12–
6.1 × 10−11 m2, which leads to variable De values, from 0.00094 to 0.054. Note that despite the
order-of-magnitude change in the permeability, De remains �1, which ensures that the system
is well drained. The figure shows that for a given permeability (equal κ0 values are represented
by the same symbols in Fig. 4), the compaction curves collapse and show a similar linear rate
of compaction, regardless of the acceleration, frequency, and shearing amplitude. Furthermore, a
positive correlation is observed between the permeability and the compaction rate during the initial
phase of compaction, whereby in simulations with a lower permeability, the layer compacts more
slowly and, consequently, for a longer duration.

In order to explore differences in both the solid and the fluid variables, between compactive
behavior that occurs under high cyclic accelerations and noncompactive behavior under low
accelerations (as shown in Fig. 3), Figs. 5 and 6 explore representative simulations with low and
high accelerations in DPP and HPP cases. The low-acceleration simulation ( = 0.1 < c) exhibits
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FIG. 3. Normalized average porosity change as a function of time. Two shaking amplitudes (low amplitude
A = 0.0431 cm, solid line; and high amplitude A = 0.431 cm, circles) are compared for variable acceleration,
. (a) Hydrostatic pore pressure (HPP) simulations. Compaction occurs only when acceleration exceeds a
critical value, c = 0.15 (black, gray, pink, and green curves). (b) Dynamic pore pressure (DPP) simulations
with a high permeability (κ0 = 6.1 × 10−11 m2, De = 3 × 10−3–4.6 × 10−4). As in the HPP simulations,
compaction occurs only when acceleration exceeds c = 0.15. High-acceleration DPP simulations initially
follow a single linear compaction trend. When  is close to c (black curves) compaction depends on the
shaking amplitude.
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FIG. 4. Normalized average porosity change as a function of time for high-acceleration, dynamic pore
pressure simulations with variable permeability. Simulations of equal characteristic permeability (κ0; depicted
by the same symbol) have roughly the same compaction rate during the initial rapid linear compaction phase,
regardless of the acceleration (), frequency ( f ), and amplitude (A). All the simulations are well drained
(De � 1).

rigid body translation, with almost no internal strain. More specifically, Figs. 5(a) and 5(b) and the
inset show that the horizontal grain velocity is independent of the depth, i.e., ∂usx/∂y = 0, for both
HPP and DPP. In contrast, for high acceleration ( = 0.25 > c), in both the HPP and the DPP
simulations the dynamics is radically different. In the HPP simulation, Fig. 6(a) and its inset show
a clear delay between the bottom wall velocity, where the strain is imposed, and the layers above
it. This reflects the fact that the shear velocity imposed on the bottom wall is transmitted upward
via a shear wave. In contrast, the DPP response to the same high acceleration ( = 0.25) [Fig. 6(b)]
includes the formation of a zone with nearly zero horizontal grain velocity [usx(y, t ) � 0; orange
zone bordered by a black line in Fig. 6(b)]. When this zone forms (after a few shearing cycles),
it extends from near the bottom wall to the free surface. However, its thickness shrinks with time,
until it disappears completely. In the case depicted in Fig. 6(b), this occurs after 5 s. A zone with
zero horizontal velocity means that the horizontal shear strain imposed at the bottom wall does not
propagate through this horizontal transiently stagnant layer. After this episode, the DPP simulation
behaves similarly to the HPP simulation, with propagating shear waves from the base to the top.
The episode of nearly zero horizontal grain velocity correlates temporally and spatially with a rapid
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FIG. 5. Horizontally averaged solid grain velocity as a function of depth (y) and time (t) for a low-
acceleration simulations ( = 0.1, A = 0.0431 cm). The bottom wall is at y = −28 cm where the horizontal
displacement is imposed, and y = 0 cm is the free surface. (a, b) The horizontal grain velocity (usx) in a
hydrostatic pore pressure (HPP) simulation (a) and a dynamic pore pressure (DPP) simulation (b). The grain
layers move as a rigid body following the imposed velocity at the bottom, as shown by the inset in (a), which
focuses on several cycles. (c, d) The vertical velocity (usy) in the HPP (c) and the DPP (d) simulations. Minor
fluctuations occur during the first second, and afterwards the grains are stagnant in the vertical direction (orange
regions).

downward vertical solid grain velocity (usy) as depicted in Fig. 6(d) by the orange zone bordered by
a black line.

