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At the time of energy transition, it is important to be able to predict the effects of fluid overpressures in different geological scenarios
as these can lead to the development of hydrofractures and dilating high-porosity zones. In order to develop an understanding of
the complexity of the resulting effective stress fields, fracture and failure patterns, and potential fluid drainage, we study the process
with a dynamic hydromechanical numerical model. The model simulates the evolution of fluid pressure buildup, fracturing, and the
dynamic interaction between solid and fluid. Three different scenarios are explored: fluid pressure buildup in a sedimentary basin,
in a vertical zone, and in a horizontal layer that may be partly offset by a fault. Our results show that the geometry of the area where
fluid pressure is successively increased has a first-order control on the developing pattern of porosity changes, on fracturing, and on
the absolute fluid pressures that sustained without failure. If the fluid overpressure develops in the whole model, the effective
differential and mean stress approach zero and the vertical and horizontal effective principal stresses flip in orientation. The
resulting fractures develop under high lithostatic fluid overpressure and are aligned semihorizontally, and consequently, a
hydraulic breccia forms. If the area of high fluid pressure buildup is confined in a vertical zone, the effective mean stress
decreases while the differential stress remains almost constant and failure takes place in extensional and shear modes at a much
lower fluid overpressure. A horizontal fluid pressurized layer that is offset shows a complex system of effective stress evolution
with the layer fracturing initially at the location of the offset followed by hydraulic breccia development within the layer. All
simulations show a phase transition in the porosity where an initially random porosity reduces its symmetry and forms a static
porosity wave with an internal dilating zone and the presence of dynamic porosity channels within this zone. Our results show
that patterns of fractures, hence fluid release, that form due to high fluid overpressures can only be successfully predicted if the
geometry of the geological system is known, including the fluid overpressure source and the position of seals and faults that
offset source layers and seals.

1. Introduction

Fracturing and the development of mineralized veins and
breccia are an important process in the Earth’s crust linked
to fluid flow and mineral deposits and have important appli-
cations related to the energy transition with reactive flow in
geothermal systems and carbon capture and storage (CCS)
in aquifers and decommissioned oil and gas fields and energy

storage in sedimentary basins [1–6]. On the one hand, fluids
can flow along open fractures and transport material that can
precipitate and close fractures forming mineral veins
(Figure 1). On the other hand, the fluid pressures are directly
involved in the fracturing process itself through the mecha-
nism of hydrofracturing. This process is highly dynamic with
feedback between fluid overpressure (fluid pressure in excess
of the hydrostatic pressure) and the solid material involving
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porosity and permeability changes due to the fracturing pro-
cess and subsequent opening and closing of fractures [7, 8]. A
rise in the local fluid pressure in a rock pore leads to an out-
ward directed force that works against the solid and can thus
reduce the solid stress to an effective stress σij′ according to
Terzaghi’s law [9]:

σij′ = σij − Pfδij, ð1Þ

with σij being the total normal stress, Pf the pore fluid pres-
sure, and δij the Kronecker delta with the sign convention of
positive compressive stress.

This effect is often visualized in the Mohr diagram of
effective shear to normal stress where a rise in fluid pressure
leads to a reduction of the mean stress and thus eventually to
failure if the fluid pressure is high enough. This approach is
based on assumptions and is a simplification of the effects
of fluid pressures on solids and has a number of shortcom-
ings that can lead to misinterpretation as pointed out by a
number of authors ([10–14]; Cobbold and Rodriguez, 2007;
[15]). The three main assumptions are as follows: (a) fluids
are incompressible, (b) fluids are stationary, and (c) it is suf-
ficient to consider fluid pressure only, disregarding fluid
overpressure and fluid pressure gradient(s). However, in a
natural geological scenario, these assumptions may not be
appropriate; thus, conclusions based on these assumptions
may be faulty and misleading. For example, fluid is generally
about an order of magnitude more compressible than the
surrounding solid. This compressibility is not necessarily
important for the initial fracturing process but becomes
important once the system evolves and the solid and fluid
interact dynamically leading to opening and closing chan-
nels, for example, in the fluidization of sediments [16–19].

The assumption that the fluids are stationary is not realistic
for a dynamic natural system. In a porous or fractured sys-
tem, fluids will generally move leading to an evolution of
the fluid pressure and fluid pressure gradients depending
on the source, sink, and permeability of the system as was
shown by Cobbold and Rodrigues [20]. This does not neces-
sarily mean that the fluids move fast but that changes in pres-
sure or a local fluid pressure increase from a source will
eventually lead to evolving pressure gradients. Commonly,
this shortcoming of the stationary fluid assumption is over-
come by using Biot’s law where a linear pore fluid factor λv
is added that represents the loss of fluid from a pore into
the surrounding rock [21, 22] according to

λv =
Pf
σv

= v
1 − v − 1 − 2vð ÞαP

, ð2Þ

with the pore fluid factor λv representing the ratio of pore
fluid pressure (Pf ) to vertical stress (σv), αP the poroelastic
factor, and v the Poisson ratio.

Using this law in three dimensions assumes that all
principal stresses are affected by the fluid pressure in the
same way, which is a simplification that only works in
restricted cases [10, 11, 13, 14]. The use of fluid pressure
only in a dynamically evolving setting such as a sedimen-
tary basin where through some dynamic processes, e.g.,
mineral reaction or oil maturation, fluid pressure increases
successively and the fracture system may evolve is inap-
propriate. Here, only a lateral difference in fluid pressure
or a fluid pressure gradient can lead to forces that act
on the solid and eventually lead to fracturing associated
with fluid pressure. Therefore, only an overpressure or a
pressure gradient can be used in the effective stress law

(a) (b)

10 cm

(c)

4 cm
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Figure 1: Examples of veins that may represent high fluid pressures in rocks. (a) Veins containing layer-parallel and perpendicular branches
(Sestri Liguria, Italy). (b) Layer-parallel “beef”-type veins (Sestri Liguria, Italy). (c) Large vein with brecciated host rock (Isle of Kerrera,
Scotland, UK). (d) Tree-like branching vein (Isle of Kerrera, Scotland, UK).

