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The intermittent dynamics of slow drainage flows in a porous medium is studied

experimentally. This kind of two-phase flow is characterized by a rich burst activity and our

setup allows us to characterize those bursts directly via images of the flow and pressure

measurements. Two different boundary conditions were analyzed: controlled withdrawal

rate (CWR) and controlled imposed pressure (CIP). We have characterized geometrical

and statistical properties of the bursts from images and pressure measurements. We

have shown that in spite of leading to similar final invasion patterns, some dynamical

features of the invasion differ considerably between the CWR and CIP boundary

conditions. In particular, their pressure signatures are very distinct, which then translates

into very distinct features on the power spectrum density of the pressure signals. A fully

integrable analytical framework is presented which successfully describes the scaling

features of the power spectrum for the CIP case.

Keywords: porous media, burst dynamics, fluid mechanics, drainage, multiphase flow, intermittency, critical

phenomena

1. INTRODUCTION

The topic of multiphase flow in porous media has received widespread attention by the scientific
community in the past decades [1–11]. In addition to its inherent physical interest (pattern
formation [12–18], intermittent dynamics [3, 19–24], collective phenomena [25–29], etc.), the
topic naturally receives focus due to its immediate industrial and environmental applications. The
description of flows inside natural porous media, such as soils and rocks, is a theme of direct
environmental impact, some applications being the study of groundwater flows [30, 31] and the
treatment of soil contaminants [32–34]. The economical aspects of porous media flows cannot be
understated. Its knowledge lies in the heart of many new technologies developed for example in the
prospection and exploration of oil and gas [35–42], fuel cell [43], and solar cell technology [44].

Scientists have studied the morphology and dynamics of porous media flows and proposed a set
of numerical schemes able to reproduce the observed macroscopic patterns [2, 3, 5, 7, 10, 45–52]
and relevant pore-scale mechanisms [6, 9, 26, 27, 47, 53–55]. These studies have led to a deeper
understanding of the pore-scale forces that are ultimately responsible for the macroscopic flow
properties and finally to the possible upscaling of the results [6, 8, 48].

Another interesting aspect of this problem is the fact that the dynamics of fluids in porous
media very frequently presents intermittent behavior [3, 19, 23, 24, 53], with long intervals of
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stagnation followed by short intervals of strong activity in an
irregular aperiodic fashion [56–58]. Intermittent behavior has
been observed in various physical, biological, and economical
systems [20, 59–71]. The occurrence of intermittent phenomena
in vastly different fields points to the fact that its origin is
typically not connected to specific details of the systems. Instead,
intermittent behavior is generally associated to a competition
between an adaptive external force driving the dynamics and
an internal random resistance against that force. In the case of
flow in porous media, the external force could come for example
from an applied pressure difference across the medium, while the
internal resistance is caused by the narrower or broader pore-
throats, whose capillary pressure thresholds need to be overcome
to give continuation to the invasion [3, 19, 53].

In the present work we will show experimental results on
the morphology and dynamics of invasion bursts during two-
phase flow in porous media. The flows studied are slow enough
to be in the so-called capillary regime, in which capillary forces
are typically much stronger than viscous ones [3, 5]. We will
employ artificially developed systems driven by two kinds of
boundary conditions: controlled withdrawal rate (CWR) and
controlled imposed pressure (CIP). Our experimental setup
allows us to characterize the dynamics both by direct imaging
of the flow and by local pressure measurements. For the CIP
boundary condition, we present results related to the statistics
of bursts, their morphology and orientation within the medium,
as measured directly from the images of the flow. For the
CWR boundary condition, we focus on the statistics of bursts
defined over the pressure signal, following established literature
conventions [72]. We will show that in spite of having similar
overall morphology, the invasion dynamics is sensitive to the
kind of boundary condition driving the flow. The pressure
signature is clearly different and this difference is translated into
the power spectral density (PSD) associated with the fluctuations
in the measured pressure that follow the invasion events. It has
been shown that for the systems driven by the CIP boundary
condition, the pressure signal PSD presents an interesting 1/f
scaling regime (pink noise) [23]. The observed PSD scaling
is further described by employing an analytically integrable
general mathematical framework, which, when reduced to a
specific set of conditions, predicts both the 1/f scaling for lower
frequencies, and a transition to 1/f 2 scaling for intermediate
frequencies (brown noise), also observed experimentally. The
general formulation of the analytical framework for the PSD has
the potential to find applications in a much broader class of
problems than the specific systems discussed here.

2. METHODOLOGY

2.1. Description of the Experiment
The experimental setup employed is shown schematically in
Figure 1A. We used a modified Hele-Shaw cell [73], filled with
a monolayer of glass beads which forms the porous network.
The beads have diameters a in the range 1.0 < a < 1.2 mm.
The cell is made of one rigid rectangular Plexiglas plate (top
plate) against which a layer of contact paper is attached with
the sticky side facing away from the plate. The beads are
randomly thrown onto the contact paper and get attached

upon contact with the glue. After thoroughly filling the contact
paper surface with beads, the system is shaken to ensure that
the beads form a monolayer. A filter made of a spongeous
material with small pores is placed close to the outlet of
the model (the purpose of this filter will be soon explained).
Silicon glue is used to define the in-plane boundaries of the
model and another contact paper sheet is placed on top of it
(with the sticky side facing the beads). The porous matrix is
therefore bounded on top and bottom by the contact paper
layers and on the sides by the silicon glue. The whole system
is placed on the top of a pressure cushion, formed by a
membrane filled with water connected to a reservoir placed
at a fixed height of ca. 3 m. This cushion presses the beads
(sandwiched in-between the contact paper sheets) against the
upper Plexiglas plate and ensures that the beads won’t move
during the experiment, thus keeping the quasi-2D geometry of
the medium despite the variations in bead diameter. In order
to make the whole system more robust and avoid bending of
the Plexiglas plate, an additional heavy glass plate is placed on
top. Channels for the inlets and outlets had been previously
milled in the Plexiglas plate and cuts were made in the upper
contact paper sheet such that the liquid can be injected into
and withdrawn from the porous network. Since the cell is
placed horizontally, gravitational effects to the flow can be
disregarded. From top to bottom the layers of the system
are: glass plate—Plexiglas plate—contact paper sheet—porous
matrix (glass beads)—contact paper sheet—pressure cushion—
Plexiglas plate (see Figure 1A). Images of the flow are taken
from the top by a digital camera (NIKON D7100) and pressure
measurements are made at the outlet of the model with electronic
pressure sensors (Honeywell 26PCAFG6G). The porous matrix
was initially filled with a wetting viscous liquid composed of a
mixture of glycerol (80% in weight) and water (20% in weight)
whose kinematic viscosity, density and surface tension were
measured to be, respectively, ν = 4.25 10−5m2/s, ρ =
1.205 g/cm3 and γ = 0.064 N/m. Since the medium is initially
completely wet by the liquid, the contact angle is always found to
present low values (measured within the liquid phase), although
its exact value varies during a pore invasion event due to
dynamical effects.

In each experiment, air (non-wetting phase) invades the
porous medium from the inlet channel, thus displacing the liquid
(wetting phase) previously filling the pore spaces. Since in our
experiments the non-wetting phase is the invading phase, we
call them drainage experiments (in opposition to imbibition
experiments in which the wetting phase invades the medium).
Figure 1B shows a typical pore invasion event (imaged with
a macro lens to enhance details). The invasion of a given
pore happens when the capillary pressure pc, i.e., the pressure
difference between the non-wetting and wetting phases, pc =
pnw − pw, is high enough to overcome the capillary pressure
threshold ptc associated with the geometry of the pore-throat
giving access to that specific pore. Narrower pore-throats present
higher values of capillary pressure threshold in accordance to
the Young-Laplace equation [31], and are, therefore, harder to
invade. During the dynamics, the capillary pressure builds up
until the invasion of the widest pore-throat available to the air-
liquid interface happens (the one having the lowest capillary
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FIGURE 1 | (A) Diagram of the experimental setup, see text. The liquid outlet on the right is connected to one of the modules shown in the dashed squares,

depending on the choice of the boundary condition (controlled imposed pressure—CIP, or controlled withdrawal rate—CWR). In the CWR case, the outlet is just

connected to the syringe in the pump, and in the CIP case, it is connected to the external reservoir placed above the moving platform. On the top we show a typical

image of the experiment and a detailed zoomed in section showing the structure of the porous network, the invading air phase (white) and the defending liquid phase

(blue). (B) A typical pore invasion event, imaged with a macro lens. Air invades the defending liquid through the widest pore-throat available to the liquid-air interface at

that time (marked by the red arrow on the left image). After the invasion, a new set of pore-throats becomes available to the interface. Adapted from Moura et al. [23]

under the Creative Commons CCBY license.

pressure threshold). Once the pore connected to that pore-throat
has been invaded, a new set of pore-throats becomes available
for invasion and if one (or more) of these throats happens to
have sufficiently low values of capillary pressure threshold ptc,
they can also be invaded without further increasing the capillary
pressure, giving rise to the characteristic burst dynamics we study
[3, 46, 74]. These invasion events are followed by characteristic
pulses in themeasured pressure signal, having a typical relaxation
signature which is nearly linear in time, for the CWR boundary
condition, or exponential, for the CIP boundary condition, as we
shall see in details in section 3.3.