To clarify the micromechanics related to this behavior, Fig. 7 presents snapshots of the grain
dynamics during a DPP high-acceleration simulation ( = 0.25). Immediately after the imposed
shaking starts [Fig. 7(b)] the grain skeleton is solid (the stress chains transmit large stresses, as
indicted by their purple color) and horizontal shear deformation is transmitted from the bottom wall
via transient granular vortices [as indicated by the black arrows in Fig. 7(c)]. After a few cycles
[Fig. 7(d)], the stress chains almost vanish and shear is not transmitted upward. The thickness of the
sheared layer gradually increases [Fig. 7(e)] until the whole layer regains its strength and is sheared
as in the very beginning [Fig. 7(f)].

To identify the role that fluid pressure plays in this behavior, we follow the spatial and temporal
evolution of the dynamic pore pressure gradient (∇P′, where P′ is the pressure deviation from
hydrostatic) in the DPP simulations. Figure 8 depicts its vertical component, averaged horizontally
and normalized by the static effective vertical stress gradient (∇P′

y/∇σ0). For the low-acceleration
simulation ( = 0.1), with the exception of the first few cycles, ∇P′

y is close to 0 [Fig. 8(a)].
When the acceleration is high ( = 0.25 > c), the gradients of the dynamic pore pressure rise
until they become comparable to the static effective vertical stress (∇P′

y/∇σ0 ≈ 1; white zone
bordered by a black line). This high-pressure-gradient zone progressively shrinks with time until
it disappears. In the simulation presented in Fig. 8, the zone disappears about 5 s after the onset of
shaking. This transient zone of high pressure gradient correlates spatially and temporally with the
high-vertical-grain-velocity episode shown in Fig. 6(d) and with the zero horizontal grain velocity
depicted in Fig. 6(b). Outside of this zone, the mean value of ∇P′

y decreases towards 0, although the
instantaneous values are fluctuating and episodically may reach ∇P′

y/∇σ0 ≈ 1. The same behavior
is shown in Fig. 9, where the dynamic pore pressure (P′) is plotted vs time at three depths in the
layer. Upon the initiation of shaking, the pressure at each depth (solid curves) rises towards the
static normal effective solid stress value (dashed lines), and then it decreases back to 0. The closer
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FIG. 6. Horizontally averaged solid grain velocity as a function of depth (y) and time (t) for high-
acceleration simulations ( = 0.25, A = 0.0431 cm) under both hydrostatic pore pressure (HPP) and dynamic
pore pressure (DPP) conditions. The top panels depict the horizontal velocity (usx). (a) In an HPP simulation,
internal strain is observed, where the shear is transmitted from the bottom wall upward, as shown in the inset,
which focuses on several cycles. (b) In a DPP simulation, a similar internal strain is observed, yet it is limited
to a lower zone, overlain by an upper stagnant domain of nearly zero horizontal velocity (orange regions).
The bold black line marks the border between the straining, oscillating domain and the stagnant domain, and
its slope is approximated by Eq. (24). This line depicts an upward-propagating front that swipes through the
DPP system, separating two dynamical regimes. The bottom panels show the vertical velocity (usy). (c) In
an HPP simulation, we observe oscillatory change in the velocity with positive and negative values (i.e.,
upward and downward, respectively) that continues throughout the simulation. (d) In a DPP simulation, the
same upward-propagating front (bold line) is observed. The front separates a domain with a sustained rapid
downward velocity (dark-red region) from an underlying stagnant layer that is no longer compacting.

the point is to the surface, the longer is the duration of the elevated pore pressure. This observed
trend in pore fluid pressure evolution is in excellent agreement with the numerical study in [8].

