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Summary		12	

Why	 living	 forms	 develop	 in	 a	 relatively	 robust	manner,	 despite	 various	 sources	 of	 internal	 or	13	
external	variability,	is	a	fundamental	question	in	developmental	biology.	Part	of	the	answer	relies	on	14	
the	notion	of	developmental	constraints:	at	any	stage	of	ontogenesis,	morphogenetic	processes	are	15	
constrained	to	operate	within	the	context	of	the	current	organism	being	built.	One	universal	such	16	
constraint	is	the	shape	of	the	organism	itself	which	progressively	channels	the	development	of	the	17	
organism	 toward	 its	 final	 shape.	 Here,	 we	 illustrate	 this	 notion	 with	 plants,	 where	 strikingly	18	
symmetric	patterns	(phyllotaxis)	are	formed	by	lateral	organs.	This	Hypothesis	article	aims	first,	to	19	
provide	an	accessible	overview	of	phyllotaxis	and	second,	 to	argue	 that	 the	canalization	of	spiral	20	
patterns	in	plants	emerges	from	local	interactions	of	nascent	organs.	The	relative	uniformity	of	the	21	
organogenesis	process	across	all	plants	then	explains	the	prevalence	of	certain	patterns	in	plants,	i.e.	22	
Fibonacci	phyllotaxis.	23	
	24	
	25	

Introduction	26	

Throughout	development,	morphogenetic	processes	are	constrained	by	the	chemical	and	physical	27	
states	of	the	organism	(Alberch	1982,	1991),	which	biases	or	limits	phenotype	variability	(Maynard	28	
Smith	et	al.	1985).	These	developmental	constraints	progressively	restrict	the	set	of	possible	shapes	29	
that	 can	 be	 achieved	 by	 the	 organism,	 which	may	 orient	 development	 in	 narrow	 regions	 of	 the	30	
morphospace.	Such	canalization	of	shapes	during	ontogenesis	is	believed	to	be	one	important	source	31	
of	 shape	 reproducibility	 in	 both	 animals	 and	 plants,	 by	 making	 development	 of	 shapes	 largely	32	
insensitive	to	genetic	or	environmental	variations	of	moderate	amplitudes	(Wagner	2005,	Debat	and	33	
Le	Rouzic	2019)(Supplementary	information,	section	1).	34	

The	spiral	arrangement	of	organs	on	plant	stems,	called	phyllotaxis,	is	a	striking	example	of	35	
phenotypic	bias	in	development.	In	spiral	phyllotaxis,	plant	organs	form	conspicuous	spirals,	the	36	
numbers	of	which	are,	surprisingly,	usually	terms	of	the	Fibonacci’s	sequence	(Box	1).	This	37	
phenomenon	suggests	that,	during	growth,	genetic	or	physical	mechanisms	are	constraining	the	38	
system	to	produce	specific	numbers	of	spirals,	a	phenomenon	sometimes	referred	to	as	“numerical	39	
canalization”	(Battjes	et	al.	1993).	Interestingly,	not	only	spiral	number	seems	to	be	canalized,	but	40	
also	the	angle	between	two	consecutive	organs	on	the	stem,	called	the	divergence	angle,	which		is	41	
close	to	the	golden	angle	(~137.5°)	for	a	vast	majority	of	measurable	spiral	phyllotaxis	(Box	1).	42	

Various	 conceptual	 and	 computational	models	have	been	used	 to	 study	 the	properties	 of	43	
spiral	phyllotaxis	(reviewed	in	Douady	and	Couder	1996a,b,	Adler	et	al.,	1997).	Some	models	assume	44	
a	 constant	 divergence	 angle,	 and	 derive	 from	 this	 the	 fact	 that	 spiral	 numbers	 must	 be	 in	 the	45	
Fibonacci	sequence	(Bravais	and	Bravais	1837,	Hirmer	1931,	Fowler	et	al.	1989,	Battjes	et	al.	1993).	46	
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Others	 make	 assumptions	 on	 the	 organ	 initiation	 process	 itself,	 and	 show	 that	 both	 a	 constant	47	
divergence	 angle	 close	 to	 the	 golden	angle	 and	 Fibonacci	 spirals	may	 emerge	 from	 the	 dynamic	48	
interaction	between	recently	created	organs	(Schwendener	1868,	Douady	and	Couder	1996a	and	b,	49	
Atela	et.	al,	2003).	Before	technology	became	available	to	observe	the	actual	molecular	or	physical	50	
actors	governing	phyllotaxis	patterns,	early	studies	suggested	the	existence	of	abstract	mechanisms	51	
that	 could	 produce	 phyllotaxis	 patterns	 at	 a	 macroscopic	 level	 and	 studied	 their	 theoretical	52	
properties.	However,	a	clear	picture	of	what	exactly	governs	the	canalization	of	patterns	during	plant	53	
growth	remains	elusive.	54	

Here,	our	aim	is	twofold.	As	it	is	difficult	for	the	non-specialists	to	easily	grasp	the	essence	of	55	
phyllotaxis	models,	our	first	objective	is	to	give	an	articulate,	concise	and	accessible	introduction	to	56	
the	key	concepts	related	to	the	analysis	and	modeling	of	spiral	phyllotaxis	patterns.	We	focus	on	the	57	
geometric	explanations	that	are	central	to	the	understanding,	abstracted	from	molecular	or	physical	58	
mechanisms	while	keeping	the	mathematics	light.	Our	second	aim	is	to	investigate	the	nature	of	the	59	
process(es)	that	canalize	phyllotaxis	patterns	so	efficiently.	The	Fibonacci	property	of	spiral	patterns	60	
observed	in	plants	is	suggested	to	result	from	developmental	constraints	(Maynard	Smith	et	al.	1985)	61	
imposed	by	the	close	packing	of	organs	at	the	tip	of	growing	stems	(Mitchison,	1977),	but	how	is	the	62	
divergence	 angle	 canalized?	 Are	 both	 Fibonacci	 properties	 and	 divergence	 angle	 canalizations	63	
related?	 To	 address	 these	 questions,	 we	 show	 how	 robust	 and	 conspicuous	 spiral	 phyllotaxis	64	
patterns	 are	 channeled	 by	 purely	 geometric	 developmental	 constraints	 throughout	 plant	65	
development,	and	we	provide	a	detailed	account	of	the	origin	of	these	constraints.	66	

Overall,	we	propose	that	a	coherent	view	emerges	from	the	collective	effort	to	understand	67	
phyllotaxis,	in	which	the	competition	of	organs	for	space	in	the	shoot	apical	meristem	(SAM),	imposes	68	
simple,	local	and	robust	geometric	rules	for	the	ring	of	newly	formed	organs	around	the	SAM	(front).	69	
As	growth	accelerates	during	development,	the	shape	of	the	front	formed	by	the		previous	organs	70	
constrains	 increasingly	 accurately	 the	 position	 of	 the	 next	 ones,	 and	 geometrically	 channels	 the	71	
phyllotaxis	into	a	very	restricted	number	of	patterns.	This	mechanism	can	explain	both	the	universal	72	
presence	of	Fibonacci	phyllotaxis	in	plant	patterns	and	its	exceptions	(depending	on	the	variation	of	73	
the	 growth	 rate),	 suggesting	 that	 phyllotaxis	 patterns	 are	 continuously	 canalized	 during	 plant	74	
development	by	purely	local	geometric	constraints.	75	

	76	

Spiral	phyllotaxis	patterns	77	

Phyllotaxis	patterns	 are	usually	 classified	 into	 either	 spiral	 (Fig.	 1A)	or	whorled	 (Fig.	 1B)	motifs	78	
according	to	the	number	of	lateral	organs	attached	at	each	node.	In	the	large	class	of	spiral	phyllotaxis	79	
on	which	we	focus	in	most	of	this	paper,	the	patterns	are	usually	described	by	two	families	of	visual	80	
spirals:	the	parastichies	(Fig.	1C).	In	the	early	19th	century	(Braun	1831),	it	was	recognized	that	the	81	
numbers	 of	 spirals	 of	 these	 clockwise	 and	 counterclockwise	 parastichies	 are,	 generally,	 two	82	
consecutive	 numbers	 of	 the	 Fibonacci	 sequence,	 called	 the	 phyllotaxis	 mode	 (Box	 2;	 Fig.	 1D,E).	83	
Unusually	for	biological	systems,	these	spiral	numbers	only	deviate	marginally	from	this	rule	(around	84	
a	 few	 percents)(Fierz	 2015,	 Swinton	 et	 al.	 2016),	 suggesting	 strong,	 relatively	 universal	85	
developmental	constraints	(Maynard	Smith	et	al.	1985).	86	

The	lateral	organs	composing	these	patterns	are	produced	by	the	SAM	(Fig.	1F)	at	a	regular	87	
pace	at	the	tip	of	plant	axes	around	the	rim	of	a	central	zone	(CZ).	The	organs	and	stem	then	grow	88	
and	expand	to	reach	their	final	size	and	shape,	during	which	they	generally	keep	their	relative	angular	89	
positions	on	the	stem.	The	angle	between	two	consecutive	organ	primordia	is	called	the	“divergence	90	
angle”	 (Schimper	 1835)(Fig.	1G,H).	 In	most	 plants,	 this	 angle	 does	 not	 change	 as	 the	 primordia	91	
develop	into	mature	organs.	Divergence	angles	may	either	be	relatively	constant	during	some	growth	92	
phase	of	the	stem	or	show	gradual	variations.	The	imaginary	curve	linking	the	organs	at	consecutive	93	
nodes	of	a	given	stem	(in	the	order	of	their	initiation)	is	called	the	“generative	helix”	or	“generative	94	
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spiral”	(Fig.	1H)	if	the	organs	mainly	stay	in	one	plane.	This	spiral	winds	either	to	the	left	or	to	the	95	
right	(chirality).	96	

On	elongated	stems,	the	divergence	angle	can	be	easily	estimated	by	computing	its	average	97	
value	 from	 the	 number	 of	 turns	 and	 organs	 separating	 two	 overlaying	 leaves	 (Fig.	 1H)	 on	 the	98	
generative	helix	(Schimper,	1835).	Similar	estimations	are	difficult	in	compact	structures,	such	as	99	
flowers	or	cones,	because	one	cannot	easily	see	the	organs’	order	between	overlaying	leaves.	Rather,	100	
these	compact	structures	show	“contact-parastichies”:	generally,	organs	do	not	exactly	overlay	and,	101	
if	the	structure	remains	compact,	one	can	observe	a	corresponding	slight	shift	on	one	side	(Fig.	1I).	102	
During	 development,	 this	 shift	 always	 occurs	 in	 the	 same	 direction,	 which	 creates	 the	 “contact-103	
parastichies”	due	to	the	visual	adjacency	between	organs	(Fig.	1J).	These	visual	spirals	must	not	be	104	
confused	with	the	generative	spiral	that	can	be	seen	as	the	most	horizontal	possible	spiral	winding	105	
around	the	stem	and	which	traverses	each	organ	in	their	chronological	order.	For	spiral	phyllotaxis,	106	
the	average	divergence	angle	(when	it	can	be	measured)	is	usually	close	to	the	golden	angle	(137.5°)	107	
(Box	1;	Fig	1G).	Less	frequently,	other	angles	such	as	99.5°	(Lucas	angle)	can	be	found	(Fierz	2015,	108	
Swinton	et	al.	2016).	Remarkably,	both	the	golden	angle	and	Lucas	angle	are	tightly	connected	with	109	
the	Fibonacci	sequence	(Box	1),	 supporting	 the	 intuition	that	something	profound	connects	these	110	
botanical	 patterns	 –	 and	 their	 resilience	 to	 internal,	 environmental	 and	 genetic	 variations	 –	 to	111	
mathematics.	112	

Thus,	numbers	of	parastichies	and	divergence	angles	both	seem	to	be	constrained,	 taking	113	
their	values	within	restricted	ranges.	Where	do	these	developmental	constraints	come	from?	Do	they	114	
reflect	a	single	underlying	mechanism,	acting	on	the	parastichy	numbers,	or	the	divergence	angle?	Or	115	
are	two	different	mechanisms	at	play?	116	
	117	
	118	

The	geometric	link	between	divergence	angle	and	spirals	119	

To	better	understand	the	intricate	relationship	between	divergence	angle	and	parastichies,	consider	120	
a	toy	geometric	model	of	organ	initiation	(Fig.	2A,	(Golé	2020)).	In	this	toy	model,	organs	form,	one	121	
at	a	time,	at	the	rim	of	the	meristem	CZ	of	radius	R.	The	time	elapsed	between	two	consecutive	organ	122	
initiations	(T)	is	called	a	“plastochron”,	and	the	azimuthal	angle	(α)	between	these	organs	defines	123	
the	divergence	angle.	As	organs	are	produced,	they	immediately	move	radially	away	from	the	center	124	
with	a	constant	velocity	V.	For	simplicity,	we	assume	that	apex	growth	is	regular	(stationary	growth),	125	
so	that	V,	T	and	α,	are	considered	as	independent	and	constant	parameters	(Box	2).	In	addition,	we	126	
measure	angles	as	fractions	of	a	circle:	any	angle	is	represented	by	a	real	number	between	0	and	1	127	
(the	angle	unit	is	a	turn:	1	turn=360°,	1/2	turn=180°,	1/3	turn	=	120°,	etc.	(Box	1)).	128	
	129	
Connecting	divergence	angles	and	spiral	motifs	130	
Using	 this	 model	 we	 can	 simulate	 the	 growth	 of	 an	 imaginary	 apex	 during	 a	 given	 number	 of	131	
plastochrons.	First,	observe	what	happens	when	varying	the	divergence	angle	α (α stays	constant	132	
during	each	simulation,	but	is	distinct	between	two	simulations),	while	R=1	and	V=1	in	arbitrary	units	133	
(a.u.)	are	fixed	between	all	simulations.	For	α=1/2,	the	model	generates	two	opposite	straight	arms	134	
at	180°	of	one	another	(Fig.	2B).	The	primordia	are	generated	alternatively	on	each	side	and	move	135	
away	 from	 the	 center,	 thus	 leaving	 room	 for	 the	 next	 primordium	 on	 the	 same	 side	 every	 two	136	
plastochrons.	The	two	arms	are	thus	composed	of	even	and	odd	primordia,	respectively,	and	form		137	
“opposite	phyllotaxis”,	commonly	observed	in	plants.	Setting	α=1/3,	yields	three	emerging	straight	138	
arms.	Likewise,	for	α=1/4,	four	straight	arms	emerge	and	so	on	(Fig.	2B).	139	

Both	α=1/5	and	α=2/5	appear	to	have	five	arms	(Fig.	2C).	However,	the	order	in	which	the	140	
arms	are	 visited	differs.	 For	α=1/5,	 the	 arms	are	 visited	 in	 the	order	1,2,3,4,5,	 but	 in	 the	order	141	
1,3,5,2,4	for	α=2/5	(Fig.	2C,	green	arrows).	The	numerator	p	indicates	the	number	of	turns	that	are	142	
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made	before	the	organ	initiation	occurs	again	in	the	initial	orientation	(i.e.	on	arm	one).	Equivalently,	143	
it	 also	 indicates	 the	 number	 of	 arms	 that	 are	 skipped	 from	 one	 initiation	 to	 the	 next	during	 the	144	
simulated	growth	process.	For	example,	α=3/7	yields	a	motif	with	seven	straight	arms	that	are	all	145	
visited	every	three	turns	before	the	simulation	comes	back	to	the	original	azimuth	angle	for	initiating	146	
an	organ,	α=5/12		yields	twelve	arms,	etc.	147	

