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ROI CT reconstruction combining analytic inversion
of the finite Hilbert transform and SVD

Aurélien Coussat∗, Simon Rit∗, Rolf Clackdoyle†, Michel Defrise‡, Laurent Desbat†, Jean Michel Létang∗

Abstract—In computed tomography, a scan of the whole object
may be impossible, leading to truncated projection data. Using
differentiated backprojection, the reconstruction problem can be
reduced to a set of independent and one-dimensional Hilbert
transforms to invert. Depending on the truncation pattern,
this inversion problem can either be “zero-”, “one-” or “two-
endpoint”. The zero-endpoint case is known as the interior
problem: the field-of-view is completely contained in the object
and the reconstruction problem has no unique solution. The two-
endpoint case possesses an analytic, numerically stable inverse.
The one-endpoint case has a unique and mathematically stable
inverse, but no analytic formula for its inverse has been derived so
far. A field-of-view (FOV) which is not interior generally contains
both one- and two-endpoint sub-regions and we propose here to
combine them by using the analytic two-endpoint reconstruction
as additional knowledge for the one-endpoint inversion in the rest
of the FOV. We hence obtain two reconstructed regions, which we
chose to slightly overlap to partially correct for a small residual
error appearing in the one-endpoint reconstructions.

I. INTRODUCTION

X-ray tomography conventionally requires the irradiation of
an entire transaxial slice of the object to obtain an image
of satisfactory quality. However, it can be undesirable or
impossible to perform such an irradiation, and only a sub-
region of the slice is irradiated. Conventional reconstruction
approaches then become ineffective, but recent theoretical re-
sults show that accurate region-of-interest (ROI) reconstruction
is possible for some patterns of projection truncation [1].

The context of this work is the two-dimensional (2D)
parallel geometry, even though the results can possibly be
generalized to other geometries. We assume that the convex
hull of the object (denoted as Ω) is known. We define the
field-of-view (FOV) of the scanner as the region where each
point is irradiated over 180◦. Any line segment contained in
the union of the scanner FOV and Ω but whose two endpoints
lie outside Ω has an analytic reconstruction formula [2] that we
name the “two-endpoint Hilbert inversion”. The region inside
Ω that can be reconstructed with this approach is denoted
Ω2 (Fig. 1). Line segments which have a single endpoint
lying outside Ω, such as [a1; a4] in Fig. 1, admit a unique
and mathematically stable reconstruction along the part of
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Fig. 1: Diagram summarizing our reconstruction set-up. The shape
Ω is the object’s convex hull. The gray area Ω2 is the region
that can be reconstructed using the two-endpoint Hilbert inversion
formula [2]. The pair (a1, a3) (respectively (a2, a4)) bounds the FOV
(respectively Ω) along the segment L (drawn here in the particular
case where the Hilbert direction θ is equal to 0). The region Ω1 is
Ω \ Ω2. We are only interested in reconstruction in FOV ∩ Ω.

the line segment inside the FOV [3], although no analytic
formula has yet been derived for it. Reconstruction along
these segments allows reconstruction of the complete FOV
for the configuration of Fig. 1. Called “one-endpoint Hilbert
inversion”, this one-dimensional reconstruction problem can
be solved numerically by several techniques, such as iterative
methods, e.g. projection onto convex sets [3], or singular value
decomposition (SVD). Our technique for one-endpoint Hilbert
inversion is partially based on SVD.

A standard regularization of SVD, truncated SVD (TSVD),
was extended to include support information and applied to
the one-endpoint problem in a previous work [4]. Here, we
push this improvement further by first applying the two-
endpoint inversion formula where possible, then incorporating
some knowledge about this reconstruction into the previous
“extended SVD” (XSVD) inversion. Finally, the two-endpoint
reconstruction is used again to estimate and partially correct
for a small residual error inherent to the one-endpoint prob-
lem.

II. MATERIALS AND METHODS

Let f : R2 → R be the 2D unknown function we want to
recover from the measurements p : [0;π[×R→ R defined as

p(φ, r) = pφ(r) =

∫ +∞

−∞
f
(
rαφ + sβφ

)
ds (1)

where αφ = (cosφ, sinφ) and βφ = (− sinφ, cosφ). Here,
in the context of ROI tomography, we focus on recovering f
from p when the values of r span less than the extent of f ,
i.e., when the projections of f are truncated.
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The reconstruction technique introduced in this article is
based on the link between the backprojection of the derivative
of the measurements and the unknown function f [2]:

− 1

2π

∫ θ+π

θ

∂p (φ, r)

∂r

∣∣∣∣
r=x·αφ

dφ = Hθf(x) (2)

where x = (x1, x2) and Hθf represents the directional
Hilbert transform of f in the direction of the vector βθ =
(− sin θ, cos θ):

Hθf(x) = −
∫ +∞

−∞

f (x− tβθ)
πt

dt. (3)

This procedure, Eq. (2), has been named differentiated back-
projection (DBP), and we refer to θ as the Hilbert direction.