The placement of the filter at the outlet boundary allows
for the invasion to continue within the model even after
breakthrough is achieved, i.e., even after the air phase first
percolates through themodel, forming a sample spanning cluster.
The invasion continues until the moment in which all pores
connected to the filter are invaded and the non-wetting fluid
saturation reaches its final residual value. We recall that the
saturation S of a given phase is understood as the ratio between
the volume occupied by that phase in the porous medium and the
total pore volume. The placement of the filter allows for a better

statistics of the bursts in the vicinity of the outlet region, since
the burst count in that area would be much reduced in the case
without the filter in which the invasion stops once breakthrough
is achieved. Next we move on to the description of the different
boundary conditions driving the flow.

2.2. Description of the Boundary
Conditions
Two distinct kinds of boundary conditions were used to drive the
dynamics of the flow. We will call them controlled withdrawal
rate (CWR) and controlled imposed pressure (CIP) boundary
conditions. In this section we will describe them, starting from
the latter.

2.2.1. Controlled Imposed Pressure (CIP)

The controlled imposed pressure (CIP) boundary condition was
designed in order to drive the fluid invasion in a quasi-static
manner such that the system would evolve from one equilibrium
configuration to another in a slow, controlled fashion. In order
to achieve that, the pressure difference across the model had to
be dynamically controlled in such a way that it would be just
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enough to drive the invasion, but not exceedingly high. Had the
imposed pressure difference been too high, the invasion would
happen fast, and unwanted viscous and inertial effects would be
present [75], removing the system from the capillary regime that
we propose to study.

We have designed a mechanism composed of an external
liquid reservoir (whose detailed description we postpone to
Appendix 1 in Supplementary Material) and a logical feedback
loop in order to control the pressure difference across the
model. The outlet of the system is connected to the liquid
reservoir by means of a continuous column of liquid. This
reservoir is placed on the top of a moving platform whose
height can be electronically set using a step-motor connected
to a computer. By controlling the height of the reservoir, one
can effectively control the pressure in the liquid phase (the
pressure in the air phase is constant and equal to atmospheric
pressure since the inlets are kept open in all experiments). The
moving platform, liquid reservoir, and an extra syringe pump
(whose detailed functionality is described in Appendix 1 in
Supplementary Material) form what we call the CIP module,
shown in the bottom dashed square on the right of Figure 1A.
Once the hydrostatic pressure caused by the height difference h
(see Figure 1A) is enough to overcome the minimum value of
capillary pressure threshold associated with the line of pores-
throats at the inlet, i.e., once ρgh > min(ptc) where g is the
gravitational acceleration, the dynamics is triggered and the pore
associated with the throat having the lowest capillary pressure
threshold ptc is invaded. The liquid-air interface has now access to
a set of new pore-throats, and if their values of ptc are low enough
(i.e., if they are wide enough) the invasion progresses until the
moment in which all pore-throats available to the interface have
capillary pressure thresholds higher than the imposed capillary
pressure, i.e., until the condition ptc > ρgh holds true for all
available pore-throats. At this moment we say that the system
has reached an equilibrium configuration and one has to increase
the imposed capillary pressure by lowering again the position of
the liquid reservoir (thus increasing the height difference h and
the imposed capillary pressure pc = ρgh) up to the moment
in which the invasion starts again. We define a burst in the
CIP driven system as any connected set of pores and pore-
throats invaded between two time instants in which the imposed
capillary pressure had to be increased.

The invasion dynamics is characterized by intervals of
inactivity punctuated by localized burst events. This stick-slip
process repeats itself throughout the experiment and it would
be unpractical (and also very prone to errors) to keep a manual
control of the imposed capillary pressure (the external reservoir
height). In order to tackle this issue, we have devised an image-
based logical feedback loop to handle the control. Figure 2 shows
a schematic of this feedback loop. The images recorded from the
flow are thresholded to isolate the area A of the air phase. If this
area is growing, as in the interval I–II in the figure, in which the
area goes from A = A0 to A = A0 + dA, more pores are being
invaded andwe keep the imposed capillary pressure at the current
level, say pc = p0. If, on the other hand, we perceive that the
area growth didn’t happen for a long enough interval (a bit longer
than 1 min in our case), we say the front has reached a stationary

configuration and in order to keep driving the dynamics, we
increase the capillary pressure to a value pc = p0 + dp. This is
done by lowering the liquid reservoir by a given value dh related
to dp by dp = ρgdh.

We record images every 15 s during the whole fluid invasion,
and the image analysis for the feedback loop is done every 5th
image. That means we compare the area of the air phase in, say,
the 10th image with that of the 5th in order to decide between the
states moving/not moving the liquid reservoir. The amount dh by
which the reservoir is lowered is one of our control parameters.
During the initial phase of the experiment, the liquid level in
the reservoir is at the same height as the porous medium and
the system needs to build up a considerable pressure until the
invasion starts, therefore, we have chosen a larger dh = dhmax

for this initial process and a smaller dh = dhmin to be used after
the invasion has started (after the invading phase area reaches a
certain small threshold). The values used were dhmax = 100 µm
and dhmin = 10 µm corresponding to respective increments in
the imposed capillary pressure of approximately dpmax = 1.2 Pa
and dpmin = 0.12 Pa. The value of dh was chosen to satisfy
the accuracy condition that the height would typically have to
be increased several times before new pores are invaded. As
long as this condition is satisfied, the results obtained should be
independent of the specific value of dh.

One particular point of interest for driving the system
under the CIP boundary condition is the fact that in this
case the invasion falls into the general class of problems in
which an interface moves under the influence of an external
(adaptive) force through a medium with quenched disorder.
These problems have received a great dose of interest from
the scientific community and have been extensively studied
theoretically and numerically. Special attention has been paid
to the transitions that occur as the external force is increased
up to a critical threshold and several scaling relations between
the exponents characterizing these critical transitions have been
proposed [76, 77]. Our experimental setup thus allows us to
directly test the applicability of some of those relations in porous
media flows [23].

2.2.2. Controlled Withdrawal Rate

The controlled withdrawal rate (CWR) condition is relatively
simpler to implement. Its experimental realization is done by
replacing the CIP module in Figure 1A by a syringe pump
attached to the model’s outlet. There is no need for a feedback
loop to control the experiments. In the experiments reported
here, we used a constant slow withdrawal rate of q = 0.005
ml/min, thus assuring that the system remains in the capillary
regime [5]. The associated capillary number is given by Ca =
ρνq/6γ = 6.1 · 10−7, where 6 = 1.1 · 10−4m2 is the cross-
section of the model. The CWR boundary condition is applied in
the majority of two-phase flows studies present in the literature
[3, 19, 49, 52]. For the CIP we cannot compute the Capillary
number using the same formula, since the flow rate q is not
constant. Nevertheless, since the duration of both experiments is
similar, we can assume their capillary numbers to be comparable.

When applying a syringe pump to drive the system, one
important detail to be considered is the choice between
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FIGURE 2 | Feedback loop used to drive the CIP experiments. This figure shows a detail from the black and white thresholded image, where the air phase is white

and the liquid phase together with the porous medium are black. From I to II, the area of the air phase has grown from A0 to A0 + dA, so the capillary pressure is kept

constant at p0 (no change in the liquid reservoir position). From II to III, the area of the air phase does not change, which means the capillary pressure must be

increased from p0 to p0 + dp (by lowering the liquid reservoir and thus decreasing the pressure in the liquid phase). This analysis is done “on the fly” as the experiment

is performed. Adapted from Moura et al. [74] under the Creative Commons CCBY license.

withdrawal of the wetting phase or injection of the non-wetting
phase (in the case of drainage studied here). If the compressibility
of both phases is negligible, as, for example, in the case of slow
displacement of one liquid by another, these two options lead
to similar results. Nevertheless, in the case in which one of the
phases is compressible, it is preferable to have the syringe pump
connected to the other phase, in order to avoid additional effects
to the dynamics arising from compressibility (unless those effects
are precisely the object of the study, see Jankov et al. [78]). Since
air is compressible, we made the choice of having the syringe
pump withdrawing the liquid instead.