Shall	we	then	conclude	that	if	the	divergence	angle	is	defined	by	a	fraction	p/q	of	a	turn,	then	148	
the	motif	always	exhibits	q	straight	arms?	Not	quite.	Consider	what	occurs	by	slightly	changing	the	149	
value	of	a	divergence	angle	in	the	previous	simulations,	for	example,	α=0.401	instead	of	α=2/5=0.40.	150	
Note	that	this	new	divergence	angle	is	also	rational,	as	0.401	=	401/1000.	Shall	we	expect	a	motif	151	
with	1000	straight	arms?	We	do	not	observe	this	(Fig.	2D).	Instead,	the	previous	five	arms	for	α=2/5	152	
are	now	slightly	bending.	By	 increasing	 the	divergence	angle	 to	α=0.41,	the	 five	arms	bend	even	153	
more.	However,	for	α=3/7,	the	five	bending	arms	disappear	and	are	replaced	by	seven	straight	arms,	154	
as	previously	observed.	For	α=0.43,	the	seven	arms	bend	again.	However,	both	0.41=41/100	and	155	
0.43=43/100	are	rationals.	Why	don’t	we	see	100	straight	arms?	156	
	157	
A	different	way	to	bend	arms	158	
For	a	solution,	consider	a	different	way	to	bend	the	arms	of	our	phyllotaxis	motifs.	Instead	of	changing	159	
the	divergence	angle,	let	us	keep	it	constant	(α=0.41),	as	well	as	V=1	and	R=1,	and	change	the	time	160	
T	between	the	 initiation	of	 two	organs	between	simulations	(Fig.	2E).	For	T=0.1,	we	observe	 five	161	
spiraling	arms,	 coiling	 clockwise	 away	 from	 the	 center.	A	2-fold	decrease	 (T=0.05)	 increases	 the	162	
bending	of	the	five	arms.	Indeed,	decreasing	T	progressively	coils	the	arms	tighter	around	the	center;	163	
the	angular	positions	of	the	points	don’t	change,	but	their	distance	to	the	origin	decreases,	bringing	164	
points	 in	 the	 different	 arms	 closer	 together,	 so	 much	 so	 that	 the	 eye	 wants	 to	 connect	 newly	165	
neighboring	points	into	new	spirals.	For	T=0.05,	for	instance,	one	can	perceive,	aside	from	the	five	166	
original	spirals,	a	new	set	of	17	spirals	coiling	counterclockwise	 from	the	origin.	We	say	 that	 the	167	
pattern	is	in	a	(5,	17)	mode	(Box	2),	or	that	its	number	of	parastichies	are	(5,	17)(Fig.	2E).	At	T=0.01,	168	
one	can	still	perceive	the	five	clockwise	and	17	counterclockwise	spirals	close	to	the	center,	in	a	much	169	
tighter	coil.	However,	on	the	outside,	two	more	sets	of	spirals	have	emerged:	one	with	22	clockwise	170	
spirals,	the	other	with	39	counterclockwise	spirals.	This	presents	a	transition	of	modes,	common	to	171	
asteracea’s	flower	heads	(Supplementary	information,	section	2).	Note	that,	the	more	spirals	in	one	172	
of	these	sets,	the	straighter	the	spirals:	the	5-spirals	are	most	coiled,	the	39	are	the	least.	For	T=0.001,	173	
α=41/100,	all	these	spirals	have	coiled	so	much	that	the	only	pattern	visible	is	-long	expected-	100	174	
equally	spaced	straight	arms	shooting	radially	from	the	center.		175	

It	is	important	to	note	that,	in	these	toy-simulations,	we	have	kept	the	parameters	R	and	V	176	
constant,	and	varied	only	the	plastochron	T	and	divergence	angle	α independently.	We	could	have	177	
obtained	the	same	result	by	keeping	constant	the	plastochron	T=1	arbitrary	unit,	and	varying	the	178	
speed	V	of	primordia	 drift	 instead.	What	 actually	matters	 for	 the	 patterns	 is	not	 each	 individual	179	
parameter	but	their	product	VT	that	corresponds	to	the	distance	travelled	by	one	primordium	during	180	
one	plastochron.	This	defines	a	typical	length	scale	that	must	be	compared	with	the	size	of	the	apex,	181	
i.e.	the	radius	R	of	the	CZ.	The	patterning	is	thus	governed	by	the	ratio,	G=VT/R,	between	these	two	182	
spatial	 quantities	 that	 characterizes	 the	 apex	 growth.	 This	 “growth	 index”	 (G)	 can	 be	measured	183	
directly	from	cuts	or	electron	microscope	pictures,	even	without	scale,	from	the	respective	distance	184	
of	the	organs	(Richards	1951).	Thus,	we	now	use	the	two	variables:	α,	G	(instead	of	α,	T),	where	G	185	
can	be	varied	by	changing	the	value	of	either	T,	V	or	R.	186	

For	a	given	divergence	angle,	the	number	of	arms	generally	depends	on	the	growth	index	G,	187	
(Fig.	2E).	As	we	have	seen,	decreasing	G	increases	the	number	of	arms.	But	why	do	we	eventually	see	188	

100	straight	arms	for				    ?	How	can	we	explain	the	numbers	of	spirals	(5,	17,	22,	39)	that	we	189	
saw	on	our	way	to		100?	190	
	191	
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The	 numbers	 of	 spiral	 arms	 correspond	 to	 best	 rational	 approximations	 of	 the	192	
divergence	angle	at	different	resolutions	193	
To	understand	this,	 let	us	consider	more	closely	 the	numerical	structure	of	our	divergence	angle	194	
α=0.41.	We	make	use	of	the	fact	that	each	real	number	can	be	increasingly	well	approximated	by	a	195	
unique	 series	 of	 fractional	 (rational)	 numbers	 called	 its	 “convergents”	 (Box	 3,	 Supplementary	196	
information,	section	3).	For	instance,	41/100	can	be	increasingly	well	approximated	by	the	sequence	197	
of	rational	numbers:	198	

	199	
which,	respectively,	correspond	to:	200	

0.5,	0.4,	0.4117…,	0.40909…,0.41025…,0.41	201	

Each	fraction	p/q	in	this	list	is	the	best	rational	approximation	of	0.41	that	one	can	make	with	202	
pieces	 of	 size	 1/q	 or	 larger	 (Box	 3	 and	 Supplementary	 information	 Section	 3,	 as	 well	 as	 e.g.	203	
(Karpenkov	2013)	for	mathematical	details).	For	example,	7/17	is	the	best	rational	approximation	204	
that	one	can	make	of	0.41	with	pieces	of	size	1/17	or	larger	(i.e.	it	is	a	convergent	of	41/100),	(Fig.	205	
3A)).	206	

How	do	these	convergents	appear	in	the	geometry	of	our	spirals?	We	have	seen	before	that,	207	
for	some	range	of	growth	index,	when	the	divergence	α is	close	to	a	rational	p/q,	the	pattern	displays	208	
q	arms,	and	these	arms	become	straighter	as	α moves	closer	to	p/q.	So	seeing	the	successions	of	5,	209	
17,	22,	39	and	 finally	100	arms	at	different	growth	 indexes	 is	 just	 the	expression	of	 the	 fact	 that	210	
41/100	is	successively	close	to	its	convergents	(Box	2).	As	G	decreases,	the	pairs	of	spirals	coil	onto	211	
themselves	(Fig.	2E).	During	this	process,	for	a	given	mode,	spirals	that	are	the	least	tightly	wound,	212	
corresponding	to	the	convergents	with	higher	denominators,	and	whose	points	are	farther	apart	(Fig.	213	
3A,	17	purple	spirals),	become	increasingly	visible.	By	contrast,	the	most	tightly	coiled	spirals	of	the	214	
pair	(Fig.	3A,	five	green	spirals)	tend	to	coil	even	more	and	to	disappear	in	the	tight	packing	of	organs	215	
as	G	continues	 to	decrease	(Fig.	2E).	This	process	leads	to	progressively	exhibiting	pairs	of	spiral	216	
families,	alternatively	clockwise	and	counterclockwise,	whose	numbers	run	successively	through	the	217	
list	of	denominators	of	the	convergents	of	α (Fig.	3A).	218	
	219	
When	 the	 divergence	 angle	 is	 the	 golden	 angle,	 the	 number	 of	 visible	 spirals	 are	220	
consecutive	numbers	of	the	Fibonacci	sequence	221	
In	 the	 previous	 sections,	we	 considered	 exclusively	 rational	 divergence	 angles.	 However,	 all	 the	222	
previous	conclusions	remain	valid	for	irrational	numbers:	a	unique	list	of	convergents	can	be	defined	223	
that	gives	a	multiresolution	approximation	of	this	number	(Supplementary	information,	section	3).	224	
What	about	the	Golden	angle?	In	1830,	Schimper	and	Braun	(Schimper	1835,	Braun	1831)	made	the	225	
first	observations	of	Fibonacci	phyllotaxis.	They	defined	the	divergence	angle	and	hypothesized	that,	226	
given	their	observations,	most	often	it	must	belong	to	a	sequence	of	rationals	formed	by	quotients	of	227	
numbers	that	are	two	apart	in	the	Fibonacci	sequence	(Box	1).	Independently,	the	Bravais	brothers	228	
(Bravais	and	Bravais	1837)	made	similar	observations,	except	that	they	always	saw	bending	arms	229	
(or,	on	a	stem,	skewed	vertical	rows	of	organs)	(Supplementary	information,	section	2;	Fig.	1J).	They	230	
realized	that	these	numbers	are	actually	the	first	terms	in	the	list	of	convergents	of	the	golden	angle		231	

    (Supplementary	information,	section	4).			Note	that,	although	the	Bravais	brothers	remark		232	
that		γ  is		irrational	–	explaining	the	bending	of	arms	at	every	scale	–	they	make	no	mention	of	its	233	
relation	 to	the	golden	ratio,	whose	relation	 to	the	Fibonacci	number	was	not	as	widely	known	as	234	
today.	235	
According	 to	 what	 we	 discussed	 above,	 the	 number	 of	 spirals	 that	 are	 observed	 in	 motifs	236	
corresponding	to	an	angle	of	divergence	γ must	be	consecutive	denominators	of	its	sequence	of	237	
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convergents,	 that	 is	 the	 fractions	 	 	    whose	 limit	 is	γ (Fig.	 3B,	 Supplementary	238	
information,	 section	 4),	 i.e.	 the	 number	 of	 parastichies	 must	 be	 pairs	 of	 consecutive	 Fibonacci	239	
numbers.	240	

Must	 all	plants	with	Fibonacci	 phyllotaxis	have	 constant	divergence	 angle	γ?	This	 is	 the	241	
hypothesis	that	the	Bravais	made.	Here	was	one	number	that	could	explain	the	vast	majority	of	the	242	
plant	patterns	they	observed,	and	whose	average	divergence	angle	they	measured	seemed	to	be	very	243	
close	to	γ.	This	hypothesis	persisted	as	a	diktat	for	nearly	200	years.	Yet,	the	Bravais	(Bravais	and	244	
Bravais	1837,	p.73)	warn	us	that	this	might	only	be	a	guiding	hypothesis	(our	translation):	“Let	us	245	
note	once	more	that	we	are	not	pretending	to	prove	in	a	rigorous	manner	that	the	divergence	angle	is	246	
constant,	but	we	deem	it	as	the	most	likely	hypothesis	in	our	present	state	of	knowledge;	were	it	only	a	247	
theoretical	idea	to	verify,	it	would	still	be	a	useful	guide	in	the	study	of	plant	symmetry,	or	Phyllotaxis,	248	
as	Mr.	Schimper	calls	it.”	249	
	250	
Summary	251	
This	 section	 has	 shown	 that,	 via	 a	 simple	 regular	 spiral	 model,	 there	 is	 a	 strong,	 but	 subtle,	252	
mathematical	link	between	divergence	angles	and	parastichies.	Spiral	patterns	are	simply	geometric	253	
representations	of	the	fixed	divergence	angle	with	varying	precision	levels	that	are	determined	by	254	
the	growth	index	G.	Straight	arms	indicate	that	the	organs	move	sufficiently	slowly	away	from	the	255	
center	so	that	their	positions	provide	an	exact	estimation	of	the	divergence	angle	(when	rational).	In	256	
contrast,	 bending	 arms	 reveal	 that	 the	 growth	 index	 is	 too	 large	 for	 straight	 arms	 to	be	 visually	257	
perceptible	 (as	 one	 would	 expect	 for	 a	 rational	 divergence	 angle),	 or	 alternatively,	 that	 the	258	
divergence	 angle	 is	 irrational.	 Instead,	 visible	 arms	 correspond	 to	 best	 approximations	 of	 the	259	
divergence	 angle.	 Note	 that,	 due	 to	 this	 property,	 bending	 arms	 can	 appear	 even	 for	 rational	260	
divergence	angles.	261	

Depending	on	divergence	angle	and	growth	index	values,	one	or	two	spiral	families	can	be	262	
observed	(Fig.	2D,E).	Reciprocally,	the	numbers	of	clockwise	and	counterclockwise	spirals	inform	us	263	
of	 the	 possible	 underlying	divergence	 angle	 (assumed	 to	 be	 constant	 in	 this	 idealized	 situation),	264	
sometimes	referred	to	as	the	fundamental	theorem	of	phyllotaxis	(Bravais	and	Bravais	1837,	Adler	265	
1974,	Jean	1986)	(Box	4,	Supplementary	information,	section	5).		266	

The	toy	geometric	model	assumes	that	growth	index	and	divergence	angle	are	independent	267	
variables	and	have	constant	values.	If	the	divergence	angle	is	set	to	the	golden	angle,	classical	families	268	
of	Fibonacci	spirals	become	visible.	However,	many	other	phyllotaxis	modes	can	be	observed	 for	269	
other	values	of	the	divergence	angle,	whether	it	be	in	nature	(where	they	are	less	frequent)	or	in	270	
simulations.	271	

Fibonacci	modes	are	predominant	in	plants	with	spiral	phyllotaxis,	suggesting	that	something	272	
else	is	probably	constraining	the	system.	In	principle,	either	the	divergence	angle	or	the	parastichies	273	
could	be	constrained	by	the	growth	processes	to	take	precise	values,	consequently	restricting	the	274	
range	of	values	taken	by	the	other	through	the	geometrical	link	described	above.	However,	both	cases	275	
raise	interpretation	difficulties:	if	developmental	constraints	act	directly	on	spirals,	selecting	specific	276	
numbers	 of	 arms,	 how	 are	 these	 numbers	 consecutive	 numbers	 of	 the	 Fibonacci	 sequence?	277	
Conversely,	if	developmental	constraints	directly	regulate	the	value	of	the	divergence	angles,	why	is	278	
this	value	is	most	of	the	time	close	to	the	golden	angle?	Even	for	divergence	angles	deviating	slightly	279	
from	 the	 golden	 angle	 (α=136,	 137,	 138,	 etc.),	 we	 observe	 spiral	 patterns	 showing	 large	 gaps	280	
between	 parastichies	 and	 modes	 unobserved	 in	 plants	 (Prusinkiewicz	 and	 Lindenmayer	281	
1990)(Fig.	3C).	If	the	divergence	angle	were	indeed	constant	and	equal	to	the	golden	angle,	how	could	282	
the	plant	maintain	precision,	such	that	only	Fibonacci	spirals	are	observed	macroscopically?	And	why	283	
could	other	divergence	angles	be	seen	occasionally,	while	often	showing	parastichy	numbers	related	284	
to	 the	 Fibonacci	 sequence	 in	 those	 cases	 (e.g.	 Lucas	 angle	 =	 99°5)?	 These	 paradoxes	 are	 partly	285	
resolved	because	the	divergence	angle	and	the	growth	index	are	not	independent	variables	in	real	286	
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plants.	287	
	288	

The	coupling	between	growth	index	and	divergence	angle	289	

In	the	previous	simple	geometric	model,	we	were	interested	in	the	positions	of	primordia	without	290	
considering	 their	 actual	 size	 nor	 their	physical	 or	 chemical	 interactions.	 However,	 in	meristems,	291	
young	primordia	may	encompass	a	tissue	region	of	several	cells	of	diameter	and	inhibit	the	initiation	292	
of	other	organs	in	their	immediate	vicinity.	Each	primordium	defines	a	zone	of	exclusion	around	it,	293	
where	no	other	organ	can	form,	which	seems	to	be	mainly	determined	molecularly	(Reinhardt	et	al.	294	
2003,	Barbier	de	Reuille	et	al.	2006,	Smith	et	al.	2006,	Jönsson	et	al.	2006,	Besnard	et	al.	2014,	see	the	295	
Biological	Interpretation	section	below)),	although	a	physical	(mechanical)	contribution	cannot	be	296	
excluded	(Galvan	Ampudia	et	al.	2016).	Here,	we	identify	the	primordium	region	and	the	inhibition	297	
zone	around	it	as	the	“primordium”	as	a	whole,	without	paying	attention	to	distinction	between	the	298	
primordium	proper	and	its	lateral	inhibition	nor	to	the	exact	nature	of	the	inhibition,	which	are	not	299	
essential	to	this	discussion.	300	
	301	
Toward	a	more	mechanistic	model	taking	into	account	organ	contacts	302	

