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MOTIVIC DECOMPOSITIONS OF FAMILIES WITH TATE

FIBERS: SMOOTH AND SINGULAR CASES

MATTIA CAVICCHI, FRÉDÉRIC DÉGLISE, JAN NAGEL

Abstract. Motivated by the work of Corti-Hanamura and Bondarko, we in-

troduce, for a proper morphism of schemes f : X → S with regular source, the
notion of BCH-decomposition of the relative Chow motive hS(X) in the cat-

egory DMc(S,Q) of constructible motives over S. When S is quasi-projective

over an algebraically closed field of characteristic zero or over the separable clo-
sure of a finite field, this gives a motivic lift of the decomposition provided by

the theorem of Beilinson-Bernstein-Deligne-Gabber. Using Bondarko’s theory

of weight structures and Wildeshaus’ theory of motivic intermediate exten-
sions, we show that BCH decompositions exist for any S when f is smooth

with geometric fibers whose motive is Tate, and for S quasi-projective over an

algebraically closed field of characteristic zero, when f : X → S is a regular
(i.e. “sufficiently generic”) quadric bundle, with possibly singular fibers.
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1. Introduction

An important conjecture in the theory of motives is the nilpotency conjecture.
It is related to the functor

T : CHM(k)→ HM(k)

from the category of Chow motives to the category of homological motives (mo-
tives modulo homological equivalence, for a choice of Weil cohomology theory e.g.
Betti cohomology if k = C.) This functor is full but not faithful. The nilpotency
conjecture states that if M is a Chow motive and Mhom the corresponding motive
modulo homological equivalence (sometimes called the Grothendieck motive), the
kernel of the ring homomorphism

End(M)→ End(Mhom)

is a nilpotent ideal. If we take M = h(X), the Chow motive of a smooth projective
variety X over k, the nilpotency conjecture N(X) states that the kernel of the
homomorphism

Corr0(X,X)→ End(H∗(X,Q))

from the ring of correspondences of degree zero to the endomorphism ring of H∗(X)
is a nilpotent ideal. (Note that if X has pure dimension d, the left hand side is

the Chow group CHd(X × X)Q, the right hand side is isomorphic to H2d(X ×
X,Q) by Poincaré duality and the above map is just the cycle class map.) The
nilpotency conjecture has important consequences. First of all, it implies that the
functor T is conservative (i.e., it detects isomorphisms), hence essentially injective
(nonexistence of phantom motives). The nilpotency conjecture is also related to the
standard conjecture C(X), the Künneth conjecture, which states that the Künneth
components pi ∈ H∗(X ×X,Q)) of the diagonal are algebraic (i.e., they are in the
image of the cycle class map). Jannsen proved that conjectures C(X) and N(X)
imply the Chow–Künneth conjecture CK(X), i.e., the Künneth projectors lift to a
set of mutually orthogonal projectors πi ∈ Corr0(X,X) (i = 0, . . . , 2d) such that

∆X =

2d∑
i=0

πi

in CHd(X×X)⊗Q and such that πi depends only on the motive modulo homological
equivalence. In this case the motive of X admits a Chow–Künneth decomposition

h(X) =

2d⊕
i=0

hi(X)

with hi(X) = (X,πi).

The nilpotency conjecture is known to hold for finite-dimensional motives. This
means in particular that isomorphisms between finite-dimensional Chow motives
can be detected by passing to the corresponding homological motives. An applica-
tion is the following result.

Theorem. (*) Suppose that X is a smooth projective variety over k such that the
Chow motive h(X) is finite dimensional and such that H∗(X) is algebraic (i.e, the
rational cycle class maps CHi(X)Q → H2i(X,Q) are surjective for all i.). Then

h(X) =
⊕
i

Q(−i)b2i
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is Tate (i.e., it is a direct sum of Lefschetz motives).