V. DISCUSSION

Three important outcomes arise from our theoretical analysis and simulation results. The
outcomes apply specifically to the dynamics of a saturated grain layer that is cyclically sheared
in the horizontal direction, when fluid can freely drain from the layer during the time scale set by
the shearing periodicity, i.e., where De � 1.

First, we find an acceleration-controlled transition at c ≈ 0.15, between noncompactive and
compactive behaviors, both in HPP and in DPP simulations. A similar acceleration-dependent
threshold that separates rigid from liquidlike behavior was observed previously by Clément et al.
[66] in DEM simulations, using a different code that implements only HPP conditions. They iden-
tified a threshold that corresponds to c = μa(ρs − ρ f )/ρs, where μa is the macroscopic apparent
friction coefficient, above which grains slide past each other and initiate grain rearrangement. In
DEM simulations, μa is smaller than the assigned surface grain friction, and in our case μ = 0.5
and μa ≈ 0.25 [69]. The acceleration threshold for compaction of grains arises from a force
balance between friction (when the normal force is modified by buoyancy) and imposed inertia.
Our simulations show that the same criterion and threshold are applicable also in DPP simulations,
where dynamic pore pressure gradients develop. This occurs because at the beginning of a DPP
simulation, before any dynamic pore pressure or fluid flow evolves, the system is similar to an HPP
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FIG. 7. Snapshots of granular dynamics during a high-acceleration simulation ( = 0.25) with dynamic
pore pressure. The colors of the grains indicate their relative solid normal contact force, normalized to the
maximum normal force in each frame: (a) 3.5 N, (b) 0.7 N, (c) 7.5 N, (d) 1.7 N, (e) 2.6 N, and (f) 1.0 N. Black
arrows depict the solid grain velocity. The blue arrow at the base indicates the imposed bottom wall velocity,
exaggerated by a factor of 5 with respect to the black arrows. The dashed black line shows the position of the
fluid top surface. (a) Before the initiation of shear, the layer is at rest. (b) When the imposed shaking starts, the
grain skeleton behaves in a solid manner, with percolating stress chains capable of transmitting the shear waves
from the bottom wall. (c) Some of the motion occurs via transient granular vortices. (d) After a few cycles, the
stress chains almost vanish and shear is not transmitted through the upper parts of the layer. (e) The thickness
of the bottom sheared zone gradually increases. (f) The whole layer is sheared as in the very beginning. See
also a video in the Supplemental Material [68].

system, in which the pressure-gradient drag force is neglected. Hence, the initiation of compaction
by sliding obeys the same threshold acceleration predicted for an HPP setting. We note that close
to the critical acceleration, the behavior can be more complex. Particularly, our simulations show
that the shearing amplitude may control the specific dynamics when  = c [see Fig. 3(b); black
curves].

Second, we reach the important conclusion that fluid pressure evolution is controlled by, and
coupled to, the compaction dynamics of grains. Compaction generates high pore pressures, high
pressure gradients, and, as an outcome, fluid outflow. At the same time, pressure gradients weaken
(and even completely diminish) the solid contacts in between the grains, which facilitates grain
rearrangement in the form of compaction. We find that despite the drained conditions, which are
achieved since the layer can drain at the time scale of a single cycle of shaking (De � 1), the pore
pressure rises for a substantial duration to a value that is equal to the lithostatic stress. The physics
of this pressure rise and its coupling to compaction is concluded from simulations and, also, from
the following theoretical analysis.
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FIG. 8. Dynamic vertical pore pressure gradient (∇P′
y) normalized by the gradient of the effective static

normal stress (∇σ0) for a low-amplitude simulation (A = 0.0431 cm). This ratio is expected to be unity when
∇P′