Many	mechanistic	models	take	into	account	such	inhibitory	action	between	organs	at	the	meristem.	303	
The	most	common	view	is	that	primordia	are	initiated	at	the	rim	of	the	CZ,	which	is	crowded	by	young	304	
primordia	(Fig.	1F;	Fig.	4A).	By	their	local	inhibitory	action,	these	primordia	inhibit	the	formation	of	305	
new	primordia,	provided	they	keep	close	enough	to	the	CZ.	However,	due	to	growth,	the	CZ	drifts	306	
away	from	the	existing	primordia	and	new	primordia	can	form	as	soon	as	sufficient	space	is	available.	307	
This	process	results	in	“contacts”	between	primordia	at	the	edge	of	their	individual	inhibitory	zones	308	
(Hofmeister	1868).	These	contacts	reflect	the	geometry	of	zones	of	inhibition,	be	they	due	to	physical	309	
contact	or	chemical	signal.	With	growth,	this	contact	pattern	is	often	preserved	in	compact	structures	310	
(Fig.	4C)	and	remains	visible	in	elongated	stems	with	the	vasculature	(Plantefol	1948,	Kirchoff,	1984).	311	
Altogether,	 the	 prevalent	 hypotheses	 governing	 local	 interactions	 between	 organs	 at	 the	 tip	 of	312	
growing	meristems	are:	313	

i. Circular	symmetry:	The	meristem	can	be	approximated	by	a	surface	of	revolution	(disk,	cone,	314	
cylinder...);	315	

ii. Center	inhibition:	no	organ	can	form	in	the	CZ	of	the	circular	meristem;	316	

iii. Primordia	inhibition:	young	primordia	inhibit	the	formation	of	new	adjacent	organs;	317	

iv. Tissue	growth:	previously	formed	primordia	are	left	behind	the	growing	tip,	or	equivalently	318	
they	are	seen	moving	radially	away	 from	the	 initiation	zone	at	the	 tip	of	 the	SAM.	The	primordia	319	
themselves	grow	in	size	keeping	their	original	contacts;	320	
v. Deterministic	 initiation:	 primordia	 form	 at	 the	 edge	 of	 the	 CZ	 when	 and	 where	 overall	321	
inhibition	is	sufficiently	low,	thus	establishing	initial	close	packing	with	the	previous	primordia.	322	

Many	 phyllotaxis	 morphogenesis	 models	 imply,	 more	 or	 less	 explicitly,	 these	 five	 major	323	
assumptions	(Schwendener	1878,	Snow	and	Snow	1952,	Veen	1973,	Mitchison	1977,	Douady	and	324	
Couder	1996a,b,c,	Atela	et	al.	2003,	Smith	and	Prusinkiewicz	2006,	Pennybacker	et	al.	2015).	In	the	325	
simplest	(and	oldest)	instance	of	these	models	(Schwendener	1878),	the	geometry	of	meristems		is	326	
abstracted	as	a	packing	of	circular	organs	(Fig.	4B),	for	which	“contact”	parastichies	can	be	identified	327	
by	joining	each	primordium	to	its	two	older	contact	neighbors	(Box	2).	Depending	on	whether	one	328	
concentrates	on	the	top,	so-called	“centric”	view	of	the	meristem	(Fig.	4A,B)	or	on	a	“cylindrical”	view	329	
(Fig.	 4C,D)	 the	 underlying	 geometry	 is	 either	 approximated	 by	 a	 planar	 annulus	 or	 a	 cylinder,	330	
respectively,	 which	 can	 be	 put	 into	 a	 one-to-one	 mathematical	 correspondence	 (Supplementary	331	
information,	section	2).	Given	this	correspondence,	the	geometric	assumptions	that	follow	are	not	332	
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overly	simplistic.	333	
We	 thus	 represent	 the	 region	 around	 the	 meristem	 of	 diameter	 D	 by	 a	 cylinder	 which,	334	

unrolled,	turns	into	a	rectangle	of	width	C=πD,	 the	circumference	of	the	CZ.	The	upper	boundary	335	
corresponds	to	the	rim	of	the	CZ	and	the	primordia	are	represented	as	disks	with	identical	(for	now)	336	
diameter	d	on	the	surface	of	the	cylinder	(Fig.	4B).	As	the	geometry	of	this	system	is	preserved	for	337	
identical	ratios	d/C	up	to	a	scaling	factor,	we	conveniently	set	the	CZ	circumference	C=1	in	our	model,	338	
meaning	that	d	should	be	considered	as	the	ratio	of	the	primordium	diameter	over	the	diameter	of	339	
the	 CZ.	 In	 this	 cylindrical	 representation,	 angles	 between	 two	 primordia	 are	 represented	 by	 the	340	
horizontal	distance	between	their	centers	with	values	between	0	and	1:	as	before,	we	choose	the	unit	341	
of	angle	to	be	a	turn.	Likewise,	assuming	as	before	that	the	displacement	velocity	V=1,	the	vertical	342	
distances	between	successive	primordia	centers,	corresponding	as	before	to	the	growth	index	G,	can	343	
be	thought	also	as	the	time	lag	that	separates	their	initiation	(plastochron).	Divergence	angles	α are	344	
thus	represented	by	the	horizontal	component	of	the	vector	between	pairs	of	consecutively	initiated	345	
primordia,	while	growth	indices	G	correspond	to	their	vertical	components.	346	

Using	this	cylindrical	representation,	we	can	upgrade	the	previous	descriptive	toy	model	and	347	
make	use	of	a	mechanism	of	pattern	formation:	our	five	rules	come	down	to	the	simple	disk	stacking	348	
model,	initially	introduced	by	(Schwendener	1878).	In	this	model,	disks	are	stacked		one	by	one	on	the	349	
surface	of	the	cylinder	in	the	lowest	possible	place	above	the	previous	disks,	without	overlap.	Given	a	350	
rate	of	growth,	both	the	plastochron	and	the	divergence	can	be	read	from	the	vertical	and	horizontal	351	
displacement	 between	 the	 new	 disk	 and	 the	 previous	 one.	 This	 reflects	 hypothesis	 (v)	 above:	352	
primordia	form	when	and	where	inhibition	is	sufficiently	low,	i.e.	when	and	where	there	is	enough	353	
space.	Regularity	of	the	divergence	and	plastochron	over	the	longer	run,	when	it	happens,	is	then	an	354	
emergent	consequence	of	this	fundamentally	local	mechanism.	355	

Contrary	 to	 the	 earlier	 geometric	model,	 this	model	 enforces	 contact	between	every	new	356	
primordium	and	at	least	two	older	neighbors	located	on	opposite	sides	of	it.	This	contact	constraint,	357	
which	can	be	seen	as	a	local	spatial	optimization	by	the	plant	morphogenesis,	drastically	reduces	the	358	
space	 of	 possible	 observable	 pairs	 (α,	 G)	 and	 is	 at	 the	 origin	 of	 phyllotaxis	 as	 a	 self-organizing	359	
process.	360	
	361	
Coupling	of	growth	index	and	divergence:	the	van	Iterson	diagram.	362	
To	understand	how	taking	into	account	the	contacts	between	primordia	reduces	pattern	possibilities,	363	
let	us	use	our	simple	contact	model	and	stack	disks	of	constant	diameter	d	on	the	cylinder	while	364	
keeping	α and	G	constant.	For	each	value	of	the	pair	(α,	G),	this	process	produces	a	regular	motif	365	
(Fig.	4B,D).	Joining	nearest	neighbors	gives	rise	to	 two	(sometimes	three)	sets	of	parallel	straight	366	
lines	(i.e.	the	parastichies).	These	straight	lines	crisscross	the	unrolled	stem	cylinder	into	a	 lattice	367	
motif.	For	that	reason,	these	regular	disk	patterns	are	called	cylindrical	lattices,	or	lattices	for	short	368	
(Fig.	4E(a–d),	and	Box	2.).	Note	that,	rolled	back	on	the	cylinder,	the	straight	parastichies	are	helices.	369	

If,	as	in	our	first	toy	geometric	model,	the	contact	constraints	are	not	taken	into	account,	α 370	
and	G	can	take	any	value	independently.		Each	pair	(α,	G)	gives	rise	to	a	particular	lattice	motif	made	371	
of	two	(or	three)	families	of	parastichies.	The	number	of	parastichies	in	each	family	(the	mode	of	the	372	
lattice	as	for	the	previous	toy	model)	can	be	nicely	read	off	the	index	of	the	two	disks	closest	to	the	373	
reference	Disk	0	(Braun	1831):	if	the	closest	disks	are	Disks	8	and	13	for	instance,	there	must	be	8	374	
parastichies	parallel	 to	 the	one	 through	Disks	0	and	8	(Fig.	4D,	 red	 lines).	 Likewise,	 there	 are	13	375	
parastichies	 parallel	 to	 the	 one	 through	Disks	 0	 and	13	 (Fig.	 4D,	 green	 lines).	 So,	 the	 parastichy	376	
numbers,	or	mode,	are	(8,	13)	here.	They	are	also	easily	counted	in	the	corresponding	centric	view	377	
(Fig.	4B).	378	

Each	pair	(α,	G)	thus	corresponds	to	a	lattice	with	a	specific	mode	(i,	j).	Let	us	associate	a	379	
unique	color	with	each	different	mode	(i,	j)	and	color	each	point	of	theα,	G-plane	with	the	color	of	its	380	
corresponding	 lattice’s	 mode.	 This	 produces	 colored	 “(i,	 j)-regions”	 that	 form	 a	 beautiful	 fractal	381	
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pattern	(Fig.	4E).	These	regions	have	different	sizes	and	are	separated	by	arcs	of	circles,	with	the	382	
smaller	regions,	of	higher	modes,	accumulating	down	near	the	α-axis	(Supplementary	information,	383	
section	5).	This	makes	sense	since	a	smaller	G	corresponds	to	smaller	d	or,	equivalently,	to	a	larger	384	
stem	diameter	(i.e.	a	later	stage	of	development).	385	

However,	as	discussed	above,	in	the	more	realistic	contact	model,	primordia	are	formed	in	386	
contact	 with	 existing	 ones.	 Therefore,	 not	 all	 pairs	 of	 points	 (α,	G)	 realistically	 represent	 plant	387	
patterns.	Indeed,	in	plants,	each	disk	(primordium)	has	two	older	contact	neighbors	below	it,	which	388	
must	be	its	closest	neighbors.	Thus,	 in	this	case,	all	parastichies	connect	contacting	disks	(contact	389	
parastichies,	Box	2).	Lattices	formed	with	that	contact	property	are	called	rhombic	lattices	(Box	2),	390	
because	 the	 segments	 joining	 contacting	 disk	 centers	 all	 have	 the	 same	 length	 d	 and	 thus	 the	391	
parastichies	 partition	 the	 cylinder	 into	 identical	 rhombic	 tiles	 (Atela	 and	 Golé	 2007)(Fig.	 4D).	392	
Imposing	 the	 contacts	 of	 the	disks	also	 links	 the	parameters	d/C	and	 the	 growth	 index	G	 (or	 the	393	
plastochron)	 as	 G~(d/C)2	 when	 contacts	 are	 assumed	 (van	 Iterson	 1907,	 Douady	394	
1998)(Supplementary	information,	section	2).	395	

Moving	 in	 the	α,	 G-plane	while	 keeping	 the	disks	of	 the	 corresponding	 lattice	 in	 contact	396	
strongly	constrains	the	possible	moves	(the	reader	can	dynamically	experiment	 these	constraints	397	
with	the	online	geogebra	app	(Golé	et	al.	2020)).	Van	Iterson	(1907)	realized	that	such	constraints	398	
impose	moving	along	a	tree-like	structure	embedded	in	the	α,	G-plane.	To	show	this,	he	expressed	399	
the	constraint	for	lattices	to	be	rhombic	as	quadratic	equations	in	α and	G.	In	the	α,	G-plane,	these	400	
equations	represent	arcs	of	circles	arranged	like	branches	of	an	upside-down	tree-like	figure	(black	401	
curves	 in	 Fig.	 4E),	 each	 branch,	 that	 we	 call	 (i,j)-branch,	 traversing	 a	 unique	 (i,j)-region	402	
(Supplementary	information,	section	5).	Van	Iterson	drew	a	remarkably	precise	representation	of	403	
this	tree,	suggestive	of	its	fractal	nature,	which	is	now	called	the	van	Iterson	Diagram.	Each	point	in	404	
the	tree	represents	a	value	of	α and	G	giving	rise	to	a	rhombic	lattice,	compatible	with	the	stacking	405	
process.	Note	that	most	points	in	the	α,	G-plane	are	outside	the	tree	and	give	rise	to	lattices	that	are	406	
not	rhombic	(e.g.	the	lattice	in	Fig.	4E(a)	only	has	one	set	of	contact	parastichies).	407	

Lowering	G	while	making	sure	 that	 the	corresponding	 lattice	remains	rhombic,	 the	 lattice	408	
changes	mode	according	to	the	Fibonacci	rule.	In	Figure	4E,	one	can	see	the	Fibonacci	progression	(i,	409	
j)	=	(5,3)	->	(i,	i+j)=(5,	8)		in	the	points	(b),	(c),	(d)	by	paying	attention,	in	the	corresponding	lattices,	410	
to	which	disks	are	the	older	contact	neighbors	of	the	newest	disk	(labeled	0).	At	the	bottom	of	the	411	
branch	(i,j),	the	third	disk	i+j	becomes	an	older	contact	neighbor	(Fig.	4E(c)).	Decreasing	G	further,	412	
the	older	contact	neighbors	must	be	 i+j	and	the	 largest	of	 i	and	 j:	 the	other	 choice	yields	contact	413	
neighbors	on	the	same	side	of	Disk	0,	which	is	not	allowed	by	the	stacking	process	(Fig.	4E(d)).	This	414	
is	exactly	the	Fibonacci	adding	rule:	i,	j		→ max(i,	j)	,	i+j.		415	

In	an	idealized	sense,	a	developing	plant	travels	down	the	van	Iterson	diagram.	Monocots	or	416	
dicots	start	on	a	branch	of	the	diagram	with	low	mode,	for	instance	(1,1):	the	first	leaf	grows	opposite	417	
the	cotyledon	or	pair	of	them,	and	the	next	leaf	opposite	to	the	first	etc.	As	the	meristem	grows	in	418	
girth,	while	 the	diameter	of	 the	primordia	 remains	 roughly	 constant,	 the	parameter	G	decreases.	419	
Eventually	the	point	(α,	G)	corresponding	to	the	pattern	reaches	a	fork	where	the	branches	(1,	2)	or	420	
(2,	1)	meet.	In	this	case,	going	down	on	either	branch	is	allowed	(this	is	a	choice	of	chirality	in	a	plant	421	
organ).	Say	 the	pattern	proceeds	down	the	(2,	1)	branch.	The	next	 transition	 is	then	determined:	422	
following	 the	Fibonacci	 rule,	 it	must	be	(2,	3)	(and	not	(3,	1)	since	contact	neighbors	must	be	on	423	
opposite	 sides).	 From	 then	 on,	 the	 continuous	 deformation	 of	 rhombic	 lattices	 imposed	 by	 the	424	
decrease	of	G	inexorably	yields	successive	Fibonacci	modes.	Moreover,	the	zigzagging	curve	travelled	425	
during	this	process	converges	on	the	α-axis	to	the	golden	Angle	γ.	426	