2 Geofluids



as was pointed out by Cobbold and Rodrigues [20]. An
example is the evolution of effective stress in a fluid over-
pressure zone in a sedimentary basin below a seal, where
Hillis [12] has shown that in this case, the lowest effective
stress below the seal is linked to the vertical stress and the
fluid pressure. That means that the effective stresses in the
horizontal and vertical directions will approach zero, the
differential and mean stress will decrease, and the system
will fluidize. By fluidize, we mean the point where the sys-
tem is only governed by a pressure without differential,
shear, or deviatoric stresses. The reason for this effective
stress pattern is that the fluid pressure increase is nearly
constant for a given depth across the basin so that no hor-
izontal fluid pressure gradients will develop. Gradients
develop only in the vertical direction, and in order for fail-
ure to occur, the fluid overpressure will have to exceed the
vertical stress. Cobbold and Rodrigues [20] show that the
horizontal effective stress below a seal in an overpressur-
ized sedimentary basin is

σ3′ = κe σ1 − Pð Þ, ð3Þ

where P is the local overpressure and Ke the dimension-
less elastic proportionality factor (smaller than 1.0). The
fluid overpressure affects the vertical and horizontal
stresses differently, leading to a reduction of the differen-
tial stress and to horizontal failure so that “beef” veins
develop (Figure 1). This scenario was illustrated by Cob-
bold and Rodrigues [20] in experiments. First, the system
fluidizes, the effective stresses approach zero, and then a
horizontal hydrofracture develops once the fluid pressure
approaches the overburden stress (Figure 2). Ghani et al.
[15, 23] use a numerical model to illustrate the difference
between tectonic fractures and pure hydrofractures and
derive similar results as Cobbold and Rodrigues [20] in
their experiments.

In this contribution, we use an advanced version of the
numerical model of Ghani et al. [15, 23] that can model
the dynamic interplay between influx of compressive, non-
stationary fluids, overpressure, fluid pressure gradients,
associated fracturing, and dynamic feedback between these
factors; hence, with this model, it is possible to simulate
the dynamic evolution of a geological scenario where fluid
pressure may increase locally or homogeneously. We study
the effects of different layer geometries and elasticity on
the evolution of the effective stress, fracturing, and dewa-
tering of the overpressurized systems.

2. Numerical Setup

2.1. General Model. The numerical scheme used in this con-
tribution is built on the work of Ghani et al. [15, 23] with a
similar approach as that used for poroelasticity and fluid flow
in granular media [24–26], during hydrofracture or aerofrac-
ture [27–31], for shearing of gouge layers in faults [32, 33],
and for instabilities during sedimentation [16–19]. The
model is implemented into the microstructural modeling
environment “Elle” [34, 35].

In the 2-dimensional numerical scheme, the fluid and
solid are treated on two different grids, with the solid being
represented by an initially triangular elastic spring network
and the fluid being represented by a square continuum grid
(Figure 2(a)). The model represents a vertical square cross
section of a crustal domain that is overlain by 1000m of cover
sediments. The upper model boundary is controlled by
gravity (force boundary) whereas the two sides and the
bottom are free-slip parallel to a wall but not allowed to
move perpendicular to the wall (Figure 2(a)). The fluid
pressure is horizontally periodic, wrapping on the left-
and right-hand side of the model and has a constant value
at the upper and lower boundary. Initial fluid pressure
conditions are hydrostatic with fluid being inserted into
the model over time in different geometrical configurations
(Figure 2). We first present the governing equations of the
fluid, followed by the solid and the connection of model
assumptions and the scenarios modelled.

2.2. Governing Equations. The fluid phase is described by the
fluid pressure Pf of single nodes in a square grid. The inertia
of the fluid is not considered assuming that the Reynolds
number is low. Darcy’s law is used to describe the fluid
movement through the solid. A diffusion equation is derived
for the fluid pressure that contains mass and momentum
conservation between the fluid and solid. The interstitial fluid
flow is then expressed as a porosity-dependent pressure gra-
dient. The continuity equations for solid and fluid at the scale
of a grain diameter read [15]

∂t 1 − ϕð Þρs½ �+∇ · 1 − ϕð Þρsus½ � = 0, ð4Þ

∂t ϕρfð Þ+∇ · ϕρfufð Þ = 0, ð5Þ
where ρs and ρf are the solid and fluid densities, respectively;
us and uf are the solid and fluid velocities, respectively, and ϕ
is the local porosity of the solid. The Darcy equation can be
used to calculate a local seepage velocity ϕ uf of the fluid
for a pressure change according to the local permeability on
a unit area:

ϕ uf − usð Þ = −
K
μ
∇P, ð6Þ

where μ is the fluid viscosity and P the fluid pressure. The
permeability K is calculated from the local porosity
according to the Kozeny-Carman relation [36]:

K ϕx,y

� �
=

r2 ϕx,y

� �3

45 1 − ϕx,y

� �2 , ð7Þ

with r being the grain radius. The fluid state equation is con-
sidered using the fluid compressibility β, as a proportional
approximation of the fluid density to pressure variation:

ρf = ρ0 1 + βPð Þ, ð8Þ
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with ρ0 being the fluid density at some reference pressure.
When ρf and uf are substituted into equation (5), ∂tϕ is
eliminated and the following diffusion equation for the
fluid overpressure is derived [15, 32, 33, 37]:

ϕβ
∂P
∂t

+ us∇·P
� �

= ∇ · 1 + βPð ÞK
μ
∇P

� �
− 1 + βPð Þ∇·us,

ð9Þ

with the left-hand side of the equation representing the
Lagrangian derivative of the fluid pressure, the first term on
the right-hand side the Darcy diffusion of the fluid pressure,
and the third term the source term dealing with pressure
change as a function of particle movement.