y = ∇σ0 (white region), 0 in the hydrostatic case (orange regions), and negative when the pressure is below
the hydrostatic value (dark-red regions). (a) At low acceleration ( = 0.1), after some initial fluctuations, the
pore pressure gradients vanish. (b) At high acceleration ( = 0.25), a domain where ∇P′

y = ∇σ0 develops after
several cycles. The thickness of this domain decreases with time (white region). The domain is bordered by
the bold black line, whose slope is given by Eq. (24). This line represents an upward-moving front, separating
a high-pressure-gradient zone from a zone of hydrostatic pressure gradient on average. The high-pressure-
gradient zone is temporally and spatially correlated with the high-vertical-velocity zone in Fig. 6(d) and with
the vanishingly low-horizontal-velocity zone in Fig. 6(b).

Assuming that significant pressure gradients develop only in the vertical direction, and applying
the boundary condition of a vertical stationary and impermeable bottom boundary wall, Eq. (16)
reduces to

usy = κ0

η

∂P′

∂y
. (20)

This relation is depicted in Fig. 10, where the two sides of Eq. (20) are plotted for a high-acceleration
DPP simulation, normalized by their theoretical maximum values. A linear relation with a close-to-
unity slope emerges even for the raw fluctuating data [Fig. 10(a)]. When the fluctuations are filtered
[Fig. 10(b)], an additional trend appears, where at the beginning of the simulation (blue symbols),
the values are close to their expected maximum, at the end of the simulation they are equal to
0 (yellow symbols), and the transition between these extreme values is continuous in time. The
agreement between the numerical results that are based on the full three-term fluid equation, (13),
and the theoretical prediction, Eq. (20), which neglects the time-dependent term when De � 1,
confirms that the nondimensional Deborah number controls the dominant coupled dynamics of
the system. More specifically, for drained conditions, the dynamic pressure gradient is exactly
proportional to the grain velocity.
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FIG. 9. Dynamic pore pressure (P′) vs time during a high-acceleration simulation ( = 0.25 and A =
0.0431 cm) at three depths in the layer. The data are smoothed over a window of eight cycles. The
dynamic pressure increases after a few cycles towards the effective static normal stress (depicted by the
horizontal portions of the dashed lines) and then gradually decreases to 0. This high-pressure episode, whose
approximated start and end points are depicted by black arrows, is sustained longer at shallower depths, as
predicted by the compaction front model [Eqs. (20) and (24); dashed lines].

With the specified bottom boundary conditions, the vertical solid grain velocity is directly related
to the compaction rate (see Appendix B for a detailed derivation),

usy = ∂〈φ(y, t )〉
∂t

H

(1 − φ0)
, (21)

where φ0 is the initial porosity and ∂〈φ(y,t )〉
∂t = 1

H

∫ H
0

∂φ(y,t )
∂t dy is the depth-averaged compaction rate

over a sublayer that extends from the bottom wall to height H above the bottom (0 < H �| h |).
Equations (20) and (21) reveal that the source of an elevated pore pressure in a drained layer

is the vertical velocity of the solid grains, which is proportional to the rate of compaction. The
vertical velocity, in turn, is set by a volume conservation consideration, which requires that the grain
compaction rate must be balanced by the rate of fluid expulsion. The expulsion rate is controlled
by the fluid viscosity, the layer permeability, and the evolving pressure gradients. More specifically,
when the system compacts, the pore pressure rises, with gradients exceeding hydrostatic values.
When the lithostatic limit for the pressure gradient, ∇P′

y = ∇σ0, is reached, the solid stresses
completely vanish and the net force on the grains is 0. At this point, the grains will maintain a
constant downward velocity of

usy ≈ (κ0/η)∇σ0. (22)

This steady-state compaction and pressurization phase ends when the porosity reaches some lower
critical value. In our simulations, we find that this critical value corresponds to φc = 0.429 ± (9.5 ×
10−4), which is higher than the reported 3D random close packing of spheres φ3D