While	Schwendener	(also	Adler,	1974)	believed	that	lattice	deformation	played	a	role	in	the	427	
pattern	formation,	van	Iterson	initiated	a	paradigm,	further	developed	by	many	subsequent	authors	428	
(Veen	and	Lindenmayer1977,	Mitchison	1977,	Douady	and	Couder	1996a	and	b,	Koch	et.	al	1998,	429	
Kunz	1995,	Atela	et.	al.	2003)	whereby	the	dynamical	process	of	pattern	formation	navigates,	as	the	430	
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parameter	G	varies,	from	a	lattice	(or	close	to	it,	Atela	and	Golé	2007)	to	another,	along	the	van	Iterson	431	
diagram.	432	

This	paradigm	strongly	suggests	that	the	divergence	angle	is	progressively	canalized	as	the	433	
plant	grows	by	the	allowed	van	Iterson	diagram	trajectories	towards	the	golden	angle.	However,	it	434	
ignores	much.	It	relies	on	the	assumption	that,	under	the	dynamical	process,	patterns	naturally	tend	435	
to	become	rhombic	lattices,	which	is	only	true	in	restricted	circumstances	(Atela	et.	al.	2003).	Indeed,		436	
in	 general,	 the	 stacking	 process	 yields	 patterns	with	 crooked	 parastichies,	which	 are	 not	 simple	437	
lattices	 (Golé	 and	Douady	2020).	Moreover,	with	 few	exceptions	 (van	 Iterson	1907,	Douady	and	438	
Couder	1996c),	works	espousing	the	van	Iterson	paradigm	that	patterns	evolve	from	one	lattice	to	439	
another	ignore	what	patterns	actually	do	in	between.	To	focus	on	these	transitions,	one	needs	a	more	440	
local	approach	to	plant	patterns	than	lattices.	However,	the	van	Iterson	diagram	can	remain	a	subtle,	441	
but	useful,	guide	even	in	such	an	approach.	442	
	443	

Canalization	of	Fibonacci	phyllotaxis	via	fronts	444	

When	considering	plant	growth	dynamics,	 the	phyllotaxis	 is	not	actually	a	sequence	of	stationary	445	
modes,	which	might	not	have	 time	to	stabilize	and	have	significant	 transitory	phases.	A	model	 is	446	
required	that	also	accounts	for	transitions	between	modes,	localized	where	primordia	are	formed.	A	447	
logical	 approach	 concentrates	 on	 the	 portion	 of	 the	 phyllotactic	 pattern	 most	 immediately	448	
responsible	for	the	future	of	the	pattern,	i.e.	the	most	recent	layer	of	primordia	directly	surrounding	449	
the	 meristem.	 In	 the	 disk	 stacking	 model,	 this	 corresponds	 to	 a	 “front”:	 the	 top	 layer	 of	 disks	450	
encircling	the	cylinder	(Hotton	et	al.	2006,	Golé	et	al.	2016)(Supplementary	information,	section	7).	451	
If	a	new	primordium	appears	as	soon	as	there	is	enough	space,	the	next	disk	added	to	the	structure	452	
must	be	in	contact	with	disks	of	the	front,	and	at	the	lowest	possible	position.	The	history	of	a	pattern	453	
can	be	traced	via	its	successive	fronts,	represented	by	a	zigzagging	curve	joining	centers	of	adjacent	454	
primordia	in	the	front	(Fig.	4A-D).	455	

The	numbers	of	line	segments	joining	adjacent	primordia	of	the	front,	going	up	or	down	as	456	
we	move	along	the	front	(Fig.	4A-D)	define	the	front	parastichy	numbers.	In	regular	patterns	(e.g.	457	
lattices),	these	front	parastichy	numbers	correspond	to	the	usual	numbers	of	parastichies	(the	mode)	458	
of	the	whole	pattern.	The	true	power	of	the	model	arises	when	changing	the	size	of	the	disks	with	459	
respect	to	cylinder	size	(i.e.	changing	the	parameter	d/C).	In	plants,	this	occurs	when	the	meristem’s	460	
diameter	D	grows	as	the	stem	matures,	while	the	primordia’s	diameters	remain	of	roughly	equal	size	461	
d.		462	

Let	us	start	with	a	regular	front,	i.e.	with	similar	up	and	similar	down	segments,	and	stack	463	
disks	on	it,	 in	the	lowest	possible	place	without	overlap,	while	slowly	decreasing	the	size	d	of	the	464	
disks	 as	 they	move	 up	 (Fig.	 5A).	 The	 evolution	 of	 the	 front	 automatically	 generates	 a	 recursive	465	
“Fibonacci	machine”,	whereby	a	 front	with	parastichy	numbers	(i,	 j)	with,	 say,	 i	<	 j,	evolves,	after	466	
successive	stacking	of	disks	of	slowly	decreasing	size,	 into	another	front	with	parastichy	numbers	467	
(i+j,	j),	(Fig.	5A,B).	This	remarkable	property	of	fronts	emerges	from	local	“triangle	transitions”:	in	468	
general,	a	new	disk	appears	at	the	bottom	of	a	notch	of	a	front,	forming	a	rhombus	with	disks	on	469	
either	side	of	the	notch	(Fig.	5B’)	(Supplementary	Information,	section	6).	In	this	case	there	are	no	470	
changes	to	the	parastichy	numbers.	When	reducing	the	disk	size,	however,	the	angles	of	the	notches	471	
in	 the	 front	open	up	and	 it	 is	 no	 longer	possible	 for	 the	new	disk	 to	be	 in	 contact	with	disks	on	472	
opposite	sides	of	a	notch.	Instead	the	new	disk	is	in	contact	with	two	adjacent	disks	on	the	same	side	473	
of	a	notch,	these	three	disks	now	forming	a	triangle.	Each	such	triangle	gives	rise	to	an	additional	new	474	
parastichy	(Fig.	5A”,B).	To	find	the	lowest	position,	the	new	disk	appears	at	the	flattest	side	of	the	475	
notch	(Fig.	5B	insert).	Crucially,	to	obtain	the	next	Fibonacci	parastichy	number,	one	needs	enough	476	
regularity	of	the	front	to	fall	into	the	right	places	and	in	the	right	number;	the	flattest	segments	must	477	
either	be	all	up	or	all	down	segments	of	the	front.	(Fig.	5A’).	When	starting	with	i=1,	j=1	or	j=2	(many	478	
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plants	do,	with	one	or	two	cotyledons	serving	as	initial	leaves)	this	recursive	mechanism	yields	the	479	
successive	 Fibonacci	 modes	 seen	 in	 plants	 (Fig.	 6A,B).	 Systematic	 simulations	 that	 sweep	 the	480	
parameter	plane	of	possible	angle	of	(1,	1)	fronts	and	rates	of	decrease	of	d,	consistently	detect	this	481	
Fibonacci	pattern	formation,	and	its	associated	front	regularity,	when	d	(or	d/C)	decreases	slowly	482	
enough	(Fig.	6B’,	Supplementary	information	sections	6-7,		Fig	S9).	The	mechanism	is	reversible	in	a	483	
sense:	increase	d/C	and	the	parastichy	numbers	will	decrease,	via	ordered	pentagon	transitions,	as	484	
happens	in	compositea	inflorescence,	where	the	diameter	of	the	CZ	decreases	as	primordia	fill	up	the	485	
meristem	(Fig.	6C-C’);		486	

This	 model	 suggests	 that	 the	 regular	 geometry	 of	 the	 fronts	 serves	 as	 the	 successive	487	
checkpoints	 in	 the	developmental	 canalization	of	 the	phyllotactic	pattern:	starting	with	a	 regular	488	
enough	Fibonacci	front,	the	biological	stacking-like	mechanism	of	primordia	formation	predictably	489	
yields,	 if	 the	 parameter	 d/C	 decreases	 slowly	 enough,	 a	 succession	 of	 fronts	 that	 retain	 their	490	
regularity.	The	regularity,	in	turn,	guarantees	that	in	the	transitions	the	parastichy	numbers	follow	491	
the	Fibonacci	addition	rule.	Interestingly,	the	stacking	model	also	predicts	that,	when	d/C	decreases	492	
too	quickly,	the	fronts	becomes	irregular	and	the	triangle	transitions	distribute	on	both	the	up	and	493	
down	segments	of	a	front,	yielding	parastichy	numbers	i,	j	with	i/j	close	to,	but	not	necessarily	equal	494	
to	 1.	 This	 quasi-symmetric	 phyllotaxis	 (Golé	 et	 al.	 2016)	 is	 actually	 observed	 in	 many	 plant	495	
inflorescences	such	as	corn,	peace	lily,	strawberry	(Supplementary	information,	section	7).	496	
	497	
The	golden	angle	as	an	emergent	phenomenon	498	
A	constant	angle	of	divergence	is	not	required	in	the	front-based	explanation	of	Fibonacci	pattern	499	
formation;	 therefore,	 it	 is	 not	 the	 driving	 concept	 behind	 phyllotaxis	 morphogenesis.	 Is	 it	 a	 by-500	
product	then?	When	looking	at	the	graph	of	the	divergence	angle	along	simulated	Fibonacci	growth	501	
(Fig.	7B)	it	seems	not	to	be.	Indeed,	the	divergence	angle	oscillates	closer	and	closer	to	the	golden	502	
angle	up	to	30	iterations,	but	then	it	breaks	up	in	large	oscillations,	even	though	the	pattern	itself	503	
seems	relatively	regular	(Fig.	6B).	Importantly,	the	angles	between	which	the	divergence	oscillates	504	
are	all	close	to	multiples	of	the	golden	angle	(Douady	and	Couder	1996b,	Golé	et	al.	2016)(Fig.	7C).	505	
This	explanation	becomes	clearer	when	inspecting	the	order	in	which	the	disks	appear	on	the	front:	506	
as	the	disks	become	smaller,	small	irregularities	of	the	front	may	induce	permutations	in	the	stacking	507	
order	of	these	new	disks	on	the	front	(Fig.	7A’,	A”).	This	permutation	phenomenon	is	not	an	artifact	508	
of	 simulations:	 it	 is	 observed	 in	Magnolia,	Arabidopsis	 and	 Birch	 catkins	 (Zagorska-Marek	 1994,	509	
Besnard	et	al.	2014,	Douady	and	Golé	2017),	and	studied	in	the	framework	of	stochastic	processes	to	510	
account	for	biological	noise	in	plant	molecular	processes	(Refahi	et	al.	2016).	511	

Do	these	wide	divergence	angle	 fluctuations	 invalidate	 the	hypothesis	of	 the	golden	angle	512	
being	central	to	phyllotaxis?	Not	quite.	By	taking	the	mean	of	the	divergence	angle	over	each	front,	513	
the	permutations	average	out	and	the	regularity	of	the	divergence	angle	reappears,	which	closely	514	
follows	the	oscillating	convergence	to	the	golden	angle	along	the	van	Iterson	diagram	(Fig.	7E,	E’).	In	515	
this	 precise	 sense	 –	while	 it	 is	 not	 its	mechanistic	 principle	 –	 the	 golden	angle	 divergence	 is	 an	516	
emergent	by-product	of	Fibonacci	patterning.	517	
	518	

Biological	interpretation	of	primordia	initiation	519	
In	the	last	two	decades,	the	molecular	and	physical	origins	of	the	concepts	used	in	phyllotaxis	models,	520	
(e.g.	CZ,	inhibitory	fields,	organ	initiation	threshold,	growth	or	fronts),	have	been	investigated	using	521	
model	plants	such	as	Arabidopsis	 thaliana	(Kuhlemeier	2007,	Traas	2013,	Galvan-Ampudia	2016,	522	
Bhatia	 2018).	 Instead	 of	 an	 inhibitor,	 an	 activator	 was	 found:	 the	 accumulation	 of	 auxin,	 (an	523	
ubiquitous	phyto-hormone,)	induces	organ	initiation	at	the	CZ	rim	(Reinhardt	et	al.	2003).	Auxin,	is	524	
mainly	synthetized	 in	the	young	organs	(Reinhardt	et	al.	2003,	Galvan-Ampudia	et	al.,	2020)	and	525	
actively	 transported	 at	 the	 meristem	 tip,	 through	 membrane	 transporters	 of	 the	 PIN1	 family	526	
(Reinhardt	et	al.	2003,	Barbier	de	Reuille	et	al.	2006,	Smith	et	al.	2006,	Jönsson	et	al.	2006).	Local	527	
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accumulation	triggers	organ	outgrowth,	subsequently	depleting	local	auxin,	which	is	equated	with	528	
the	abstract	inhibitory	fields	hypothesized	in	phyllotactic	models:	a	meristem	tip	is	abundant	with	529	
auxin,	except	in	the	places	where	young	organs	have	been	initiated.	The	CZ	also	contains	high	levels	530	
of	auxin	(Barbier	de	Reuille	2006,	Vernoux	et	al.	2011,	Galvan-Ampudia	et	al.,	2020).	However,	the	531	
CZ	remains	insensitive	to	the	auxin	signal,	and	no	organ	can	form	there	(Barbier	de	Reuille	et	al.	2006,	532	
Vernoux	 et	 al.	 2011,	 Ma	 et	 al.	 2019).	 The	 fronts	 correspond	 to	 the	 spatial	 variation	 of	 auxin	533	
concentration	along	the	CZ	rim	(Fig.		8),	that	shows	creases	between	existing	organs,	prefiguring	the	534	
positions	of	upcoming	initiations	(Refahi	et	al.	2016,	Galvan-Ampudia	et	al.,	2020).	535	
	This	 cellular	work	 shows	 that	 all	 the	mechanisms	 are	 local.	 The	 intricate	 instabilities	 described	536	
explain	how	a	primordium	is	initiated	at	some	distance	of	the	CZ	and	of	the	other	primordia,	exactly	537	
as	described	by	(Hofmeister,	1868).	There	is	no	mechanism	found	that	imposes	a	fixed	divergence	538	
from	a	distant	previous	primordia,	reinforcing	the	vision	that	phyllotaxis	is	purely	the	result	of	front	539	
local	dynamics,	which	canalizes	the	possible	outcomes.	540	

Summary	541	
Organ	initiation	rules	in	SAM	and	fronts	provide	a	simple	explanation	of	the	nature	of	developmental	542	
constraints	 at	 the	 origin	 of	 spiral	 phyllotaxis	patterns	 in	 plants.	 Contrary	 to	 original	 hypotheses	543	
(Bravais	and	Bravais	1837),	developmental	constraints	apply	locally	to	parastichies,	which	in	turn	544	
determine	the	mean	divergence	angle	(not	vice	versa).	This	is	because	all	lateral	organs	in	plant	stems,	545	
be	they	part	of	compressed	or	elongated	structures,	are	initiated	in	a	tiny	region	at	the	SAM	where	546	
competition	for	space	is	paramount.	There,	patterning	is	dominated	by	the	opportunistic	initiation	of	547	
organs	 as	 the	 initiation	 zone	 progressively	 leaves	 the	 already	 initiated	 organs,	 governed	 by	 the	548	
geometric	 arrangement	 of	 recently	 initiated	 organs	 (the	 fronts)	 and	 by	 the	 plant	 growth	 (the	549	
parameter	d/C)	and	its	variations.	550	