2.3. Solid. The solid is represented by an initially triangular
elastic spring network with the translation of nodes as a
function of the momentum exchange between the solid
and fluid in a unit volume cell dV , with a solid of mass

dm = ρsdV , and interparticle force f e, fluid force f p, and
gravitational loading f g, so that

dm
dVs

dt
= f e + f p + f g: ð10Þ

The normal (f n) and shear force (f s) acting on a particle
from its neighbor is calculated from the relative displacements
of the neighbor (i) normal (Δuin) and tangential (Δuis) to the
connecting spring with reference to an equilibrium position.
The total force over all connected springs is [38]

f e = f n + f s = 〠
6

i=1
kinΔu

i
n + 〠

6

i=1
kisΔu

i
s, ð11Þ

where kin and kis are the spring constants for normal and
shear displacement, respectively, and the sums are running
over all six neighboring particles. Once springs break in
the model, they are removed and the corresponding nodes
will only experience a repulsive force. The repulsive force

Gravity
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ee

 sl
ip

Fr
ee

 sl
ip

Repulsion
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fluid pressure

Solid Fluid

Pf Pf

Pf Pf
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Figure 2: Setup of the numerical model. (a) Model box with free-slip elastic walls at the bottom and the right- and left-hand side and a stress
boundary at the top. The inset shows the lattice for the elastic solid and the fluid, respectively. (b) Simulation setup with the initial
configuration followed by an input of fluid pressure, the fluid pressure evolution, the elastic relaxation, the internal failure until the model
is relaxed, and the repetition of the time step. (c) Geometry of the source zones where fluid is introduced successively during model runs
for the 3 different scenarios modelled. Source zones are shown in pink.
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is calculated with the normal force from equation (11) but
only for compressive interactions. The fluid forces that act
on each node in the elastic grid are calculated from the dif-
ference of the neighboring fluid pressure cells and then
applied on the area that the elastic node represents.

f p = −〠
k

s ri − rkð Þ ∇P
ρn

� �
k

, ð12Þ

where ∇P is the fluid pressure gradient, ρn is the solid frac-
tion, k is running over the four fluid grid nodes near the
particle, and sðri − rkÞ is a smoothing function that satisfies
the weighted distribution of particle mass relative to its
position [15]. A gravitational vertical force is applied on
the elastic nodes depending on the depth of the upper
boundary (representing the overlying rocks) and gravita-
tional forces from neighboring nodes. The gravity force
on single particles in addition to the load of the overlying
sediments is calculated from the particle density φ, the
acceleration due to gravity g, the real volume of the particle
VR, and the scale factor w (w = 0:74, [38]):

f g =VRφgw: ð13Þ

Failure in the elastic network will happen once a critical
strain energy for shear and tensile failure is reached. In
order to model combinations between the two failure
modes, an elliptical energy model for mixed failure is used
[39]. The strain energy (U tot) in the elastic network is

U tot =U t +U s, ð14Þ

where U t and U s are the strain energies for tension and
shear, respectively. With the critical strain energy for failure
being Ect and Ecs for tension and shear, respectively, then

U s
Ecs

+ U t
Ect

= σn
σ0

� �2
+ τ

τ0

� �2
= 1, ð15Þ

where σn is the normal stress, τ is the shear stress, σ0 is the ten-
sile strength, and τ0 is the shear cohesion of the material. The
equation typically describes an ellipse in the σn − τ space [40].

2.4. Interaction between Fluid and Solid. In the current con-
figuration, the square fluid lattice cells are twice as large as
the diameter of the elastic nodes of the triangular grid. This
configuration is important in order to ensure that the solid
fraction per fluid cell is calculated accurately to determine
the larger-scale porosity and permeability. In order to com-
municate between the two lattices, a linear tent weight func-
tion is used to account for the differences in distance between
the elastic and fluid nodes [15, 41]. The solid lattice passes the

local porosity (or particle solid fraction) and particle velocity
to the fluid, and the fluid passes the local fluid force back to
the solid. The particle density ρðr0Þ or solid fraction in a fluid
cell is calculated as

ρ r0ð Þ = 〠
n

i

s ri − r0ð Þ, ð16Þ

and the overall solid velocity uðr0Þ in a fluid cell is

u r0ð Þ = 〠
n

i

uis ri − r0ð Þ, ð17Þ

where subscript i stands for the particle number and runs
through all particles n and the smoothing function satisfies
the weighted distribution of particle mass relative to the
fluid node position [15]. The simulation input and output
data used to support the findings of this study are available
from the corresponding author upon request. The basic soft-
ware for the simulations can be found and downloaded at
http://elle.ws, and the corresponding author will make the
additional code available upon request.

2.4.1. Assumptions. The friction force between the fluid and
the solid at the surface of the solid at a macroscopic scale is
not considered, so that only the pressure gradient produces a
drag force on the solid nodes (in the direction of the flow).
This pressure gradient is nonetheless directly related to the
fluid friction forces exerted at a small scale from the fluid over
the solid along the pore boundaries, since the force associated
with the pressure gradient exerted over the fluid is entirely
transmitted to the pore boundaries in a Darcian flow with a
negligible fluid inertia. The fluid is considered to be purely vis-
cous; hence, a thermal evolution is not taken into account. We
assume that the Kozeny-Carman relation that is derived from
dense granular media can be applied to relate porosity and
permeability in our setting. The local grain radius in the
Kozeny-Carman equation can be used to adjust the relation-
ship; however, in natural rocks, the relationship between
porosity and permeability may be more complicated. In the
model, we use a fixed grid geometry and a fixed node size
for the solid. This configuration was chosen because it is the
only configuration in 2d that produces linear elasticity on
the large scale [24]. The fixed configuration has the potential
disadvantage of grid effects. However, a strong variation of
grid geometry and particle size in DEMmodels produces non-
reliant material behaviors, which we aim to avoid. In order to
minimize grid effects, a Gaussian variation of the spatial distri-
bution of the breaking strengths is applied to the springs. We
expect grid effects to become largest under shear fracturing
especially when the grid weakness is oriented close to the
actual fracture orientation. However, the model does still pro-
duce listric and curving faults [39, 41]. Fractures are not wrap-
ping in the model, which leads to boundary effects on the left-
and right-hand side and the upper and lower boundary. This
results in high fracture densities close to the model boundaries
effecting up to 10% of the simulation.
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We also assume that the Darcy flow is valid in the
simulations because the Reynolds number of the flow is
small. In the simulations, the velocity of the fluid v! is the
Darcy velocity divided by the porosity:

v! = −
K/μð Þ∇P

ϕ
: ð18Þ

The average velocity of the fluid in the simulations is
10-5–10-7m/s. The Reynolds number can be calculated as

