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Interface-based tuning of Rashba spin-orbit
interaction in asymmetric oxide heterostructures
with 3d electrons
Weinan Lin1,2,12, Lei Li3,4,12, Fatih Doğan5,6, Changjian Li1, Hélène Rotella7, Xiaojiang Yu8, Bangmin Zhang1,

Yangyang Li1, Wen Siang Lew 2, Shijie Wang9, Wilfrid Prellier 7, Stephen J. Pennycook1, Jingsheng Chen 1,

Zhicheng Zhong3,4,10, Aurelien Manchon 6 & Tom Wu11

The Rashba effect plays important roles in emerging quantum materials physics and potential

spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion

symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/

LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric

structure, and broken inversion symmetry is created by the inequivalent bottom and top

interfaces due to their opposite polar discontinuities. Furthermore, we report the observation

of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba

effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such

asymmetric oxide heterostructures with initially centrosymmetric materials provide a general

strategy for tuning the Rashba SOI in artificial quantum materials.
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Manipulation of the spin degree of freedom can be
expanded to various nonmagnetic materials by the
Rashba effect, where both the spin–orbit interaction

(SOI) and broken inversion symmetry are required1–4. The
phenomenon is generally observed at the surface of heavy metals
and in asymmetric two-dimensional quantum wells, where the
inversion symmetry is broken naturally3,5. Since the Rashba effect
plays a key role not only in fundamental physics but also for
potential applications, there has been considerable effort devoted
to exploring and/or maximizing the Rashba effect in a wide range
of materials6. In principle, an external electric field can break and
tune the inversion symmetry of the materials studied7,8, which is
also the mechanism of the celebrated spin transistor9. However,
such a technique is limited by the magnitude and the screening
length it can achieve10–12. As a result, much attention has been
paid to exploring structures with intrinsically broken inversion
symmetry, such as ferroelectrics and polar semiconductors13–16.
Recently, the effort has been extended to manipulate the geo-
metric environment of orbitals to achieve a giant Rashba
effect6,17,18.

Complex perovskite oxides ABO3 show great potential for
exploiting the Rashba effect6,19 because their multiple degrees of
freedom, i.e., charge, spin, orbital, and lattice, are entangled with
one another20,21. In heterostructures of perovskite oxides ABO3

and A'B'O3, two different interfaces, i.e., AO-B'O2 and BO2-A'O,
in the [001] direction can be introduced22,23. SrTiO3 (STO),
which has 3d electrons, is a prototypical example (Fig. 1a).
However, there is no spin splitting in the 3d electron band for the
centrosymmetric STO, and strain and SOI can lift the degeneracy
of only the 3d orbitals (Fig. 1b). Spin splitting requires breaking
the inversion symmetry of the structure, for example, when STO
forms a heterointerface with (LaO)+ interface due to the polar
discontinuity of LAO23–27. Such a significant Rashba effect in the
system has led to the discovery of significant spin–charge con-
versions28–30 and the perspective of various exotic properties,
such as skyrmion31,32, topological superconductivity33, and
intrinsic spin Hall effect34. In this heterostructure, the inversion
symmetry at the interface is naturally broken, and the band
structure is significantly modified owing to the confinement effect
and other interface-related effects20,22.

As illustrated in Fig. 1a (right), we propose in this work that
broken inversion symmetry can be manipulated by creating two
unequal interfaces in LAO//STO/LAO oxide heterostructures,
which makes use of their opposite polar discontinuities, i.e.,
(AlO2)−-(SrO) versus (TiO2)-(LaO)+. In this scheme, the
potential difference between these two unequal interfaces pro-
duces a built-in electric field to break the inversion symmetry of
STO35. Compared to the well-studied LAO/STO heterostructure
(Supplementary Figs. 1 and 2), where the inversion symmetry is
naturally broken at the interface, this designed approach is cap-
able of modulating the broken inversion symmetry via tuning the
intermediate STO layer thickness. Combining density functional
theory (DFT)-based tight-binding calculations with weak antilo-
calization (WAL) measurements, the transition from the pure
cubic Rashba term to its coexistence with the linear term is
identified as a function of carrier filling in Ti orbitals. Our work
demonstrates a general platform for exploring Rashba SOI phy-
sics in interface-asymmetric heterostructures with initially cen-
trosymmetric materials.