During	stem	growth,	phyllotaxis	is	progressively	canalized	from	a	(1,	1)	front	with	divergence	551	
angle	 of	 180°	 (1/2	 turn)	 to	 higher	 order	 Fibonacci	 fronts	 with	 average	 divergence	 angles	 that	552	
converge	to	the	golden	angle.	These	features	emerge	from	the	inhibition-	and	growth-based	iterative	553	
process	of	primordia	formation	making	transitions	from	front	to	front.	If	the	variation	is	slow	enough,	554	
and	starting	from	a	regular	enough	front,	this	localized	positioning	mechanism	leads	to	a	global	order	555	
–	imperfect	but	robust.	This	regularity	imposes	not	only	the	continuation	of	the	pattern,	but	also	the	556	
successive	addition	of	the	“right”	numbers	of	spirals	following	the	Fibonacci	rule	at	the	transitions.	557	
The	system	starting	with	an	angle	of	1/2	a	turn	between	the	first	two	primordia,	imposes	the	coarser	558	
convergents	of	the	divergence	angle:	1/2	then	1/3.	Any	divergence	angle	that	would	have	both	1/2	559	
and	 1/3	 as	 its	 first	 convergents	would	 then	 be	 consistent	with	 the	 pattern.	 The	 precise	 angle	 is	560	
determined	by	the	rate	of	decrease	of	the	organ	size	relative	to	the	center	size	(d/C),	and	by	intrinsic	561	
biological	 variability.	 As	 growth	 continues	 and	 the	 size	 of	 the	 disks	 decreases,	 Fibonacci	 modes	562	
augment	 due	 to	 the	 fronts'	 Fibonacci	 adding	 property	 and	 new	 convergents	 are	 imposed	 to	 the	563	
divergence	 angle	 that	 have	 average	 values	 close	 to	 2/5,	 then	 3/8,	 5/13,	 etc.,	 thus	 imposing	564	
progressively	 and	 more	 precisely	 a	 range	 of	 divergence	 angles	 that	 converges,	 on	 front-based	565	
average,	towards	the	golden	angle,	while	never	exactly	reaching	it.	For	high	order	modes,	this	process	566	
traps	the	divergence	angle,	keeping	it	close	to	the	golden	angle	with	an	amazing	precision,	but	only	567	
on	 average.	 Therefore,	 the	 increase	 in	 numbers	 of	 parastichies	 is	 constrained,	 canalized,	 by	 the	568	
number	of	previous	ones,	via	the	front	and	a	slow	increase	of	the	CZ.	This	multiscale	canalization	569	
process	 is	 particularly	 robust	 as	 the	 fronts	 can	produce	many	values	of	 divergence	 angles	 at	 the	570	
microscopic	 level	 without	 modifying	 the	 macroscopic	 patterns	 (the	 parastichies).	 This	 is	 a	571	
remarkable	example	of	pattern	canalization	during	development.	572	
	 This	 space	 competition	occurs	 locally,	 in	 the	notches	of	 the	 fronts,	 between	 two	or	 three	573	
preexisting	primordia.	One	notch	does	not	interact	with	the	other	notches	around,	and,	except	in	very	574	
small	parastichy	numbers,	the	largest	notch	is	not	in	contact	with	the	last	grown	primordia,	since	this	575	
one	filled	some	recently	free	notch.	In	this	way,	estimating	the	divergence	angle	and	plastochron	is	576	
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just	a	description	tool,	rather	than	a	construction	principle.	This	seems	meaningful	since,	first,	at	high	577	
d/C	(low	mode	numbers),	the	probability	of	organ	initiation	disorder	is	very	low	(Refahi	et	al.	2016)	578	
and	the	divergence	angle	oscillates	robustly	around	a	relatively	stable	value,	and	second,	even	at	low	579	
d/C,	 if	 that	 parameter	 does	 not	 change	 for	 some	 time,	 the	models	 show	 that	 the	 arrangements	580	
converge	towards	rather	regular	states	(Golé	and	Douady	2020).	On	compressed	structures	like	pine	581	
cones,	the	parastichies	allow	to	draw	a	putative	generative	spiral,	and	propose	an	ordering	of	the	582	
primordia.	From	this	a	mean	divergence	and	plastochron	can	be	measured.	But	the	positioning	is	not	583	
perfect,	there	are	fluctuations,	thus	the	divergence	and	plastochron	have	a	meaning	only	on	average	584	
(Fig.	7).	This	is	especially	true	when	the	position	fluctuations	are	large	in	elongated	stems,	such	as		585	
Arabidopsis	 thaliana	 inflorescence,	which	present	permutations	of	 the	order	of	appearance	of	 the	586	
primordia	 from	a	putative	 regular	 generative	 spiral	 (Besnard	 et	al.,	 2014),	 or	 in	 large	Asteraceae	587	
inflorescence,	where	the	models	(Douady	and	Couder	1996b)	show	that		the	primordia	order	(and	588	
thus	 divergence)	 can	 fluctuate	 widely,	 while	 the	 overall	 pattern	 is	 regular:	 the	 numbers	 of	589	
parastichies	are	not	disturbed,	and	this	allows	to	define	a	meaningful	averaged	divergence.	590	
	591	

Epistemological	perspective	592	
Phyllotaxis	shows	how	the	idealization	of	a	pattern	and	its	mathematical	properties	can	overshadow	593	
its	 development	 reality.	 One	 is	 irresistibly	 attracted	 to	 think	 that	 these	 properties	 (convergents,	594	
golden	angle,	Fibonacci)	are	the	deep	reason	behind	the	amazing	phyllotaxis	patterns,	overlooking	595	
the	iterative	growth	process,	and	its	observable	missteps	(Jean	2001,	Wiss	2012,	Besnard	2014,	Fierz	596	
2015).	It	also	remarkably	illustrates	that,	while	it	may	be	tempting	to	interpret	the	development	of	597	
an	organism	with	striking	patterns	as	the	result	of	natural	selection	on	these	patterns,	they	may	just	598	
result	from	developmental	constraints,	whose	dynamics	has	to	be	analysed	in	detail	to	understand	599	
how	it	can	unfold	into	such	surprising	motifs.	Here	the	Natural	selection	is	not	on	any	number	of	600	
spirals	or	divergence	angle,	but	on	the	choice	between	Fibonacci	spirals	and	quasi-symmetry.	Before	601	
invoking	Natural	selection	 to	explain	a	shape,	 this	suggests	that	one	has	 first	 to	consider	 the	 few	602	
possibilities	left	downstream	of	developmental	canalization.	603	
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 753	

	754	

Figure	legends:	755	
	756	
Fig.	1.	Phyllotaxis	patterns	in	a	nutshell.	(A)	Examples	of	spiral	phyllotaxis	(1	organ	per	757	
node)	on	different	plant	parts.	(B)	Whorled	phyllotaxis	(more	than	one	organ	per	node).	(C)	758	
Individual	spirals	making	up	a	spiral	pattern	are	called	parastichies.	(D)	Parastichies	come	759	
generally	in	two	(or	three)	families	of	spirals:	clockwise	and	counterclockwise.	The	numbers	760	
of	parastichies	in	these	2	families	are	most	of	the	time	consecutive	numbers	in	the	Fibonacci	761	
sequence	(E)	Sometimes,	a	third	more	vertical	parastichy	family	appears,	called	orthostichy	762	
(red	line)	(Box	2)	like	on	the	fruit	of	Encephalortos	horridus.	(F)	The	SAM:	the	organ	factory	763	
(here	 the	 inflorescence	 meristem	 of	 Arabidopsis	 thaliana,	 photo	 courtesy	 of	 Jan	 Traas).	764	
Organs	 are	 generated	 sequentially	 at	 precise	 positions	 on	 the	 flank	 of	 the	 meristem	765	
separated	 by	 a	 relatively	 constant	 divergence	angle.	 (G)	 In	 general,	 the	divergence	 angle	766	
remains	unchanged	after	internode	elongation	(here,	inflorescence	of	Arabidopsis	thaliana).	767	
(H)	 The	 spiral	made	 by	 the	 imaginary	 curve	 joining	 the	 consecutive	 organs	 is	 called	 the	768	
generative	spiral.	If	one	considers	a	pair	of	leaves	with	similar	orientation	on	the	stem	(blue),	769	
it	is	easy	to	estimate	the	average	divergence	angle	separating	these	two	leaves:	here,	mean	770	
divergence	angle=#turns/#organs	=	5/13	=	0.385	turn	=138.5◦.	(I)	If	we	(virtually)	contract	771	
this	structure,	the	leaves	that	are	in	the	same	direction	get	visually	close	to	each	other.	(J)	In	772	
many	cases	they	do	not	exactly	overlay	and	present	actually	a	small	angular	deviation.	This	773	
deviation	 spreads	 along	 the	 contracted	 structure	 and	 generates	 visual	 spirals	 (the	774	
parastichies	and	orthostichies).	775	

Fig.	2.	Testing	the	relation	between	divergence	angle	and	emerging	phyllotaxis	motifs	776	
using	a	simple	kinematic	model.	(A)	Simple	kinematic	model:	Organs	(orange	dots)	are	777	
initiated	at	 the	periphery	of	 the	 central	 zone	 (green	disk).	Primordia	are	 initiated	with	a	778	
constant	period	T	during	the	simulation	and	move	radially	away	from	the	center	at	a	constant	779	
velocity	V=1.0	arbitrary	length	unit	/	arbitrary	time	unit.	The	value	of	the	radius	is	fixed	to	1	780	
arbitrary	 length	 unit.	 (B)	 Intuition:	 the	 arms	 look	 straight	 for	 rational	 values	 and	 their	781	
number	 depends	 on	 the	 divergence	 angle.	 (C)	 For	α=1/5	 and	α=2/5,	 the	 arms	 are	782	
numbered	(in	orange)	and	the	first	initiated	organ	(at	t	=	0)	is	at	the	outermost	end	of	arm	1	783	
(green	arrows	labeled	with	1).	For	α=1/5,	the	second	initiated	organ	is	at	the	outermost	end	784	
of	arm	2	(green	arrows	labeled	with	2),	etc.	However,	for	α=2/5,	the	second	initiated	organ	785	
appears	at	the	outermost	end	of	arm	3,	separated	from	arm	1	by	an	angle	of	2/5,	and	the	786	
third	 initiated	organ	appears	at	 the	outermost	end	of	arm	5,	etc.	 (D)	Slowly	changing	the	787	
divergence	 from	an	 initial	 rational	value	 (here	2/5)	 shows	 that	arms	can	bend	and	 even	788	
change	in	number.	(E)	Decreasing	the	value	of	the	plastochron	while	keeping	the	divergence	789	
angle	constant,	here	α=41/100,	also	induces	bending	of	spiral	arms.	After	some	point,	the	790	
spirals	 merge	 and	 a	 new	 set	 of	 arms	 appears	 –	 here	 5	 original	 bending	 arms	 (left)	 are	791	
progressively	replaced	by	17,	22,	39	and	100	straight	arms	(right,	close-up).	792	

Fig.	3.	Divergence	angle	convergents.	(A)	For	each	pattern	(here	for	G=0.1,	α=41/100),	793	
one	can	observe	the	spiraling	arms	in	two	families	of	parastichies	(only	one	if	the	arms	are	794	
straight),	 turning	 in	 opposite	 directions,	 as	 in	 plants,	 and	 whose	 number	 are	 often		795	
consecutive	 	denominators	 	 in	 	 the	 	 list	 	of	 	 convergents	 	of	 	 the	 	divergence	 	 angle,	here 796	

  are	the	convergents	of		   .	The	number	of	spirals	in	these	two	families	797	
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define	the	mode.	At	T	=	0.1	for	example,	the	mode	is	(5,17).	When	T	decreases,	the	spiral	798	
motif	passes	successively	through	modes	(1,2),	(2,5),	(5,17),	(22,17),	(22,39)	until	we	reach	799	
the	100	straight	arms	configuration,	where	the	other	39	spirals	are	no	longer	visible.	 (B)	800	
When	the	 	divergence	angle	 is	 the	golden	angle,	 for	decreasing	growth	 index	G,	 the	spiral	801	
motif	 passes	 through	 modes	 (1,2),(2,3),(3,5),(5,8),(8,13),… that	 are	 consecutive	802	
denominators	in	the	series	of	convergents	of	the	golden	angle.	These	pairs	of	numbers	are	803	
consecutive	numbers	of	the	Fibonacci	sequence.	(C)	Drastic	change	of	spiral	patterns	in	the	804	
neighborhood	of	the	golden	angle	(the	growth	index	is	fixed	to	G	=	0.1).	805	

Fig.	4.	Spiral	and	cylinder	lattices.	(A)	Top	(centric)	view	of	a	spruce	meristem	(micrograph	806	
courtesy	of	Rolf	Rutishauser).	The	primordia	shown	here	were	to	form	pine	needles.	They	807	
are	numbered	by	increasing	age.	There	are	8	green	contact	parastichies	and	13	red	ones.	The	808	
divergence	angle	is	not	far	from	the	golden	angle.	 	Dashed	lines	indicate	the	front	for	this	809	
plant.	(B)	Logarithmic	spiral	lattice	structure	with	(8,	13)	mode	mimicking	the	spruce	in	(A)	810	
The	 virtual	 primordia	 are	 expanding	 away	 from	 the	 CZ	 at	 a	 speed	 proportional	 to	 their	811	
distance	from	the	center.	(C)	Cylindrical	view	of	a	digitally	unrolled	pineapple.	The	vertical	812	
white	lines	represent	the	same	line	on	the	pineapple,	and	points	P	and	P’’	are	also	identical	813	
there.	 Dashed	 segments	 indicate	 the	 front	 when	 P	was	 the	 newest	 primordium.	 	 (D)	 A	814	
cylinder	(rhombic)	lattice	corresponding	to	the	spiral	lattice	in	(B)	in	a	specific	mathematical	815	
sense.	Its	parastichies	are	parallel	lines	on	the	unrolled	cylinder.	Note	that	there	is	no	contact	816	
between	 organs	 0	 and	 1,	 or	 1	 and	 2	 etc.	 Instead,	 0	 is	 in	 contact	 with	 its	 older	 contact	817	
neighbors	8	and	13.	These	also	give	the	number	of	parastichies.	The	black	rhombus	shows	818	
that	parastichies	draw	rhombii.	 (E)	van	 Iterson	diagram	(in	black)	 in	 the	 	 (α,	 G)	plane	 -	819	
where	α is	the	angular	displacement	(divergence	angle)	and	G	the	vertical	displacement	820	
between	a	point	and	the	next	one	up	in	a	cylindrical	lattice.	Regions	of	constant	mode	(i,	j)	821	
are	colored.	Points	labelled	(a)-(d)	correspond	to	the	lattices	shown	with	same	labels,	and	e	822	
corresponds	to	Fig.	D.	Lattice	(a)	is	not	rhombic:	the	parastichy	through	0,	2	and	4	etc.	is	not	823	
a	contact	parastichy.	The	lattices	(b)-(e)	on	the	other	hand	are	all	rhombic:	their	parastichies	824	
join	 disks	 in	 contact	 and	 they	 draw	 a	 repeating	 pattern	 of	 rhombi.	 Accordingly,	 they	 all	825	
belong	to	the	upside-down	tree-like	van	Iterson	diagram	(in	black),	formed	by	the	vertical	826	
segment	in	region	(1,	1)	(the	trunk)	and	otherwise	arcs	of	circle	(the	branches).		827	

Fig.	5.	Fronts	as	Fibonacci	machines.	 	 (A-Aʹʹ)	Fibonacci	 transition	 from	5,	3	 to	5,	8:	 the	828	
starting	front	in	(A)	has	5	up,	3	down	segments.	The	up	segments	are	roughly	parallel,	as	are	829	
the	down	segments.	Disks	are	stacked	with	decreasing	size.	 	At	first	the	transitions	are	all	830	
quadrilateral,	 without	 changes	 in	 parastichy	 numbers.	 (see	 B’).	 But	 as	 the	 disks	 become	831	
smaller,	the	notches	of	the	front	open	up,	forcing	triangle	transitions	(Aʹ).	Since	disks	seek	832	
the	lowest	available	space,	these	occur	on	the	flatter	segments	(the	green,	up	segments	here,	833	
as	there	are	more	of	them	than	the	red).	Each	triangle	adds	an	extra	(red)	down	segment,	for	834	
a	total	of	5	new	down	segments	which,	added	to	the	3	old	ones,	gives	8	of	them.		On	the	other	835	
hand,	 there	are	no	added	up	 (green)	 segments,	but	 the	existing	ones	have	become	more	836	
slanted,	with	roughly	equal	angles.	The	regularity	is	preserved,	and	this	new	Fibonacci	front	837	
sets	the	stage	for	the	next	round.	(B)	A	Triangle	transition	occurs	because	the	angle	of	the	838	
notch	10-7-8	is	too	wide	to	form	a	rhombus:	a	disk	tangent	to	10	and	8	would	necessarily	839	
intersect	7.	The	new	disk,	12	here,	is	tangent	to	7	and	8,	the	side	of	the	notch	that	is	flattest.	840	
The	 insert	 shows	 that	 other	 choices	 either	 overlap	 or	 are	 higher.	 Segment	 12-8	 is	 a	 net	841	
addition	 of	 a	 red	 segment,	 increasing	 the	 front	 down-parastichy	 number	 by	 one.	 (Bʹ)	 a	842	
quadrilateral	 transition	 keeps	 the	 parastichy	 numbers	 unchanged.	 (Bʹʹ)	 A	 pentagon	843	
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transition	decreases	a	parastichy	number	by	1.	This	time,	the	angle	between	the	segments	844	
10-13	and	7-12	is	too	small	to	allow	a	rhombus.	845	

