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I. INTRODUCTION

X-ray tomography conventionally requires the irradiation of an entire transaxial slice of the object to obtain an image of satisfactory quality. However, it can be undesirable or impossible to perform such an irradiation, and only a subregion of the slice is irradiated. Conventional reconstruction approaches then become ineffective, but recent theoretical results show that accurate region-of-interest (ROI) reconstruction is possible for some patterns of projection truncation [START_REF] Clackdoyle | Tomographic Reconstruction in the 21st Century[END_REF].

The context of this work is the two-dimensional (2D) parallel geometry, even though the results can possibly be generalized to other geometries. We assume that the convex hull of the object (denoted as Ω) is known. We define the field-of-view (FOV) of the scanner as the region where each point is irradiated over 180 • . Any line segment contained in the union of the scanner FOV and Ω but whose two endpoints lie outside Ω has an analytic reconstruction formula [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF] that we name the "two-endpoint Hilbert inversion". The region inside Ω that can be reconstructed with this approach is denoted Ω 2 (Fig. 1). Line segments which have a single endpoint lying outside Ω, such as [a 1 ; a 4 ] in Fig. 1, admit a unique and mathematically stable reconstruction along the part of 
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Fig. 1: Diagram summarizing our reconstruction set-up. The shape Ω is the object's convex hull. The gray area Ω2 is the region that can be reconstructed using the two-endpoint Hilbert inversion formula [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF]. The pair (a1, a3) (respectively (a2, a4)) bounds the FOV (respectively Ω) along the segment L (drawn here in the particular case where the Hilbert direction θ is equal to 0). The region Ω1 is Ω \ Ω2. We are only interested in reconstruction in FOV ∩ Ω.

the line segment inside the FOV [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF], although no analytic formula has yet been derived for it. Reconstruction along these segments allows reconstruction of the complete FOV for the configuration of Fig. 1. Called "one-endpoint Hilbert inversion", this one-dimensional reconstruction problem can be solved numerically by several techniques, such as iterative methods, e.g. projection onto convex sets [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF], or singular value decomposition (SVD). Our technique for one-endpoint Hilbert inversion is partially based on SVD.

A standard regularization of SVD, truncated SVD (TSVD), was extended to include support information and applied to the one-endpoint problem in a previous work [START_REF] Coussat | Region-of-Interest CT Reconstruction using Singular Value Decomposition of the Truncated Hilbert Transform[END_REF]. Here, we push this improvement further by first applying the twoendpoint inversion formula where possible, then incorporating some knowledge about this reconstruction into the previous "extended SVD" (XSVD) inversion. Finally, the two-endpoint reconstruction is used again to estimate and partially correct for a small residual error inherent to the one-endpoint problem.

II. MATERIALS AND METHODS

Let f : R 2 → R be the 2D unknown function we want to recover from the measurements p : [0; π[×R → R defined as

p(φ, r) = p φ (r) = +∞ -∞ f rα φ + sβ φ ds (1) 
where α φ = (cos φ, sin φ) and β φ = (-sin φ, cos φ). Here, in the context of ROI tomography, we focus on recovering f from p when the values of r span less than the extent of f , i.e., when the projections of f are truncated.
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The reconstruction technique introduced in this article is based on the link between the backprojection of the derivative of the measurements and the unknown function f [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF]:

- 1 2π θ+π θ ∂ p (φ, r) ∂r r=x•α φ dφ = H θ f (x) (2) 
where x = (x 1 , x 2 ) and H θ f represents the directional Hilbert transform of f in the direction of the vector β θ = (-sin θ, cos θ):

H θ f (x) = - +∞ -∞ f (x -tβ θ ) πt dt. (3) 
This procedure, Eq. ( 2), has been named differentiated backprojection (DBP), and we refer to θ as the Hilbert direction.