Re =
ρf v

!l
μ

, ð19Þ

with l being the typical grain or fracture channel size consid-
ered and μ the dynamic water viscosity. With a fluid density
ρf of 1000kg/m

3, a channel size l of 10-5m, and a dynamic
water viscosity μ of 0.001Pa s, Re is in the range of 10-3 to
10-5. Thus, the Darcy flow is still valid since Re < 1:0.

2.5. Modelled Scenarios: Setup, Parameters, and Geological
Relevance. The simulations start with an initial geometrical
setup and the application of the gravitational force and
hydrostatic fluid pressure. During each model time step, a
change in fluid pressure in a number of cells is conducted.
At each time step, the fluid pressure evolution is calculated
as a function of the local solid fraction and solid node
velocities, the pressure diffusion is applied, the elastic net-
work is relaxed (finding a new equilibrium configuration),
and failure is applied if the local critical strain energy
exceeded in successive steps with intermediate relaxation
until all bonds are stable (Figure 2(b)). The resolution of
the simulations is 200 × 230 grid cells for the elastic solid
and 100 × 100 grid cells for the fluid (Figure 2). The simula-
tions run between 2 hours and 4 weeks due to the strong non-
linearity of the process. All simulations have the following
settings: the size of the box is 1000 × 1000m (1.0 in model
dimension), the overburden is 1000m, the overburden
density is 2400 kg/m3, the Poisson ratio is 0.33, the internal
angle of friction of the solid is set to 30 degrees [42], the mean
breaking strength is 7MPa with a Gaussian variation
between a lower bound of 2MPa and an upper bound of
20MPa, the porosity is 0.1, the fluid density is 1000 kg/m3,
the fluid viscosity is 0.001 Pa·s, the fluid compressibility is
4:5 × 10−10 Pa−1, and the Carman-Kozeny grain size is
10μm. In all models, the injected fluid pressure input is given
to 30 random nodes within the designated source zones
(cf. Figure 2(c)) per time step, and the time step t repre-
sents 1 hour. That means that the fluid pressure in the
model is increased by 0.004MPa/hour in the whole box.
This fluid input is adjusted to a normalized fluid input
per fluid cell in cases where the high-pressure zone is
smaller than the whole box, for example, when fluid only
enters the horizontal layer. The gravity boundary condi-
tion is stress driven and controlled by the weight of the
particles. Stresses in the model are calculated using average
stress tensors for model realms [24, 43, 44], making the
stresses independent of grid sizes. Mean stresses for the

simulations are calculated for the innermost 80% of the
simulation box to avoid boundary effects.

We model three main scenarios. Scenario 1 represents
a sedimentary basin where the fluid pressure is increased
below a seal, for example, due to a diagenetic reaction or
hydrocarbon maturation. Scenario 2 represents fluid
pressure increase in a laterally confined zone. This could
represent, for example, a sedimentary basin where the
fluid enters from below into a confined zone or where
fluid pressure is created due to a diagenetic reaction in a
confined zone or cell. This scenario is also similar to a tri-
axial compression experiment where a sample under stress
is injected by fluid. Scenario 3 represents a horizontal layer
where fluid pressure increases, again for example, due to a
diagenetic reaction. For scenario 3, we also present cases
where the layer is offset (for example, by a fault) prior
to fluid pressure increase (note that the offset zone or fault
has no specific properties).

3. Results

3.1. Scenario 1 versus Scenario 2. Scenario 1 represents a
simulation where the fluid pressure is raised in the whole
simulation box mimicking an endless system in the hori-
zontal layer, for example, a high fluid pressure region in
a sedimentary basin below a seal (Figure 2). Figure 3(a)
shows the stress patterns (average over the model) over
time for scenario 1 (Figure 2(c), Table 1) and illustrates
that in this geometry, the mean and the differential effective
stress in addition to the vertical and horizontal effective
stresses decrease until they all become zero. Hence, at this
point in time, the system fluidizes (shear stresses vanish)
before the horizontal and vertical stress switch so that the
vertical stress is the smallest effective stress and the differen-
tial stress increases again. This then leads to a horizontal zone
of high porosity as can be seen in Figures 3(b) and 3(c) and a
horizontally aligned fracture zone in Figure 3(d). The high-
porosity domain is in the lower region of the high fluid
pressure zone (Figure 3(b)), and its geometry is relatively
rough and wavy. This wavy character of the high-porosity
domain is reflected by the fracture pattern (Figure 3(d))
that shows a breccia-like intergrowth of fractures. The
dense fracture pattern at the left- and right-hand boundary
represents an artifact and is an effect of the nonwrapping
nature of the boundary.

