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Abstract The term T waves is generally associated with acoustic waves generated7

by seismic events that subsequently travel horizontally in the ocean at the speed8

of sound. In this paper, we use a time-domain spectral-element method to perform9

a parametric study of the in�uence of sea�oor slope, source position and media10

properties for a typical (downslope) T-wave generation scenario.11

We �nd that the energy and duration of these waves are particularly sensitive12

to the environment. In particular, the slopes and physical characteristics of the13

seabed play a crucial role for both the generation and the conversion of these14

waves. Likewise, the depth and position of the earthquake relative to the slope is15

of great importance, with the presence of privileged areas for the generation of T16

waves, which we map.17
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1 Introduction20

When a seismic event occurs near an ocean basin, part of the energy produced21

can be channeled into the water layer and then travel horizontally in this natural22

waveguide at the speed of sound in water. In ocean acoustics, T waves have been23

the subject of much attention since their discovery in the 1940s (Linehan, 1940).24

They typically have a frequency range between 1 and 100 Hz and can be generated25

from seismic waves in two main ways: by successive re�ections between the sea26

surface and a sloping seabed (downslope conversion), or by di�raction by roughness27

or by heterogeneities (see Okal, 2007 for a review on the topic). In this article we28

will let aside T waves created by di�raction and focus on T waves generated by29

downslope conversion.30

Once channeled into the water layer, T waves can travel particularly far for31

several reasons. First, by propagating in the ocean, they spread in an almost32

cylindrical fashion, which causes less decay than in the case of spherical geometrical33

spreading in free space as for P and S waves (see Fox and Dziak, 1998). Second,34

the attenuation of acoustic waves in water is particularly low at the frequencies35

considered. Third, due to the fact that temperature and pressure vary with depth,36

the speed of sound waves in the ocean typically presents a minimum around 100037

m in the Atlantic ocean. This feature, known as the Sound Fixing and Ranging38

(SOFAR) channel, makes it possible, under certain conditions, to facilitate energy39

transmission. For all these reasons, T waves can therefore propagate over very40

large distances, in practice only limited by the size of ocean basins (see Okal and41

Talandier, 1997; Metz et al., 2016 for example). Even a moderate seismic event can42

be detected thousands of kilometers away if it has generated T waves. Thus, the43

event detection threshold can be improved by one to two orders of magnitude using44

only a handful of instruments located either at sea (hydrophones or OBS), or in45

the immediate vicinity of the shore (T-phase stations) rather than large terrestrial46

seismic networks (Johnson and Northrop, 1966; Fox et al., 1994; De Groot-Hedlin47

et al., 2004; Pan and Dziewonski, 2005; Dziak et al., 2011). Nevertheless, it should48
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be noted that instruments at sea may pose other problems related, for instance,49

to their location or to the transmission of recorded data.50

After their oceanic path, T waves may reach the coasts. Upon arrival on the51

continental slope, they convert back into seismic waves that can be detected by52

inland seismometers Since acoustic waves travel more slowly in water than in the53

ground, converted T-waves typically arrive after longitudinal waves (P waves, also54

called primary) and shear waves (S waves, also called secondary), hence their name55

"T" as tertiary (Linehan, 1940).56

However in many cases, such as small seismic events along mid-ocean spreading57

ridges, only T waves are detected. They are the only available piece of information58

on these events (see for example Fox et al., 1994). T waves are therefore used59

in many �elds of geosciences. Since the 1960s, thousands of T waves have been60

recorded and used for earthquake location (see Johnson, 1966; Duennebier and61

Johnson, 1967; Fox et al., 2001) and algorithms now exist for their automatic62

recognition (Sukhovich et al., 2014). Although the location of the conversion zone is63

sometimes di�cult, these measurements have made it possible to identify volcanic64

eruptions (Dietz and Sheehy, 1954; Norris and Johnson, 1969; Talandier and Okal,65

1987; Schreiner et al., 1995; Fox and Dziak, 1998; Bohnenstiehl et al., 2013) or to66

monitor eruptive processes in real time (Fox et al., 1995; Dziak et al., 2011).67

These detections contributed greatly to our understanding of hydrothermal and68

microbial processes in ocean ridges (Delaney et al., 1998; Cowen et al., 2004;69

Wilcock et al., 2014). T waves are also very useful for detecting small intra-plate70

earthquakes in very remote regions (Fox et al., 2001) and for studying sea�oor71

expansion or magma intrusion at ocean spreading ridges (Hammond and Walker,72

1991; Fox et al., 1994; Schreiner et al., 1995; Blackman et al., 2000) that a�ect73

the ocean and marine ecosystems (Dziak et al., 2011, 2012). Although not caused74

by "earthquakes", it is interesting to note here that collisions between icebergs75

can also generate similar hydroacoustic signals (see e.g. Talandier et al., 2006;76

Matsumoto et al., 2014).77
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For large earthquakes in oceanic regions, T waves can also be used together with78

P and S waves to map the di�erent components of the fault rupture (see Graeber79

and Piserchia, 2004; De Groot-Hedlin, 2005; Guilbert et al., 2005; Tolstoy and80

Bohnenstiehl, 2005, 2006). Moreover, some links between T waves and tsunamis81

have now been established and could potentially be used in a warning system82

(Ewing et al., 1952; Tolstoy and Bohnenstiehl, 2006; Salzberg, 2008). In addition,83