Another important aspect of this boundary condition is the
fact that the liquid displaced from one pore when it is invaded by
air cannot immediately leave the system. This happens because
the fixed withdrawal rate and typical flux rates during the
bursts have very different time scales. In the time scale of a
single pore invasion, the volume available for the fluid in the
syringe is essentially unaltered. Since the displaced fluid has
to go somewhere, it is redistributed to the liquid-air interface
in the pore-throats in the vicinity of the invaded pore. This
important interface back-contraction effect is responsible for
the Haines jumps [53] in the capillary pressure following each
pore invasion and has been successfully incorporated into some
invasion percolation models to simulate two-phase flow in
porous media [3, 19].

3. RESULTS AND DISCUSSIONS

3.1. Dynamics of the Air Saturation
To give an idea of the evolution of an experiment, we show
in Figure 3A a sequence of snapshots of the flow (here driven
by controlling the imposed pressure—CIP boundary condition).
The current time (in hours) and imposed capillary pressure
(in Pascals) are shown under each image. The time difference
between the first and last images is about 82 h. The air inlet is on
the left and the filter is the black stripe on the right. In Figure 3B,
we show a spatiotemporal map of the full invasion. The color

map gives the invasion time of each pore in the system. Notice
that if the outlet filter were not present, the invasion would have
stopped at the moment of breakthrough, when the air phase first
percolates through the model. This corresponds to t ≈ 60 h in
Figure 3B. Without the filter, the whole red region in the figure
would not have been invaded.

The spatiotemporal map shown in Figure 3B is a very useful
matrix: once this map is computed, one does not need to rely on
a large collection of pictures/video any longer. In practice this
brings the benefit of dramatically reducing the computational
time for any further analysis.

Since we are controlling the imposed pressure (by controlling
the level of the external reservoir, see Figure 1A), we can also
define a pressure map for the flow, here shown in Figure 3C. The
color code (shifted with respect to Figure 3B to aid visualization)
indicates the imposed capillary pressure during the invasion of a
given pore. Notice that for the system studied here, the majority
of the invasion happens in a relatively narrow band of imposed
pressures between 420 Pa and 480 Pa.

The box counting fractal dimension [79] of the invading
structure was measured to be D = 1.76 ± 0.05 for CIP and
D = 1.75 ± 0.05 for CWR, therefore, with respect to the
morphology, one can say that both boundary conditions yield
similar structures (for similar capillary numbers). Nevertheless,
despite these similarities in morphology, there are some very
clear differences in the dynamics of the different systems. In
particular, the evolution in time of the air phase saturation
happens very differently. For the CWR, since the withdrawal rate
of the liquid is constant, externally set by the syringe pump, we
expect the area growth of the air phase to happen linearly, in a
steady controlled manner, following the same rate of the imposed
withdrawing. This behavior is observed in Figure 4, where the
phase saturation is determined directly from the images of the
flow. The red curve (bottom) shows the data for the CWR case.
We see that once the invasion starts, it progresses at the constant
rate imposed by the syringe pump. Conversely, for the CIP
boundary condition, the air saturation evolution happens in a
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FIGURE 3 | (A) Images from the drainage process driven by the CIP boundary condition. The time t of each image is shown in hours and the instantaneous capillary

pressure pc in Pascal. The porous medium is initially saturated with the liquid phase (blue) which is then gradually displaced by the invading air phase (white). On (B)

we show a spatiotemporal map of the invasion, the color code indicating the invasion time of a given pore. On (C) we show the imposed pressure map, in which the

color code denotes the imposed pressure (given by the height of the external reservoir), at which the invasion of a given pore occurred.

much more intermittent fashion, in which intervals of stagnation
are followed by periods of sudden growth, as shown in the blue
curve (top) in Figure 4 and more clearly in the zoomed-in inset.
These differences in the dynamics of invasion will be reflected
later in the power spectral density of the pressure signal, to be
analyzed in section 3.5.

3.2. Geometrical Characterization of the
CIP Bursts
Our setup allows us to directly visualize the invasion bursts from
the images of the flow. Let us consider the experiment shown in

Figure 3 in which the system is driven under the CIP boundary

condition. In an ideal scenario, with infinite precision, once
the system reaches an equilibrium state, i.e., one at which the

imposed pressure difference is not enough to invade any of the

pore-throats available to the liquid-air interface, we would like
to be able to increase the pressure difference ever so slightly to
trigger the invasion through one and only one of the pore-throats
(the widest among the ones available to the liquid-air interface).
A burst could then be naturally defined as the region that is
invaded following the invasion of this particular pore-throat
until the interface reaches a configuration in which again all
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FIGURE 4 | Temporal growth of the air saturation measured from the area of

the invading air phase (same model shown in Figure 3). Time and saturation

are normalized by their final values, tmax and Smax , respectively. The blue curve

(top) shows the data for the controlled imposed pressure (CIP) boundary

condition, whereas the red one (bottom) is for the controlled withdrawal rate

(CWR). As expected, the later shows a rather constant growth rate, set from

the external syringe pump. For the CIP case, we see a much different

scenario, with intervals of relative stagnation being followed by periods of

sudden area growth in an intermittent manner. The zoomed-in insets

emphasize this difference.

pore-throats available are too narrow to be invaded and the
imposed capillary pressure has to be increased once again. This
burst’s size would be given by the number of invaded pores and
the burst’s duration 2 could be identified as the time interval
between the two instants at which the imposed pressure was
increased (immediately before and after the burst). With our
current setup, with pressure increments of the order of dpmin =
0.12 Pa, we still don’t get to that idealized level of accuracy
and very frequently, after increasing the pressure, the invasion
is triggered from a small number of pore-throats (between 3
and 4 on average). We therefore consider the connected invasion
starting from each of these pore-throats as separate bursts, all of
which are associated to the same time interval 2. Our definition
of bursts for the CIP experiments is then the connected set of
pores that have been invaded from a given pore-throat until the
imposed pressure needs to be again increased. Notice that this
definition makes explicit use of the fact that the bursts happen
at constant imposed pressure, therefore, it is only suitable for the
CIP case.

Figure 5 shows the resulting bursts. In the top part of
the figure, they are colored by their area, normalized by a
characteristic pore area (100 pixels ≈ 0.3 mm2 in these images).
In the bottom part of the figure, the same bursts are shown with
random coloring, in order to emphasize their individual shapes.
Notice that the vast blue areas in the top image are indeed formed
by a large number of small bursts (see the detail in the images).
Only bursts having their centroids lying in the central 90% of
the model’s length are considered, in order to avoid possible
boundary effects which have been observed to happen in the
vicinity of the inlet and outlet of the flow [74].

The experimental assessment of individual bursts provided
in Figure 5 yields a valuable amount of information about
the dynamics. It has been shown [23] that the distribution

N(n) of bursts of size n (where n is the estimated number of
pores, computed by normalizing the burst area by a typical
pore area) follows the scaling N(n) ∝ n−τ , where τ =
1.37 ± 0.05. The burst dynamics is therefore self-similar, having
no characteristic intrinsic length scale [80]. The exponent τ

measured is consistent with the theoretical value τ = 1.30± 0.05
predicted by numerical simulations (invasion percolation) and
analytical results [23, 45, 76, 81].

From Figure 5 one cannot directly notice any tendency of
concentration of larger bursts toward one of the ends of the
model. Indeed, the amount of bursts and their average sizes
seem to be approximately homogeneously distributed along the
system’s length. In order to validate this statement quantitatively,
we have analyzed the average burst size n̄s (burst area divided
by typical pore area ≈ 3 mm.) and the total number of
bursts ξs within sliding subwindows having a fixed length of
2 cm and width spanning the whole width of the model, see
Figure 5. For each subwindow, we have computed the number
of bursts ξs whose centroid lie inside it and their corresponding
average bursts size n̄s. The results are shown in Figure 6A.
The correlation observed between consecutive measurements
arises from the fact that neighboring subwindows overlap: the
centers of consecutive subwindows are separated by 0.2 cm,
whereas the subwindow length is 2 cm, thus yielding 90%
overlap between neighboring subwindows. From the analysis
of this figure, we cannot observe any systematic trend for the
average size or number of bursts: when seen separately, neither
of the average burst size nor the number of bursts seem to
be systematically increasing or decreasing with the subwindow
position. Nevertheless, when comparing one against the other,
we can observe a clear anti-correlation of the data. This anti-
correlation is confirmed by measuring the Pearson’s correlation
coefficient, given by

ρ =
1
N

∑N
i=1

(

n̄si − 〈n̄s〉
) (

ξsi − 〈ξs〉
)