We assume that the samples of the DBP image are accessible at unit-spacing along each line segment L, always oriented vertically in this work, as shown in Fig. 1. Along a segment L, let (a 1 , a 3 ) ∈ N 2 be inner bounds of the FOV and (a 2 , a 4 ) ∈ N 2 be outer bounds of Ω with a 1 < a 2 < a 3 < a 4 for one-endpoint segments. Let g ∈ R M be the discretized DBP along this segment in the FOV with M = a 3a 1 + 1, and f ∈ R N the sought vector of samples of the unknown function with N = a 4a 2 + 1. By discretizing Eqs. ( 2) and ( 3), we obtain the discrete Hilbert transform operator H defined as the M × N matrix with coefficients

H j-a1+1,j -a2+1 = 1 π 1 j -j + 1 2 , (4) 
a 1 ≤ j ≤ a 3 and a 2 ≤ j ≤ a 4 such that g = Hf . The Hilbert transform is applied with a half-pixel shift to improve the reconstructed resolution [START_REF] Noo | Exact helical reconstruction using native cone-beam geometries[END_REF].

Performing reconstruction along segment L can be done by finding a pseudo-inverse N × M matrix H † of H such that H † g = f † . This can be achieved by SVD: if

H = UΣV with U a M × M matrix, Σ a M × N matrix and V a N × N matrix, then H † = VΣ † U with Σ † ≡ 0 except for coeffi- cients Σ † k,k = 1/Σ k,k for k ∈ 1, . . . , rank(H) .
In practice, this inversion is ill-conditioned, hence its regularization by TSVD: a cutoff k c is chosen such that 0 < k c ≤ rank(H) after which the small and numerically unstable singular values σ k = Σ k,k are discarded (assuming that the singular values are ranked in decreasing order). The reconstruction formula is

f TSVD = kc k=1 c k v k , c k = g, u k /σ k (5) 
with v k (respectively u k ) the k th column of V (respectively U). This formula is applied to each line segment of the FOV measured in the Hilbert direction. We previously proposed an improved TSVD reconstruction for the one-endpoint problem by incorporating p θ , the measured projection information in the Hilbert direction [START_REF] Coussat | Region-of-Interest CT Reconstruction using Singular Value Decomposition of the Truncated Hilbert Transform[END_REF]. Assume segment L is at distance r L to the origin. We define

f ∈ R N as fi = 1 N p(θ, r L ) ∀i ∈ (1, . . . , N ) . (6) 
This vector corresponds to the discrete backprojection of a single ray and can be used as a rough estimation of f in order to approximate discarded singular components of Eq. ( 5). Equation ( 5) is therefore extended as follows:

f XSVD = f TSVD + N k=kc+1 ck v k (7) 
with ck = f , v k . We refer to Eq. ( 7) as XSVD standing for extended SVD. Both the TSVD and the XSVD techniques reconstruct the full-FOV. XSVD partially corrects a residual error observed with the TSVD which increases when approaching the border of the FOV due to the poorer stability of the inversion [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF].

Region Ω 2 of the FOV can be analytically reconstructed by the stable two-endpoint Hilbert inversion formula [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF] (using horizontal Hilbert line-segments in Fig. 1). We define Ω 1 = Ω \ Ω 2 . If a 2 is the point at the intersection of segment L with the boundary between Ω 1 and Ω 2 (as in Fig. 1), the segment [a 2 ; a 2 [ can be first reconstructed using two-endpoint Hilbert inversion. Denote f Ω2 ∈ R N the vector containing this reconstruction in [1; a 2a 2 ] and zeros elsewhere. Let N = a 4a 2 + 1 be the length of the unknown segment [a 2 ; a 4 ] and f ∈ R N such that

f i = 1 N   p(θ, r L ) - a 2 -a2 j=1 f Ω2 j   ∀i ∈ 1, . . . , N . (8) 
The estimate f corresponds to a single backprojection of the integral sum of f in Ω 1 along L. The DBP g ∈ R M of the restriction of f to Ω 1 is given by

g = g -Hf Ω2 . (9) 
Finally, the M × N matrix H , defined using a 2 instead of a 2 , is decomposed by SVD similarly to H: H = U Σ V . The reconstruction using cutoff k c can now be defined as

f XSVD-2 i = f Ω2 i 1 ≤ i ≤ N -N f Ω1 i-(N -N ) N -N + 1 ≤ i ≤ N (10) 
where

f Ω1 = f TSVD-1 + N k=k c +1 c k v k , c k = f , v k (11) 
and where f TSVD-1 ∈ R N , given by