Fig.	6.	Fibonacci	transitions	in	vivo	and	in	silico.	(A)	Unrolled	ornamental	cabbage	with	846	
removed	leaves.	The	pattern	of	line	segments	joining	adjacent	leaf	scars,	shows	a	sequence	847	
of	Fibonacci	transitions	from	(1,	1)	to	(5,	8)	via	a	succession	of	clusters	of	triangle	transitions	848	
that	alternate	sides.	(B)	Although	no	attempt	was	made	to	exactly	match	the	cabbage	pattern,	849	
this	computer	simulation,	where	the	diameter	d	of	 the	disks	decreases	 linearly	with	their	850	
height,	shows	the	same	alternating	pattern	of	triangle	transitions	between	(1,	1)	and	(5,	8).	851	
(Bʹ)	Graph	of	 front	parastichy	numbers	as	 function	of	 the	number	of	 iterations,	 from	 the	852	
simulation	 in	(B),	showing	the	red	and	green	parastichy	numbers	monotonically	 increase	853	
one	by	one	to	the	sum	of	the	previous	two.	This	is	a	signature	of	regular	Fibonacci	transitions,	854	
easily	 detectable	 in	 computer	 simulations.	 (C)	 Filled-in	 inflorescence	 meristem	 of	 an	855	
artichoke	(SEM	courtesy	J.	Dumais).	(C’)	Graph	obtained	by	drawing	all	the	successive	fronts	856	
on	the		artichoke	inflorescence	in	(C).	Three	concentric	fronts	are	shown,	with	parastichy	857	
numbers	(34,	55),	(34,	21)	and	(13,	21)	transitioning	via	pentagons	as	fronts	move	closer	to	858	
the	center.	859	

Fig.	7.	Fronts	and	angle	of	divergence.	(A,	Aʹ)	(3,2)	and	(8,	5)	fronts	(blue),	and	the	next	860	
disk	 (dark	 pink)	 show	 the	 emergence	 of	 the	 golden	 angle,	 as	 their	 parastichy	 numbers	861	
increase	through	the	Fibonacci	sequence.	These	fronts,	extracted	from	rhombic	lattices,	have	862	
each	 identical	up	and	 identical	down	segments.	 (Aʹʹ)	A	slight,	random	perturbation	of	 the	863	
front	in	Aʹ (the	last	down	and	up	segments	to	the	right	of	the	front	are	slightly	different	from	864	
the	others	in	the	front).	It	results	in	a	change	in	the	order	of	initiation	of	primordia:	whereas	865	
the	divergence	for	the	first	and	second	new	disk	was	roughly	γ in	Aʹ,	it	is	close	to	γ and	866	
2γ in	this	case.	(B,	C)	Angle	of	divergence	at	each	iteration	of	the	simulation	of	Figure	6B.	867	
While	at	first	the	divergence	seems	to	converge	towards	the	golden	angle	α,	it	then	starts	868	
oscillating	widely.	However,	the	values	it	hits	are	all	close	to	multiples	of	α.	This	is	explained	869	
by	permutations	of	the	vertical	order	of	the	disks,	as	in	Aʹʹ.	(D)	The	permutations	seen	in	(B)	870	
are	averaged	out	when	taking	the	mean	of	 the	divergence	angle	over	a	 front:	 in	 the	right	871	
coordinate	frame,	the	solid	curves	in	this	graph	espouse	closely	the	Fibonacci	branch	of	the	872	
van	Iterson	diagram	of	Fig.	4E.	The	dashed	lines	correspond	to	triangle	transition	irregularity	873	
(the	 triangle	 transitions	 cannot	 all	 happen	 at	 the	 same	 level	 and	 at	 the	 same	 time).	 (E)	874	
Visualization,	in	the	(d,	α)	coordinates.	of	the	points	in	the	same	simulation	as	in	(B).	Points	875	
outside	the	range	shown	were	omitted.	In	blue,	the	van	Iterson	diagram,	as	represented	in	876	
these	 coordinates.	 (E’)	 Same	data	as	 in	 (E),	but	averaged	over	one	 rolling	 front.	Note	 the	877	
striking	fit	to	the	diagram.	878	

	879	
Fig.	8.	Free	space	for	next	primordia	(in	model	and	observed	auxin	maps).	(A)	a	(3,2)	880	
front	of	disks,	with	an	inhibitory	field	diffusing	from	them	to	indicate	the	free	space	around	881	
them.	Three	holes	are	visible	at	different	heights.	The	position	of	the	next	disk	is	indicated	882	
by	a	dotted	circle,	as	well	as	the	position	of	the	rim	of	the	central	zone	by	a	dashed	line.	The	883	
arrow	indicates	the	minimum	where	the	new	disk	will	be	placed	(A’)	Field	value	at	the	line	884	
corresponding	 to	 the	 rim	 of	 the	 central	 zone,	 indicated	 by	 the	 dashed	 line.	 The	 arrow	885	
indicates	here	as	well	the	position	of	the	new	disk.	(B)	Average	map	of	qDII	(quantitative	886	
negative	 auxin	 reporter:	 auxin	 is	 high	 in	 dark	 region,	 and	 low	 in	 bright	 regions)	 after	887	
registration	 of	 several	 SAMs	 imaged	with	 a	 confocal	microscope	 (adapted	 from	 (Galvan-888	
Ampudia	et	al.,	2020)).	The	young	organs	deplete	auxin	at	the	CZ	periphery	(dotted	circle)	889	
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and	create	altogether	a	front	that	prescribes	the	positions	of	the	new	primordium	(indicated	890	
by	an	arrow).	(B’)	corresponding	qDII	profile	unrolled	along	the	CZ	periphery.	Its	minimum	891	
(arrow)	 indicates	 the	position	of	 the	next	primordia.	This	 curve,	 obtained	 from	quantitative	892	
measurement	 of	 auxin	 on	 real	 SAMs	 (Galvan-Ampudia	 et	 al.,	 2020),	 strikingly	 parallels	 the	893	
inhibitory	curves	(A’)	obtained	from	front	diffusion	in	simple	disk	stacking	models	(A).		894	
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These supplementary information sections are intended to provide some definitions and key
mathematical details for the interested readers.

1 Definitions of the concept of canalization in biology

There exists a number of uses of the term canalization in both evolutionary and developmental
biology. As noted by (Debat and David, 2001), ”the literature [about canalization, phenotypic
plasticity and developmental stability] can be confusing because the historical definitions usually
referred to do not take into account later conceptual and empirical advances”.

Canalization can be primarily considered as a developmental process. According
to B. Hall (2012) for instance, ”Canalization (or developmental buffering) is the process whereby
the more invariant characters of an organism are channeled into restricted sets of developmental
pathways - the valleys in Waddingtons epigenetic landscape (Waddington, 1942) -”. Originally
Waddington (1942; 1953), defined it as ”the ability to produce a consistent phenotype in spite of
variable genetic and/or environmental features.”

Canalization can also be considered as an evolutionary process. This second meaning
was already used by Waddington (1961), who introduced the idea that canalization may itself be
under genetic control, what is usually termed canalizing selection. This is clearly put by Gibson
& Wagner (Gibson and Wagner, 2000): ”for the evolutionary biologist, canalization is genetic
buffering that has evolved under natural selection in order to stabilize the phenotype.”

In this paper, the term canalization refers to developmental canalization (first def-
inition above), and not to canalizing selection. Modern definitions of developmental canalization
have been suggested by different authors. Wagner (2005), for example, proposes: ”An organismal
feature is canalized if its embryonic development is insensitive to variations in the environment
or in the genes”. Such canalization can be due to various types of developmental constraints, re-
viewed for instance in (Maynard Smith et al., 1985). We suggest here that phyllotaxis is primarily
governed by geometric developmental constraints (coming from the physical/chemical interactions
between young organs at the tip of growing shoots) that buffer possible noise, be it biological,
genetic or environmental.
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Figure S1: Common geometric representation of phyllotaxis patterns. (A) Centric repre-
sentation with growth index linear in the plastochron, yielding Archimedean spirals. The paras-
tichy numbers are (55, 34), but the 55-spirals are replaced by 21-spirals near the center. (B)
Cylindrical lattice representation (e.g. pineapple), with parastichy numbers (8, 13). Dashed black:
the generative helix, along which every lattice point is arranged at regular intervals (here the golden
angle). The parastichies (through 8 and 13) are less tightly wound helices. (C) The cylindrical
lattice from B, but shown unrolled. The generative spiral and the parastichies are straight lines
in this representation, with pieces cut and translated in the central domain represented. (D) The
exponential spiral lattice corresponding to the lattice in (C) under the complex exponential map.
Note that contacts between primordia are preserved by the mapping, and that primordia are not
quite circular.

2 Geometric representations of regular phyllotaxis

Regular patterns produced around the meristem of a plant can be represented in different geome-
tries that are more or less suitable depending on plant species and growth stages. To represent a
(regular) plant pattern at the vegetative stage for example, a cylindrical lattice often captures much
of plant leaf arrangements around the stem. At the same time, the area immediately around the
meristem may show, when seen from above in the centric representation, an exponential growth of
the size of the primordia, with a corresponding exponential increase of their distance to the center
Fig. S1.

At the inflorescence stage, in some plants (e.g. asteracea) the meristem grows in width and
flattens, while in the time frame of their formation at this stage, the flower primordia remain of
roughly equal size, filling in the enlarged meristem. As a consequence, their distance to the center
decreases linearly in time.

Assuming the pattern has a constant divergence angle, i.e. it is regular, three common types
of patterns of points are used to describe the arrangement of the centers of primordia. In each
case the pattern is generated by points on one generative spiral or helix. The generative spirals
(resp. helices) are of the form:

1. Archimedean spiral: s→ (R(1 + sG) cos 2πsα,R(1 + sG) sin 2πsα)

2. Helix on the cylinder: s→ (R cos 2πsα,R sin 2πsα,RsG)
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3. Straight line on the unrolled cylinder: s→ (Rsα mod 2πR,RsG)

4. Logarithmic or Bernouilli spiral: s→
(
ResG

′
cos 2πsα,ResG

′
sin 2πsα

)
With R the radius of the central zone, G the growth index (and G′ = 2πG), α (in units of

number of turns) the divergence between successive lateral organs.
The points of the lattice are obtained by taking s = 0, 1, 2, 3, . . . (sometime in reverse order).

In all cases the parastichies are the same kind of curve as the generative one, but going through
“multiples”: if point 8 is the closest point to 0 for instance, then one parastichy passes through
points labelled 0, 8, 16, 24 etc... but no other lattice point. This helical parastichy would then
have equation s→ (R cos 2πsα,R sin 2πsα, 8sG). Another one goes through 1, 9, 17, 25 etc., with
equation s → (R cos 2π(sα + 1/8), R sin 2π(sα + 1/8), 8sG). and there are 8 distinct parastichies
in that family (add multiples of 1/8 in the formula).

In this paper, we used Archimedean spirals in Sections 2 and 3, as they are more compact, with
points closer to one another, and thus easier to connect mentally, without having to draw primor-
dia as extended disk-like regions. The reader can explore these patterns with the Archimedean
Geogebra app (Golé, 2020)).

The cylindrical and logarithmic spiral lattices are introduced in Section 4, and are used there-
after. The reader can interact with both these patterns in the Spiral & Cylinder lattices Geogebra
app (Golé et al., 2020)).

In that second app, as well as figures in this paper, we make use of the fact that there is
a natural transformation between the cylindrical and spiral patterns. Indeed, when using the
complex representation z = α+ iG of (α,G), a natural correspondence between the two models is

z → ei2πz.

Accordingly, in the app, we represented each logarithmic spiral lattice above the unrolled
cylindrical lattice it corresponds to and used the (α,G) plane as the parameter plane, in which the
user can choose a point, and hence a lattice, interactively. This correspondence explains our use
of G′ = 2πG in the formula for the logarithmic spiral above. We mapped not only the centers of
the lattices to the corresponding spiral lattice points, but we also used the exponential map above
to transform the parastichies into logarithmic as well as the circles representing the primordia to
closed curves that preserve the contacts of the lattice disks.1

For a cylindrical lattice (Fig. S1C), the vertical displacement between one lateral organ and
the next is RG (G dimensioned by the cylinder radius R). When putting N primordia, the total
vertical displacement is thus NRG. Multiplying by the cylinder circumference C = 2πR this gives
the total cylinder surface used during this process as S = NRCG = 2πNR2G = (N/2π)C2G. In
the same time, we placed N little discs of diameter d, covering a surface of Nπd2/4. If they are
placed with a density η, η = (Nπd2/4)/S so we have the total surface of S = Nπd2/4η. Equalling
the two expressions gives G = (π2/2η)(d/C)2 as mentioned in Box 2.

1Note that this is an unusual choice: Starting with van Iterson (1907), researchers have mostly considered
logarithmic spiral lattices where primordia are modeled by circles and considered a diagram that locates those
spiral lattices with two sets of contact parastichies, very similar (but not identical) to the one for rhombic cylindrical
lattices (Yamagishi and Sushida, 2017).
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3 Convergents: the best rational circular approximations

of a real number

The notion of convergents of a real number is key to the understanding of the connection between
divergence angles and spirals. It relies on the fact that each real number can be increasingly
well approximated by a unique sequence of fractional (rational) numbers called its convergents.
This section explains how the convergents of a real number x are derived and why, with some
mathematical details.

Best rational approximations of a real number. Let us consider a real number x (chosen
here without loss of generality between 0 and 1 for sake of simplicity), for example 0.43. We want
to subdivide the interval [0,1] into q pieces of size 1/q, and find the number of pieces p of size 1/q
that best approximates the real number x = 0.43 (see Box 2 in main text).

For a given size of piece, 1/q, all the possible numbers between 0 and 1 that can be made with
pieces of size 1/q can be enumerated. They are the q+ 1 numbers: 0

q
,1
q
,2
q
,..., q−1

q
, q
q

(Fig. S2.A left:

pyramid of rationals whose denominator is ≤ 100).
We can compute for each of these fractions p

q
the distance to the approximated real x:

d

(
x,
p

q

)
=

∣∣∣∣x− p

q

∣∣∣∣ , (1)

If for one of these fractions, p
q
, this distance is smaller than any other distance with denominator

less than or equal to q, p
q

is called the best approximation of x with pieces of size 1/q (see Box 2).

If no such fraction is found for pieces of size 1/q, then the best approximation of x with pieces of
size 1/q, is the last found best approximation of x with pieces of size 1/q′, q′ < q.

For example, setting q = 1, the fraction 0/1 is a better approximation of 0.43 than fraction 1/1,
as 0.43 is closer from 0 than from 1. Fraction 0/1 is thus the best rational approximation of 0.43
with pieces of size 1/1. For q = 2, fraction 1/2 is closer to 0.43 than 0/2 and than 2/2. Fraction
1/2 is thus the best approximation of 0.43 with pieces of size 1/2. For q = 3, none of the fractions
0/3, 1/3, 2/3, 3/3 is closer to 0.43 than 1/2. Therefore 1/2 is the best approximation of 0.43 with
pieces of size 1/3, and so on. As q increases (and the size of the tile 1/q decreases), increasingly
better approximations of the real x may be found (fractions circled in green in Fig. S2). The search
terminates when all possible sizes of tiles have been checked out, i.e. in our example after having
tried q = 1, 2, 3, ..., 100. The list of found fractions is the set of best rational approximations of x.
If x is a rational, this list is finite. If x is an irrational this list is infinite.

Circular distance of a rational to a real number. In plants we are interested not only in
comparing divergence angles, but also in how much one gets back close to the origin after q organs
have been initiated with a fixed divergence angle. This is why we are interested in a slightly
modified definition of the notion of best approximation of an angle.