RCP = 0.36 ± 0.02
[70]. This higher value probably reflects our choice to measure the porosity as a 3D property over
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FIG. 10. Average vertical velocity of the solid grains, normalized by (κ0/η)∇σ0, vs vertical gradients of
average dynamic pore pressure (normalized by ∇σ0) from high-acceleration, DPP simulation ( = 0.25, A =
0.0431 cm). The symbol color represents the time in the simulation: blue represents the beginning of the
simulation, and yellow is the end. The data show that in well-drained systems, Eq. (20) captures the coupled
grain compaction and fluid pressurization dynamics, both (a) for the instantaneous response as seen in the
original data and (b) when the data are smoothed over a window of eight cycles. The numerical data fit well
the black line with a slope of 1 (c0 is the intersection and c1 the slope).
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a monolayer of spheres. The abrupt reduction in compaction rate once a lower critical porosity is
reached agrees with [38], which is a study of vertical shaking.

Equation (20) also indicates that at any point in time, the pore pressure gradient is independent of
the former porosity and state of pressure and, instead, is sensitive only to the instantaneous rate of
skeleton compaction/dilation. At the same time, Eqs. (20)–(22) reveal that the rate of compaction is
controlled by the permeability and is independent of the imposed shear parameters. The higher the
permeability of the layer, the faster the grains compact.

These insights about the dependency between the rate of compaction, the pressure gradient, and
the permeability for a fully drained system, when De � 1, are well demonstrated in our simulation
results. Specifically, a clear distinction can be made between HPP and DPP simulations. In HPP
simulations with high accelerations, the grains remain in contact with each other during the whole
simulation, as witnessed by their ability to transmit the shear waves from the bottom wall [Figs. 6(a)
and 6(c)]. In contrast, in DPP simulations of high accelerations, after a few shaking cycles, the
dynamic pore pressure gradient becomes equal to the static effective stress gradient [|∇P′

y/∇σ0| ≈
1; Fig. 8(b)]. The solid grain velocity is then maximal and proportional to the dynamic pore pressure
gradient and to the permeability, as shown in Fig. 4. At this stage, the fluid pressure is equal to the
lithostatic stress within the compacting zone, which means that the fluid (and not the grains) carries
the load, solid stress chains vanish, and shear waves are not transmitted [see Figs. 6(b) and 7(d)].

Finally, this work identifies an upward-moving front that separates an upper pressurized com-
pacting region from a lower, fully compacted zone. This front arises because the downward grain
movement is restricted by the vertical stationarity of the bottom wall, which means that once grains
near the bottom reach a higher packing density, the rate of compaction decreases. Since compaction
is the driver for pressurization, when compaction stops, the pressure gradient in this fully compacted
layer drops to a hydrostatic value. The pressurized layer is thus restricted to an upper layer, above
the fully compacted region, and its thickness decreases over time. The rate at which the pressurized
layer thickness decreases is dictated by the velocity of the “compaction front” that transmits upward
the information about the stationary bottom wall. To find this velocity, we express the compaction
front as a discontinuity and write the grain’s mass conservation over the front, in the front’s frame
of reference,

ρs(1 − φ0)
(
u0

sy − ufront
) = ρs(1 − φc)

(
uc

sy − ufront
)
, (23)

where ufront is the front’s velocity, φ0 and u0
s,y are the porosity and grain velocity before the front

arrives, respectively, and φc and uc
s,y are the porosity and grain velocity after the front arrives,

respectively. Since uc
s,y ≈ 0 the velocity of the front is

ufront = φ0 − 1

φ0 − φc
u0

sy. (24)