σn̄sσξs

= −0.68 , (1)

where n̄si and ξsi correspond respectively to the values of
the average burst size and number of bursts inside the ith
subwindow (i = 1, 2 . . .N), 〈.〉 denotes averaging and σn̄s and
σξs are the standard deviations of the respective quantities. Since
the Pearson’s coefficient is negative, the average burst size n̄s
and number of bursts ξs measured in a sliding subwindow
are anti-correlated. The origin of this anti-correlation is easily
understood: if the system is in a steady regime, the total
invaded area in a subwindow is approximately constant (apart
from statistical fluctuations arising from the randomness of
the porous medium and the underlying dynamics [74]). The
products of the two quantities, average burst size n̄s and the
number of bursts ξs inside a subwindow, gives the total area
of bursts having centroid inside that subwindow. This is not
exactly equal to the total invaded area As inside the subwindow,
since the boundaries of the bursts (particularly the larger ones)
could cross the imaginary subwindow boundary, but it gives
an approximation to it. Therefore, one can expect the product
between the average burst size and the number of bursts inside
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FIGURE 5 | Invasion until final saturation for the CIP boundary condition, using the same model shown in Figure 3. (Top) Individual bursts color coded by their size,

computed dividing the burst area by the characteristic pore area of 100 pixels ≈ 3 mm. (Bottom) Individual bursts color coded randomly, to allow the visualization of

separate bursts of similar size. Notice in particular that the vast blue areas in the top image are indeed formed by a set of smaller bursts, as can be seen in the detail

(red rectangle). The sliding subwindow centered at xs is used in connection with the spatial distribution of bursts. In both images, only bursts with centroids lying in the

central 90% of the model’s length are shown. Adapted from Moura et al. [23] under the Creative Commons CCBY license.

a subwindow to be approximately constant over the length of
the model (apart from statistical fluctuations), thus yielding the
observed anti-correlation:

n̄sξs ≈ As ≈ cte. (2)

As mentioned previously, the dynamics of our drainage
experiments happen in the capillary regime [3, 5], i.e., it is
governed primarily by capillary forces. Since the pore-size
distribution is nearly isotropic, due to the construction routine
employed to make the models in which the glass beads are
randomly placed, the capillary forces involved should also be
isotropically distributed. We expect this property to be translated
into the dynamics, generating bursts with no privileged direction
within the model. One can have a qualitative picture of this
statement directly from Figure 5 and a more quantitative result
can be obtained by producing a histogram of the bursts
orientation angle θ . This angle is defined as the one between the
x-axis (inlet–outlet direction, see Figure 5) and the major axis
of an ellipse having the same second-moments as that particular
burst. Figure 6B shows the resulting histogram. We can see that,
apart from fluctuations caused by the small size of the dataset,
there isn’t any particularly privileged orientation for the bursts.
Indeed, such a distribution also indicates that viscous effects are
much reduced in the experiment: if the dynamics were driven by

viscous forces, one would observe bursts much more elongated
in the inlet–outlet direction, following the average gradient of
pressure in that direction. A distribution of burst angles would
not be isotropic, but show a peak toward smaller angles and a
corresponding reduction for larger angles.

Up to this moment, we have concentrated our analysis mostly
on quantities that could be obtained from the images of the flow.
In the coming sections, we will shift our focus to the analysis of
the pressure measurements, for both boundary conditions. We
begin by briefly analyzing the typical signature of the measured
pressure signal during the invasion.

3.3. Typical Signature of the Pressure
Measurements
As anticipated, in spite of having nearly indistinguishable large-
scale morphology, the dynamical features of the invasion differ
considerably between the CIP and CWR boundary conditions.
This difference is clearly observable in the evolution of the
measured pressure signal, as shown in Figure 7. Let us focus
initially on the CWR signal in Figure 7A. Clear pulses in the
capillary pressure corresponding to the pore-invasion events
are observed (also termed Haines jumps [53]). Each pulse is
composed of one drop phase and one relaxation phase (see
arrows in the figure). Morrow [82] has used the terms rheon
and ison to describe drop and relaxation phases respectively. The
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FIGURE 6 | (A) Average burst size n̄s (bottom curve, left scale) and number of

bursts ξs (top curve, right scale) inside sliding subwindows centered at xs (see

Figure 5). The sliding subwindow spans the whole width of the system and

has a fixed length of 2 cm. The spatial distribution of bursts follows no

systematic trend along the model. The average burst size n̄s is computed by

dividing the burst area by typical pore area ≈ 3 mm. (B) Histogram showing

the random orientation of the bursts shown in Figure 5. The thicker green line

shows the mean of the distribution and the thinner red lines show its standard

deviation.

pressure drops correspond to the moments in which one or more
pores are invaded and the liquid volume that previously filled
them is redistributed to the menisci in the surrounding pore-
throats (see Figure 1B). The slower relaxation part corresponds
to the moments in which the menisci of the air-liquid interface
slowly advance inside the pore-throat, as a response to the
constant withdrawal rate imposed by the external syringe pump.
The capillary pressure slowly increases, as the menisci reach
narrower parts of the pore-throat up to the moment when
the pressure threshold associated to the widest pore-throat is
reached, the interface then becomes unstable and a new pore-
invasion occurs, giving rise to another pressure drop [3].

The connection between the capillary pressure and the volume
of liquid redistributed to (drop phase) or withdrawn from the
interface (relaxation phase) was explored in Måløy et al. [3]
by introducing the concept of a capacitive volume κ such that
dVp = κdpc, where dVp is the liquid volume displaced from
an interface pore throat in response to a change dpc in capillary
pressure. The volume dVp can be connected to the total volume
dV redistributed to or withdrawn from the whole interface as
dVp = dV/nf , where nf is the number of pore-throats belonging
to the liquid-air interface. By putting these pieces together we get

FIGURE 7 | Typical pressure signal signatures for experiments performed

under different boundary conditions. The signals are formed by a sequence of

pulses, each formed by one drop and one relaxation phase. During the drop

phase one or several pores are invaded. During the relaxation phase the

capillary pressure increases again as the menisci readjust themselves inside

the pore-throats, see arrows. (A) For the CWR boundary conditions, the signal

presents a quasi-linear relaxation behavior. The pressure pulses themselves

are seen in the larger scale, while menisci readjustments and the white noise

from the sensor are shown in the respective insets. (B) For the CIP boundary

condition, the pulses happen in an intermittent fashion. Long intervals of

inactivity are punctuated by sudden events and the relaxation behavior has an

exponential signature in which the capillary pressure relaxes back to the level

imposed by the external liquid reservoir. A pressure pulse can trigger others

and even give rise to a large avalanche composed of multiple pulses.

dpc =
dV

κnf
. (3)

Considering that the process occurs in a time dt, we have that the
variation dpc/dt is connected to the total flux qi = dV/dt by

dpc

dt
=

qi

κnf
, (4)

where qi = qR for the relaxation phase and qi = qD for the
drop phase. During the relaxation phase the flux qR withdrawn
from the interface, matches the externally imposed withdrawal
flux (qR = q = 0.005ml/min in our case). For the drop phase
the flux qD redistributed to the interface can be estimated as
qD = nf a

2vb, where vb is a characteristic back-contraction
velocity of the interface. Like the Darcy velocity [1], vb is expected
to vary inversely with the viscosity of the fluid. So for experiments
conducted with a less viscous fluid, one would expect a higher vb
which leads to a higher redistribution flux qD during the drop
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phase and consequentially a steeper pressure drop in accordance
with Equation (4). Indeed this can be seen when comparing
the drop phase of our experiment in Figure 7A (where a high-
viscosity liquid was used) against the pressure signal of an
experiment in which water is used, like in Figure 1D in Måløy
et al. [3] for example. Notice that in the figure in Måløy et al. [3],
the vertical axis denotes the pressure in the liquid phase, while
in our case we show the capillary pressure instead, i.e., the
difference between the pressure in the air and liquid phase. So the
downwards drops in Figure 7A are to be compared against the
steeper upward sections of the signal in Måløy et al. [3]. While
qR is an externally imposed parameter, qD is to be understood
as an intrinsic parameter, dependent on the viscosity of the
wetting phase.

Notice that the inverse dependence of the capillary pressure
drop with the number of pore-throats in the system shown in
Equation (3) implies that the existence of the pressure drops
(Haines jumps) is a direct consequence of the finite size of the
system. For a large enough system (nf −→ ∞), the pressure jumps
cease to exist [3].

If one zooms further in one of the relaxation phases, one can
observe (left inset in Figure 7A) some low amplitude fluctuations
in the signal, corresponding to small adjustments of the menisci
inside the pore-throats that happen before the invasion of
another pore. Such adjustments are not easily observable from
our images, since they happen at very short time and length
scales. Nevertheless, they are bound to occur in any case of slow
flow in a porous medium (both in drainage and imbibition).
Zooming even further in on the signal allows one to see the high
frequency random fluctuations (right inset in Figure 7A) which
are expected from any electronic measuring device, in our case
the pressure sensor employed. These fluctuations set the error in
the pressure measurements to be on the order of δp = 0.5 Pa.