Results
Tuning of Rashba effect in the LAO//STO/LAO hetero-
structures. The band structure of STO with a centrosymmetric
structure and compressive strain from LAO was obtained from
DFT-based tight-binding calculation (Fig. 1b). Owing to the

biaxial strain in the (001) plane, the degeneracy of Ti t2g is lifted
with the dxy orbital located above the dyz/xz orbitals. When con-
sidering the SOI, the degeneracy of the dyz/xz band is further
lifted. Nevertheless, owing to the inversion symmetry of STO, the
energy band is doubly degenerate in the entire Brillouin zone,
which does not result in spin splitting (indicated by the green
arrows in Fig. 1b). As proposed above, the feature can be achieved
by introducing two unequal interfaces between LAO and STO,
which breaks the inversion symmetry of STO, as confirmed by
our calculation (Fig. 1c). The resulting Rashba effect lifts the
double degeneracy of the energy band away from the Γ point, i.e.,
resulting in spin splitting of the 3d orbitals (green arrows in
Fig. 1c).

Furthermore, the linear and cubic Rashba terms, where the
spin splitting is linearly and cubically proportional to the
momentum k (inset of Fig. 1d), respectively, are predicted to
coexist in the t2g multi-orbitals. These two types of Rashba effects
result in different spin configurations in each Fermi surface and
may further lead to different spin-related properties36–38.
Importantly, the characteristics of the Rashba effect can be
controlled by the filling of carriers at the Ti sites. Figure 1d shows
the spin splitting energy as a function of the carrier concentration
at each Ti atom for the cubic and linear Rashba effects. In the
STO with inversion symmetry broken, the linear Rashba effect
emerges when the carrier concentration reaches approximately
0.01 e/Ti. We should note that this critical carrier concentration is
an intrinsic property of STO and determined by its electronic
band structure. We hypothesize that the asymmetric interfaces of
the LAO//STO/LAO structures can be validated by characterizing
the Rashba effect, which might be tuned by the carrier
concentration in the STO layers. Such asymmetric multilayers
consisting of initially centrosymmetric materials provide a general
platform for investigating the Rashba SOI in engineered
heterostructures.

It is important to note that, although the existence of the linear
Rashba effect was theoretically predicted in oxide herterostruc-
tures with Ti 3d electrons38–40, so far only the cubic Rashba effect
has been reported in transport studies25,41,42. One possible
explanation is that the electrons from the dxy orbital are localized
at the interface and do not contribute to charge transport43. In
this work, we envision that the itinerant nature of the electrons in
the asymmetric LAO//STO/LAO heterostructures will enable us
to explore the linear Rashba effect and its coexistence with the
cubic Rashba effect will be modulated via carrier filling in Ti
orbitals.

Heterostructure synthesis and scanning transmission electron
microscopy (STEM) characterization. The oxide hetero-
structures were grown on treated LAO substrates using pulsed
laser deposition (PLD). The thickness and the termination of the
LAO and STO layers are precisely controlled via monitoring
reflection high-energy electron diffraction (RHEED) (see Sup-
plementary Fig. 4a for a typical heterostructure with 15 uc STO).
As discussed in the previous section, as a result of the polar
nature of LAO, such oxide heterostructures are designed to be
asymmetric: the (AlO2)−–SrO interface between the LAO sub-
strate and the STO layer is presumably p type23,44, while the top
TiO2–(LaO)+ interface is n type. However, as we will discuss
below, factors like cation intermixing at the interfaces make the
actual heterostructure deviate from the design although the
asymmetric nature is retained.

To confirm the high quality of the films, X-ray reflectivity
experiments were conducted, and a typical result is shown in
Supplementary Fig. 4b. From the simulation of the reflectivity
data, we derived the thicknesses of each layer in the
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heterostructure, which are consistent with the RHEED results. By
fitting the fringe oscillations of the high-resolution X-ray theta-
2theta measurements, we extracted the out-of-plane c lattice
parameter of the STO layer. Interestingly, it was found that c
decreases from 3.946 to 3.895 Å when the STO thickness
decreases in the series of heterostructures (see Supplementary
Fig. 4d). Such a feature is ascribed to the electrostriction effect
due to the built-in electric field45, which is supported by our DFT
calculations (see Supplementary Note 3).