Evaluating ufront in Eq. (24), with u0
sy = (κ0/η)∇σ0 = (κ0/η)(1 − φ0)(ρs − ρ f )g as the solid vertical

velocity during the full pressurization stage [Eq. (22)], leads to

ufront = φ0 − 1

φ0 − φc

κ0

η
∇σ0, (25)

which provides a good prediction for the front velocity in our simulations. The front velocity dictates
the slope of the bottom boundary of the nearly zero horizontal grain velocity domain in Fig. 6(b),
the maximum vertical grain velocity domain in Fig. 6(d), and the pressurized domain in Fig. 8(b)
(all represented by a black line). The compaction front model, expressed by Eqs. (24), (25), and
(20), predicts the dynamic pressure profiles in the layer over time. We express the front position as

yfront = y0 + ufront · t, (26)

where y0 is negative and indicates the depth at which the front first appears, and yfront = 0 means
that the front has propagated all the way to the surface. With this definition, the pressure profile is
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FIG. 11. Profiles of dynamic pore pressure (P′) at different times (t1 = 0.65 s, t2 = 1.97 s, t3 = 3.29 s,
t4 = 4.62 s, t5 = 9.47 s) during a high-acceleration DPP simulation with  = 0.25 (A = 0.0431 cm). The bold
black line shows the effective static normal stress. The dashed curves depict the dynamic pore pressure profiles,
as predicted by the compaction front model [Eqs. (24)–(27)]. The thin solid curves are the numerically derived
dynamic pore pressure profiles. The simulations and the model show a good agreement. See text for sources of
deviations.

made of two linear segments:

P′(y, t ) =
{

σ0(y) for y � yfront,

σ0(yfront ) for y < yfront.
(27)

This means that in the upper part of the layer, before the front passes (y > yfront), the slope of the
pressure profile is expected to be equal to the slope of the effective static normal stress. In the
lower part of the layer, after the front has passed (y < yfront), we expect a zero slope, i.e., constant
pressure with depth. The predicted profiles at different times during the simulation [Eqs. (26) and
(27)] are presented in Fig. 11 as dashed lines and compared to the numerical profiles (solid lines).
The predicted and observed profiles agree overall, and deviations may arise from (i) the finite
thickness of the compaction front, which is not accounted for in the theory of Eq. (24); (ii) the
bottom sublayer instantaneous compaction/dilatation around an average vertical stationarity; and
(iii) the instantaneous grain velocity oscillations around the predicted compaction velocity. The
overall physical picture of the compaction front with the distinct zones that it forms is summarized
in Fig. 12.

As an implication, one can attempt to compare our modeling predictions to observations in
earthquakes. Our simulated layer models a fully saturated soil layer that is shaken by seismic waves.
An upward-propagating compaction front is predicted. Within the pressurized compacting sublayer,
before the arrival of the compaction front, contact stresses between grains vanish and shear waves
cannot be transmitted. We predict that this sublayer, which exhibits the properties of liquefaction
[7], will become thinner with time and progressively confined to shallower depths. This prediction
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FIG. 12. Schematic summarizing the evolution of the coupled grain-fluid dynamics. (a) Initially, the layer
has a porosity φ0 and the grains move horizontally at a velocity usx , imposed by the cyclic shear of the bottom
wall. The pore pressure is hydrostatic. (b) After a few shaking cycles, the grain layer is divided into two
sublayers by a compaction front that moves upward at a rate ufront . The grains in the top sublayer settle at a
velocity of u0

sy, their horizontal velocity is vanishingly low, and the pore pressure is elevated to the value of
the initial total stress. The bottom sublayer has compacted to a porosity of φc, the grains move following the
cyclical horizontal shear, and the pressure gradient is hydrostatic, although the pressure itself is elevated and
set by the value of the pressure at the compaction front. (c) At a later time, the compaction front has progressed
upward and, with it, the depth at which the pressure gradient becomes hydrostatic. (d) After some time (which
depends on the compaction front velocity and the layer height), the compaction front has already passed, and
the whole layer has a porosity of φc. The whole layer then follows the imposed cyclic shear at the bottom.
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is supported by field observations by Holzer et al. [71], who measured the fluid pressure directly in
the ground, during an earthquake. They found that high pore pressure and liquefaction decay from
the bottom upward. Our results have another important implication for soil liquefaction that relates
to the drainage conditions. Most commonly, liquefaction is assumed to initiate under undrained
conditions [40,72], since it is believed that fluid flow relaxes the pore pressure. Our simulations and
theory show that liquefaction can be initiated under well-drained conditions, in support of recent
experiments [39]. This has critical implications for geophysical earthquake hazard assessment.