For the CIP boundary condition, shown in Figure 7B, we see
that the pressure signal presents an entirely different signature.
Most of the time the system is in a stagnation state, in which
the capillary pressure, set by the external reservoir position, is
(very slowly) increased. This corresponds to the nearly horizontal
level approximately at 405 Pa in Figure 7B. Those large intervals
of stagnation are punctuated by sudden activity events, seen as
the nearly vertical drops followed by the exponential relaxation
phases in the figure. Energy is slowly fed into the system during
stagnation periods between pore invasion events and is rapidly
released (and further dissipated by viscosity) during the fast
invasion events. Differently from the CWR, in the CIP case the
pressure pulses present a nearly exponential relaxation behavior.
One pulse can eventually trigger others or even give rise to a
large avalanche of multiple pressure pulses, as seen in the inset
of Figure 7B.

In the CWR system, the total available liquid volume in the
experiment is composed by the volumes of (a) the liquid phase in
the porous medium, (b) the volume inside the tubing connected
to the outlet and (c) the (slowly changing) volume of the syringe
pump. Once a pore is invaded by air, the liquid volume previously
filling that pore has to be redistributed to the liquid-air interface
in the pore-throats in the vicinity of that pore because the time
scale needed for the pump to buildup that extra volume in the

syringe outside the medium is much larger than the typical
time scale of a burst. On the other hand, when the system is
driven under the CIP boundary condition, after a pore invasion,
the interface back-contraction is much reduced, since the liquid
previously filling the pore can freely flow outside of the system
and into the pressure reservoir (see Figure 1A). This difference
in boundary condition is ultimately responsible for the nearly
exponential relaxation behavior shown in the CIP case. A full
derivation of this behavior was done in Moura et al. [23] and we
include it here in Appendix 2 in Supplementary Material.

The differences in the pressure signatures is further reflected
on the signal’s power spectral density, as we shall see in
section 3.5. In the following section we will perform an analysis
of time-directed avalanches in the CWR pressure signal.

3.4. Avalanches in the CWR Pressure
Signal
In this section we will give a statistical characterization of the
pressure signal for the CWR experiments by considering the
concept of time-directed avalanches. This concept was previously
used in numerical simulations by Roux and Guyon [72] and
Maslov [83] and in both simulations and experiments by Aker
et al. [84] and Biswas et al. [85]. Figure 8A shows the full
pressure signal and a zoomed in section is seen in Figure 8B.
The forward time-directed avalanches are presented as the green
horizontal lines, black dots denote the set of local maxima
of the signal (starting points for the avalanches) and the red
crosses correspond to the local minima of the signal. Each
forward avalanche corresponds to the time interval Tf between
the moment at which a pressure drop starts and the first moment
at which the pressure reaches a level equal to that from the
starting point (in the future with respect to the starting time).
Conversely, a backward avalanche can be defined as the time
interval Tb between a local maximum (again one of the black
dots) and the last moment at which the pressure reached a level
equal to that from the starting point (in the past with respect to
the starting time). Backward avalanches can be computed simply
as forward avalanches in the time-reversed pressure signal. We
have included in Figure 8B one arrowed green line to denote
a forward avalanche of size Tf and one arrowed purple line to
denote a backward avalanche of size Tb.

Notice that the definition of time-directed avalanches
employed here has a hierarchical structure: a particular avalanche
can encompass a number n of others. Each avalanche defines a
“pressure valley,” the region of the pressure signal between the
beginning and end of the avalanche. Each valley is composed
of either one (in the case of a singular avalanche) or a series of
pressure drops (compound avalanche) each drop corresponding
to a pressure difference 1pDi (difference between the pressure
level of a black point and the following red point in Figure 8B).
The forward valley size χf is defined as the sum of all the pressure
drops within the valley, i.e.,

χf =
n

∑

i=1

1pDi . (5)

Backward valley sizes can be defined in an analogous manner.
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FIGURE 8 | (A) Full Pressure signal from the CWR experiment, black dots and

red crosses denote the local maxima and minima of the signal. The forward

avalanches are denoted by the green horizontal lines. (B) A zoomed segment

of the signal. The sizes Tf and Tb of forward (green arrow) and backward

avalanches (purple arrow) are shown for a particular starting point. Examples

of singular and compound forward avalanches are also shown.

For each avalanche of size Tf , we can then measure the
respective valley size χf . In Figure 9 we show a scatter plot
between the two quantities for all forward avalanches (singular
and compound) in the experiment. We observe that there
is a clear correlation between the quantities, i.e., χf ∝
Tf . The Pearson’s correlation coefficient was measured to
be ρ = 0.995.

This correlation is not accidental and can be easily
understood. Let us assume that the derivatives of the pressure
signal in the drop and relaxation phases are approximately
constant, given by Equation (4). Notice that during a given
avalanche, the pressure goes down a number n of times and the
total time spent in these drop phases is given simply by TD

f
=

∑

1pDi /
∣
∣dpc/dt

∣
∣. A similar expression can be derived for the

total time spent on the relaxation phases for a given avalanche,
i.e., TR

f
=

∑

1pRi /
∣
∣dpc/dt

∣
∣, where 1pRi denote the increments

in pressure. Notice that the time derivative of the pressure signal
is different for each phase, in accordance to Equation (4). Notice
also that although the consecutive pressure differences associated
with the drop and relaxation phases are not necessarily equal,
the sum of all the pressure drops during an avalanche equals the
sum of all pressure increments, i.e.,

∑

1pRi =
∑

1pDi = χf .
The reason for that is the fact that subtracting all the increments

FIGURE 9 | Correlation between the avalanche size Tf (in seconds), and the

respective valley size χf (in Pascals). The Pearson’s correlation coefficient was

measured to be ρ = 0.995.

from all the drops in pressure equals zero for any avalanche,
since the end point of an avalanche has, by definition, the same
pressure as the starting point (same height in Figure 8B). To
put it differently, the cumulative lowering in capillary pressure
equals the cumulative increments for any given avalanche,
since the pressure at the end equals that of the beginning of
the avalanche.

Using again Equation (4), we have that the total time spent
in the drop phases for a given avalanche equals TD

f
= κnfχf /qD.

Similarly, for the relaxation phases, we have TR
f
= κnfχf /qR. The

total avalanche time Tf = TD
f
+ TR

f
, i.e.,

Tf = κnf

(
1

qD
+

1

qR

)

χf , (6)

where qD and qR are respectively the volumetric fluid flux given
to the interface during the drop phase and withdrawn from it
during the relaxation phase. Notice that when using Equation (4)
to obtain Equation (6), we have assumed the linearity relation
between the pressure drop and the fluid volume given to (drop
phase) or withdrawn from the interface (relaxation phase), as
expressed in Equation (3).

Equation (6) shows a neat connection between statistical
quantities defined over the pressure signal (the avalanche size Tf

and valley size χf ), the current state of the invasion (via the size of
the invasion front nf ), an externally imposed control parameter
(the flow rate qR which here matches the external syringe flow
rate q) and intrinsic properties of the system (the capacitive
volume κ and the flow rate qD, the later depending inversely on
the viscosity of the wetting phase).

Next we analyze the size distribution of forward avalanches
Nall(Tf ). For convenience, we will use the same notation
Nall(X) to denote the distribution of any quantity X. The
subscript indicates that one counts all avalanches (singular and
compound). The distribution Nall(Tf ) is shown in Figure 10A.

We have measured the scaling Nall(Tf ) ∝ T
−τall
f

, with τall =
1.67 ± 0.05 over times ranging from 100s (the typical duration
of a short singular avalanche in our experiment, see Figure 8B),
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to around 20000s corresponding to a large compound avalanche.
In the inset of the figure we present a scatter plot showing
the correlation between the avalanche size and the number of
sub-avalanches within it. As anticipated, larger avalanches are
typically composed of a larger number of sub-avalanches, as we
see in the plot. Themeasured Pearson’s correlation coefficient was
ρ = 0.998.