T waves can also provide information on the earthquake that generated them84

(Dziak, 2001; Talandier and Okal, 2016), on the surface seismic characteristics of85

coastal regions (Koyanagi et al., 1995; Kosuga, 2011) or on the deep structure of86

the Wadati-Benio� zone (Okal, 2001). It is expected that T waves may also be87

used to study mesoscale variations of the ocean properties (Evers and Snellen,88

2015).89

Finally, acoustic signals recorded in the oceans have been used for several90

years to distinguish between anthropogenic and natural sources such as nuclear91

explosions and volcanoes, in particular under the Comprehensive Nuclear-Test-92

Ban Treaty (CTBT) adopted by the United Nations General Assembly in 199693

(see De Groot-Hedlin and Orcutt, 1999, 2001)). Indeed, the strong compressional94

waves generated by explosions can sometimes convert into acoustic wave traveling95

in the ocean which may then be detected at far distance hydroacoustically, but96

not seismically (see Adams, 1979).97

At the interface between seismology and underwater acoustics, the T-wave98

phenomenon involves complex and diverse processes whose mechanisms are often99

poorly understood, which limits the possibilities for in-depth theoretical analysis.100

These processes include viscoelasticity, seismic-to-acoustic and acoustic-to-seismic101

conversion, slopes, di�raction, guided propagation in the ocean, high frequencies,102

3-D e�ects, or complex geometries. In this context, it is still di�cult to correctly103

assess the in�uence of the characteristics of the earthquake, the seabed or the104

ocean, for example. These issues are still open nowadays. In particular, they limit105

the correct assessment of earthquakes epicenters from T waves (see Williams et al.,106
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2006; Chapman and Marrett, 2006; Lecoulant et al., 2019). In particular, slopes107

have long been known to play a crucial role on both T-wave generation (e.g. Wadati108

and Inouye, 1953; Shurbet, 1955; Shurbet and Ewing, 1957; Johnson et al., 1963109

...) and conversion (e.g. Tolstoy and Ewing, 1950; Båth, 1954 ...) at shore, but110

their in�uence has not been quanti�ed.111

In this context, as in many other research areas, numerical simulation seems112

to be an appropriate approach for the study of T waves. Numerical modeling has113

long been used in ocean acoustics (Jensen et al., 2011), for instance based on114

�nite elements or on parabolic equation solvers. In recent years a time-domain115

Spectral Element Method (SEM, Komatitsch and Tromp, 1999) has also been116

used successfully in the �eld of underwater acoustics (Cristini and Komatitsch,117

2012; Jamet et al., 2013; Bottero et al., 2016; Lecoulant et al., 2019). Beyond118

its capability of handling complex geometries and rheologies accurately, as any119

�nite-element technique, the time-domain spectral-element method runs e�ciently120

on very large computers, thus providing a drastic reduction of the duration of121

numerical simulations, which is one of its attractive properties.122

This article presents a parametric study, based on such a SEM, of the in�uence123

of sea�oor slope, source position and media properties for a typical (downslope)124

T-wave generation scenario. The article is organized as follows: in Section 2 we125

describe the numerical method we use to generate the numerical results. Section 3126

and 4 are then devoted to the study of the in�uence of slope angle on the energy127

of the transmitted T wave. In Section 5 we present some results concerning the128

in�uence of earthquake location on T-wave energy and duration. Some conclusions129

and perspective are drawn in Section 6.130

2 The spectral-element method for ocean acoustics131

The SEM is one of the most e�cient numerical methods for performing numerical132

simulations in the time domain for the solution of the full-wave equation. In this133

section, we recall the main characteristics of the SEM and we focus only on some134
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of its most important features. The reader is referred to the chapter 4 of reference135

Fichtner (2010) for more details on the method and to reference Peter et al. (2011)136

for a review of its capabilities for both forward and inverse modeling. The SEM is137

based upon a high-order piecewise polynomial approximation of the weak formula-138

tion of the wave equation. It combines the accuracy of the pseudospectral method139

with the �exibility of the �nite-element method. In this method, the wave�eld is140

represented in terms of high-degree Lagrange interpolants, and integrals are com-141

puted based upon Gauss-Lobatto-Legendre quadrature. This combination leads142

to a perfectly diagonal mass matrix, which in turn leads to a fully explicit time143

scheme that lends itself very well to numerical simulations on parallel computers.144

It is particularly well suited to handling complex geometries and interface condi-145

tions. The use of a pseudospectral method also allows for the use of coarser meshes146

compared to classical �nite-element methods. Very distorted mesh elements can147

be accurately handled and complex models that include �uid, elastic, viscoelastic,148

anisotropic or porous media can be modeled, making the SEM a method of choice149

for the numerical modeling of wave propagation through various types of media150

encountered in ocean acoustics. This numerical method has been thoroughly val-151

idated with analytical codes and is used by many researchers in seismology all152

over the world . Additionally, Convolutional Perfectly Matched Layers (CPML)153

are used to remove spurious re�ections from the boundaries of the computational154

domain (Komatitsch and Martin, 2007; Xie et al., 2016). Finally, the SEM is well-155

suited for parallel implementations on supercomputers as well as on clusters of156