This result generalises a theorem of Jannsen and was observed by Vial and
Kimura (in the case where one replaces h(X) by an arbitray Chow motive M).
It is a direct consequence of the conservativity of the homological realisation on
finite-dimensional motives. 1

In this paper we consider possible generalisations of these results to the case of
relative motives. In their fundamental work [CH00], Corti and Hanamura defined
a category CHM(S) of relative Chow motives over a quasi–projective base scheme
S defined over a field k, together with a realisation functor

ρ : CHM(S)→ Db
c(S,Q)

where:

• Db
c(S,Q) is the derived category of constructible complexes of Q-sheaves

on the analytical space S(C), with constructible cohomology, if k = C;
• Db

c(S,Q) is the derived category of constructible complexes of `-adic étale
sheaves on S in general, after the choice of a prime ` invertible on k.

In this setup, one works with proper morphisms f : X → S with X smooth and
quasi–projective over k. Relative correspondences are elements of CH∗(X ×S X)
and composition of correspondences is defined using refined Gysin homomorphisms.
The relative analogue of the nilpotency conjecture states that the kernel of the map

Corr0
S(X,X)→ End

(
Rf∗(QX)

)
is a nilpotent ideal. (If X has dimension d the above map can be identified with the
cycle class map CHd(X ×S X)Q → HBM

2d (X ×S X,Q) to Borel–Moore homology.)
Corti and Hanamura have considered a relative analogue of the notion of Chow–
Künneth decomposition. Let us first consider the case where f : X → S is in
addition smooth. According to Deligne’s theorem, one gets a decomposition in
Db
c(S,Q):

(D) Rf∗(QX) ∼=
⊕
i

Rif∗(QX)[−i].

One usually says that hS(X) admits a relative Chow–Künneth decomposition (in
short CK-decomposition) if there exist relative motives Mi ∈ CHM(S) such that
hS(X) =

⊕
iMi and ρ(Mi) = Rf∗(QX)[−i] for all i.

The general case is more complicated and involves the theory of perverse sheaves.
When k is an algebraically closed field of characteristic zero or the separable clo-
sure of a finite field, the decomposition theorem of Beilinson-Bernstein-Deligne says
that a decomposition of the form (D) still exists provided one replaces the canon-
ical t-structure by the perverse one. Moreover, each perverse cohomology sheaf
pRf∗(QX) is semi-simple in the perverse heart of Db

c(S). These two statements can
be expressed by the existence of a decomposition in Db

c(S,Q)

(BBD) Rf∗(QX) =
⊕
λ

jλ!∗(Lλ)

1If H∗(X) is algebraic there exists a finite set of algebraic cycles {Zi}i∈I , Zi ∈ CHpi (X),
whose cycles classes generate the cohomology. These cycles define a morphism of Chow motives α :

⊕iZ(−pi)→ h(X) such that T (α) is an isomorphism, hence α is an isomorphism by conservativity.
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where there exists an integer nλ such that Lλ[nλ] is a simple local system on a
smooth locally closed subscheme jλ : Uλ ⊂ X and jλ!∗(Lλ) denotes the intermediate
extension (or intersection complex) defined in [BBD82].2 We believe the following
definition is useful to express the ideas of [CH00].

Definition 1. Let f : X → S be a projective morphism of quasi-projective k-
schemes such that X is smooth over k. Consider the above notations (and in
particular choose a prime ` invertible in k in the `-adic case).

A Corti-Hanamura decomposition (in short: CH-decomposition) of the Chow
motive hS(X) is a finite decomposition

hS(X) '
⊕
λ

Mλ

in the pseudo-abelian category CHM(S) such that ρ(Mλ) = jλ!∗(Lλ).

Such decompositions have been constructed in several cases, particularly in com-
plex algebraic geometry [MSS12, dCM10, GHM03]. The results of the present work
are precisely in line with these works: our original goal was to obtain a Corti–
Hanamura decomposition in the case of singular quadric fibrations (Theorem B
below).

Nevertheless, our proofs have led us to a generalisation of Corti–Hanamura’s
considerations that is interesting on its own, based on Beilinson’s conjectures on
motivic complexes. Nowadays, following the seminal work of Voevodsky, finalized
by Ayoub and Cisinski-Déglise, we have at our disposal the (triangulated) cate-
gory of rational mixed motives DM(S), equipped with Grothendieck’ six functors
formalism over any noetherian quasi-excellent base scheme S. Moreover, for any
prime ` invertible on S, there is the `-adic realisation functor

ρ` : DMc(S)→ Db
c(S,Q`),

which is compatible with the six operations (see [CD19], [CD16]). While we do not
have the motivic t-structure on the left hand-side, which would mirror the perverse
t-structure on the right hand-side, a key structure of mixed motives is the existence
of the so-called Chow weight structure constructed by Bondarko.3 One defines the
(pseudo-abelian monoidal) category CHM(S) of Chow motives over S as the weight
0 part of DM(S).4 Bondarko’s speculative work [Bon15] leads us to the following
extension of Definition 1.