We assume that the samples of the DBP image are ac-
cessible at unit-spacing along each line segment L, always
oriented vertically in this work, as shown in Fig. 1. Along a
segment L, let (a1, a3) ∈ N2 be inner bounds of the FOV and
(a2, a4) ∈ N2 be outer bounds of Ω with a1 < a2 < a3 < a4

for one-endpoint segments. Let g ∈ RM be the discretized
DBP along this segment in the FOV with M = a3 − a1 + 1,
and f ∈ RN the sought vector of samples of the unknown
function with N = a4 − a2 + 1. By discretizing Eqs. (2)
and (3), we obtain the discrete Hilbert transform operator H
defined as the M ×N matrix with coefficients

Hj−a1+1,j′−a2+1 =
1

π

1

j − j′ + 1
2

, (4)

a1 ≤ j ≤ a3 and a2 ≤ j′ ≤ a4 such that g = Hf . The
Hilbert transform is applied with a half-pixel shift to improve
the reconstructed resolution [5].

Performing reconstruction along segment L can be done by
finding a pseudo-inverse N ×M matrix H† of H such that
H†g = f†. This can be achieved by SVD: if H = UΣV>

with U a M×M matrix, Σ a M×N matrix and V a N×N
matrix, then H† = VΣ†U> with Σ† ≡ 0 except for coeffi-
cients Σ†k,k = 1/Σk,k for k ∈

(
1, . . . , rank(H)

)
. In practice,

this inversion is ill-conditioned, hence its regularization by
TSVD: a cutoff kc is chosen such that 0 < kc ≤ rank(H)
after which the small and numerically unstable singular values
σk = Σk,k are discarded (assuming that the singular values are
ranked in decreasing order). The reconstruction formula is

fTSVD =

kc∑

k=1

ckvk, ck = 〈g,uk〉/σk (5)

with vk (respectively uk) the kth column of V (respectively
U). This formula is applied to each line segment of the FOV
measured in the Hilbert direction.

We previously proposed an improved TSVD reconstruc-
tion for the one-endpoint problem by incorporating pθ, the
measured projection information in the Hilbert direction [4].
Assume segment L is at distance rL to the origin. We define
f̄ ∈ RN as

f̄i =
1

N
p(θ, rL) ∀i ∈ (1, . . . , N) . (6)

This vector corresponds to the discrete backprojection of a
single ray and can be used as a rough estimation of f in order

to approximate discarded singular components of Eq. (5).
Equation (5) is therefore extended as follows:

fXSVD = fTSVD +

N∑

k=kc+1

c̄kvk (7)

with c̄k = 〈f̄ ,vk〉. We refer to Eq. (7) as XSVD standing
for extended SVD. Both the TSVD and the XSVD tech-
niques reconstruct the full-FOV. XSVD partially corrects a
residual error observed with the TSVD which increases when
approaching the border of the FOV due to the poorer stability
of the inversion [3].

Region Ω2 of the FOV can be analytically reconstructed by
the stable two-endpoint Hilbert inversion formula [2] (using
horizontal Hilbert line-segments in Fig. 1). We define Ω1 =
Ω \ Ω2. If a′2 is the point at the intersection of segment L
with the boundary between Ω1 and Ω2 (as in Fig. 1), the
segment [a2; a′2[ can be first reconstructed using two-endpoint
Hilbert inversion. Denote fΩ2 ∈ RN the vector containing
this reconstruction in [1; a′2 − a2] and zeros elsewhere. Let
N ′ = a4 − a′2 + 1 be the length of the unknown segment
[a′2; a4] and f̄

′ ∈ RN ′
such that

f̄ ′i =
1

N ′


p(θ, rL)−

a′2−a2∑

j=1

fΩ2
j


 ∀i ∈

(
1, . . . , N ′

)
. (8)

The estimate f̄
′ corresponds to a single backprojection of the

integral sum of f in Ω1 along L. The DBP g′ ∈ RM of the
restriction of f to Ω1 is given by

g′ = g −HfΩ2 . (9)