f TSVD-1 = k c k=1 c k v k , c k = g , u k /σ k . (12) 
Finally, the TSVD procedure for reconstruction in Ω is

f TSVD-2 i = f Ω2 i 1 ≤ i ≤ N -N f TSVD-1 i-(N -N ) N -N + 1 ≤ i ≤ N . (13) 
Conceptually, these new procedures consist of "removing" the data corresponding to f Ω2 from the one-endpoint problem, and reconstructing an object with support Ω 1 using Eq. ( 7) or [START_REF] Noo | Exact helical reconstruction using native cone-beam geometries[END_REF]. This reconstruction can then be combined with the twoendpoint reconstructed region Ω 2 to integrally reconstruct the full FOV. The XSVD-2 reconstruction can be further improved by enforcing continuity between the reconstructions at a 2 -1 (twoendpoint Hilbert inversion) and at a 2 (one-endpoint Hilbert inversion). Our approach was to reconstruct N + 1 samples using SVD with an additional unknown sample corresponding to location a 2 -1 along L and an amended definition of g , and to add the difference between two-endpoint and SVD reconstructions at a 2 -1 to the SVD reconstruction. This correction can be applied to both f TSVD-2 and f XSVD-2 and we named the new reconstructions f TSVD-2b and f XSVD-2b .

The proposed methods were evaluated using computer simulations of the 2D Shepp-Logan phantom. A set of 720 parallel projections of 560 rays each were analytically computed over an arc of 180 • . The pixel spacing of the projections and the reconstructions was approximately 0.26 mm. The set-up is illustrated in Fig. 2. The cutoffs k c and k c were set to K and K , respectively, where K = a 3 -a 2 +1 and K = a 3 -a 2 +1, as justified in a previous work [START_REF] Coussat | Region-of-Interest CT Reconstruction using Singular Value Decomposition of the Truncated Hilbert Transform[END_REF]. Reconstructions were performed on a 1024 × 1024 pixel grid following various scenarios summarized in Table I. The Hilbert direction was chosen horizontal for the two-endpoint reconstruction, allowing the segment's two endpoints to lie outside the object, and vertical for the one-endpoint, so that in both cases the Hilbert line-segments were aligned with the pixel grid.

All simulations were implemented using Python 3.7.2, NumPy 1.15.4 and RTK 2.1.0 [START_REF] Rit | The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)[END_REF].

III. RESULTS

Figure 3 shows the reconstruction results from the six scenarios of Table I. In Figs. 3a and3d, reconstructions are entirely performed through one-endpoint Hilbert inversion (Eqs. ( 5) and ( 7)). Figures 3b and3e show the two reconstructions without the Ω 2 to Ω 1 boundary correction at a 2 , hence the horizontal transition artifact. In Figs. 3c and3f, the oneendpoint reconstructions have been adjusted, enforcing vertical I. The grayscale is [1; 1.06] as in Fig. 2.

continuity of the reconstructions. Fig. 4 shows a vertical and a horizontal profile taken in the central column and above the a 2 threshold, respectively. In Figs. 3b, 3c, 3e and 3f, the twoendpoint reconstructions in Ω 2 are identical.

IV. DISCUSSION AND CONCLUSIONS Figures 3a, 3d, and Fig. 4a show that in the one-endpoint setup, an offset in the reconstruction values occurs, with increasing intensity towards a 3 , the "inner" boundary of the FOV along each vertical column. The effect is smaller than appears because both Figs. 3 and4 display only a small range of intensity values, respectively 3% and 10% of the full range of values [0, 2] in the phantom. This offset feature is attributed to the rapidly decreasing numerical stability known to occur in the one-endpoint Hilbert inversion model [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF]. The fact that this same feature can be observed in other works using other approaches than SVD inversion [START_REF] Defrise | Truncated Hilbert transform and image reconstruction from limited tomographic data[END_REF], [START_REF] Clackdoyle | Quantitative reconstruction from truncated projections in classical tomography[END_REF]- [START_REF] Clackdoyle | Accurate Transaxial Region-of-Interest Reconstruction in Helical CT?[END_REF] suggests that the effect is intrinsic to this tomographic problem and not specific to the one-endpoint Hilbert inversion.