Definition 2. Let f : X → S be a proper morphism such that X is regular. A
BCH-decomposition5 of the Chow motive hS(X) is a finite decomposition

hS(X) '
⊕
λ

jλ!∗(Mλ)

2Note in particular that one deduces isomorphisms pRf∗(QX)[−n] '
⊕
λ|nλ=n jλ!∗(Lλ) and:

(D’) pRf∗(QX) ' ⊕npRnf∗(QX)[−n].

3The existence of this weight structure was in fact predicted by Beilinson’s conjectures (see

[Bon10]). However, one does not expect that an analogous structure exists in general on Dbc(S,Q`).
4When S is quasi-projective over a perfect field, it is proved in [Jin16] that the latter category

is equivalent to the category defined by Corti and Hanamura.
5extensively: Bondarko-Corti-Hanamura decomposition!
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in CHM(S) where jλ : Vλ → S is a locally closed immersion, Vλ is regular, Mλ is a
weight 0 motive over Vλ whose `-adic realisation is a local system up to a decalage,
and ρ`jλ!∗(Mλ) = jλ!∗

(
ρ`(Mλ)

)
.

The novelty of this definition is that it does not require a base field, and moreover,
it makes sense without having to choose a prime invertible on S; in particular over
Z. Note also that our formulation implies the existence of a decomposition of the
form (D’), for all primes `, and contains an ”independence of `” result: under the
existence of a BCH-decomposition, the rank of pRnf∗(Q`) will be independent of `
(see also Cor. 2.4.11).

We arrived at this definition by analysing the work of Bondarko [Bon15]. In
particular, the existence of BCH-decompositions would be a consequence of the
existence of the motivic t-structure with the assumption that it is transversal (see
[Bon15, Def. 1.4.1]) to the Chow weight structure.6 More precisely, to get the
BCH-decomposition under the previous assumption, one can apply op. cit.:

• Prop. 1.4.2, point (3) to the weight 0 motive hS(X) to get the analogue
of the relative Chow Künneth decomposition: hS(X) ' ⊕iHi(hS(X))[−i],
Hi computed for the motivic t-structure.
• Prop. 4.2.3, to get the decomposition for each Hi(hS(X)) given it is pure

of weight i.
• Rem. 4.2.4, point 2 to get the statement about the `-adic realisation of the

BCH-decomposition.

Note moreover that Bondarko obtains in his Proposition 4.2.3 the uniqueness of
the set of isomorphism classes of the factors of the BCH-decomposition. We have
not formulated this uniqueness in the above definition. Indeed, to give a proper
statement we either need the existence of the heart of the motivic t-structure, or
conservativity of the `-adic realisations.7 However we think that establishing BCH-
decompositions might be easier than getting the motivic t-structure.

In fact, the main problem in getting BCH-decompositions without having the
motivic t-structure at our disposal is to be able to construct the required motivic
intermediate extension functor jλ!∗. Fortunately, this problem has been extensively
studied in a series of works by Wildeshaus: [Wil16], [Wil09], [Wil12], [Wil17]. His
approach will be fundamental in the proof of our results, as we are going to explain.

There is at least one easy example where a BCH-decomposition exists: this is
the case of relative lci cellular morphisms (see [ADN20, Def. 5.3.1, Cor. 5.3.7] for
the more general case).8 Our first theorem gives many more examples (see also
2.4.10):

6Note also that Bondarko shows that this would be consequence of Beilinson’s conjectures (see

op. cit., Prop. 4.1.1). He also gives an argument to get it as a consequence of the standard conjec-
ture D together with Murre’s conjectures. Note that to get the existence of BCH-decompositions

in all cases, we need to apply these conjectures for all residue fields of S, and all `-adic realisations!
Of course, this kind of exercise in juggling between motivic conjectures has its limit; we only hope
to convince the reader that our definition of BCH-decompositions is reasonable.