To further characterize the strain state of the STO layer and,
especially, the interface atomic structures, aberration-corrected
STEM was used. A typical LAO//STO/LAO structure with 20 uc
STO was characterized. As shown by the high-angle annular
dark-field (HAADF)-STEM images in Fig. 2, epitaxial and
coherent growth of the STO layer is confirmed. The cross-
section HAADF-STEM image of the LAO//STO/LAO hetero-
structure and the strain components parallel (εxx) and perpendi-
cular (εyy) to the interface are presented in Supplementary Fig. 5,
which further supports the coherent growth of the heterostruc-
ture. Cross-sectional elemental mapping was also obtained by
atomically resolved STEM-energy-dispersive X-ray spectroscopy,
from which we can acquire information on the local composition
around the interfaces in such heterostructures. Similar to reports
on the STO/LAO interface44,46,47, cation intermixing was
observed at both interfaces in the LAO//STO/LAO heterostruc-
ture. More importantly, we found that the intermixing of the top
and bottom interfaces are different; it spans approximately 1 uc
for the bottom interface and 2 uc for the top interface, as
indicated in the overlay images in Fig. 2. This variation in the
cation mixing has been discussed as one of the key differences of

n-type and p-type interfaces44. It should be noted that the cation
intermixing at the bottom interface results in a combination of
(AlO2)−-SrO and (LaO)+-TiO2 configurations. This atomic
reconstruction can be regarded as a response to the polar
discontinuity due to an energy gain compared to that from
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Fig. 2 Atomic structural characterization of the two interfaces in the LAO//
STO/LAO heterostructure. a, b show the energy-dispersive X-ray
spectroscopic (EDS) mappings of the top and bottom interfaces,
respectively. From left to right: schematic structures, high-angle annular
dark-field image, Al K, La L, Ti K, and Sr K EDS integrated signal maps, and
the combined elemental maps of all cations
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generating the hole-doped interface, which was reported in other
similar oxide heterostructures48,49. Although the atomic struc-
tures of the interfaces deviate from the ideal case (Fig. 1a), the
LAO//STO/LAO heterostructure remains asymmetric.

Thickness-dependent density of 3d electrons. Hall effect mea-
surements were performed to obtain the carrier density of the
LAO//STO/LAO heterostructures. Figure 3a shows the typical Hall
measurements for the structure with 8, 20, and 30 uc STO, from
which the sheet carrier density was calculated. It was found that the
sheet carrier concentration (nH) increased progressively from 1.07 ×
1014 to 1.92 × 1014 cm−2 with decreasing STO layer thickness, as
shown in Fig. 3b. It is important to note that the carrier con-
centration is higher in the heterostructures with thinner STO layers.
The corresponding averaged-filling electrons per Ti in the hetero-
structure exhibits a similar trend as a function of the STO thickness
(inset of Fig. 3b). In the rough estimation, the carriers are assumed
to be homogeneously doped in the entire STO layer, which does not
reflect the local deviation of the electron filling across the STO layer.
As expected from the designed LAO/STO/LAO structure with two
non-equivalent interfaces, the electron distribution across the whole
STO layer should show a gradual increase from the p-type interface
to the n-type interface. Furthermore, the localized electrons near the
interfaces may have an important influence on the internal electric
field and impact on the Rashba splitting. Nevertheless, the carrier
density estimated from the Hall effect measurement exhibits a
consistent trend of dependence on the STO layer thickness. When
the STO layer in the heterostructure increases from 8 uc to 60 uc,
the number of electrons per Ti decreases from 0.038 to 0.003. This
range of electron filling is smaller than that in the extensively
investigated LAO/STO structures where the induced electrons are
mainly located around the interface.

In such heterostructures, both the electrons due to the polar
LAO layer and those doped by the defects introduced during
growth may contribute to the conduction. If the carriers were
introduced mainly by the growth-related defects, the sheet carrier
concentration (ns) with a bulk origin would increase with the
STO thickness, which is opposite to our observation (inset of
Fig. 3b). Thus defects are not the dominant source of conducting
carriers. Furthermore, a control experiment was conducted on a
heterostructure with amorphous La0.7Sr0.3MnO3 (a-LSMO) as the
capping layer, i.e., LAO/STO/a-LSMO, which was prepared under
the same conditions as the LAO//STO/LAO heterostructures
except that the top LSMO layer was deposited at room
temperature. The absence of measurable conductivity in such a
LAO//STO/a-LSMO structure indicates that the polarity of the
LAO plays an essential role in introducing the itinerant carriers35,
which may be achieved by influencing the formation energy of
the oxygen vacancy.

Evolution of SOI in LAO//STO/LAO heterostructures. As
quantum corrections to the conductance, both weak localization
(WL) and WAL can be present at low temperatures in oxide het-
erostructures. Because these effects are sensitive to an external
magnetic field, magnetotransport measurements can provide
insights into the nature of SOI50. Figure 4 shows the magnetore-
sistance (MR) of a heterostructure with 30 uc STO inserted between
the LAO layers. The negative MR at 20 and 30K is a signature of
WL, while with decreasing temperature, a cusp emerges around the
zero field and broadens progressively. Such MR features at low
temperatures are manifestations of WAL and are indicative of the
presence of a strong SOI in the systems25,41.