GPU cards by using the Message-Passing Interface (MPI) library and overlapping157

communications with calculations to hide their cost. This is an important feature158

for high-performance computing which is absolutely necessary for the con�gura-159

tions we are considering in the present paper. For the mesh generation, we used160

the meshing software Trelis (developed by Sandia National Laboratories, USA).161
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Fig. 1 Left: Setting of the study. The objective is to analyze the in�uence of slope angle θ and
sediment properties on T-wave energy transmitted at the green receiver line situated at range
L + d = 85 km. The geometry is 2-D Cartesian. The source is located at depth Zs = 30 km,
the sediments are h = 0.4 km thick, the abyssal plain is located at depth H = 4 km, and the
slope has a horizontal length of d = 5 km. The angle Ω is �xed at 11.05 degrees. The receiver
line is at L = 80 km from the bottom of the slope. In the spectral-element simulations the
energy that reaches the edges of the model is absorbed by CPML (see text; Xie et al., 2016)
absorbing layers. Right: Sound speed pro�les in the sea used in the numerical simulations. The
curve labeled "SOFAR" refers to a classical idealized ocean sound-speed pro�le (Munk, 1974)
with minimum velocity at a depth of 1000 m.

3 Common characteristics of T-wave downslope conversion, parametric study162

Research on T waves in the late 1950s and the beginning of the 1960s had indi-163

cated that continental slopes were probably instrumental in the generation of T164

phases (e.g. Tolstoy and Ewing, 1950; Ewing et al., 1952). However, it is in the165

paper of Johnson et al. (1963) that the �rst detailed explanation of the generation166

mechanism of T waves generated by non-sur�cial earthquakes can be found. This167

article suggests that seismic energy may be trapped into the SOFAR channel after168

successive re�ections between a downsloping sea�oor and the sea surface, making169

it travel horizontally. This scenario, which they call downslope conversion, is based170

on ray tracing. T-wave amplitude is known to strongly depend on bathymetry (see171

e.g. Williams et al., 2006; Chapman and Marrett, 2006). This has been recently172

con�rmed by Lecoulant et al. (2019).173

We will �rst study the in�uence of slopes, seabed and water column properties174

on T-wave energy received at a receiver line for a typical downslope conversion175

scenario (Figure 1).176
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This 2D Cartesian model consists of a homogeneous elastic semi-in�nite bottom177

overlain by a 400 m-thick homogeneous elastic sedimentary layer. The sea�oor has178

a constant slope with a horizontal extension of d = 5 km. The seismic source is179

placed right below its upper end. Contrary to a similar study carried out by Frank180

et al. (2015), we have chosen to keep the horizontal length of the slope constant181

in order to keep the solid angle from which the source sees the slope unchanged182

(denoted by Ω in the �gure).183

It is important to note here that although a 2-D Cartesian model of the slope184

seems to be perfectly adequate for this study, the source in this model is physically185

an in�nite line source. With this in mind, it may seem better to work using cylin-186

drical coordinates assuming axisymmetry rather than 2-D Cartesian coordinates.187

However, one would then observe multiply-re�ected energy between the highest188

slopes and the symmetry axis that do not exist in reality1. However, fortunately,189

the use of 2D Cartesian coordinates rather than cylindrical coordinates is not crit-190

ical for this qualitative study. It should be noted here that of course a 3-D model191

would be the most appropriate. Unfortunately, the number of wavelengths in the192

model currently makes this study impractical with "reasonable" computational193

resources. We believe, however, that the approximation is justi�ed and that the194

results obtained would not be substantially di�erent if considering a 3-D model.195

The source is placed on the downward oriented z-axis. We chose to carry the study196

for a shallow seismic source located in the elastic part at Zs = 30 km below the197

sea surface. The receiver line is located at range 85 km.198

We consider four di�erent sediment types, labeled LOW, MED, HIGH and199

"HIGH, with low density" respectively for low, medium and high velocity contrast200

between the crust and the water. Their properties are given in Table 1. Note that201

the properties labeled HIGH match the semi-in�nite bottom properties, which202

means that there is no sedimentary layer. Note also that the case "HIGH, with203

1 This could happen, though, in the case of an earthquake occurring right below a volcano
or a seamount, but we are not interested in these speci�c cases here
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Table 1 Properties of the semi-in�nite bottom and of the four types of sediments used. ρ is
the density, Vp is the compressional wave speed, Vs is the shear wave speed, and αp and αs

are the corresponding attenuation coe�cients expressed in dB per wavelength.

Label used Description

Semi-in�nite bottom ρ = 2500 kg.m−3, Vp = 5500 m.s−1, Vs = 3235 m.s−1

αp = 0.17 dB.λ−1
p , αs = 0.17 dB.λ−1

s

HIGH ρ = 2500 kg.m−3, Vp = 5500 m.s−1, Vs = 3235 m.s−1

αp = 0.17 dB.λ−1
p , αs = 0.17 dB.λ−1

s

MED ρ = 2200 kg.m−3, Vp = 3500 m.s−1, Vs = 2060 m.s−1

αp = 0.46 dB.λ−1
p , αs = 0.46 dB.λ−1

s

LOW ρ = 2200 kg.m−3, Vp = 2000 m.s−1, Vs = 1000 m.s−1

αp = 0.46 dB.λ−1
p , αs = 0.46 dB.λ−1

s

HIGH, with low density ρ = 2200 kg.m−3, Vp = 5500 m.s−1, Vs = 3235 m.s−1

αp = 0.17dB.λ−1
p , αs = 0.17 dB.λ−1

s

low density" is meant to highlight the e�ect of a variation in density only (in204

comparison with case HIGH).205

Let us also emphasize that in this con�guration, the sedimentary layer covers206

the whole sea�oor and not only the slope. It therefore has an in�uence on energy207

transmission, not only for the T-wave conversion but also all along the propagation208

in the water layer. This will have to be kept in mind when comparing the results209

obtained with di�erent sedimentary layers.210

In the water layer, the density is equal to 1000 kg.m−3 and the sound velocity211

is either a constant velocity of 1500 m.s−1 or a classical ocean sound-speed pro�le212