7Note however that in our Theorems A and B below, the involved motives belong to subcate-
gories on which the realisations can be proven to be conservative (Thm. 3.3.1). So, in our cases

we do get uniqueness of isomorphism classes in the BCH-decompositions.
8This is not surprising as one can interpret the BCH-decomposition as an attempt to find an

algebraic analogue of the existence cellular decompositions of differential varieties.
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Theorem A (see Theorem 2.4.8). Let S be a regular connected scheme with étale
fundamental group π. Let f : X → S be a smooth proper morphism whose geometric
fibers are Tate. Then there exists an isomorphisms of motives over S:

hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]

where I is a finite set, Vi is a simple Artin Q-representation of π and ni is a
non-negative integer.

Moreover, this decomposition is a BCH-decomposition of the Chow motive hS(X).

In the above statement, the functor ρ! sends any étale sheaf over S to its image
in the category DMc(S). We show that when restricted to the bounded derived
category of Artin π-representations, it induces an equivalence of categories with
the full subcategory DMAT

sm (S,Q) of smooth Artin-Tate motives in DMc(S) (Prop.
2.2.4), generalizing a result of Orgogozo when S is the spectrum of a field. Hence,
in particular, Theorem A shows that the naive generalisation of Theorem (*) of the
present introduction to the relative situation is false: if f : X → S is a smooth,
projective morphism such that h(Xs) is finite dimensional and such that H∗(Xs)
is algebraic for all s ∈ S, the relative motive hS(X) does not necessarily decom-
pose as a direct sum of relative Lefschetz motives9, since it is an object of a more
general kind - an object of DMAT

sm (S,Q). This can be seen already on the topo-
logical level. If f : X → S is a smooth, projective morphism whose fibers have
algebraic cohomology then the direct image sheaves Rif∗Q are local systems with
finite monodromy, but they are not necessarily constant. A concrete example is
given by smooth quadric fibrations of even relative dimension; see Corollary 2.4.13.

Let us outline the proof of Theorem A, since it uses some intermediate results
which are interesting in their own. Namely, it rests on three crucial ingredients.
First, the structural properties of the category DMc(S) allow us to: (a) “spread
out” the description of the motive of the fiber of f over a generic point of S (as
a direct sum of Tate twists) to an analogous description of hV (XV ), where V is
some étale cover of a dense open subscheme U of S; (b) deduce that hU (XU ) is
a smooth Artin-Tate motive over U . Second, we employ a generalization of the
work of Wildeshaus (on Artin-Tate motives over a field) to the case of smooth
Artin-Tate motives over a base. In fact, our Thm. 2.3.3 identifies the heart of the
induced weight structure on DMAT

sm (S,Q) and shows that hU (XU ), as any weight
zero smooth Artin-Tate motive, admits a decomposition analogous to the one in
the right hand side of the isomorphism claimed by Theorem A. Third, we rely upon
other ideas of Wildeshaus in order to show that there exists a minimal extension
of hU (XU ) to a weight zero, smooth Artin-Tate motive h over the whole of S. We
have baptized it a fair extension (Def. 2.4.3) and its minimality property consists
in the fact that hS(X), being another such extension, decomposes as a direct sum of
hU (XU ) and an object supported on the boundary Z := S\U . The rest of the proof
boils down to showing that this latter object is zero, so that the decomposition of
h as a weight zero smooth Artin-Tate motive gives the desired decomposition of
hS(X).