By varying the thickness of the STO layer in the hetero-
structures, magnetotransport of the LAO//STO/LAO hetero-
structures can be systemically tuned. As shown for the 2 K MR

data in Fig. 5a, the zero-field cusp shrinks with increasing STO
layer thickness, and finally, a negative MR emerges with the high
magnetic field at the thickest STO layer of 60 uc. This indicates a
crossover from the WAL to the WL regime with increasing STO
thickness. In the WL, the phase coherence of itinerant electrons is
destroyed mainly by inelastic scattering50, while the WAL is
governed by SOI. Thus the change in the MR characteristics upon
changing the thickness of the STO layer reflects a significant
modulation of the SOI in the heterostructures24,25,42,51.

To quantify the modulation of SOI upon the change of STO
layer thickness, the model developed by Iordanskii, Lyanda-
Geller, and Pikus (ILP), which considers the k-dependent SOI,
was adopted to analyze the magnetotransport data52,53. This
model involves two spin-splitting energy terms due to different k-
dependent spin-precession vectors, i.e., one is the linear SOI term
and the other is the cubic SOI term. The full equation of the ILP
model can be written as follows:52

Δσ Bð Þ � Δσ 0ð Þ ¼

� e2

4π2�h
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In the equation, Bso1, Bso3, and Bφ refer to the characteristic
effective magnetic fields for the linear SOI, the cubic SOI, and the
phase coherence, respectively, and Ψ is the digamma function.
Here the diffusion limit of this model is satisfied as the applied
magnetic field is much smaller than the Be, the characteristic field
of the elastic scattering, which is of the order of 100 T because of
the short mean free path in our heterostructures. To account for
the classical Lorentz force, which manifests itself as quadratic
dependence in field, the resistivity data are fitted directly using

Rxx Bð Þ ¼ γ

ð Δσ Bð Þ � Δσ 0ð Þð Þ þ δÞ þ αB2; ð3Þ

where α is the coefficient for the MR due to the Lorentz force, γ is
a constant, ln(2)/π, due to the Van der Pauw method used for the
transport measurements, and δ is the field-independent compo-
nent of conductivity of the samples. The data were symmetrized
to avoid any artifact due to the choice of magnetic field direction.
The analysis of the fitting accuracy can be found in Supplemen-
tary Fig. 6. Compared to the fitting with only a cubic SOI term,
the fitting considering both linear and cubic SOI terms gives a
more accurate result.

Figure 5b shows the fitting result of the magnetoconductance
data using the ILP model, which are obtained after removing the
classical Lorentz components, and the derived fitting parameters are
shown in Fig. 5c. One main finding of this work is that Bso3
monotonically increases from 1 to 3.75 T as the thickness of the
STO layer decreases from 60 uc to 8 uc in the LAO//STO/LAO
heterostructures. The sample-dependent Bφ fluctuates in the range
of 1–2 T, which is smaller than the characteristic Bso3 and thus in
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line with the WAL mechanism50. More significantly, Bso1 emerges
only when the thickness of the STO layer is below 20 uc; it
monotonically increases to 2.13 T in the thinnest heterostructure
with 8 uc STO. The temperature-dependent characteristic fields
have been extracted too, as shown in Supplementary Fig. 7. Our
data indicate that the prerequisite of the emergence of the linear
Rashba SOI is a high doping level of 3d electrons in thin STO layers.
On the other hand, the cubic SOI was found to dominate in the
heterostructures with STO thickness above 20 uc, similar to the
recent report by Nakamura et al.41. The temperature-dependent
resistance for all the samples are shown in Supplementary Fig. 8,
where an upturn behavior of resistance was observed at low
temperatures. Furthermore, the X-ray linear dichroism (XLD)
experiments has been performed to confirm that the lowest orbital
in the LAO//STO/LAO structure is dxz/yz and the electron
occupation changes upon the thickness of the STO layer
(Supplementary Note 5 and Fig. 9). The XLD result strongly
supports the scenario that the Rashba effect is tuned in the LAO//
STO/LAO structures by carrier filling of the Ti 3d orbitals.