(Munk, 1974, see Figure 1, right). At the distance and frequencies considered the213

sound attenuation in the water is considered negligible (see Jensen et al., 2011).214

Several numerical simulations were performed using the time-domain spectral-215

element method mentioned above. The source is a vertical force; its source time216

function is a Ricker wavelet (second derivative of a Gaussian) with a dominant217

frequency f0 = 4 Hz. The wave �eld is computed up to a range of 110 km and218

down to a depth of 35 km, the energy coming out of this box (shown in Figure 1)219

being absorbed by perfectly matched absorbing boundary layers. For each slope220

angle between 0 and 34◦ (with an increment of one degree), eight simulations are221

performed, one for each of the four types of sediments in Table 1 for either a222
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constant sound speed in the water or a sound speed pro�le (Figure 1, right). Let223

us point out here that the maximum slope angle considered (34◦) is related to the224

choice that has been made of preserving a constant horizontal length d for the225

slope (see Figure 1, left). Beyond this value the slope can cross the sea surface.226

Each mesh is composed of ∼ 0.12 million spectral elements whose polynomial227

degree is N = 4. The total number of unique Gauss Lobatto Legendre points GLL228

in the mesh is approximately 2million. In the worst case for all these meshes, 99.9%229

of the acoustic elements ensure a sampling of the signals of at least 5 grid points230

per pressure wavelength in the �uid, and 99.9% of elements in the viscoelastic231

part ensures at least 6.5 points per shear wavelength, thus accurately sampling232

the wave �eld up to frequencies of ~10 Hz. We select a time step ∆t = 0.72 ms233

for the explicit, conditionally-stable Newmark time scheme, and simulate a total234

of 0.2 million time steps, i.e. 140.0 s. The displacement is recorded at the receiver235

line shown in Figure 1, which comprises 20 evenly-spaced receivers. All simulations236

ran simultaneously on 10,080 processor cores of a supercomputer. The whole run237

lasted approximately 2 hours. An example of the time signal corresponding to the238

(horizontal) particle velocity generated in the middle of the receiver line for the239

case labeled HIGH, with a SOFAR channel and with a slope of θ = 20◦ is shown240

in the right-hand side in Figure 2, together with the same signal but calculated241

with 0◦ slope (left-hand side).

Fig. 2 Synthetic horizontal particle velocity recorded at a receiver located in the middle of the
receiver line (see Figure 1) for the case labeled HIGH, with a SOFAR channel. Left: case with
a reference slope of θ = 0◦. Right: case with a slope of θ = 20◦. For time < 50 s the two signals
are almost identical and thus, in order to remove the body waves and to keep only the T wave,
the signal on the left (corresponding to the reference slope of θ = 0◦) is subtracted from the
signal on the right generated with a non-zero slope. Vertical particle velocity is similar.

242
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Arrivals from the P and S waves are clearly visible in both time series (they are243

almost identical below 40 s) and do not depend on the slope. The T phase appears244

only in the presence of the slope, as expected. In order to remove the body waves,245

the reference signal for a �at bottom is subtracted from the signal generated with246

a slope bottom. Such processing is of course not fully satisfactory, as the signals247

obtained may also contain energy from other phenomena than T waves that may248

overlap with it. Nevertheless such superposition is unlikely and we suppose that249

it does not occur in our con�gurations.250

4 Transmitted energy as a function of slope angle251

Let us denote u1(x, t) and u2(x, t) the horizontal and vertical T phase displacement252

�elds and P (x, t) the T-phase pressure �eld at time t and position x = (x, z),253

obtained after subtraction of the reference signals. u̇(x, t) =
√
u̇1(x, t)2 + u̇2(x, t)2254

is the norm of the particle velocity of the T phase. The �eld that represents the255

instantaneous T-wave energy per unit volume in the �uid is given by (Jensen et al.,256

2011 pp.11-12):257

E(x, t) = 1

2
ρu̇2(x, t) +

1

2

P 2(x, t)

ρ(x)c2(x)
, (1)

where ρ is the density of water and c(x) is the distribution of sound velocity.258

Let Tf refer to the �nal time of the simulation; we can then de�ne the integrated259

T-wave energy �eld by:260

E(x) =

∫ Tf

0
E(x, t) dt. (2)

This quantity is similar to the radiated seismic energy introduced by Boatwright261

and Choy (1986) and evaluated from body wave measurements. It can also be seen262

as a generalization of the T-Phase Energy Flux (TPEF) proposed by Okal (2003)263

to characterize the part of the energy generated by an earthquake source which is264

converted into a T wave. This approach was used in Bottero et al. (2018) to com-265
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pute broadband transmission loss maps from numerical simulations in the time266

domain.267

Integrating E over depth along the receiver line (situated at range L + d, see268

Figure 1) gives an averaged transmitted energy in the water layer:269

〈E〉 = 1

H

∫ 0

−H
E(L+ d, z) dz (3)

Fig. 3 Top: Transmitted T-wave energy at 85 km as a function of slope angle for four di�erent
sediments of Table 1 and for two di�erent sound speed pro�les in the ocean (Figure 1, right).
The red triangles indicate the local maxima, and the red circle indicates the position of the
trough. The blue shaded box represents the area studied by Frank et al. (2015). Bottom:
Zoom on the blue shaded area of the left picture, showing also a comparison in logarithmic
scale between our results and the curve shown in Frank et al. (2015) (re-scaled).