The main idea of the work here is to apply the stable two-endpoint method where possible, thereby reducing the load on the one-endpoint reconstructions. As expected, in the region Ω 2 where two-endpoint Hilbert inversion was applied, excellent quality reconstructions were observed; see Figs. 3b and 3e and especially Fig. 4a in the Ω 2 range [a 2 , a 2 ]. The one-endpoint method now only needs to be applied starting at a 2 instead of a 2 , resulting in a decrease from N unknowns to N . However, the improvement was disappointingly small there, as seen in Figs. 3b, 3e and4.

When the two-endpoint and one-endpoint reconstructions were combined, a visible line of discontinuity appeared in the images; see Figs. 3b and3e. Eliminating this discontinuity by adding a constant ( ) to the one-endpoint region [a 2 , a 3 ] also had the benefit of reducing the offset feature, especially in the TSVD case; see Figs. 3c, 3f and4.

To understand the disappointing outcome in the reduced region one-endpoint reconstruction, we examined the singular vectors u k and v k for the central vertical column (x 1 = 512) and for k = K and k = K + 1 which are respectively the last components included, and first component excluded in series (Eq. ( 5)) used to build the reconstruction; see Figs. 5a and5b. We concentrate on v 442 and v 443 , recalling that the desired function f is expressed as the series of 709 terms with basis vectors v 1 to v 709 . We noted in [START_REF] Coussat | Region-of-Interest CT Reconstruction using Singular Value Decomposition of the Truncated Hilbert Transform[END_REF] that the lost terms from k = 443 to k = 709 corresponded to vectors v k which were very close to zero in the relevant (grey) region [a 2 , a 3 ] (inside the FOV). However, the first missing component, v 443 , when approaching a 3 inside the grey region, behaves very similarly to the offset feature in the one-endpoint reconstructions, so the absence of this term is the likely primary cause of this offset feature.

The same arguments apply for the reduced one-endpoint inversion, where the singular vectors shown in Figs. 5c and5d are remarkably similar to those in Figs. 5a and 5b despite the substantially different number of unknowns (N = 440 instead of N = 709) and different SVD cutoff indices (K = 173 instead of K = 442). Surprisingly, the horizontal stretching and shrinking of the singular vectors did not appreciably change the shape of v 174 (K + 1) compared to v 443 (K + 1) near a 3 , which could explain the disappointingly small benefit of the reduced problem size.

In conclusion, we have proposed a method for region-ofinterest reconstruction from truncated projections using Hilbert inversion methods. The two-endpoint inversion is used where possible to obtain accurate numerically stable reconstructions. The one-endpoint inversion is used elsewhere, and the characteristic offset feature has been reduced by a combination of a priori knowledge (described in [START_REF] Coussat | Region-of-Interest CT Reconstruction using Singular Value Decomposition of the Truncated Hilbert Transform[END_REF]) and by matching reconstructed values at the boundary with the two-endpoint region. The resulting reconstructions, Fig. 3f, illustrate dramatic improvements compared to a direct TSVD approach.
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 2 Fig. 2: Illustration of the simulation. The green oval represents the object's convex hull Ω and the red circle the scanner's FOV. The purple dashed lines are the profiles considered in Fig. 4.

Fig. 3 :

 3 Fig. 3: Six different reconstructions of Fig. 2 from the scenarios of TableI. The grayscale is [1; 1.06] as in Fig.2.
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 45 Fig. 4: Two profiles of the purple dashed lines of Fig. 2 comparing the different reconstructions described in TableI.
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TABLE I :

 I Reconstructions considered in our simulations.

	Reconstruc-tion name	Two-endpoint reconstruction of Ω 2	Boundary correction	SVD extension (Eq. (7))
	TSVD TSVD-2 TSVD-2b XSVD XSVD-2 XSVD-2b	No Yes Yes No Yes Yes	N/A No Yes N/A No Yes	No No No Yes Yes Yes
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