VI. SUMMARY

In the current work, we explore theoretically and numerically the coupled grain–interstitial pore
fluid dynamics of a saturated granular layer, subject to low overburden stresses and to cyclic
horizontal displacements. Targeting specifically a setting representative of an upper soil layer
responding to an earthquake seismic excitation, our study focuses on the layer compaction, pore
fluid pressurization, and fluid flow under well-drained conditions, whereby the pore fluid can flow
out of the grain layer during the shaking period. A nondimensional analysis reveals that the drainage
condition is a function of the nondimensional De number, which, in the current setting, is the ratio
between the time scale of pore pressure diffusion and the shaking periodicity. It was previously
thought that when fluid can easily flow out of the system (De � 1 conditions), the fluid pressure
does not rise significantly and does not play a significant role in the dynamics of the system. By
contrast, this work shows analytically and numerically that even when De � 1, the fluid pressure
rises dramatically and the dynamics of the grains is significantly altered.

We identify two end-member behaviors, with a transition controlled by the shaking acceleration.
At low accelerations, below a critical value, the system behaves rigidly, compaction is negligible,
and the fluid pressure remains hydrostatic. At high accelerations, albeit still at a fraction of the
gravitational acceleration, significant compaction occurs, coupled to high-fluid-pressure gradients
that support the grains. Here, the compaction is initially rapid and linear in time, and we find that the
compaction rate is governed by the rate of fluid drainage, which in itself is a function of the layer
permeability and the fluid viscosity. This constant compaction rate is independent of the shaking
forcing. The duration and location of the pressurization event are well described as a compaction
front (Fig. 12) that propagates up from the base of the layer. Before the arrival of the front, the
interstitial fluid is overpressurized to the level of the effective static normal stress, and it flows
upward fully supporting the grains’ weight, which allows the grains to compact at a constant rate.
After the front passage, grains are compacted and the fluid pressure gradient is hydrostatic. The good
agreement between the numerical simulations and the compaction front model suggests that our
theory can serve as a predictive tool to evaluate pressurization episodes in compacting, well-drained,
grain-fluid systems.

Specifically, our results indicate that compaction, fluid flow, and pressurization are interdepen-
dent in horizontally shaken granular layers under drained conditions, with potential implications for
earthquake-induced soil liquefaction.
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APPENDIX A: PARAMETER SCALING IN THE COUPLED GRAIN-FLUID MODEL

The time step of the numerical solver was chosen to be small enough to resolve a single
undissipated elastic collision between two grains, which lasts for tcol = √

m/kn, where m is the
average grain mass and kn is the grain normal stiffness (i.e., the spring constant used to compute
the normal forces between grains in contact, using a linear displacement/force interaction model).
We choose the time step to be �t = 0.1 · tmin

col , where tmin
col is the collision time associated with the

smallest grain in our system. Using our model parameters, this restriction yields �t ≈ O(10−7) s.
The periodicity of the imposed horizontal shaking in our simulations is within the range of
T ≈ O(10−2)–O(10−1) s. This means that the simulation time step is sufficiently small to fully
resolve this external forcing.

The dependency between the time step and the grain size means that natural grain sizes could
not be modeled in a reasonable simulation time. To overcome this limitation, we model grains that
are larger than those found in nature. Since we are interested in the dynamics that occur within the
natural range of permeabilities, we must decouple the permeability value from the modeled grain
size. We do so by modeling the permeability as κ = κ1κ