When S is a quasi-projective scheme over an algebraically closed field k of char-
acteristic zero, we are able to treat cases where the proper morphism f , with Tate

9This statement is even false if one assumes that the fibers are homogeneous spaces as in [Iyer]
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geometric fibers, is not anymore supposed to be smooth. In particular, we succeed
in constructing the required motivic intermediate extension functors jλ!∗, of which
the fair extensions used in the proof of Theorem A represent a first occurrence.
To perform our construction, we restrict to dealing with regular (i.e. “sufficiently
generic”) quadric bundles over S (see Def. 4.1.2), thus generalizing the work of
Nagel-Saito [NS09] on conic bundles over a surface (see also [Bou16]): in this case,
the perverse sheaves appearing in the decomposition of Rf∗Q are either constant
or of the form i∗(L) with L a local system on a smooth closed subvariety Z ↪→ S,
so no intermediate extensions are needed. Our results provide, to our knowledge,
the first new examples of motivic intermediate extensions in the non-smooth case,
after the ones for Chow motives of abelian type defined by Wildeshaus and applied
to the context of Shimura varieties by him and his students (see [Wil17] and the
references cited therein; earlier instances of intermediate extensions in the latter
setting were constructed by hand by Scholl [Sch90] and Gordon-Hanamura-Murre
[GHM03]). Concretely, our second main theorem reads as follows:

Theorem B (see Cor. 4.1.5). Let f : X → S be a regular quadric bundle. Let
{Sφ} be the stratification of S given by corank (defined after Def. 4.1.2). Then
hS(X) admits a Corti-Hanamura decomposition

hS(X) '
⊕
i,φ

jφ!∗(ρ!(Vi,φ)(−ni,φ))[−2ni,φ]

with Vi,φ a simple Artin representation of π1(Sφ).

In order to achieve our goal, we once again follow the path laid out by Wilde-
shaus. Recall that over a base S with a smooth, dense open subscheme j :
U ↪→ S and closed complement i : Z ↪→ S, and considering subcategories C(S)
of CHM(S), obtained by gluing appropriate subcategories C(U) of CHM(U) and
C(Z) of CHM(Z), Wildeshaus highlighted conditions allowing to define an interme-
diate extension j!∗M ∈ CHM(S) of any object M in CHM(U), which can be in fact
uniquely characterized. More precisely, he has shown that it is sufficient to ask C(Z)
to be semi-primary, i.e. “semi-simple up to a nilpotent radical” (see Def. 3.1.1).
Note that by André-Kahn [AK02], any subcategory of Chow motives, whose objects
are finite-dimensional, is semi-primary. Moreover, over a field k, the semi-primality
of the whole of CHM(k) would imply the nilpotence conjecture, thus tying up these
notions with the ideas discussed at the beginning of this introduction.

If C(Z) is semi-primary, then every object M of C(S) is (non-uniquely) isomor-
phic to j!∗j

∗M ⊕ i∗N , with N in C(Z) (Prop. 3.1.4). This is the key point that
lends itself to iteration, ultimately allowing us to obtain a CH-decomposition as
desired in Theorem B. In a first approximation, our task can then be divided into
the following steps:

(1) when S is equipped with a stratification S into locally closed, regular sub-
schemes, show that the categories of smooth Artin-Tate motives over each
stratum can be glued to give a category C(S) of S-constructible smooth
Artin-Tate motives over S;

(2) prove that the categories of smooth Artin-Tate motives over each stratum
are semi-primary, and conclude by Wildeshaus’ formalism that the glued
one is semi-primary as well;

(3) show that the motive hS(X) of a regular quadric bundle belongs to C(S).
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Points (1) and (2) are taken care of in Section 3, by suitably adapting Wildeshaus’
methods, but with some technical complications. First of all, in order to glue Artin-
Tate motives, we are forced to impose a condition of being well-ramified along
the closures of strata (Def. 3.2.2), and to assume that these closures are regular
themselves (Assumption 3.2.1). The gluing is then worked out in Thm. 3.2.3.
Moreover, since the latter assumption will not be verified in the context of quadric
bundles, we have to use a suitable base change π : S′ → S such that the desired
conditions are met on S′, then glue everything there, and finally glue those objects
on the strata of S which arise as push-forward via π of objects on the strata of S′.
On the other hand, to show that a suitable form of point (2) holds, we have to check
that under some hypotheses on π (see Ass. 3.2.4), push-forward preserves weight-
zero smooth Artin-Tate motives, hence finite dimensionality, hence semi-primality.
This is the content of (the proof of) Thm. 3.2.9. Wildeshaus’ techniques also can
be adapted to show two other important facts: the realization functors commute
with the intermediate extension functors (Thm. 3.3.1) and they are conservative
on the categories that we obtain from the gluing process (Thm. 3.3.2).