The scaling exponent for the distribution Nall(Tf ) measured
here differs from value τall = 1.9±0.1 reported in Aker et al. [84].
It also differs from the superuniversal theoretical prediction
τall = 2 for invasion percolation and a number of other growth
models presented in Maslov [83]. There are a number of factors
behind this difference. First, the standard invasion percolation
algorithm does not include effects from viscous dissipation and
the back-contraction of the liquid-air interface after each pore
invasion, present in the experimental case. Additionally, the
pore structure of our models is not entirely uncorrelated. Some
degree of correlation must exist due to the technique employed
in the model construction. As previously explained, the setup is
constructed by letting the glass beads fall onto the sticky side
of a contact paper sheet. If the glass beads were mathematical
points without dimension, randomly placing them in the contact
paper should ideally generate an uncorrelated structure, but this
is not the case when the beads have a finite size (1mm diameter
in our case) and cannot physically overlap. In a recent study,
Biswas et al. [85] have shown that indeed very little correlation
in the pore structure can lead to changes in the critical exponents
associated with the invasion process. The authors have shown in
particular that the forward avalanches exponent does not need
to assume the superuniversal value τall = 2. Indeed, using
numerical simulations Biswas et al. have shown that the forward
avalanche exponent assumes the value τall = 1.66 ± 0.04 for
correlated porous samples, which is in direct agreement with our
measurements presented in Figure 10A. When the simulations
were performed in an uncorrelated porous medium, the authors
have measured the exponent τall = 1.99 ± 0.05, in agreement
with the theoretical predictions in Maslov [83].

As an additional check of our results, we have measured the
valley sizes distribution Nall(χf ). Since the quantities Tf and
χf are clearly correlated (as seen in Figure 9), the distribution
Nall(χf ) should present the same scaling behavior as Nall(Tf ).
Indeed this is what we observe, see Figure 10B where the black

line denotes the scaling χ
−τall
f

, with τall = 1.67 ± 0.05. In the

inset we show the scatter plot between the valley size χf and the
number n of sub-avalanches inside it. Not surprisingly, we find
that χf ∝ n since it had previously been shown that Tf ∝ n and
χf ∝ Tf (Figures 9, 10A).

There’s an important technical point about the computation
of the avalanches employed here. As previously seen, it requires
finding the local maxima and minima in the pressure signal as
an initial step. In a smooth signal, this can be done easily by
simply finding the points where the first derivative of the time
series changes from positive to negative for the local maxima
and vice-versa for the minima. But in a natural noisy signal, this
approach is problematic due to high frequency fluctuations. One
possible way to handle the issue is by employing a low-pass filter

FIGURE 10 | (A) Distribution of forward time-directed avalanches. The black

line denotes the scaling Nall (Tf ) ∝ T−1.67
f . In the inset we present a scatter plot

illustrating the correlation between the avalanche size Tf (in seconds) and the

number n of sub-avalanches within it. The measured Pearson coefficient was

0.998. (B) Distribution of forward valley sizes. The black line denotes the

scaling Nall (χf ) ∝ χ−1.67
f . In the inset we present a scatter plot illustrating the

correlation between the valley size χf (in Pa) and the number n of

sub-avalanches within it. The measured Pearson coefficient was 0.994.

to remove the high frequency noise. This was our initial approach
but it led to biases in the statistics, particularly in the region
of small valley sizes. We decided to avoid the filter completely
and perform the analysis in the raw signal employing a different
technique to find the local extrema. We have employed Matlab’s
findpeaks routine to find all maxima in the noisy data and sort
them out with respect to the peak prominence (a measure of the
distance between the top of a particular peak and the surrounding
signal). This can be used to remove most of the peaks mistakenly
assigned to the fluctuations because they are very small. Next,
we have excluded from the data all peaks that were followed by

a pressure drop smaller than a certain small threshold, which

we have arbitrarily chosen to be 1pD = 4 Pa. This threshold

is chosen arbitrarily, but we have checked that all exponents of

the distributions reported here did not vary significantly for any

value in the interval 2 Pa < 1pD < 6 Pa.
For completeness we also include the distribution of backward

avalanches Tb and valley sizes χb. These are found in
Figures 11A,B, respectively. The insets show the correlations
between Tb and n in (a) and χb and n in (b), where n
denotes again the number of sub-avalanches. Interestingly the
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FIGURE 11 | (A) Distribution of backward time-directed avalanches. The black

line denotes the scaling Nall (Tb) ∝ T−1.55
b and the dashed line corresponds to

Nall (Tb) ∝ T−0.90
b . In the inset we present a scatter plot between the backward

avalanche size Tb (in seconds) and the number n of sub-avalanches within it.

The measured Pearson coefficient was 0.998. (B) Similar distributions for the

backward valley sizes, the black line corresponds to Nall (χb) ∝ χ−1.55
b and the

dashed line to Nall (χb) ∝ χ−0.90
b . In the inset we present a scatter plot between

the backward valley size χb (in Pa) and the number n of sub-avalanches within

it. The measured Pearson coefficient was 0.997.

distributions of Tb and χb seem to present a crossover behavior,
where the small avalanches scaling show an exponent that is
smaller than the one for the large avalanches. We have measured
the scaling exponent τallb = 1.55 ± 0.05 for avalanches larger
than a given crossover scale and τallb = 0.90± 0.08 for avalanches
smaller than this scale. The existence of a very similar crossover
behavior had been reported in simulations performed in Biswas
et al. [85], where the authors explained that small avalanches
are influenced by effects coming from the local correlations in
the pore structure. Larger avalanches on the other hand, being
averaged overmany pores, do not feel such local correlations. Our
experiments are in direct agreement with the exponents reported
in Biswas et al. [85], where it wasmeasured τallb = 1.59± 0.06 for
the larger avalanches and τallb = 0.93 ± 0.03 for the smaller ones.

The distribution of starting pressures (black dots in Figure 8)
for the avalanches can also be directly obtained from our data. It
is shown in Figure 12. Notice that, the majority of the avalanches
have starting points in the interval between 420 Pa and 480 Pa.
This is in line with what we had previously observed in the CIP
case (Figure 3C). Themeasurement in Figure 12 is also similar to
what was found for an experiment performed in a similar model
with different fluids in Furuberg et al. [19].

FIGURE 12 | Distribution of avalanches starting pressures (black dots in

Figure 8).

Next we move on to the analysis of the power spectral density
of the pressure signals. The analysis presented here includes and
extends the work initiated in Moura et al. [24].

3.5. Power Spectral Density of the
Pressure Signal
The different temporal signatures for the CWR and CIP pressure
bursts are translated into the power spectral density (PSD) of
the signal. Figure 13 shows the PSD S = S(f ) for the CWR
(red dots) and CIP (green crosses) boundary conditions, the later
being shifted upwards 4 orders of magnitude to aid visualization.
Both PSDs present a scaling behavior S ∝ f−α , with two apparent
crossover regions. We show in Figure 13 a set of guide-to-eye
lines with the respective slopes for each scaling regime. Let us
focus initially on the CWR case. In order to analyze each of
these scaling regions separately, let us look again at the typical
signature of the pressure signal for the CWR experiment, shown
in Figure 7A. On the larger scale, we see the characteristic pulses
in pressure, each of which is caused by the geometrical invasion
of one or more pores by the air phase. Those pulses happen at
intervals that match the period range of the first scaling regime in
the PSD (α = 1.5 for frequency f in the approximate interval
[0.001, 0.005 Hz], with corresponding periods T in the range
[200, 1,000 s]), which indicate that their presence is responsible
for this scaling regime. If we zoom into that scale, we see (inset
on the left in Figure 7A) that there are some oscillations of the
pressure signal happening in the phase of pressure build up that
precedes the bursts. These happen with typical periods in the
range corresponding to the second scaling regime (α = 3.5
for f in [0.007, 0.018 Hz] and corresponding T in [50, 140
s]). We believe those pressure oscillations are related to tiny
adjustments of the air-liquid front, happening in between burst
events while the front is in a stable position, as previously stated.
Such adjustments are not easily observable from our images,
since they happen at very short time and length scales. Finally, if
we zoom in even further on the signal, we see (inset on the right
in Figure 7A) the typical high frequency random fluctuations
expected from any electronic measuring device. In the case of our
pressure sensor, they are on the order of 0.5 Pa and, as expected,
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FIGURE 13 | Power spectral density of the pressure signal for CWR (red dots)

and CIP (green crosses) boundary conditions, the later being shifted upwards

4 orders of magnitude. Both systems present scaling behavior for the PSD of

the form S ∝ f−α , with different exponents α shown by the guide-to-eye lines.

In both cases, the spectra for high frequencies present the typical flat profile

characteristic of white noise from the experimental measuring device. Notice

that for the CIP case, a region consistent with 1/f scaling (pink noise) for the

low-frequency events is observed, followed by a 1/f2 (brown noise) region for

intermediate frequencies.

lead to the high frequency white noise region of the PSD, the
plateau on the right of Figure 13 (α = 0 for f in [0.5, 1.76Hz] and
corresponding T in [0.5, 2 s]). The highest frequency in the graph
is the Nyquist frequency, fN = 1.76Hz, which corresponds to half
of the acquisition frequency employed in that particular CWR
experiment. Notice also that there is a single isolated point in the
very low frequency part of the PSD (extreme left in Figure 13)
that falls far from the scaling region. This point is present in all
experiments and is not an outlier in the data: its existence signals
the very slow positive drift in the pressure signal, which occurs
since the capillary pressure has to increase (albeit very slowly
after the front reaches a propagating regime [74]) in order to give
access to the invasion of narrower pores as the front progresses
inside the medium.