Finally, the M × N ′ matrix H′, defined using a′2 instead of
a2, is decomposed by SVD similarly to H: H′ = U′Σ′V′>.
The reconstruction using cutoff k′c can now be defined as

fXSVD-2
i =

{
fΩ2
i 1 ≤ i ≤ N −N ′

fΩ1

i−(N−N ′) N −N ′ + 1 ≤ i ≤ N (10)

where

fΩ1 = fTSVD-1 +

N ′∑

k=k′c+1

c̄′kv
′
k, c̄′k = 〈f̄ ′,v′k〉 (11)

and where fTSVD-1 ∈ RN ′
, given by

fTSVD-1 =

k′c∑

k=1

c′kv
′
k, c′k = 〈g′,u′k〉/σ′k. (12)

Finally, the TSVD procedure for reconstruction in Ω is

fTSVD-2
i =

{
fΩ2
i 1 ≤ i ≤ N −N ′

fTSVD-1
i−(N−N ′) N −N ′ + 1 ≤ i ≤ N . (13)

Conceptually, these new procedures consist of “removing” the
data corresponding to fΩ2 from the one-endpoint problem,
and reconstructing an object with support Ω1 using Eq. (7) or
(5). This reconstruction can then be combined with the two-
endpoint reconstructed region Ω2 to integrally reconstruct the
full FOV.
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Fig. 2: Illustration of the simulation. The green oval represents the
object’s convex hull Ω and the red circle the scanner’s FOV. The
purple dashed lines are the profiles considered in Fig. 4.

TABLE I: Reconstructions considered in our simulations.

Reconstruc-
tion
name

Two-endpoint
reconstruction of Ω2

Boundary
correction

SVD extension
(Eq. (7))

TSVD No N/A No
TSVD-2 Yes No No
TSVD-2b Yes Yes No
XSVD No N/A Yes
XSVD-2 Yes No Yes
XSVD-2b Yes Yes Yes

The XSVD-2 reconstruction can be further improved by en-
forcing continuity between the reconstructions at a′2−1 (two-
endpoint Hilbert inversion) and at a′2 (one-endpoint Hilbert
inversion). Our approach was to reconstruct N ′ + 1 samples
using SVD with an additional unknown sample corresponding
to location a′2 − 1 along L and an amended definition of g′,
and to add the difference ε between two-endpoint and SVD
reconstructions at a′2 − 1 to the SVD reconstruction. This
correction can be applied to both fTSVD-2 and fXSVD-2 and we
named the new reconstructions fTSVD-2b and fXSVD-2b.

The proposed methods were evaluated using computer sim-
ulations of the 2D Shepp-Logan phantom. A set of 720 parallel
projections of 560 rays each were analytically computed over
an arc of 180◦. The pixel spacing of the projections and the
reconstructions was approximately 0.26 mm. The set-up is
illustrated in Fig. 2. The cutoffs kc and k′c were set to K and
K ′, respectively, where K = a3−a2+1 and K ′ = a3−a′2+1,
as justified in a previous work [4]. Reconstructions were
performed on a 1024× 1024 pixel grid following various
scenarios summarized in Table I. The Hilbert direction was
chosen horizontal for the two-endpoint reconstruction, allow-
ing the segment’s two endpoints to lie outside the object, and
vertical for the one-endpoint, so that in both cases the Hilbert
line-segments were aligned with the pixel grid.

All simulations were implemented using Python 3.7.2,
NumPy 1.15.4 and RTK 2.1.0 [6].

III. RESULTS

Figure 3 shows the reconstruction results from the six
scenarios of Table I. In Figs. 3a and 3d, reconstructions
are entirely performed through one-endpoint Hilbert inversion
(Eqs. (5) and (7)). Figures 3b and 3e show the two reconstruc-
tions without the Ω2 to Ω1 boundary correction at a′2, hence
the horizontal transition artifact. In Figs. 3c and 3f, the one-
endpoint reconstructions have been adjusted, enforcing vertical

(a) TSVD. (b) TSVD-2. (c) TSVD-2b.

(d) XSVD. (e) XSVD-2. (f) XSVD-2b.

Fig. 3: Six different reconstructions of Fig. 2 from the scenarios of
Table I. The grayscale is [1; 1.06] as in Fig. 2.

continuity of the reconstructions. Fig. 4 shows a vertical and
a horizontal profile taken in the central column and above the
a′2 threshold, respectively. In Figs. 3b, 3c, 3e and 3f, the two-
endpoint reconstructions in Ω2 are identical.