Proving point (3) is the principal task of Section 4 (Thm. 4.1.4). We have enough
control on the geometry of regular quadric bundles over an algebraically closed field
of characteristic zero to understand completely the possible degenerations of smooth
fibers to singular ones, as well as the associated stratification on S by corank. In
particular, we are able to construct a suitable resolution of singularities π : S′ → S
(Lemma 4.1.3). Combining this with the results about smooth Artin-Tate motives
established in Section 2, this turns out to be enough to show that the pullback of
hS(X) to each stratum belongs to the correct subcategory of Chow motives and to
complete the proof of Theorem B.



MOTIVIC DECOMPOSITIONS OF FAMILIES WITH TATE FIBERS 9

Notations and conventions

Given an arbitrary group G, and a field K of characteristic 0, we will denote by
RepA

K(G) the abelian monoidal category of finite dimensional K-representations V
of G which factor through a finite quotient of G. When G is a pro-finite group, this
amounts to the continuity of the action. WhenG = π is the étale fundamental group
of a geometrically pointed scheme X, or the usual fundamental group of a complex
variety, representations in RepA

K(π) are classically called Artin representations. In

any case, thanks to Maschke’s lemma, the category RepA
K(G) is semi-simple.

All our schemes are implicitly assumed to be excellent noetherian finite and
dimensional.

Given (such) a scheme S, we denote by DMc(S,Q) the triangulated category
of constructible rational motives over S.10 We let 1S be the constant motive over
S (which is also the unit of the monoidal structure). We will use cohomological
motives over S: given any morphism f : X → S, we put:

hS(X) = f∗(1X).

We will also heavily rely on the Bondarko’s theory of weight structure, and espe-
cially the canonical (Chow) weight structure on DMc(S,Q). We recall these notions
in Section 2.1.

Another important property of rational mixed motives from [CD19] that we will
use is the so-called continuity property (see Def. 4.3.2, Prop. 14.3.1 of op. cit.).
We will use it in the following form (see Prop. 4.3.4 of op. cit.):

Proposition 1.0.1. Let (Si)i∈I be a projective system of schemes with a projective
limit S in our category of schemes. Then the canonical functor:

2− lim−→
i∈I

DMc(Si,Q)→ DMc(S,Q)

is an equivalence of categories.

We will use two kinds of triangulated realization functors:

• Let ` be a prime invertible on S. We have the `-adic realization:

ρ` : DMc(S,Q)→ Db
c(Sét,Ql)

where the right-hand side is the constructible derived category of Ekedahl’s
`-adic étale sheaves with rational coefficients (see [CD16, 7.2.24]).
• Let E be a characteristic 0 field given with a complex embedding σ : E → C.

Assume S is a finite type E-scheme. We have the Betti realization:

ρB : DMc(S,Q)→ Dc(S
an,Q)

where the right-hand side is the constructible derived category of rational
sheaves over the analytical site of San = Sσ(C). This realization is obtained
from that of [Ayo10] as the following composite:

DMc(S,Q) ' SHc(S)Q+ ⊂ SHc(S)Q
Betti′S⊗Q−−−−−−−→ Dc(S

an,Q

10In [CD19], several models of this category are given: Beilinson motives (Def. 15.1.1), Vo-
evodsky’s h-motives (Th. 16.1.2), Voevodsky’s motivic complexes (S geometrically unibranch
scheme, Th. 16.1.4), the plus-part of the rational stable homotopy category (Th. 16.2.13 and

5.3.35), the P1-stable A1-derived étale category (Th. 16.2.22). All models being equivalent, the
reader is free to choose his preferred one.
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where:
– SHc(S) is the constructible stable A1-homotopy category (made of

compact spectra over S).
– SHc(S)Q+ is plus-part of the rationalization of SHc(S) (see eg. [CD19,

16.2.1])
– the first equivalence is given by [CD19, Th. 16.2.13].
– the functor BettiS is (the obvious restriction of that) defined in [Ayo10,

Def. 2.1].