Scenario 2 represents a simulation where the increase in
fluid pressure is concentrated in a vertical zone in the center
of the model with 10% of the model on the left- and right-
hand side having a normal hydrostatic pressure and the
resulting effective solid stress of σ3. As an experiment, this
scenario can be compared to a cylindrical rock deforma-
tion experiment with an increase in the fluid pressure
under stress. Figure 3(e) shows the resulting effective
stresses (average over the model) in the x and y direction
of the scenario 2 model as well as the mean and differen-
tial stress. The differential stress in the simulation stays
almost constant whereas the mean stress becomes almost
zero, the effective stress in the vertical orientation
decreases, and the stress in the horizontal orientation
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Figure 3: Continued.
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becomes tensile. In the Mohr circle diagram, this scenario
would be illustrated by the circle moving towards the left-
hand side without significantly changing its radius leading
to tensile or hybrid tensile/shear failure depending on the
shape of the failure curve. Figures 3(f), 3(g), and 3(h)
show the fluid pressure, porosity, and mean stress with
fractures towards the end of the simulation. The fluid
pressure is high in the central part of the simulation and
decreases towards the right- and left-hand side as well as
towards the top. The porosity shows a localized increase in
the central region of the model with fracture-like channels of
very high porosity. The high-porosity zone in the center has
a much smaller width than the high fluid pressure zone (25-
30% of the model width compared to 80%) and is surrounded
by a compacted low-porosity zone. Fractures develop in the
whole zone where the fluid pressure is high. Two distinct frac-
ture patterns can be distinguished: conjugate shear fractures
that are dominating the left- and right-hand side of the high
fluid pressure zone and tree-like horizontal to vertical fracture
branches that form a breccia-like pattern and develop in the
central part of the model. The dense fracture pattern at the
lower and upper boundary of the model represents an artifact
and is an effect of the nonwrapping nature of the boundary.

Figure 4 shows the evolution of the fracture pattern for
both scenarios over time with the fluid pressure in the back-
ground. The fracture evolution in the first scenario starts
roughly an order of magnitude later than that in scenario 2
(Figure 4(a)). Here, an initial fracture develops horizontally
across the model in a very rough and wavy fashion in the
middle of the high fluid pressure area (red zone in
Figure 4(a)). Successive fractures develop progressively below
the initial fracture and merge to form a breccia zone. We
use the term breccia for any piece of host rock that has an
angular shape and is completely surrounded by fractures.
In scenario 2 (Figure 4(b)), the fracture patterns start an
order of magnitude earlier than that in scenario 1 with the
first fractures developing as mode I or mixed mode I and II
fractures at the rim of the high fluid pressure zone on the left-
and right-hand side of the model. They then form conjugate
shear fracture sets and propagate from both sides towards the
center of the high-pressure zone. Once the fractures have
reached the center of the high-pressure zone, a second set
of fractures develops within the center and forms mode I
and tree-like fractures that merge to form a breccia. The
porosity evolution of the two scenarios is illustrated in
Figure 5.

Fluid pressure

𝜎
xx

10 MPa 40 MPa

(f)

Porosity

0.05 0.2

(g)

Mean stress and fractures

0 MPa15 MPa

Mean stress and fractures

(h)

Figure 3: Two end-member cases for the development of effective stresses: fluid overpressure zone versus fluidization. (a) The effective
stresses for scenario 1 where all stresses including the differential stress decrease and become zero. (b) The fluid pressure, (c) the porosity
pattern, and (d) the mean stress in color and corresponding fractures in black. Scenario 1 leads to a semihorizontal high-porosity channel
and a breccia-like fracture zone. (e) The stresses for scenario 2 with the effective mean stress decreasing while the effective differential
stress stays almost constant. (f) The fluid pressure, (g) the porosity pattern, and (h) the mean stress and fractures for the fluid
overpressure zone. A vertical central dilating zone with high-porosity channels develops in a zone that is much narrower than the high
fluid pressure zone and the fracturing. Time is in hours (relative color scale below the figure).

Table 1: Summary of numerical simulation sets providing parameters of individual simulations.

Simulation Fluid input Young’s modulus Offset

Scenario 1 Whole box 50GPa 0

Scenario 2 Central vertical box, between x = 0:2 and x = 0:8 50GPa 0

Scenario 3a Horizontal layer 50GPa 0

Scenario 3b Horizontal layer (offset) 50GPa Half of the layer height

Scenario 3c Horizontal layer (offset) 10, 20, 30, 40, 50, 70, 100GPa Full layer height
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The initial porosity for both scenarios is random and
becomes bimodal during successive fracturing and channel
opening. In scenario 1, the porosity is initially random and
localizes once the horizontally aligned hydrofracture develops.
The fracture opens and becomes a channel of high porosity
whereas the surrounding host rock is compressed with rela-
tively low porosity. The high-porosity channel then moves
downwards in the simulation following successive fracture
development towards the lower part of the simulation whereas
the solid is pushed upwards by the fluid overpressure. In
scenario 2, the porosity increases inwards towards the cen-
ter of the high-pressure zone and decreases outwards

towards the boundaries. At the same time, when the frac-
ture pattern switches from the conjugate shear to the more
tree- and breccia-like fractures, the high porosity localizes
strongly in the center of the model and two compacted
areas develop next to the high-porosity zone (Figure 5(b)).
In terms of solid movement, the solid is pressed towards
the right- and left-hand side of the model leading to an
opposite directed increase in porosity or the creation of a
stationary porosity zone or wave in the center.

3.2. Scenario 3: Horizontal Layer, Faulting, and Variation of
Young’s Modulus. In the third scenario, the fluid pressure is

t = 9000

t = 15000t = 13500t = 12000

t = 10000 t = 11000

40 – 60 MPa10 MPa

(a)

t = 1000 t = 2000 t = 3000

t = 9000t = 5000 t = 7000
25 – 55 MPa10 MPa

(b)