Next, let us move to the analysis of the pressure signal
associated to the CIP boundary condition. As previously
mentioned, the CIP pressure pulses look very different from the
ones associated to the CWR case. They are composed of a sudden
drop followed by a nearly exponential relaxation behavior, which
is rather different from the signature shown for the CWR case
(see Figure 7). This difference is reflected in the power spectral
density for the CIP case, shown in green (crosses) in Figure 13.
We notice that once again the PSD presents the scaling S ∝
f−α with three characteristic scaling regimes, but this time
with exponents α = 1 (pink noise) for the lower frequencies,
α = 2 (brown noise) for intermediate frequencies and again
α = 0 (white noise) for the higher frequencies. As earlier, the
lines shown in the plot are to be understood only as guide-to-
eye lines and not as accurate measurements of the exponents
(which would require data extending for a longer range of
time/frequency scales). The scaling region related to the bursts
now has exponent α = 1 (1/f noise, also known as pink noise).
The appearance of 1/f noise and the following crossing over to

1/f 2 scaling is an interesting observation, which has been noticed
in a number of other systems, including in the very first reported
observation of 1/f noise [86] (flicker noise in vacuum tubes).

In the following section we present a fully integrable
mathematical framework that can be used to explain the unusual
scaling behavior observed for the CIP boundary condition. This
framework is an generalization of the one presented in Moura
et al. [23]. A similar framework for the CWR case is still lacking.

3.6. Analytical Model for the 1/f to 1/f2

Transition in the CIP Power Spectral
Density
As noted in Figures 7, 13, the pressure signal in the CIP case
presents bursts with an exponential relaxation behavior and
yields an interesting non-trivial PSD presenting a 1/f to 1/f 2

transition (pink noise to brown noise transition). In this section
we propose an analytical framework to explain this unusual
PSD scaling. This framework is an adaptation of an argument
proposed in Ziel [87]. A similar argument was also presented by
Bernamont [88] and a review can be found in Milotti [89].

Motivated by Figure 7, let us consider that, apart from a nearly
constant offset, the pressure signal can be modeled as a train
of exponentially decaying pulses located at a set of randomly
distributed discrete times tj

pλ(t) =
∑

j

AH(t − tj)e
−λ(t−tj) , (7)

where λ > 0 and A < 0 are initially assumed to be constants
(the characteristic decay rate and amplitude of the pulses) and
H(t − tj) is the Heaviside step function [90], i.e., H(t − tj) = 0
if t < tj and H(t − tj) = 1 if t ≥ tj. The characteristic decaying
time of the pulses is given by tc = 1/λ. Let Pλ(f ) be the Fourier
transform of pλ(t),

Pλ(f ) =
∫ ∞

−∞
pλ(t)e

−i2π ftdt (8)

= A
∑

j

eλtj
∫ ∞

tj

e−(λ+i2π f )tdt (9)

=
A

λ + i2π f

∑

j

e−i2π ftj . (10)

The λ-dependent Power Spectral Density Sλ(f ) can be
computed as

Sλ(f ) = lim
T→∞

1

T

〈∣
∣Pλ(f )

∣
∣
2
〉

(11)

=
A2

λ2 + 4π2f 2
lim

T→∞

1

T

〈
∣
∣
∣
∣
∣
∣

∑

j

e−i2π ftj

∣
∣
∣
∣
∣
∣

2〉

(12)

=
A2r

λ2 + 4π2f 2
, (13)

where r is the average rate of occurrence of pulses (average
number of pulses per unit time) and the brackets correspond to
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the expected value operator. In the practical calculations that will
follow, since we do not have access to an ensemble of realizations
of the signal, we will use the Welch’s method [91] to estimate the
PSD, which is based on the concept of a periodogram [92]. The
PSD shown in Equation (13) of a train of exponential pulses of
equal amplitudes A and decaying rates λ is therefore a Lorentzian
curve, given by Equation (13). This function is approximately
constant for lower frequencies (2π f ≪ λ) and decays as 1/f 2 for
higher frequencies (2π f ≫ λ). Therefore, the model of a train of
equally decaying exponential pulses could explain the observed
1/f 2 region in Figure 13, but this model alone is insufficient to
incorporate the 1/f region.

Let us now lift the requirement of equally decaying rates for
bursts, and consider instead a system with a uniform distribution
of decaying rates between two positive endpoints λ1 and λ2, with
λ2 > λ1. The probability density function for a given λ in the
interval is simply

υ(λ) =
1

λ2 − λ1
. (14)

The PSD can still be calculated analytically by using this equation
in combination with Equation (13),

S(f ) =
∫ λ2

λ1

Sλ(f )υ(λ)dλ (15)

=
1

λ2 − λ1

∫ λ2

λ1

A2r

λ2 + 4π2f 2
dλ (16)

=
A2r

(λ2 − λ1) 2π f

(

arctan

(
λ2

2π f

)

− arctan

(
λ1

2π f

))

.

(17)

Equation (17) can be further simplified by considering the
behavior of the arctan term between parenthesis in the domains
2π f ≪λ1, λ1≪2π f ≪λ2 and 2π f ≫λ2. The simplification in the
first and last domains, respectively for very small and very large
frequencies, can be done by linearizing the equation for small f
and small 1/f . As for the domain with intermediate frequencies,
the term between parenthesis is nearly constant and equal to π/2.
The resulting behavior of S(f ) is

S(f ) =











A2r
λ1λ2

if 2π f ≪ λ1
A2r

4(λ2−λ1)
1
f

if λ1 ≪ 2π f ≪ λ2
A2r
4π2

1
f 2

if 2π f ≫ λ2 .

(18)

We therefore conclude that the introduction of an uniform
distribution of decaying rates for the pressure pulses is successful
in predicting the 1/f to 1/f 2 transition in the power spectral
density. This model also predicts the existence of a white noise
region for very small frequencies (2π f ≪λ1) which is not present
in our experiments. This is possibly because the value of λ1 (that
sets the upper limit in the frequency of this white noise domain)
is too small to be noticeable in our setup. In the experiments,
the smallest frequencies for which the 1/f domain holds are

FIGURE 14 | Comparison between theory (thin blue line) and experiments

(green crosses) for the CIP PSD. The theoretical prediction is given by

Equation (19), in which we have used ft = 1.5 · 10−2 Hz (marked as a dashed

red line) and A2r = 1.35 Pa2/s. Guide-to-eye lines with exponents

corresponding to the 1/f (pink noise) and 1/f2 (brown noise) regions are also

shown (thick black lines). The fit indicates the correctness of the asymptotic

forms presented in Equation (20) and, more importantly, that this theory

correctly captures the scaling features of the experimental PSD. Adapted from

Moura et al. [23] under the Creative Commons CCBY license.

on the order of f = 7.0 10−4 Hz, see Figure 13, which then
means λ1 < 2 π 7.0 10−4 and for the sake of simplicity we can
consider λ1 = 0. Additionally, since λ2 denotes the transition
point between the 1/f to 1/f 2 regimes in Equation (18), we can
write it as λ2 = 2 π ft , where ft is the transition frequency. By
plugging these assumptions into Equation (17), we are left with
the simplified form

S(f ) =
A2r

4π2ftf
arctan

(
ft

f

)

, (19)

which presents the asymptotic behavior

S(f ) =

{
A2r
8π ft

1
f

if f ≪ ft
A2r
4π2

1
f 2

if f ≫ ft .
(20)

From Figure 13 we can estimate the value of the transition
frequency to be around ft = 1.5 · 10−2 Hz for our experiment.
By using this value, we can plot the analytical PSD Equation (19),
to test the validity of the simplifications leading to it and, more
importantly, to check how this analytical solution compares with
our measurements. Figure 14 shows the resulting plot, together
with our experimental measurements for the PSD and guide-to-
eye lines corresponding to the 1/f (pink noise) and 1/f 2 (brown
noise) scaling regimes. The dashed red vertical line denotes the
transition frequency ft . In producing this figure, we have used the
product A2r as a tuning parameter for Equation (19), choosing
the value A2r = 1.35 Pa2/s. We can see that the analytical
result reproduces the experimental findings very well, scaling as
1/f for f ≪ ft and as 1/f 2 for f ≫ ft . Indeed, this theory not
only captures the 1/f and 1/f 2 domains successfully, it also fits
the data well for the crossover region between those domains.
We therefore conclude that the modeling of the pressure bursts
as a succession of decaying exponential pulses, with a uniform
distribution of decaying rates successfully describes the scaling
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properties of the power spectral density for the CIP boundary
condition. We remind that this modeling was motivated not only
by the measured 1/f to 1/f 2 transition in the PSD, but also by
the visual signature of bursts as decaying exponential pulses and
their intermittent occurrence times, see Figure 7B. An additional
explanation for the exponential behavior of the pressure bursts is
given in Appendix 2 in Supplementary Material and a comment
on the link between the pressure measured by the sensor and the
actual capillary pressure across the liquid-air interface is found in
Appendix 3 in Supplementary Material.