′(x, y, t ) [Eq. (19)], where κ1 = α〈r〉2 is a
constant in each simulation, and κ ′ = r′2φ3/(1 − φ)2 varies in space and time (through changes in
φ and, to a lesser extent, changes in r′2). Under the effect of a pore pressure field and intergranular
contact forces, grains are set in relative motion, which induces deformation and changes the porosity
field φ (and possibly r′2). We assume that this changes κ ′, without perturbing κ1. By varying
α in Eq. (19) we directly control the order of magnitude of the permeability between different
simulations, independent of the grain size. This decoupling approach was proposed and successfully
compared to experiments in [50–53,56]. The “decoupled model” correctly captures the relevant
dynamics because grain size does not dominate the physics. Instead, changes in the porosity and
the order of magnitude of the permeability control the system behavior [Eqs. (21) and (22)]. The
excellent agreement between theory and simulations further shows that the grain size does not affect
the pore pressure evolution and the compaction rate, as predicted in Eqs. (22)–(26) and shown in
Figs. 9–11.

The small time step places a restriction on the permeability of the granular skeleton. To correctly
resolve the fluid pressure diffusion Eq. (13), on the superimposed grid, we use the Courant-
Friedrichs-Lewy condition �t < 0.5 · �x2/D. In our simulations, �x = 4 · 〈r〉, where 2 · 〈r〉 is the
mean grain diameter, and D = (κ0)/(βηφ) is the pore pressure diffusion coefficient. This restriction
means that the permeability should be κ < 10−10 m2, and to ensure this, we set the α parameter in
Eq. (19) to be α < 10−5.

APPENDIX B: VERTICAL SOLID GRAIN VELOCITY AND COMPACTION RATE

Reorganization of Eq. (3) shows that the divergence of the solid grain velocity can be related to
the temporal and spatial change in porosity:

∇ · us = 1

1 − φ

(
∂φ

∂t
+ us · ∇φ

)
. (B1)

Since we do not expect large spatial gradients in porosity we neglect the last term in Eq. (B1), and
by reducing it to the vertical dimension we get

∂usy(y, t )

∂y
≈ 1

1 − φ(y, t )

∂φ(y, t )

∂t
. (B2)
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Integration of Eq. (B2) from the bottom (y = 0) to an arbitrary height (y = H) gives
∫ H

0

∂usy

∂y
dy =

∫ H

0

1

1 − φ(y, t )

∂φ(y, t )

∂t
dy

= −
∫ H

0

∂

∂t
[ln(1 − φ(y, t ))]dy

= −
∫ H

0

∂

∂t
[ln(1 − φ0 − δφ(y, t ))]dy

= −
∫ H

0

∂

∂t
[ln((1 − φ0)(1 − δφ(y, t )/(1 − φ0)))]dy

= −
∫ H

0

∂

∂t
[ln(1 − φ0) + ln(1 − δφ(y, t )/(1 − φ0))]dy, (B3)

where δφ is a small change from the initial porosity.
Since δφ(y, t )/(1 − φ0) � 1 we can expand a series ln(1 − δφ(y, t )/(1 − φ0)) ≈

−δφ(y, t )/(1 − φ0) − δφ2(y, t )/2(1 − φ0)2 + O(δφ3). Neglecting the high-order terms of the
expansion, Eq. (B3) becomes

usy(H, t ) − usy(0, t ) ≈ −
∫ H

0

∂[ln(1 − φ0) − δφ(y, t )/(1 − φ0)]

∂t
dy

= 1

1 − φ0

∫ H

0

[δφ(y, t )]

∂t
dy

= 1

1 − φ0

∫ H

0

∂[φ(y, t ) − φ0]

∂t
dy

= ∂〈φ(y, t )〉
∂t

H

1 − φ0
, (B4)

where ∂〈φ(y,t )〉
∂t = 1

H

∫ H
0

∂φ(y,t )
∂t dy is the spatial average compaction rate over a layer that extends from

the bottom wall to height H . Applying the boundary condition of usy(0, t ) = 0 to Eq. (B4),

usy(y, t ) = ∂〈φ(y, t )〉
∂t

H

1 − φ0
, (B5)

which correlates the solid grain flux over a surface with the change in porosity in a total medium
volume.
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