Figure 4: Time evolution of scenarios 1 and 2 (Figure 3) with the fluid pressure color coded in the background and fractures in black. The
fluid pressure is rescaled for each picture. Time t is in days. (a) Scenario 1 builds fluid pressure up until a single semihorizontal wavy fracture
develops across the model. Successive fractures progress downwards and merge with existing ones to form a breccia-like pattern. (b) Scenario
2 develops a first set of fractures early on at positions where the fluid pressure gradients are steep. The fractures then progress inwards until
after 5000 hours, an internal fracture pattern develops that forms tree-like branches and breccias.
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increased in a horizontal layer. This scenario can mimic
hydrocarbon generation or dewatering during diagenetic
reactions in layers or pumping in of fluids into layers for
energy storage or CCS. Figure 6(a) shows the fluid pressure
and fracturing in the horizontal layer with the development
of a horizontally aligned branching fracture in the upper part
of the layer. The branching fractures connect to form a thin
brecciated zone. The fracture is not exactly in the middle of
the layer because of the fluid pressure difference below and
above the layer. Figures 6(b) and 6(c) show the same hor-
izontally aligned layer with an offset in the middle of the

simulation where the layer in Figure 6(b) is offset by half
of the thickness of the layer and the one in Figure 6(c)
by the full thickness of the layer. The offset of the hori-
zontal layers could, for example, be produced by a fault.
Note however that in the current setup, this potential
“fault” has no distinct properties other than offsetting the
layer. The fracture pattern is significantly different from
the nonoffset horizontal layer in the sense that two types
of fractures develop: vertical or conjugate shear fractures
and horizontal fractures. Vertical or conjugate shear frac-
tures develop early at the offset end of the layer where a

Solid movement

Fractures, 
porosity wave

t = 9000 t = 10000 t = 11000

t = 13000 t = 15000
0.20.05

(a)

Solid movement

Fractures, 
porosity wave

t = 1000 t = 3000 t = 5000

t = 7000 t = 9000
0.20.05

(b)

Figure 5: Porosity evolution of scenarios 1 and 2. (a) Scenario 1 shows a pressure wave that develops horizontally and moves gradually
downwards. (b) Scenario 2 shows the development of a vertically aligned porosity wave with high porosity in the center surrounded by
two compacted zones. In the high-porosity center, mobile porosity channels open and close to drain the system vertically. Movement of
the solid and the porosity for the two scenarios is shown in two sketches.
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potential fault would be positioned and within the layer at
localities where the local fluid pressure is very variable.
Horizontal fractures within the layer develop later and
become more irregular and less horizontally aligned than
those in the unfaulted layer. The fractures within the layer
shown in Figure 6(b) are still horizontally aligned but
branch more than those of the unfaulted layer and con-
nect across the fault. The fractures shown in Figure 6(c)
are even more branched and brecciated and show only a
semihorizontal alignment in the lower layer on the right-
hand side. The fractures of the two faulted layer parts still
connect across the fault.

Figure 7 shows the progressive development of fractures
in the faulted layer and also differences that occur when
Young’s modulus is varied with Figure 7(a) showing a soft
material and Figure 7(b) a tough material (note that the
layer and the host rock have the exact same Young’s mod-
ulus). The progressive fracture development shows that the

fractures at the fault where the layers end develop first,
followed by semihorizontal fracturing of the layers them-
selves and finally a brecciation of the layers. The fluid
pressure in the offset layers also leads to the progressive
development of a shear fracture that propagates into the
surrounding matrix at the position where the potential
fault would be. The differences in the variable Young’s
modulus are mainly illustrated by the timing of the onset
of fracturing, which is much earlier and thus at much
lower fluid pressures in the soft material than in the hard
material. Otherwise, the developing fracture patterns are
very similar with a minor increase in fracture density in
the hard material.

Figure 8 shows the porosity in 6 simulations with offset
layers with different Young’s moduli. In all six cases, the
porous channels in the horizontal layers connect across the
fault and a compressed low-porosity zone develops in the
hanging and the footwall of the fault next to the layers. The

Horizontal layer

t = 3960

t = 4080

t = 4200

10 MPa

Partly offset layer

t = 1440

t = 1800

t = 2040

35 MPa

Completely offset layer

(a) (b) (c)

t = 1680

t = 1800

t = 1920

t= 3960t

t= 4080t

t= 4200t

t = 1440t

t = 1800t

t = 2040t

t = 1680t

t = 1800t

t = 1920t

Figure 6: Fluid pressure (in color) and fracturing (in black) for scenario 3 with fluid pressure increase in a horizontal layer that is faulted in
(b) and (c). A horizontal layer shows a fracture evolution that is similar to scenario 2 with a semihorizontal branching fracture in the layer.
Once the layer is faulted, the fluid pressure gradients curve and form vertical to conjugate shear fractures at the layer tips where the fault is
positioned. Fracturing within the layer is also more complicated because the layer is dilating in two dimensions in the vertical as well as the
horizontal direction. This leads to stronger brecciation of the layer.
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compressed zone is more pronounced in the soft than in the
hard material. Another variation with a change in Young’s
modulus is the timing with the mature porosity channels or
waves developing at a much earlier stage in the soft materials
than in the hard materials. The other main difference is that
the soft materials develop a porosity channel that progresses
into the fault outside of the layers, a feature that cannot be
seen in the hard materials.

4. Discussion

4.1. Importance of Geometry of the Fluid Overpressure Zone.
Our simulations show that the development of hydrofrac-
tures and effective stress fields depends on the geometry of
the fluid overpressure zone and boundary conditions in
simulations, by inference in experiments and nature. Sce-
nario 2 mimics the classical effective stress model where
the Mohr circle moves towards the left-hand side and
reaches effective tensile stresses without changes in differ-
ential stress and thus Mohr circle radius. Several authors
argued that this model is an oversimplification and cannot
be applied in all cases in the Earth’s crust [10–15, 20, 23].
Hillis [12] and Cobbold and Rodrigues [20] describe our
scenario 1 with the effective stresses becoming zero and

a stress orientation flip so that the vertical stress becomes
the smallest [23]. The stress flip happens because the
vertical and horizontal stresses are linked if the system is
vertically endless or confined by walls. That means that
fluid overpressure reduces vertical and horizontal stresses
at different rates bringing the overall effective stress to
zero in the vertical and horizontal direction. Afterwards,
the fluid can “push” upwards, the vertical effective stress
becomes the smallest principal stress, and a horizontal
hydrofracture or brecciated zone can develop. This leads
to the so called beef veins (Figure 1(b), [20]), which are
aligned horizontally. The horizontal stress is a function
of the vertical stress and the fluid pressure (equation (3),
[20]), a scenario that has been reported in sedimentary
basins below seals [12]. In such a system, the fluid over-
pressure can become very high without the development
of fractures (Figures 3 and 4). Once rock failure takes
place, the fractured zones are aligned horizontally, or subhor-
izontally as in our simulations (Figure 3). In order to predict
effective stresses and the fracture pattern accurately, fluid
overpressure differences or fluid pressure gradients need to
be taken into account. A simple rise in fluid pressure under
a seal or in a layer will produce scenario 1. Figure 9 illustrates
the difference in pattern formation with scenario 1 shown