IV. DISCUSSION AND CONCLUSIONS

Figures 3a, 3d, and Fig. 4a show that in the one-endpoint
setup, an offset in the reconstruction values occurs, with
increasing intensity towards a3, the “inner” boundary of the
FOV along each vertical column. The effect is smaller than
appears because both Figs. 3 and 4 display only a small range
of intensity values, respectively 3% and 10% of the full range
of values [0, 2] in the phantom. This offset feature is attributed
to the rapidly decreasing numerical stability known to occur
in the one-endpoint Hilbert inversion model [3]. The fact that
this same feature can be observed in other works using other
approaches than SVD inversion [3], [7]–[9] suggests that the
effect is intrinsic to this tomographic problem and not specific
to the one-endpoint Hilbert inversion.

The main idea of the work here is to apply the stable
two-endpoint method where possible, thereby reducing the
load on the one-endpoint reconstructions. As expected, in the
region Ω2 where two-endpoint Hilbert inversion was applied,
excellent quality reconstructions were observed; see Figs. 3b
and 3e and especially Fig. 4a in the Ω2 range [a2, a

′
2]. The

one-endpoint method now only needs to be applied starting at
a′2 instead of a2, resulting in a decrease from N unknowns
to N ′. However, the improvement was disappointingly small
there, as seen in Figs. 3b, 3e and 4.

When the two-endpoint and one-endpoint reconstructions
were combined, a visible line of discontinuity appeared in the
images; see Figs. 3b and 3e. Eliminating this discontinuity by
adding a constant (ε) to the one-endpoint region [a′2, a3] also
had the benefit of reducing the offset feature, especially in the
TSVD case; see Figs. 3c, 3f and 4.

To understand the disappointing outcome in the reduced
region one-endpoint reconstruction, we examined the singular
vectors uk and vk for the central vertical column (x1 = 512)
and for k = K and k = K + 1 which are respectively the last
components included, and first component excluded in series
(Eq. (5)) used to build the reconstruction; see Figs. 5a and 5b.
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Reference TSVD TSVD-2 TSVD-2b XSVD XSVD-2 XSVD-2b
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(a) Vertical profile (x1 = 512 pixels).
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(b) Horizontal profile (x2 = 460 pixels).

Fig. 4: Two profiles of the purple dashed lines of Fig. 2 comparing the different reconstructions described in Table I.
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Fig. 5: Singular vectors (Eqs. (5) and (12)), mapped onto the
spatial domain in the geometry of the central column of the
Shepp-Logan phantom as in Fig. 2. Here, (a1, a2, a

′
2, a3, a4) =

(40, 157, 426, 598, 865) thus K = 442 and K′ = 173. (Note that K
and K′ are also the number of elements in the grey region.)

We concentrate on v442 and v443, recalling that the desired
function f is expressed as the series of 709 terms with basis
vectors v1 to v709. We noted in [4] that the lost terms from
k = 443 to k = 709 corresponded to vectors vk which were
very close to zero in the relevant (grey) region [a2, a3] (inside
the FOV). However, the first missing component, v443, when
approaching a3 inside the grey region, behaves very similarly
to the offset feature in the one-endpoint reconstructions, so the
absence of this term is the likely primary cause of this offset
feature.

The same arguments apply for the reduced one-endpoint
inversion, where the singular vectors shown in Figs. 5c and 5d
are remarkably similar to those in Figs. 5a and 5b despite the

substantially different number of unknowns (N ′ = 440 instead
of N = 709) and different SVD cutoff indices (K ′ = 173
instead of K = 442). Surprisingly, the horizontal stretching
and shrinking of the singular vectors did not appreciably
change the shape of v174 (K ′+ 1) compared to v443 (K + 1)
near a3, which could explain the disappointingly small benefit
of the reduced problem size.

In conclusion, we have proposed a method for region-of-
interest reconstruction from truncated projections using Hilbert
inversion methods. The two-endpoint inversion is used where
possible to obtain accurate numerically stable reconstructions.
The one-endpoint inversion is used elsewhere, and the char-
acteristic offset feature has been reduced by a combination
of a priori knowledge (described in [4]) and by matching
reconstructed values at the boundary with the two-endpoint
region. The resulting reconstructions, Fig. 3f, illustrate dra-
matic improvements compared to a direct TSVD approach.
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