Additional refinements of the model are still possible, even
without losing the benefit of analytical tractability. One could,
for instance, think of a model in which not only the pulses
decaying rates λ, but also their amplitudes A follow a certain
distribution. The calculations can be handled out in a similar
manner, under the assumption that the distributions of λ and
A are uncorrelated, the only difference being the fact that the
constant value A2 in Equation (17) would be exchanged by the
expected value of this quantity. The resulting equation for a
model with A being distributed according to a given probability
density function ϑ(A) between two positive endpoint values A1

and A2, with A2 > A1 and having λ again following a uniform
distribution is

SAg =
r

(λ2 − λ1) 2π f

∫ A2

A1

A2ϑ(A)dA

(

arctan

(
λ2

2π f

)

− arctan

(
λ1

2π f

))

,

(21)

in which the superscripts in SAg denotes a general distribution
in the amplitudes A, the distribution of the decaying rates λ

remaining uniform. Notice that, this change will not interfere
with the frequency dependency of S. Therefore, the power
spectrum of a model with any distribution of amplitudes A and
a uniform distribution of decaying rates λ still presents the same
scaling behaviors as the one shown in Equation (18), in particular,
it could also be used to explain the 1/f to 1/f 2 transition (pink
to brown noise transition) observed in our experiments. Indeed,
from Figure 7B, one would expect that the pulse amplitudes
should follow some sort of distribution instead of assuming
a single constant value. Nevertheless, considering that we are
currently not measuring the product A2r (or its expected value
in Equation 21) but merely using it as a fitting parameter in
the theory, we have chosen to use the simplified version as
in Equation (20) since this is sufficient to capture the relevant
scaling features.

Finally, as a last step of generalization in the model, one
could consider the scenario in which the condition of a uniform
distribution for the decaying rates λ is also lifted. By considering
a power-law distribution of the form

υp(λ) = kλ−δ , (22)

between the positive endpoints λ1 and λ2, with λ2 > λ1.
The subscript in υp denotes a power-law distribution and k

is a normalization constant. The case δ = 0 corresponds to
the one in Equation (14). Using this distribution, together with
Equations (15) and (21) we obtain the general form for the
power spectrum of a model with an arbitrary distribution ϑ(A) of
amplitudes and a power-law distribution υp(λ) of decaying times.
This model is, surprisingly, still integrable (similar calculations
can be found in Butz [93]). The integration of Equation (15)
results in

S
Ag
λp (f ) = kr

∫ A2

A1

A2ϑ(A)dA

I(f )
︷ ︸︸ ︷
∫ λ2

λ1

λ−δ

λ2 + 4π2f 2
dλ , (23)

where,

I(f ) =

















1
4π2f 2

ln λ√
λ2+4π2f 2

∣
∣
∣
∣

λ2

λ1

if δ = 1

λ1−δ

(1−δ)4π2f 2

2F1

(
1−δ
2 , 1; 1+ 1−δ

2 ;− λ2

4π2f 2

)∣
∣
∣

λ2

λ1
if δ 6= 1 ,

(24)

and 2F1(a, b; c; z) is the Gauss hypergeometric function [90]. The

subscript and superscript in S
Ag
λp denote a general distribution in

the amplitudes A and a power-law distribution for the decaying
rates λ. The fact that this model admits an analytical solution
even for these conditions is surely worth noticing, nevertheless,
the complicated form of Equations (23) and (24) does not

yield much insight into the actual frequency dependency of S
λp
Ag .

Since this dependency is entirely encoded in the I(f ) term in
Equation (23), one can perform a linearization procedure to
analyze the behavior for very small and very large frequencies,
in a similar manner to what was done earlier to produce
Equation (18). The resulting behavior for very small and very
large frequencies is similar to what was obtained in the case of
a uniform distribution of decaying rates, i.e., I(f ) ∝ 1/f 0 if
2π f ≪ λ1 and I(f ) ∝ 1/f 2 if 2π f ≫ λ2. Therefore, the limiting
cases exhibit the same white and brown noise profile. In the
intermediate frequency range, i.e., λ1 ≪ 2π f ≪ λ2, one can
perform the change in variables u = λ/

(

2π f
)

to rewrite I(f ) as

I(f ) =
1

(

2π f
)1+δ

∫ λ2
2π f

λ1
2π f

u−δ

1+ u2
du

≈
1

(

2π f
)1+δ

∫ ∞

0

u−δ

1+ u2
du .

(25)

The resulting integral converges and we conclude that in the
intermediate frequency range λ1 ≪ 2π f ≪ λ2, I(f ) scales as
I(f ) ∝ 1/f 1+δ . By plugging this result into Equation (23), we see

that S
Ag
λp (f ) follows the same scaling, i.e.,

S
Ag
λp (f ) ≈

kr
(

2π f
)1+δ

∫ A2

A1

A2ϑ(A)dA

∫ ∞

0

u−δ

1+ u2
du . (26)
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By changing the exponent δ characterizing the distribution of
decaying rates υp(λ) this model can generate a whole family of
1/f 1+δ scaling regimes.

Notice that the essential assumption in the model
that is necessary to account for the 1/f region is the
uniform distribution of decaying rates λ. Measuring this
distribution directly from the pressure signal is not viable,
given that recovering the underlying exponential bursts
becomes very troublesome, particularly in the region in
which several bursts appear in superposition (see inset
of Figure 7). In Moura et al. [23] we show evidence for
the claim that λ follows a nearly uniform distribution by
considering the distribution of burst’s durations 2 (as defined
in section 3.2).

4. CONCLUSIONS

We have performed an experimental investigation of two-phase
flow phenomena in porous media, with particular focus on the
question of how different boundary conditions influence the
morphology of the flow and the underlying burst dynamics.
We have observed that the invasion patterns are very similar
for both boundary conditions, as long as the experiments are
performed slowly (such as to guarantee that viscous forces
are not relevant to the dynamics, which is dominated by
capillary forces). Nevertheless, when it comes to dynamical
features, some clear differences are observed. For example, the
measured pressure signal presents pulses with a relaxation phase
almost linear for the CWR boundary condition, whereas in
the CIP case an exponential relaxation behavior is observed.
We have analyzed the CWR pressure signal in terms of time-
directed avalanches and showed how its scaling properties are
in line with other works [85] in which those avalanches were
investigated for systems with and without a correlated pore
structure. Further on, we have shown that the differences between
the CWR and CIP pressure signals are translated into their
power spectral density, which, in the particular case of the
CIP boundary condition, presents a 1/f scaling regime for
low frequencies (pink noise), which then changes to 1/f 2 for
intermediate frequencies (brown noise). This interesting scaling
behavior is further described by a fully integrable mathematical
framework in which the signal is modeled as a superposition
of random exponential pulses. We have derived an expression
for the PSD that was successful in describing our experiment
(Equation 19) and showed how the model could be extended
to a much more general class of systems, with less restricting
assumptions on the distribution of pulse amplitudes and decay
rates (Equations 23–26). By providing a rather general set of
analytical expressions for the PSD, we hope this work will find
applicability in a class of problems much wider than the specific
case treated here.

Although all experiments performed employed quasi-2D
samples, we believe some of our results could extend to 3D
systems. In particular, the scaling features of the pressure
signal power spectrum, should depend only on the intermittent

dynamics of the pressure pulses, their exponential relaxation
behavior and the distribution of decaying rates λ.We don’t expect
those properties to be a function of the dimensionality of the
system, therefore, as long as the dynamics is driven in such a
way that the system is in a quasi-equilibrium state, a CIP system
in 3D should also present a similar 1/f to 1/f 2 transition in
the PSD. Nevertheless, devising an experiment to perform this
test in 3D is a challenging task, since the feedback mechanism
used to guarantee the quasi-equilibrium state is based on the
imaging of the flow and such imaging is harder to perform in
3D. One possible way to overcome this issue is to adapt the
feedback mechanism to use the weight of the displaced fluid as
a ruling parameter, thus lifting the need for full visualization of
the flow.
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