We compute the quantity 〈E〉 as a function of the slope angle for the four dif-270

ferent sediment types (described in Table 1) and the two di�erent velocity pro�les271
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in the ocean (shown in Figure 1, right). The result is shown in Figure 3 (top). The272

curves have a typical shape exhibiting two maxima (marked with red triangles in273

the �gure) and a trough in between. Let us �rst remark that the SOFAR channel274

does not seem to have a signi�cant in�uence on the results at this range. It can also275

be seen that low sediment densities penalize energy transmission without a�ecting276

the global shape of the transmission curves, as expected from Snell's law.277

The particular shape of these curves can be physically explained by considering278

the (quasi-)plane wave re�ection/transmission energy coe�cients of the interfaces279

considered. These coe�cients are shown in Figures 4 and 5 as the function of the280

incidence angle with respect to the normal to the surface. They were obtained281

numerically from parametric simulations (see Rosenkrantz et al., 2019). These282

coe�cients take into account the two viscoelastic crustal interfaces: the transmis-283

sion between the semi-in�nite bottom and the di�erent sediment con�gurations284

given in Table 1 and the re�ection between the water medium (here considered as285

semi-in�nite) and the sediments. The setting used to calculate these coe�cients is286

illustrated in Figures 4 and 5. It should be noted here that for the transmission287

coe�cient from the viscoelastic half-space to the water half-space the plane wave288

is a plane force source (thus composed of compressional and shear wave) whose289

direction of excitation corresponds to the direction of propagation of the plane290

wave. This ensures that the compressional to shear wave energy ratio in the in-291

cident plane wave is consistent with the setting considered in Figure 3 where a292

vertical point force has been used.293

At this point, it is important to emphasize that attenuation, in particular, plays294

a very important role in energy re�ection at the �uid/viscoelastic solid interfaces295

(see e.g. Carcione and Helle, 2004). This is particularly clear in Figure 5 at the296

top left of the middle sub-�gure, for the HIGH case which shall be taken as an297

illustration here (even if it is actually the least attenuating case). The low-re�ection298

band (high-transmission) around 30◦ corresponds to the Rayleigh angle. At this299

incidence a large part of the energy is converted into surface waves (Stoneley-300
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Scholte waves) that propagate along the interface. If the attenuation is neglected,301

the re�ection is total for this incidence angle. The trough becomes larger as the302

attenuation increases.303

Fig. 4 Top: setting of the energy transmission coe�cient shown below (Einc/Et). Bottom:
semi-in�nite bottom to sediments to water energy transmission coe�cient as a function of the
incidence angle ϕ (de�ned in the top sub-�gure) for the cases described in Table 1. These
values have been averaged over the bandwidth of the source.

It should also be noted that the presence of a sediment layer results in a304

re�ection coe�cient that depends on frequency (see HIGH with low density, LOW305

and MED cases in the top of the middle sub-�gure in Figure 5). To make it306

easier to interpret the results, the average of the coe�cients around 4 Hz will be307
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considered, which corresponds to the dominant frequency of the source. The curves308

are shown in the bottom of Figure 5. For the sake of conciseness, and because they309

are not varying much, only these averaged curves are shown for the transmission310

coe�cient.311

From these curves and geometrical ray consideration one can then attempt to312

interpret Figure 3. From a zero slope to about 10◦, when the slope increases, the313

amount of energy transmitted into the water column varies only slightly because314

the transmission coe�cient is almost constant.315

On the other hand, the number of re�ections undergone by the wavefronts be-316

fore reaching the receiver line decreases, which tends to favor better transmission.317

This e�ect is dominant compared to the variation in the re�ection coe�cient for318

subsequent re�ections on the seabed.319

For slopes from 10◦ to about 18◦ the same phenomenon continues but now the320

role of the re�ection coe�cient gets more important. At this range the wavefronts321

reaching the receivers (after one or several re�ections on the slope) steepen from322

approximately 15◦ to 30◦. This corresponds to a sharp increase in re�ection coef-323

�cient followed by a trough corresponding to the generation of surface waves (see324

Figure 5). This is particularly true in the cases MED and HIGH2. At the same325

time, the proportion of energy that reaches the slope and that is re�ected, at least326

once on it, decreases. This results in a less horizontal propagation subsequently327

and thus in more re�ections to reach the receivers.328

These two phenomena both explain the �rst maximum and the following trough.329

When the slope further steepens (above about 18◦), the incidence angles (rela-330

tive to the vertical) of the wavefronts in the water column further increase and get331

above about 30◦. These values are associated with a sharp growth of the re�ection332

coe�cient at the sea�oor. This strong e�ect prevails over all the others and ex-333

plains the second steep rise of the downslope converted T-wave transmission with334

slope. After this angle the transmitted energy is only governed by the seabed to335

2 In the case MED the re�ection peak mentionned is around 22◦ while in the case HIGH it
is around 27◦ (see Figure 5, bottom)
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water transmission coe�cient, which decreases slowly, and by the re�ection coef-336