Offset layer, Young’s modulus 10

(a)

(b)

t = 960 t = 1320 t = 1680

Offset layer, Young’s modulus 100

t = 2400 t = 3000 t = 3600
25 – 35 MPa10 MPa

Figure 7: Fracture evolution (in black, with fluid pressure color coded in the backgrounds) of two faulted layers with different Young’s
moduli. (a) Soft layer with Young’s modulus of 10GPa and (b) hard layer with Young’s modulus of 100GPa. Both hard and soft layers
show a similar fracture evolution with the first fractures developing at the end of the layers next to the fault followed by a brecciation of
the layer itself. The fracture density is slightly higher in the hard layer with the main difference being the timing of fracturing, which is
significantly earlier in the soft layer.
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in Figure 9(a) (i). Here, fluid pressure increases either in
the whole basin or in a layer. The gradients are aligned
vertically, and the solid in the basin is pushed upwards
and the layer is dilating. This will produce horizontally
aligned hydrofractures, breccias, or beef veins. In this case,
the symmetry of the system is only broken in one orienta-
tion due to the developing horizontally aligned fluid
pressure gradients.

Scenario 2 will only develop if the zone where the fluid
pressure rises has a vertical or subvertical boundary. The
effect of pressure gradients is also illustrated in scenario 2
where the initial fractures develop as a function of the local
fluid overpressure gradients at the rim of the high-pressure
zone and then propagate progressively into the center of
the model. The high-pressure zone is then dilating to form
a stationary porosity wave with local mobile porosity
channels, where different hydrofractures open and close
depending on local fluid pressure variations. Because
scenario 2 represents a zone of high pressure, the symmetry
is broken in two orientations and the gradients develop
around the high-pressure zone (Figure 9(a) (ii)). Now, the
differential stress plays an important role and the zone will
be dilating more in the direction of the lowest principal stress
and thus form initially vertically aligned fractures. In addi-
tion, fractures in this zone will form due to two reasons:
dilation that will produce a central fracture or breccia within
the zone and the fluid pressure gradients from the zone to the
surroundings (Figure 9(b)). If the gradients are high enough,
the very early fractures will form at the rims of the high-
pressure zone.

In scenario 1, the fracture only forms once the dilating
high fluid pressure zone overcomes the lithostatic stress. This

dilating zone moves downwards with an increase in over-
pressure so that more material will be pushed upwards. The
initial position of the hydrofracture in the middle of the
high-pressure zone was analytically predicted by Cobbold
and Rodrigues [20] with the following equation:

P = ρgz −
qμ
k

� �
z + Qμ

2k

� �
z2, ð20Þ

with the first term representing the hydrostatic fluid pressure
(as a function of density ρ, gravity g, and depth z), the second
term representing the fluid overpressure buildup below a seal
as a function of influx of fluid (with q being the Darcy veloc-
ity, μ the fluid viscosity, and k the permeability), and the last
term representing a source term, which could be fluid gener-
ation in a layer or zone as is the case in our simulations (with
Q being the fluid production). The second term in equation
(19) represents a linear fluid pressure gradient whereas the
source term is quadratic and the ratio between the two terms
determines the sharpness of the pressure peak [20]. Equation
(19) is one-dimensional and thus is only partly applicable to a
two- or three-dimensional fluid overpressure field, even
though the second and third terms in the equation would
be similar in the other dimensions.

The importance of two dimensions becomes obvious in
scenario 3 which illustrates why an understanding of the
interplay of local overpressure gradients and dilating high-
pressure zones is important. Once the fluid-generating layer
is faulted, the fluid pressure gradients and effective stresses
become variable in two orientations (Figure 9). This leads
to the initial development of fractures at the tips of the layers

Porosity in offset layer scenario

Young 10, t = 2160 Young 20, t = 3720 Young 30, t = 5280

Young 40, t = 6000 Young 70, t = 8520 Young 100, t = 11400
0.05 0.2

Figure 8: The final porosity pattern for 6 faulted horizontal layers with different Young’s moduli. Young’s modulus is in GPa, and time t is in
hours. The developing patterns are quite similar for different Young’s moduli, and they all connect across the fault and have a semihorizontal
orientation. All simulations show a compacted zone in the hanging and the footwall of the fault. The softer layers (Young’s modulus below
40GPa) show high porosity within the fault that extends into the host rock.
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where they are faulted, because in this direction, the pressure
gradients are acting in the direction of the lowest principal
stress and are locally very high. This leads to early fracture
development due to pressure gradients, which is later on
followed by brecciation of the layers themselves which is
happening due to the dilation (Figure 9). The developing
fractures are initiated by the fluid overpressure in the
layers but develop as a function of the effective solid
stresses, the local fluid pressure gradients, and the dilating
layers. One can also explain the fracture and porosity pat-
terns by symmetry breaking. The initially random porosity
has the highest symmetry. Once the symmetry is broken
in one direction, the horizontally aligned hydrofractures
and breccia zones develop (Figure 9). If the symmetry is
broken in two directions (the layer is faulted or the
high-pressure zone is localized), the pattern becomes more
complicated and fractures arrange in a combination of
vertical and horizontal patterns and combinations forming
larger breccias.