These two realization functors admit a right adjoint and commute with the six
operations.11

2. Smooth Artin-Tate motives

2.1. Gluing and weights on Beilinson motives.

2.1.1. In the theory of rational mixed motives, a crucial property is given by the
gluing formalism [BBD82, Sec. 1.4.3], which is a consequence of Morel-Voevodsky’s
localization theorem [MV99, Th. 2.21, p. 114]. Given a closed immersion i : Z ↪→ S
with complementary open immersion j : U ↪→ S, one has six functors

(2.1.1.a) DMc(U,Q)
j! //

j∗
// DMc(S,Q)j∗oo

i∗ //

i!
// DMc(Z,Q) ,i∗oo

satisfying the formalism of [BBD82, Sec. 1.4.3].12

This property will be at the heart of our results (see in particular Section ??).
They are the starting point of Hébert’s and Bondarko’s extension of the weight
structure on rational motives, from the case of perfect fields to that of arbitrary
bases. Let us recall this theory, from [Héb11, Thm. 3.3, thm. 3.8 (i)-(ii)], for future
references.

Theorem 2.1.2. For each scheme S, there is a canonical weight structure w on the
triangulated category DMc(S,Q) called the motivic weight structure. The family
of these weight structures indexed by schemes S is uniquely characterized by the
following properties.

(1) The objects 1S(p)[2p] belong to the heart DMc(S,Q)w=0 for all integers p,
whenever S is regular.

(2) For any morphism f : T → S, the functor f∗ (resp. f∗) preserves negative
weights (resp. positive weights). When f is separated of finite type, the functor f !

(resp. f!) preserves positive weights (resp. negative weights).

We will only use the motivic weight structure in this paper. So w will always
mean weights for the motivic weight structure. Over a base scheme S, the heart
of this weight structure will be denoted by CHM(S) and is called the category of
Chow motives over S.

Remark 2.1.3. Gluing of (motivic) weights. Note in particular from point (2) that
when f is finite (resp. etale separated of finite type), f∗ (resp. f∗) preserves
weights. Moreover, under the assumption of the paragraph preceding the theorem,
it follows from the gluing diagram (2.1.1.a) and point (2) that the motivic weight

11This is proved in the references indicated above.
12This is the so-called localization property of motives, extensively studied in [CD19, §2.3].
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structure on S ”satisfies gluing”: a motive M on S is w-positive (resp. w-negative)
if and only if j∗(M) and i!(M) (resp. j∗(M) and i∗(M)) are w-positive (resp.
w-negative).

Remark 2.1.4. Assumptions on base schemes. Note that in loc. cit., it is assumed
that schemes are of finite type over an excellent base scheme B of dimension less
than 3. First, this assumption is not used in the proof of the above statement.
Secondly, the only reason this assumption appeared in motivic homotopy theory
is for the proof of the Grothendieck-Verdier duality (also called ”local duality”),
[CD19, Th. 4.4.21].13 Since then, this result has been generalized to the schemes
considered in our paper by Cisinski in [Cis19, §2.3]. It is used in [Héb11] only in
the statement of Corollary 3.9.

2.2. Smooth Artin motives. It is possible to extend the known results on Artin
motives over a field to the relative case. Let us start with the definition.

Definition 2.2.1. We define the category of (constructible) smooth Artin motives
over S as the thick triangulated subcategory of DMc(S,Q) generated by motives of
the form hS(X) (resp. hS(X)(n)) for X/S finite and étale. We denote this category
by DMA

sm(S,Q).

Note that for X/S finite étale, hS(X) coincides with the Voevodsky motive
MS(X).

Example 2.2.2. Let k be a perfect field. Then it follows from [VSF00, Chap. 5,
Rem. 2. after 3.4.1] (see also [Org04] for details) that there exists a canonical
equivalence of triangulated monoidal categories:

DMA
sm(k,Q) ' Db

(
RepA

Q(Gk)
)

where Gk is the absolute Galois group of k, and RepA
Q(Gk) denotes the continuous

representations of Gk with rational coefficients.

2.2.3. Let us recall that one model of DM(S,Q) is obtained as the P1-stable A1-
derived category of the category Sh(SmS,ét,Q) of rational étale sheaves on SmS

(see [CD19, 16.2.18]).
The inclusion ρ : Sét → SmS,ét of étale site induces a fully faithful and exact

functor:
ρ! : Sh(Sét,Q)→ Sh(SmS,ét,Q).