�cient for incidence angles above 35◦, which is constant in the case HIGH and337

�uctuates in the cases MED and LOW. These e�ects explain the presence of the338

second maximum in the curves in Figure 3.339

When decreasing the impedance contrast between the water and the sediments340

(going from HIGH to LOW), the overall shape of the curve is preserved but is341

damped because of the lower average re�ection coe�cients.342

The shift towards the higher slope angles when decreasing the impedance con-343

trast is explained by the refraction of the incident wave at the seabed. The softer344

the sediments, the more vertically the energy spreads once in the water.345

Figure 3 (bottom) shows a comparison of our numerical results with those of346

Frank et al. (2015) obtained, for small slopes, based on a parabolic equation solver.347

Let us mention that signi�cant di�erences exist between the setting of their nu-348

merical model and ours: they used an axisymmetric geometry3, they considered349

a homogeneous sea�oor, similar to our case labeled MED but with a lower atten-350

uation of αp = 0.05 dB.λ−1
p , αs = 0.10 dB.λ−1

s , a 5 Hz monochromatic source351

located at Zs = 10 km (instead of a broadband source with dominant frequency352

4 Hz at Zs = 30 km in our case), a receiver line at range 150 km (instead of 85353

km) and, more importantly, a di�erent way of parameterizing the slope variations.354

In their model, the depth of the top of the slope is �xed and the horizontal ex-355

tent of the slope consequently changes for each slope angle. This implies that the356

solid angle (labeled Ω in Figure 1) varies for each slope, thus favoring the lowest357

slopes (which receive more energy) compared to steepest ones. In our opinion,358

this is the main reason for the slight di�erences observed between the results of359

the two models. Nevertheless, Frank et al. (2015) reached the same conclusion360

in the slope range 0◦ to 10◦: there is a smooth increase of transmitted energy361

with increasing slope angle. We have seen in this section that steeper continental362

3 As the parabolic equation does not take into account back-scattered energy, they do not
face the problem of multiple re�ections between the slope and the symmetry axis that we
mentioned and that prevented us from using axisymmetric calculations in our case.
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slopes actually involve more complicated physical phenomena than gentle slopes.363

However, steep slopes are frequently encountered at atolls (Talandier and Okal,364

1998) or at seamounts and ridges (see e.g. Chapman and Marrett, 2006). It is also365

worth mentioning that, in our study, the di�erences estimated in energy transmis-366

sion between a hard (such as our case labeled HIGH for example) gently-dipping367

seabed (say a 5◦ slope) and a steeper one (14◦) can reach a factor of 100, which368

could bias localization techniques towards steep slopes. This was already observed369

and documented in the literature (Northrop, 1962; De Groot-Hedlin and Orcutt,370

2000), although not quanti�ed to our knowledge. It is interesting to note that the371

opposite situation is also possible. Indeed, di�erences in energy transmission be-372

tween an optimally-dipping area (i.e. a slope of 14◦ for our case labeled HIGH for373

example) and a steeper slope but located in the transmission trough (17◦) may374

bias the estimated source locations towards the lowest slopes.375

5 In�uence of source position on T-wave energy and duration376

T-wave amplitude and duration are known to strongly vary depending on the377

position of the source with respect to the bathymetry (see e.g. Williams et al.,378

2006; Lecoulant et al., 2019. In this section this particular aspect will be investi-379

gated within an energy-based framework. Let us �rst de�ne T-wave duration for380

this study. Energy and duration are two quantities of equal importance because381

a large energy distributed over a long period of time can go unnoticed in the382

presence of noise, and conversely, a limited but concentrated energy over a short383

period is generally more visible. In equations (1), (2) and (3) we have de�ned the384

instantaneous T-wave energy E(x, t), the integrated T-wave energy E(x) and the385

averaged transmitted T-wave energy 〈E〉, whose computation has been detailed386

above. One can also de�ne the maximum T-wave energy �eld:387

M(x) = max
t<Tf

E(x, t). (4)
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where Tf is the physical duration of the simulation. It gives the maximum instan-388

taneous energy at each point and provides a way of de�ning an "e�ective" T-wave389

duration �eld as:390

T (x) = 2
E(x)

M(x)
. (5)

This quantity has the dimension of a duration, which is formally the duration391

of a signal considered as triangular4. Computing this �eld gives information on392

the temporal and spatial structure of the arrivals, keeping track of their spreading393

over time at any point of the model. As for the integrated energy, we can then394

de�ne an averaged transmitted T-wave duration in the water layer:395

〈T 〉 = 1

H

∫ 0

−H
T (L+ d, z) dz, (6)

which is the average e�ective duration of the T waves generated by the earthquake396

considered and recorded at a horizontal distance L+ d from the top of the slope.397

This approach is also used in Bottero et al. (2018) to calculate time dispersion398

maps from numerical simulations in the time domain.399

We recall that the source we used in all our numerical simulations is a vertical400

force whose radiation pattern may in�uence the energy distribution. Nevertheless,401

as a �rst step, we chose to keep this simple source model for all numerical simula-402

tions. The study of the in�uence of the source radiation pattern will be considered403

in future studies.404

To illustrate the importance of the source position on the T-wave structure, we405

have computed the averaged transmitted T-wave energy 〈E〉 and duration 〈T 〉 for406

351 source positions (324 being below the sea�oor level). Contrary to the previous407

sections, the slope does not vary and is set to 20◦. The medium properties are408

those of the case labeled MED in Table 1 and we consider a sound speed pro�le409

in the water layer. Before computing the instantaneous T-wave energy E(x, t), the410

body waves have to be subtracted from the signals. For this purpose, a reference411