4.2. Porosity Phase Transition. Our simulations show a transi-
tion in porosity from a random distribution to the develop-
ment of stationary porosity waves with a dilating zone

surrounded by compressed areas. This switch in geometry
can be seen as a first-order phase transition where the ordered
system (random porosity) reduces its symmetry and forms
stationary waves. Such stationary waves are thought to form
in sedimentary basins where they can form zebra dolomites
[45]. The switch from random quasi-homogeneous porosity
to more localized porosity is well known from a range of sce-
narios in geosciences with the development of compaction
fronts or porosity waves in experiments, simulations, and
observations in natural systems in porous media, sediments,
and viscoelastic materials (for example, [46–50]). In our case
within the dilating zones, the hydromechanical interaction
leads to the creation of local porosity channels that are
dynamic and move around. These channels represent the
opening of connected hydrofractures, and they can close again
if the local overpressure is reduced. The porosity channels are
linked to hydrofractures, but not all hydrofractures develop
into open channels nor is the development of fractures directly
linked to the phase transition. The difference between frac-
tures and porosity channels is illustrated in scenario 2 where
the system fractures early on (Figure 4) but the porosity wave
only appears later once the high-pressure zone is dilating
(Figure 5). In contrast to this difference between fractures

(i) Symmetry breaking in one orientation

Horizontal
 layer

Sedimentary
basin

Localized
zone (cell)

Offset 
layer

(ii) Symmetry breaking in two orientations

Crack

Crack

Solid

Solid

Solid

Solid

Solid

Solid Solid

Crack Crack

Crack

Solid

Solid

Solid

Solid

Crack

Crack

Crack

(a)

(ii) Dilation(i) Gradient

Solid

Solid

Solid

Solid

Crack

Crack

Crack

Solid

Solid

Solid Solid

Crack

CrackCrack Crack

Crack

(b)

Figure 9: Illustration of the different geometries that produce variable fracture patterns. Fluid overpressure in blue color, cracks in black, and
arrows showing the movement of the solid. (a) Hydrofracture symmetry depending on the geological scenario. (i) High fluid pressure in a
horizontal layer or a sedimentary basin and symmetry breaking in one orientation because the pressure gradients are aligned horizontally.
The resulting patterns are horizontal hydrofractures. (ii) High fluid pressure in a confined zone or an offset horizontally aligned layer.
Symmetry breaking in two orientations because both cases lead to variably aligned gradients and dilation in two directions.
Hydrofractures develop as a function of pressure gradients and dilation, first in the direction of the lowest effective stress followed by
brecciation of the layers. (b) Two processes produce hydrofractures: (i) pressure gradients at the rims of high-pressure zones and (ii)
dilation of high-pressure zones.
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and porosity channels, fracture and porosity channel develop-
ment in scenario 1 happens at the same time.

4.3. Faulting and Fluid Overpressure. Faults play an important
role by changing layer geometries leading to the development
of complex fluid pressure gradients and thus fracture patterns.
If horizontal layers are intact (scenario 3a) or the high fluid
pressure zone has the geometry of a simple sedimentary basin
(scenario 1), then the layer or the basin fluidizes, the effective
stresses approach zero, and horizontal fractures or breccia
zones develop. However, if a fault disturbs this geometry (sce-
narios 3b and 3c), the effective stresses become complicated
and a high-pressure zone dilates not only in the vertical direc-
tion but also in the horizontal direction. This leads to hydro-
fracture development within the layer-offsetting fault and to
dilation of the fault at least right next to the high fluid pressure
layer (Figure 8). The fault would most probably become a leak
for high fluid pressure, and the fractures would dynamically
open even a sealed fault.

4.4. Material Variations. The presented simulations show
that a variation in Young’s modulus leads to an earlier
fracturing in soft than in hard materials. The soft material
shows stronger dilation than the hard material, so that the
stationary porosity wave in the soft material develops under
lower fluid overpressures than those in the hard material.
This is in contrast to tectonic fractures (for example, during
layer-parallel extension) that would develop earlier in the
hard material. This difference in behavior between tectoni-
cally driven and fluid pressure-driven fracturing may be used
as a proxy for fluid overpressure in layered systems.

5. Conclusion

In this contribution, a hydromechanical numerical model
with a compressible fluid was used to simulate hydrofractur-
ing and porosity evolution in high fluid pressure zones. Our
simulations led to the following conclusions:

(1) The geometry of the zone of high fluid pressure has a
major control on rock stability, fracture patterns,
fracture evolution, and porosity channeling

(2) Hydrofracturing is driven by two main processes:
dilation of high-pressure zones and high fluid pres-
sure gradients

(3) High fluid pressure generation in a sedimentary
basin or a horizontal layer can lead to a reduction
of both differential and mean stresses, followed by
a switch of the lowest effective stress from a hori-
zontal to vertical and a horizontal hydrofracture.
Such a scenario produces high fluid overpressures
and a horizontal porosity channel that progressively
moves downwards

(4) High fluid pressure generation in a confined zone
surrounded by rocks with hydrostatic fluid pressure
leads to a reduction of the mean stress and early frac-
turing due to pressure gradients followed by dilation
in the direction of the lowest effective stress. During

later stages, a central breccia zone with vertically
aligned dynamic porosity channels follows

(5) Horizontal layers that are offset by a fault and that
develop internal high fluid pressures show a combina-
tion of scenarios with the fault developing into an
early hydrofracture due to pressure gradients followed
by dilation of the layer pieces leading to layer-parallel
and perpendicular fractures and brecciation. Porosity
channels that form in the layers connect across the
faults

(6) All simulations show a phase transition from random
porosity to stationary and nonstationary porosity
waves with dilating and compressed zones. In addi-
tion, dynamic porosity channels develop within the
dilating zones when hydrofractures open and close

(7) Fluid can best escape in vertical high-pressure zones
with vertical porosity channels and in the faulted
layer case where the fault itself develops into a poros-
ity channel

(8) In order to understand fluid pressure evolution and
resulting fractures and drainage in the Earth’s crust,
fluid pressure gradients and exact geometries of seals,
fluid sources, and faults have to be taken into account
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