Accordingly, the thickness dependence of spin diffusion
lengths due to the linear and cubic SOI terms was calculated
using the equation lso ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=4eBso

p
50. As described in Supple-

mentary Note 6, we calculated the linear Rashba coefficient αlinear
and the spin splitting energy Δcubic from the cubic SOI term for
the heterostructures. The linear Rashba coefficient increases from
0.015 to 0.043 eVÅ upon a decrease in the STO layer thickness
from 15 uc to 8 uc, which is in the same range as the results of

recent reports25,40. When the thickness of the STO layer
decreases from 60 uc to 20 uc, the spin splitting energy due to
the cubic SOI term increases from 2.31 to 2.87 meV, and
concurrently the electron number per Ti increases from 0.003 to
0.01. The measured spin splitting energy is consistent with the
first-principles calculation result (Fig. 1d). To elucidate the
relationship between the SOI transition and the electron doping
level of Ti, we plotted the above extracted parameters as functions
of the filling electrons per Ti determined from the Hall
measurement, as presented in Fig. 5d. It can be seen that the
transition between the linear and cubic Rashba SOI occurs at a
doping level of approximately 0.01–0.015 e/Ti, which is consistent
with the value predicted by our first-principles calculation result.

In conclusion, we demonstrated a class of oxide heterostructures
with interface-based broken inversion symmetry, in which the
Rashba effect can be tuned by changing the thickness of the
intermediate layer with itinerant 3d electrons. The lifted orbital
degeneracy and carriers’ doping modulated by the STO layer
thickness in the LAO//STO/LAO heterostructures enabled us to
identify the transition between the cubic and linear Rashba effects.
This work offers an alternative heterostructure-based route to
manipulating the SOI, complimentary to the reports on electric field
effect. Furthermore, our study also reveals the unambiguous role of
the linear Rashba SOI in thin heterostructures, while the previous
reports were focused on cubic SOI at oxide interfaces. The
coexistence of the linear and cubic Rashba effects in such oxide
heterostructures with 3d electrons will stimulate further theoretical
and experimental studies. Such asymmetric heterostructures
represent an alternative platform for exploring SOI and other
exotic physics in artificial quantum materials.

Methods
DFT-based tight-binding calculations. To construct a realistic tight-binding
model for STO-based heterostructure and also avoid adjustable parameters, we
performed a projection54 of Wien2K55 DFT results for bulk STO onto maximally
localized Wannier orbitals, which exactly reproduced the DFT-calculated band
structure40,56. The tight-binding Hamiltonian is described by Ho+Hξ+Hγ in the
t2g(xy, yz, xz) basis. The Ho term contains local energy terms ε and hopping terms t.
In bulk STO with cubic symmetry εxy= εyz/xz, which is defined with respect to
Fermi energy level, the compressive strain from the LAO substrate increases the xy
orbital energy in the order of 10 meV. Without loss of generality, we set εxy− εxy/xz
= 20 meV. There are three hopping terms: the large hopping term of t1= 0.277 eV
arises from the large xy intraorbital hopping integral along the x and y directions;
t2= 0.031 eV and t3= 0.076 eV indicate a much smaller hopping integral along the
z and (1,1,0) directions of the xy orbital, respectively. The Hξ term includes atomic
SOI, whose strength is 19.2 meV, as estimated from the DFT calculated orbital
splitting at Γ point. The last term Hγ= <xy|H|yz/xz> is an antisymmetric hopping
between xy and yz/xz orbitals along the x/y direction. It describes the asymmetry
due to the built-in electric field, which results in the Rashba spin splitting. In the
bulk STO, Hγ vanishes due to inversion symmetry, while at the LAO/STO interface
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Hγ is 20 meV. It is noted that the Rashba transition as well as the corresponding
critical carrier concentration mainly depend on Hξ and the t2g band structure
character of STO. It is confirmed that a change of hopping terms t or crystal field
splitting will not influence our conclusion.

Sample preparation and characterization. To ensure the AlO2 termination of the
LAO substrate, all the substrates used were treated and confirmed by atomic force
microscopic mapping before growth. The LAO//STO/LAO heterostructures were
grown in a PLD system, and high-pressure RHEED was used to monitor the
growth quality and to control the thickness of the growing films. Both LAO and
STO layers were grown at 800 °C under a pressure of 1 × 10−6 mbar of O2 and with
the laser energy set at 1 J cm−2. The laser pulse was set at a 1-Hz repetition rate.
After deposition, the samples were cooled to room temperature at 5 °C min−1.
With the same growth conditions, a series of heterostructures with controlled STO
thicknesses were prepared. Van der Pauw method was used to perform the
transport measurements with Ti/Au as the electrodes. All the transport measure-
ments were conducted in a physical property measurement system (PPMS,
Quantum Design). STEM was performed using a JEOL ARM200F operating at 200
kV and equipped with ASCOR probe corrector and Oxford XX-Max 100TLE X-ray
detector.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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