4 In the case of triangular signals this e�ective duration is equal to their actual duration.
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run with a �at bottom is performed for each of the 324 sources below the sea�oor.412

For the sources situated above the ocean �oor no subtraction is needed, only T413

waves are created in this case. For the sources situated below the ocean depth the414

horizontal and vertical displacement in the cases with and without the slope are415

subtracted point to point for all time and positions (see Figure 2 for an example416

of such signals) before computing the instantaneous energy (1) needed for the417

averaged energy (3) and duration (6). This subtraction procedure is not perfect418

for the sources situated on the left side of the slope at all depths. Especially for419

those located at the shallowest depths and at the greatest horizontal distances from420

the slope. In these cases a signi�cant amount of the body wave energy reaching421

the receiver line will be di�erent between the �at reference and the sloping model,422

which may result in a miscalculation of the T-wave energy. That is why the results423

will be later compared with and without subtraction.424

The simulations were run simultaneously on 8, 100 processor cores and lasted425

approximately one hour. The results are summarized in Figure 6.426

The �rst, and probably the most important, point that can be made here is427

that these maps are not homogeneous: there are large variations in energy and428

duration between T phases generated by sources located at di�erent positions429

with respect to the slope. The patterns produced are complex. We shall attempt430

below to interpret them.431

In the vicinity of the interface between the ocean and the sea�oor some artifacts432

can be observed. They are explained by the fact that the body waves generated433

with and without a slope are not strictly identical anymore for these very shallow434

source positions. For that reason, we will also compare the energies and durations435

without subtraction (i.e. including the body waves).436

Let us �rst discuss the di�erences between the quantities computed from the437

full signal and those computed from the subtracted signals assumed to represent438

T waves only.439
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Apart from the artifact, explained above, at the third line of sources the images440

are very similar, which means that, in most cases, body waves do not in�uence441

the results much. Consequently, the right -or the left- hand side of Figure 6 can442

be used for analysis.443

The region right below the bottom of the slope and the outset of the abyssal444

plain are however exceptions to note. The results computed in this area show that445

T waves can be generated, by downslope conversion, from earthquakes located446

beneath the abyssal plain but only above a certain depth, contrary to body waves447

that can be generated at any depth. It seems that this depth increases with the448

distance to the slope, although this has to be con�rmed by calculations over a449

wider area. This phenomenon could have interesting implications and explain some450

frequent outliers to the rule "epicenters at the lower end, and [...] seaward, of the451

continental slope are typically weak or not received" (Johnson et al., 1967) even452

without considering scattering phenomena. Example of such a signal is shown in453

Figure 7 (bottom) it has been recorded at range L+ d in the middle of the water454

layer from a source located at the red triangle shown on Figure 6.455

It can also be noted that earthquakes that occur in the immediate vicinity of456

the slope are particularly prone to generate strong and impulsive (short duration)457

T waves. This result was of course expected because in that area an important part458

of the source energy reaches the slope and thus geometrical spreading is minimum.459

Besides, the angular sector under which the source sees the slope is maximum460

there. Looking into more details, we can see that the energy and duration maps461

have an interesting pattern: some regions are favored for T-wave generation and462

exhibit high energies and short durations.463

Let us �rst note that, in the case considered, both P and S wave speeds in the464

Earth's crust (sediment and semi-in�nite bottom) are greater than the sound speed465

in the ocean. Consequently, Snell's law implies that no energy can propagate in466

the ocean horizontally directly by refraction, which means that, even for sources in467
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favored areas, energy transmission implies at least two re�ections5. Our numerical468

simulations suggest that three source regions favor T-wave generation:469

� The �rst region is situated approximately along the line starting at the top, or470

at the middle, of the slope and tilted by an angle of 45◦ with respect to the471

vertical (dashed line in Figure 6), that is to say when the epicentral distance472

to the continental slope and the depth of the hypocenter are approximately473

the same. This region corresponds to a tradeo� between the amount of energy474

re�ected on the slope and thus redirected towards the ocean and the grazing475

angles (angle with respect to the horizontal direction) of the redirected signals.476

Above that region the energy re�ected on the slope is lower but has a smaller477

grazing angle, while below that region more energy is re�ected but has larger478

grazing angle thereafter. The vicinity of the normal to the slope corresponds479

to the area where the solid angle from which the source sees the slope is max-480

imum. This favored region has long been known empirically (Båth, 1954) and481

an interpretation based on ray tracing was made by Johnson et al. (1963). Our482

study also shows that the top of slopes is e�cient at generating T waves be-483

cause it allows for more energy to be redirected with low grazing angle. Let us484

�nally note that Figure 6 shows that this favored region exhibits relatively ho-485

mogeneous energy but very di�erent durations, suggesting a variable character486

of T waves in that zone.487

� The second region of interest is situated along the vertical of the slope, or along488

a direction slightly oriented leftward (near the solid line in Figure 6). It is in this489

region that we carried out the parametric study on the in�uence of the slope490

presented in the previous section. This area allows for a maximum amount of491

energy to be re�ected on the slope. Our numerical simulations predict high492

amplitude and rather short duration T waves there.493

5 One could also think about a di�raction phenomenon on the sharp edges of the slope. Al-
though we do observe this phenomenon in our simulations, the di�racted signals have negligible
amplitude compared to the re�ected ones
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� To a lesser extent, a third favored area is observed in Figure 6. It approximately494

follows a line originating at the top of the slope and oriented at 75◦ with respect495

to the vertical (the dotted line in Figure 6). The energy emitted from a source496

in this region and re�ected o� the slope, although weaker, has a small grazing497

angle. More importantly, earthquakes located in this area are optimal for the498

generation of energy that propagates between the shelf and the sea surface. Due499

to the successive re�ections on the shelf, these T waves have a long duration.500