Consider the star-like motif of Fig. S3, obtained for a divergence angle of 3/7 = 0.4286 with
the toy model desscribed in the main paper. During the simulation, the first initiated organ,
referenced as the origin, initiated at the rim of the central zone on the right (Fig. S3.A) went
all the way to the right. Subsequent organs were initiated consecutively at azimuthal angles
3/7 = 0.4286, 6/7 = 0.8572, 9/7 = 1.2858, ... from this initial azimuthal direction. After three
complete turns accomplished by organs 2 to 7, the 8th organ is initiated in the same azimuthal
direction as the origin (indicated by a downward arrow, Fig. S3.A). After 7 organs, the system
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Figure S2: Construction of the sequence of convergents for 0.43. (A) Pyramid of all frac-
tions that are less than 1 with denominator less than 100 and ordered by increasing denominators
and by increasing numerators in denominators they have equal denominator. Green circles indi-
cates the fractions that are best rational approximations of 0.43. Convergents are a subset of this
set. Here, we have to remove 2/5 from the list of best rational approximations to obtain the list
of best rational circular approximations of 0.43, i.e. its convergents. The criterion used to select
a fraction in the list of convergents is whether it gives a lower circular distance than all preceding
fractions with lower or equal denominator (B) Graphical positions of the convergents of fraction
43/100 (note that 3/7 (small green vertical bar) is a very good approximation of 0.43 and appears
slightly to the left of 43/100 (large red vertical bar)).
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Figure S3: Definition of the circular distance. A. The circular distance is null for a rational
divergence angle p/q after q organs have been generated. B. However, in general, the circular
distance is non-null for a divergence angle (rational or not) after q organs have been generated.
This non-null circular distance is responsible for the apparition of bending arms (spirals)

with divergence angle 3/7 gets back exactly in the same azimuthal orientation as initially (Fig.
S3.A):

7× 3

7
= 3,

i.e. after 3 complete turns. The fact that the organs are initiated in exactly the same azimuthal
direction every 7th initiation generates the seven straight arms of the figure.

Let us now slightly increase the value of the divergence angle to 0.43 (Fig. S3.B). At the end of
the simulation, the origin organ, which has just been displaced radially with unit speed as before,
has reached exactly the same position as in the previous simulation. However, now subsequent
organs are initiated at successive angles 0.43, 0.86, 1.29, .... At the 7th initiation after the initial
organ (indicated as origin on Fig.3.B), the angle is now 3.01, a bit more than exactly 3 turns
(organ indicated by a downward arrow in Fig. S3.B). Indeed, if we consider that 0.43 = 3/7 + ε,
where ε is a small value (here 0.0014), then at the 7th initiation, the angle is:

7×
(

3

7
+ ε

)
= 3 + 7ε.

The discrepancy with the case of α = 3/7 showing straight arms is thus 7ε = 0.0098. We say
that 3

7
is a circular approximation of 0.43 with circular distance of 0.0098. 3 is called number

of turns before return. In the simulation, the same circular distance is systematically observed
between organs whose initiations are separated by 7 plastochrons. It is responsible for the bending
of arms into spirals.

Formally, for a rational p
q
, we define the circular distance of p

q
to x as:

dc

(
x,
p

q

)
= q.

∣∣∣∣x− p

q

∣∣∣∣ = |qx− p|.

This distance evaluates how close q.x is to integer p. In the context of angles, it actually evaluates
how close the organ generated at the qth plastochron is to an integer p number of turns, i.e. returns
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to the initial orientation, assuming organs have been generated with a constant divergence angle
x.

Convergents: best rational circular approximations of a real. Given a real x, if a given
fraction p

q
has a circular distance to x that is better than the circular distance of any other

fraction with denominator less than or equal to q, the fraction p
q

is called the best rational circular
approximation of x with pieces of size q, or a simply convergent of x.

The set of best rational circular approximations of x defines the convergents of x. However,
one must be careful as not all best rational approximation of x is necessarily a convergent of x. To
see this, let us get back to our example (Fig. S2.A), starting with q = 1, fraction 0/1 has a circular
distance x = 0.43 smaller than that of 1/1 and than that of any other q less than 1. 0/1 is thus a
convergent of 0.43. For q = 2, 1/2 is a better approximation of 0.43 (circular distance = 0.14) than
convergent 0/1 (circular distance = 0.43). Then, proceeding with the exploration of fractions with
increasing q’s, we find for q = 5 a fraction 2/5 which is closer to 0.43 than 1/2 (its distance to 0.43
is 0.03), meaning that 2/5 belongs to the set of best rational approximation of 0.43. However, 2/5
has a higher circular distance to 0.43 than 1/2, meaning that after 5 × 0.43 = 2.15 turns, we get
no closer to the origin than 2× 0.43 = 0.86. 2/5 is therefore not a convergent of 0.43. We need to
wait for q = 7 to find a fraction 3/7 = 0.428 . . ., whose circular distance is 7 × 0.43 − 3 = 0.01 is
better than that of 1/2.

In this way, by looking at the increasing values of q, we find a list of fractions that have
increasingly better circular distance to the real number x. This list defines the list of convergents
of x, i.e. the list of best rational circular approximations of x. For example, x = 0.43 can be
increasingly better approximated (in a circular sense) by the sequence of rational numbers:

[
0

1
,
1

2
,
3

7
,

43

100
].

They are called the convergents of 0.43.

4 Computation of convergents using continued fractions

The previous section explained what are the convergents of a real number by exploring the list of
all fractions with increasing denominators. Fortunately, there exist algorithms to compute the list
of convergents of a real number without the need of exploring the set of all fractions. This method
is based on the representation of a real number as a continued fraction (see e.g. (Karpenkov,
2013)).

Continued fraction associated with a real. Let us consider a positive real x, and denote a0
the integer part of x. Then if r0 denotes the decimal part of x, 0 ≤ r0 < 1, one can write:

x = a0 + r0.

if r0 6= 0, then 1
r0
> 1. If a1 denotes the integer part of 1

r0
and r1 its decimal part, we have:

1

r0
= a1 + r1.

Leading to the following expression of x:
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x = a0 +
1

a1 + r1

The decomposition can be continued as long as the decimal part, which is by definition < 1, is
non zero. Denoting a2 the integer part and r2 the remainder of 1

r1
, we can write:

1

r1
= a2 + r2.

This series of decompositions, derived from Euclid’s algorithm, leads to the following general
expression of x:

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

This Russian doll of a fraction, usually denoted [a0; a1, a2, ...] is called the continued fraction
expansion of x.

For example, the rational 41
100

can be decomposed using the Euclidean algorithm successively
as:

41

100
= 0 +

41

100
,

1

41/100
=

100

41
= 2 +

18

41
⇒ 41

100
=

1

2 + 18
41

1

18/41
=

41

18
= 2 +

5

18
⇒ 41

100
=

1

2 +
1

2 +
5

18
1

5/18
=

18

5
= 3 +

3

5
⇒ . . .

1

3/5
=

5

3
= 1 +

2

3
1

2/3
=

3

2
= 1 +

1

2
1

1/2
=

2

1
= 2 + 0

(2)
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leading to the continued fraction expansion of 41
100

:

41

100
=

1

2 +
1

2 +
1

3 +
1

1 +
1

1 +
1

2

Or, using the short hand notation:

41

100
= [0; 2, 2, 3, 1, 1, 2].

Contrary to the decimal expansion, one can show that the continued fraction expansion of a
rational is always finite. For instance: 2

3
= [0; 1, 2]. On the other hand the continued fraction of

an irrational must be infinite. For instance

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, . . .]

continues forever. The computation of the continued fraction expansion of an irrational, for exam-
ple π, assumes that we know its decimal expansion to some length, but otherwise proceeds very
much as for a fraction:

π = 3.1415 . . . = 3 + 0.1415 . . .

1

0.1415 . . .
= 7.06714 . . . = 7 + .06714 . . .

etc.

(3)

Convergents of a real from continued fractions. When truncated by removing all the
trailing terms after a certain rank k, the continued fraction expansion of a real number x defines a
continued fraction that is the expansion of a rational number. This rational xk is an approximation
of x, with a precision that increases with the rank of the truncation. We will see that in fact this
approximation is as good as it could be. These rational values are actually the convergents of x.

Formally, if x = [a0; a1, a2, ...] is a continued fraction expansion of x, then the truncated fraction
xk = [a0; a1, a2, ..., ak] is a continued fraction called the kth convergent of x. Explicitly:

xk = a0 +
1

a1 +
1

. . . +
1

ak

.

Since xk is a rational, it can be written as xk = hk
pk

. It can be shown that the sequence of

the denominators pk increases with k, and that the sequence {x0, x1, x2, ..., xk, ...} of convergents
of x are rationals that get closer and closer to x as k increases. Consecutive convergents oscillate
around x and are successively greater and lower than x.
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The degree of approximation can be estimated quantitatively. Let us denote xk = hk
pk

, the kth
convergent of x, then it can be shown that:

1

pk(pk + pk+1)
≤ |x− xk| ≤

1

pk.pk+1

For example, the convergents of x = 0.43 are (0, 1
2
, 3
7
, 43
100

). Convergent 3
7

approximates 0.43
with a precision bounded by:

1

749
= 1.3 10−3 ≤ |0.43− 3

7
| ≤ 1

700
= 1.4 10−3

Interestingly, this can be used to compute the uncertainty on the value of thee estimated
average divergence angle in plants. Assume for instance that a plant presents organs arranged in
13 clockwise and 21 anticlockwise spirals, then we can deduce that these organs correspond to an
average divergence angle comprised between angles 21/13 and 34/21 and that the uncertainty on
this angle is lower than 1/(13 ∗ 21), i.e. 3.7 10−3 = 1.3◦.

The Golden number φ has a remarkable continued fraction expansion. From eq. 7 in Box 1,
we extract the classical identity:

φ = 1 +
1

φ
,

which can be expanded recursively in the infinite continued fraction expression:

φ = 1 +
1

1 +
1

1 +
1

1 +
1

...

.

This makes it possible to compute the convergents of φ as the successive truncated fractions
obtained from its continued fraction expansion:

1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
,
89

55
,
144

89
, . . . . (4)

Let’s see now how the Bravais probably derived the value of the Golden Angle as the only
number who has convergents the sequence:

1

2
,
2

5
,
3

8
,

5

13
, . . .

(quotients of Fibonacci numbers that are two appart in the sequence). As we said in Section 3
of the main text, they must have first computed the continued fractions of a few elements of this
sequence and found (using the algorithm we have used for 41

100
above, which they perform on an

example in a footnote):

[0; 2], [0; 2, 1], [0; 2, 1, 1], [0; 2, 1, 1, 1], [0; 2, 1, 1, 1, 1] . . .

From which they deduced (or proved?) that these quotients were all convergents of the same
infinite continued fraction:

γ = [0; 2, 1, 1, . . .]
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(γ is our notation). The algebra they might have used to compute γ = 1−
√
5

2
probably looked like

this: Since

γ =
1

2 +
1

1 +
1

1 + . . .

,

we have:
1

γ
= 2 +

1

1 +
1

1 +
1

1 + . . .

Call this last term 2 +X for short. Then X = 1
γ
− 2 and :

1

X
= 1 +

1

1 +
1

1 +
1

1 + . . .

= 1 +X

In terms of γ this writes:
1

1
γ
− 2

= 1 +
1

γ
− 2,

which simplifies to
γ

1− 2γ
=

1− γ
γ

,

and finally:
γ2 − 3γ + 1 = 0,

which has the two solutions

1

2

(
3−
√

5
)
≈ 0.381966,

1

2

(
3 +
√

5
)
≈ 2.61803.

The first one gives, in degrees, 137.51o..., the second one 232.49o... (plus two turns).
Some will have recognized in the continued fraction X of our computation, the expansion for

φ−1 where φ is the Golden Ratio. Indeed 1
X

= 1+X yields the quadratic equation X2+X−1 = 0

with only positive solution 1
2
(
√

5− 1) = φ− 1. So the continued fraction of the Golden Ratio is:

φ = [1; 1, 1, 1, 1, 1, 1 . . .],

the simplest there is! One can show that φ (and all the numbers whose continued fraction expansion
ends with an infinite sequence of 1’s, such as γ for instance) is the most irrational numbers there
is: its convergents

1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
,
89

55
,
144

89
, . . . . (5)

tend to φ at the slowest possible rate compared to all other convergents’ rate of convergence to their
respective real. Intuition for that can be derived when we see (at the beginning of this discussion)
that each term ak+1 of the expansion is the integer part of 1/rk. Since rk measures in some sense
the error at a given step k to be exactly equal to the number x being approximated, the smaller
it is, the bigger ak+1. So, if all the a′ks are 1, the smallest they can be, the error to x be rational
is at each step as large as it can be.
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5 The Fibonacci rule along the van Iterson Diagram

0 1 2 3 4

zk kzu = 3

z

Figure S4: Unrolled cylindrical lattice on a cylinder of circumference 1. The kth point in the lattice
generated by z = (α,G) has coordinates zk = (kα − u, kG) where u, the closest integer to kα,
represents the number of turns it takes to go from 0 to zk along the generative spiral (u = 3 in the
figure).

In this supplementary section we explore in more detail the geometric and number theoretic
aspects of the diagram in Fig. 4 of the main text. We start with explaining why arcs of circles are
ubiquitous in that diagram. As mentioned in the main text, the (i, j) branch of the van Iterson
diagram represents the set of points z = (α,G) such that the Disks i and j in the corresponding
lattice are the closest to Disk 0 and are equidistant to it. But as illustrated in the Fig. S4, the
centers zi and zj of Disks i and j are of the form zi = (iα − v, iG), zj = (jα − u, jG) where v
(called encyclic number) is the number of turns it takes to go from 0 to zi on the helix through 0
and z (called the generative spiral). Likewise for u. Let’s express now the rhombic condition that
zi and zj are equidistant to 0:

(iα− v)2 + (iG)2 = (jα− u)2 + (jG)2

Expending the squares and regrouping terms involving α and G on one side, the constant on the
other:

(i2 − j2)α2 + 2(ju− iv)α + (i2 − j2)G2 = u2 − v2

Dividing by (i2 − j2):

α2 + 2
(ju− iv)

(i2 − j2)
α +G2 =

(u2 − v2)
(i2 − j2)

.

Finally, the two terms involving α can be completed into a square, yielding an equation of the
form:

(α + C)2 +G2 = R2

where C = (ju−iv)
(i2−j2) , R

2 = (u2−v2)
(i2−j2) + C2. This equation is that of a circle of radius R centered at

(C, 0), on the α−axis. This algebra computes not only the equations of the branches of the van
Iterson diagram, but also the circular boundaries of the regions of different modes: one changes
mode when the second closest disk changes. The border of this change occurs when two disks are
equidistant to the origin, and an equation as above applies.

In the diagram of Fig. S5, it turns out that, immediately under each region of mode (i, j),
there are two regions of modes (i + j, j) and (i, i + j) (Atela et al., 2003), see figure above. This
makes intuitive sense: if in the lattice, Points i and j are closest to the reference point 0, then
by symmetry, Point i + j is closest to both of them. Traveling down in the (α,G) plane along
the branch of the van Iterson diagram in region (i, j) (dashed line in Fig. S5), as one crosses the
vertex at the bottom of the branch, the point i+ j of the corresponding lattice becomes one of the
closest two to point 0. One of the sets of i or j contact parastichies is then replaced by the new
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(i, j)
(i<j) 

(i+j, j)
(i, i+j)

u v
j i

u v
ji v j - u i = 1

α

Figure S5: Regions of modes (i, j), (i + j, j) and (i, i + j) are separated by arcs of circles per-
pendicular to the α-axis. The van Iterson diagram (dashed here) traverse these regions in their
middle

one, i+ j. But which of the two? Remarkably, the choice compatible with the stacking process is
always so that one goes from mode (i, j) to mode (i, i+ j) (if i > j) or (i+ j, j) (if i < j).