As an illustration, two signals of comparable energy but of di�erent duration (ratio501

of 1/3) are shown in Figure 7 (top). They have been recorded at range L+ d (see502

Figure 1) in the middle of the water layer from a source either at the blue circle503

or at the green square shown in Figure 6.504

Earthquake magnitude and T-wave energy are known to be weakly correlated505

(see e.g. Okal, 2007). The main explanation for this relates to the frequency band506

used in estimating earthquake magnitude (anywhere from 1 Hz to 0.01 Hz or less507

for CMT inversions), much less than the frequencies involved in T phases (typically508

2 to 10 Hz). Note that the existence of favoured regions for T-wave generation may509

reinforce this discrepancy.510

Additionally, if the rupture zone crosses several areas with di�erent transmis-511

sion potentials, one can imagine that only some favored parts of the rupture, but512

not necessarily the most energetic, will e�ectively contribute to the T wave, which513

makes the phenomenon even more complex. It is also interesting to remark that514

for the case studied we do not observe any clear trend between source depth and515

signal duration for downslope generated T waves. However, T-waves generated at516

the right of the line passing from the slope and oriented at an angle of 45◦ with517

respect to the vertical (dashed line in Figure 6) tend to be of shorter duration.518

If onset time and duration evolve similarly (which is not necessarily true), this519

observation di�ers from the observations of Williams et al. (2006), who reported520

a surprising correlation between rise time and water depth above the event. This521



On the in�uence of slopes, source, seabed and water column properties on T-waves 23

could suggest that the T waves observed by Williams et al. (2006) were generated522

by scattering rather than by downslope conversion.523

6 Conclusions and future work524

In this paper, new observations have been made using parametric numerical sim-525

ulations. We have quanti�ed the importance of seabed slope, seabed seismic prop-526

erties, velocity pro�le in the ocean and source position in the generation of a527

two-dimensional downslope converted T wave. T-wave energy has been identi�ed528

as particularly sensitive to the slope of the seabed, which is seen as the most im-529

portant parameter, then to seismic velocities in the seabed, and �nally to source530

position. For the quantities studied in this paper the SOFAR channel does not531

seem to play a signi�cant role at least in this frequency band (2-10 Hz) and for532

short distances between epicenter and receivers (85 km). Our experience tells us533

that this will remain true for distances up to several hundred kilometers. However,534

this will probably no longer be the case for long propagation distances (> 5000535

km). Low density sediments are seen to favor the generation of T waves by downs-536

lope conversion, as predicted by ray theory. For a given source position, downslope537

energy transmission is maximum for typically two slope angles. As more energy538

can be potentially converted at these slopes, we suggest that this can bias local-539

ization algorithms towards them, and not necessarily towards steepest slopes, as540

often supposed, despite the fact that it is the most common situation.541

Energy and duration maps have been constructed in order to analyze the in-542

�uence of the source position for a given slope. This study showed that large vari-543

ations in energy and duration can exist between T phases generated by sources544

located at di�erent positions with respect to the slope. The complex patterns545

observed may partly account for the documented poor correlation between earth-546

quake magnitude and T-wave energy (together with the di�erent frequency bands547

commonly used to calculate these quantities).548
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These maps also hint that T waves can be generated, by downslope conver-549

sion, following earthquakes that occur beneath abyssal plains, but only above a550

given depth depending on the distance to the slope. This observation could have551

interesting implications and explain some of the exceptions to the rule "epicenters552

at the lower end, and [...] seaward, of the continental slope are typically weak or553

not received" (Johnson et al., 1967).554

The above results illustrate how complex T-wave generation phenomena can555

be. They show that the energy of these waves not only depends on the magnitude556

of the earthquake but also -and in comparable proportions- on the velocity of the557

sediments, on the position of the seismic event and on seabed bathymetry. Let us558

note that the radiation pattern of the source could have a signi�cant in�uence as559

well, further increasing the complexity of the phenomenon, and would deserve a560

study in its own right.561

Our work suggests that due to the extreme complexity of T-wave conversion562

and the limited availability of analytical models, earthquake localization based on563

T waves will be di�cult to improve with conventional methods. Nevertheless the564

use of machine learning methods seems particularly promising in this context. The565

current impressive growth in this �eld, which manages to deal with increasingly566

complex problems, may probably create very signi�cant advances in the use of T567

waves for earthquake localization using T waves. (see for example Niu et al., 2017568

in the context of ocean acoustic source localization).569

A companion paper dealing with the upslope conversion/re�ection of T waves570

when reaching the shore will be published soon separately.571
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Fig. 5 Top: setting of the energy re�ection coe�cient shown below (Einc/Er). Middle: energy
re�ection coe�cient for oceanic plane waves as a function of frequency and incidence angle
ϕ (de�ned in the top sub-�gure) at the water-sediments interface for the cases described in
Table 1. The frequency range shown corresponds to the bandwidth of the source. Bottom:
same but averaged over the frequencies shown.
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Fig. 7 T-wave horizontal displacement (after body wave subtraction) generated by the three
earthquakes marked as a blue circle, a green square and a red triangle in Figure 6 respectively.
The green signal is more impulsive compared to the blue and red ones.