But this is the Fibonacci rule! Take for example (i, j) = (3, 5). Then 3 = i < j = 5, so the next
mode compatible with the stacking process is (i + j, j) = (8, 5). More generally, a mode of two
consecutive Fibonacci numbers gives rise to a mode with the next two consecutive numbers. The
rejected choice yields lattices with the two sets of parastichies winding in the same direction, which
is incompatible with the stacking process, as older nearest neighbors are always on the opposite
sides of the incoming disk. This explains why, right below branch (i, j) one of the 2 branches
(i+ j, j) or (i, i+ j) of the van Iterson diagram in Fig. 4 of the main text and Fig. S5 is cut.

Traveling down the van Iterson diagram from its top (1, 1) branch, one has to first make a
choice of going left in the (2,1) region or right in the (1,2) region - this choice will determine the
chirality of the pattern. Say we go left, decreasing of T while varying α to keep the lattice rhombic
will lead us down through region of successive Fibonacci modes. While α has to oscillate back and
forth to keep the lattice rhombic, it does so with less and less amplitude as it converges to the
point (γ, 0) on the α-axis.

Convergents, revisited. Fig. S5 also shows visually the correspondence between rational
approximations of a divergence angle and the parastichy numbers in this cylindrical model. Indeed
one can show that the two “foot” points on the α axis of the region of mode (i, j) are u

j
and v

i

where u, v are such that vj − ui = ±1 and 0 < v ≤ i, 0 < u ≤ j (see Fig. S5). As a result,
if a lattice of divergence angle α is in mode (i, j), u

j
and v

i
are the best approximation using

pieces of size i and j respectively of α (As we know, these best approximation fractions include
in particular all the convergents of α). Conversely, if an angle α is between two rationals u

j
and

v
i

where ui − vj = ±1, 0 < v ≤ i, 0 < u ≤ j, the lattice given by (α, T ) must have parastichy
numbers (i, j) for some range of G: the vertical line for that value of α necessarily crosses the
region of mode (i, j). This is a geometric view of the fundamental theorem of phyllotaxis.
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6 Fronts, their parastichy numbers and transitions

As stated in the main text and Box 2, a front is, when it first appears, the most recent layer of
primordia, directly surrounding the meristem central zone. In the disk stacking model, fronts form
a zigzagging line of tangent disks going around the cylinder. This line can be explicitly traced by
segments joining the successive centers of tangent disks. Look at the dashed front at disk 14 in Fig.
S6A to visualize the simple rules: the line should return to its initial point after one turn around
the cylinder, without self-intersection. At each step, the segment traced should go from left to
right, and go as high as it can without going higher than the initial point. And, to account for the
front being the newest layer of primordia we require that a disk stacked on a front is necessarily
higher than all the disks of the front. In Fig. S6A, we traced a horizontal line passing through
the center of disk 14 as a guide of how far up we could trace the front. It makes it clear that the
center of the next disk, 15, is indeed above that line.

To our knowledge fronts appear first in (Hotton et al., 2006; Atela and Golé, 2007) at this
level of generality. However van Iterson (1907) already used “zigzaglinie” that are fronts, but just
of “square” lattices, i.e. with perpendicular parastichies. He considered these zigzaglinie to be
obligatory checkpoints in Fibonacci transitions, and did not use fronts for transitions in between.

Front parastichy numbers The segment in a front is “up” if one goes up by tracing the it
from left to right, and similarly for a “down” segment. The front parastichy numbers form the pair

(# of up segments, # of down segments).

If a front is within a region of the configuration where the mode is constant, the pair of front
parastichy numbers are equal to the mode. In other words, in the regular case, front parastichy
numbers and the regular parastichy numbers are one and the same. For instance, the front at 14
in Fig. S6A has parastichy numbers (4, 5) and it is in the region between disks 1 and 22, where
there are 5 (green) parastichies going up (“up-parastichies”) and 4 (red) parastichies going down
(“down-parastichies”). This is not a concidence: as one goes down a down-parastichy (say 26-21-
17-14-9 ...) the first point one hits in the front (14 here) is the upper point of an up-segment (8-14
here). Likewise 20-15-12-8 hits the front first at 12, the top of the up-segment 7-12. This creates
a one to one correspondence between down-parastichies, and up segments in the front. Likewise
going up an up parastichies (e.g. 5-10-16...), one hits first the lower tip of a down-segment (10
here), creating a one to one correspondence between up parastichies and down segments of the
front.

Front transitions. A front can be seen as a succession of V-shaped notches. For instance, in
Fig. S6A, the front at 14 is composed of notches 14-9-13, 13-10-6-11 and 14-7-12 and 12-8-14.
Stacking a new disk onto a front changes the front. The most common transition is quadrilateral:
The two older contact neighbors of the new disk (a.k.a. new lateral organ) are located on the
opposite wings of a notch, with a fourth disks at the vertex of the notch, separating them. For
instance the first new disk after the front at 14 is disk 15, with older contact neighbor, disks 11
and 12. Disk 11 is on the left wing 11-7 of notch 11-7-12 and disk 12 is on its right wing 7-12.
These two contact neighbors are separated by, and in contact with disk 7, the bottom of the notch.
Disks 15, 11, 7, and 12 together form a quadrilateral, almost a rhombus here since the disks are
almost of the same size. The new front at 15 has the same parastichy numbers as the front at 14:
the only change in the front is that the down segment 11-7 has been replaced by 15-12, and the
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up segment 7-12 by 11-15, an operation which incurs no change in the total numbers of up and
down segments.

When the size of the disks is reduced, notches open up and the contact neighbors can’t be
on opposite wings of the notch without violating the stacking rules anymore. (Fig. S6B’) Then,
the older contact neighbors of the new disk are themselves in contact with one another and on
the same side of the notch: the three disks form a triangle. For instance, in Fig. S6A (also B’),
the notch 19-16-20 has an angle too wide for the new disk to have contact neighbors 19 and 20,
without intersecting 16. The new disk, 23, chooses the two adjacent disks 19 and 16 as contact
neighbors, which are both on the flatter wing of the notch.

Sometimes, different parts of the opposite wings of the notch can bend closer to one another
and become contact neighbors to the new disk, yielding a pentagon or even a polygon with more
sides than 5. This happens when the front is not very regular, or when the ratio d/C is increasing
instead of decreasing. In Fig. S6A (and also B”), such a transition occurs at notch 23-26-20-26
of the front at 27. In this transition, the up segments 16-20 and 20-26 are replaced by only one
up-segment, 23-28. So the up-parastichy number goes down by one, from 6 to 5.

At a global level, quadrilateral transitions continue building up- and down-parastichies. On
the other hand, a triangle transition provokes, as one goes up in the structure, the branching of
one parastichy into two, whereas a pentagon transition merges 3 parastichies into two. This can
be seen as a 2D version of what crystallographers call dislocations. We can see examples in the
next chapter.

7 Local transitions and quasi-symmetric modes

Since the global effect of the transition between Fibonacci modes is so regular, it is tempting to
think that the transition is global, while it is due only to an accumulation (with the right number)
of local “triangle” transitions. Such transitions can be visible locally. This was studied in details
by Beata Zagorska-Marek (Zagorska-Marek, 1985; Wiss and Zagorska-Marek, 2012). An example
can be seen in Fig. S7. In such a case, going from a spiral pattern (7, 6) to a pure whorled pattern
(7, 7) is quite a change in terms of the divergence angle. The whorled mode is seen as composed
of 7 distinct generative spirals (the greatest common divisor of the parastichy numbers), each of
them in the mode (1,1). In general, since Bravais 1834, when a pattern (p, q) is observed, one
assumes that the number of generative spirals is the greatest common divisor k of p and q: p = kr,
q = ks. Then each generative spiral yields the mode (r, s), and the pattern is interpreted as a
k(r, s) modes side by side. Here, the greatest common divisor of 6 and 7 is 1, so it is interpreted
as one generative spiral, with a divergence angle of 360 times 6/7. Here with just a local triangle
transition, one jumps to the whorled by 7 mode, with 7 generative spiral with a local angle (within
each 7 copies) of 360 time 1/2 divided by 7 copies. This is quite a surprising jump. One can thus
consider that the description in terms of multiple or single divergence (depending on the common
denominator of the parastichy numbers), is useful purely as a pattern description, but meaningless
in terms of pattern building dynamics.

In general local transitions are necessarily seen each time the growth index is changed, to
accommodate for the different disk sizes. When the transition is slow enough (Golé et al., 2016),
one observes the succession of Fibonacci transitions (see Fig. 6 of main article). In such cases the
individual transitions are not as visible since they are coherently grouped at the global transitions
where the pattern is globally a hexagonal packing, and thus globally regular. When the variation
is too quick, the transitions in one direction and another are gathered together in the same smaller
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time interval (See Fig. S8 ). It leads to quasi-symmetric modes (Golé et al., 2016). In this article,
numerical simulations were done starting from a disk of a given diameter, and piling discks with
decreasing size up to a given small size, and a particular speed of decrease. Depending essentially
on the speed of decrease, the front would undergo Fibonacci transitions as described in Fig. 5C
(main text) for slow speed, and quasi-symmetric for high speed, as show in Fig. S9. That figure
also shows how the speed of decrease correlates to the irregularity of the successive fronts.

Such quasi-symmetric modes can be seen in many inflorescences, for instance Spathypillium,
Banksia, corn, peteh... (Douady and Golé, 2017). As a trace of their exceedingly quick decrease of
growth index, some irregularity remains and even when the growth index stabilizes, these irregu-
larities induce local transitions. This is most easily seen in Spathypillium, Fig. S10, and quite often
in corn (Zea mais), see Fig. S11 and Fig. S12. But it can stabilize enough to remain perfectly
stable and regular, as a rhombic lattice, as in Banksia, Fig. S13.

The quasi-symmetry of these inflorescences is easily guessed by looking a the angle of the
orthostichies, or third vertical family of contact parastichies. In these cases it is very vertical
nearly along the cylinder axis (Fig. S13). If the two numbers are exactly equal, orthostichies are
exactly along the cylinder axis. This can be recognized easily in corn, where the row of grains can
coil slightly or remain perfectly vertical, while the phyllotaxis goes, depending on the specimen
and on the variety, from (2,2) (2,3), (3,3) ... to (5,6), (6,6), this last one showing (6 + 6) ∗ 2 = 24
rows of seeds.

The local transitions and the tendency to irregular modes due to fast growth in meristem
diameter, to convergence toward quasi-symmetric can be seen in our specimen of corn (Fig. S12),
but also generally in cedar male cones (Douady and Golé, 2017), as shown in Fig. S14.
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Figure S6: Transitions and parastichies. (A) To build the front at 14 (dashed), start at disk 14, and
proceed from left to right, joining centers of tangent disks, going as high as you can, but staying below
14 (indicated by a horizontal line). From 14, you must go down to 9, as 18 is too high. You can then
go to 13, as it is lower than 14, but then you must go down to 10, as 19 is higher than 14... This front
has 4 (green) up segments and 5 (red) down segments, so its front parastichy numbers are (4, 5). This
corresponds to the mode (5, 4) in the region between points 1 and 22: there are 5 (green) up-parastichies
and 4 (red) down-parastichies here. At disk 23, there is a triangle transition: the angle at the notch
19-16-20 is greater than 120o so disk 23 can’t have both disks 19 and 20 as older contact neighbors: it
chooses disks 19 and 16 instead, as they form the flatter wing of the notch (see also (B’)). This results in
the addition of the extra up-segment 19-23 to the front, which has now parastichy number (5, 5). Note
how the red parastichy through 6, 11, 16 forks into two (through 19 and through 23) because of this
triangle. At disk 28 there is a pentagon transition: the tips 23-16 and 20-26 of the wings of the notch
23-16-20-26 form an angle less than 60o (as in (B”)). This decreases the front’s up-parastichy number by
1: the two up segments 16-20 and 20-26 of the notch are replaced by the single 23-28. Correspondingly,
ignoring the triangles on either sides, the 3 red parastichies 6-11-16, 12-15-20, 17-21-26 can be interpreted
as merging into the two at 23-29 and 28-33. (B) Quadrilateral transition, the most common. The notch
angle is in a range of about 60o − 120o. (B’) A triangular transition: the notch angle is larger than 120o

and the new disk can’t reach both sides of the notch without intersection. The new disk goes to the flatter
side of the notch, to minimize height, as prescribed by the stacking rules. ( B”) Pentagon transition: the
angle indicated is less than 60o but the notch angle is greater than 60o, and less than 120o.
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Figure S7: Detail of an elongated cactus . The vertical orthostichies indicate near rational diver-
gences. In the middle, there is a local triangle transition from (7,6) to (7,7). original picture on
the left, drawn on the right.
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Figure S8: Simulation of a very quick decrease of the size of the disks being stacked, followed,
after 36 disks, by stacking of disks of constant size. (A) the unrolled cylinder with the disks
stacked. The transitions, necessary because of the decreasing radius, occur in both up and down
segments in the same time interval. (B) This leads to a quasi-symmetric number of spirals during
the transition. After the size is stabilized (dashed line), the number fluctuates widely but converge
toward quasi-identical numbers. (C) during all his process, the divergence is widely fluctuating
with no visible meaning.
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Figure S9: a. Results of 2500 simulations, with initial disk size and speed of decrease of the size
as parameters (from (Golé et al., 2016)). The result is classified as being true Fibonacci, with
transitions as described in Fig. 5C of the main text, Fibonacci type (if the last front is Fibonacci,
but the transitions may include pentagons)
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Figure S10: Inflorescence of a Spathiphyllium. This inflorescence has been numerically unrolled by
turning it in front of a camera, and the central line has been gathered to form a time “reslice”
or a horizontal kinetograph, showing a unrolled projection of the inflorescence cylinder. A period
of rotation is shown by the two vertical orange lines. In this inflorescence, one can see after an
abrupt transient a (6, 7) front, underlined by orange dashes. Then the disappearance of a blue
contact parastichy leads to the disappearance of a red step in the front, and a (6, 6) mode. But
it is quickly followed by a blue triangle transition, making a red step reappear and a new blue
parastichy, back to (6, 7), as is common in the convergence of irregular pattern toward a rhombic
tilling (Golé and Douady, 2019)). Finally, a last pentagon transition leads to the symmetric (6,6)
pattern.
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Figure S11: In corn, the phyllotaxis is not visible at first sight, due to two phenomena, the first
one is that each primordium gives rise to two horizontal seeds, the second that the large increase
in radius enlarges the seeds horizontally. From a typical corn cob (left), one can then unroll it
numerically (middle), as described in Fig. S10, and to visually compensate the lateral growth,
compress it considerably in width (right). Then the pairs of seeds start to be easily recognised as
single units.
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Figure S12: Once the rescaling of Fig. S11 is done, one can analyse the pattern. Another difficulty
in corn is that not all the pistils give rise to a fully developed seed (abortion). This leave some
empty space in the cob that is filled by the surrounding expanding grains. Such abortions, if
not too numerous, can be easily be guessed by enforcing a pairs of seeds everywhere (light blue
ovals). Then each primordium can be linked with its two older contact neighbors, here up in
green and down in purple. Some quasi-vertical orthostichies have been highlighted for visibility.
This particular corn cob, after a complex beginning, still show near the bottom a Fibonacci (3, 5)
phyllotaxis, as shown by the underlined front. Then there is a pentagon transition, resulting in the
disappearance of a purple step, so a green transverse parastichy, and by consequence one (darker)
orthostichy. The upper front shows indeed a normal stable quasi-symmetric (3, 4) phyllotaxis,
usual with corn cobs.
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Figure S13: Inflorescence of a Banksia (”Giant Candles” from Royal Botanical garden of Mel-
bourne). It goes quickly from a normal (2,3) mode to a regular quasi-symmetric (7,8). The slight
difference between the two numbers of parastichies is visible in the slight tilt of the orthostichies.
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Figure S14: An unrolled cedar male cone. It start from a Fibonacci (13,21) pattern in A (34
orthostichies), that grows quickly to (16,21) (37 orthostichies) with three (yellow) triangle transi-
tions. But these triangles are followed by pentagon transitions, making pairs, a way to reduce the
irregularity of the pattern (Golé et al., 2016). . With some isolated local transitions, it reaches
a more symmetric (17, 20) in B (still 37 orthostichies), to gradually reduce it diameter, inducing
only pentagon transitions, to more quasi-symmetric modes (15, 17) in C (32 orthostichies) and
(14,16) in D (30 orthostichies).
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