Note ρ! is moreover (symmetric) monoidal. One deduces a canonical composite
functor:

D(Sét,Q)
ρ!−→ D

(
Sh(SmS,ét,Q)

)
→ DM(S,Q)

the last functor being obtained by projection to the A1-localization and then taking
infinite suspensions. We will still denote the later composite by ρ!.

Then ρ! is triangulated and monoidal. By definition, it sends the sheaf repre-
sented by a finite étale scheme X/S on Sét to the same object on SmS,ét, seen as a
motivic complex. This is just MS(X) = hS(X).

Proposition 2.2.4. Assume S is a regular connected scheme. Let π = π1(Sét) be
the étale fundamental group of S associated with some geometric base point. Then

13More precisely, it is used to obtain some resolution of singularity statement; see loc. cit.



12 MATTIA CAVICCHI, FRÉDÉRIC DÉGLISE, JAN NAGEL

the functor ρ! is fully faithful when restricted to the full subcategory Db
(

RepA
Q(π)

)
and induces an equivalence of triangulated monoidal categories:

ρ! : Db
(

RepA
Q(π)

)
→ DMA

sm(S,Q).

Moreover, the `-adic realisation functor restricted to DMA
sm(S,Q) lands into the

bounded derived category of Artin `-adic Galois representations and the composite
functor:

Db
(

RepA
Q(π)

) ρ!−→ DMA
sm(S,Q)

ρ`−→ Db
(

RepA
Q`(π)

)
is just the extension of scalar functor associated with Q`/Q.

Proof. We prove the first assertion: fully faithful nature of the restriction of ρ!.
Note that the functor ρ! admits a right adjoint ρ∗. The functor ρ∗ commutes with
direct sums: this follows formally as D(Sét,Q) is compactly generated.14 We have

to prove that for all complexes K,L in Db
(

RepA
Q(π)

)
, and say any n ∈ Z for the

next reduction, the map:

Hom(K,L[n])→ Hom(ρ!K, ρ!L[n]) = Hom(K, ρ∗ρ!L[n])

is an isomorphism. Now we use the fact Db
(

RepA
Q(π)

)
is generated by shifts of

sheaves representable by some finite étale cover X/S. So we are reduced to the
case K = Q(X), L = Q(Y ) for X and Y étale cover of S. Explicitly, we have to
prove that the following map is an isomorphism:

Hom(Q(X),Q(Y )[n])→ Hom(hS(X), hS(Y )[n]).

In the monoidal category Sh(Sét,Q), and therefore in D(Sét,Q), the sheaf Q(Y )
is auto-dual. The same result holds for hS(X) in DM(S,Q) (as for example ρ! is
monoidal). Applying the formulas Q(X)⊗Q(Y ) = Q(X×SY ) and hS(X)⊗hS(Y ) =
hS(X ×S Y ), we are reduced to the case Y = S. In other words we have to prove
that the canonical map:

(2.2.4.a) Hn(Xét,Q)→ Hom(hS(X),Q[n]) = Hn,0
M (X,Q)

is an isomorphism. Note that X is regular, as it is étale over S. Thus it is geomet-
rically unibranch and we get from [AGV73, IX, 2.14.1]:

Hn(Xét,Q) = Qπ0(X) for n = 0, 0 otherwise.

Also, according to [CD19, 14.2.14], we get:

Hn,0
M (X,Q) = Gr0

γK−n(X)Q = Qπ0(X) for n = 0, 0 otherwise,

and so the map (2.2.4.a) is necessarily an isomorphism.
The other assertions are clear, by definition of the category of smooth Artin

motives. �

In the complex case, we get a simpler formulation.

Proposition 2.2.5. Let E be a field of characteristic zero, S a smooth connected
E-scheme and π = π1(San) for any choice of base point of San.

Then the Betti realisation functor:

ρB : DMc(S,Q)→ D(San,Q)

14In fact, it is equivalent to D(SNis,Q) as π is pro-finite.



MOTIVIC DECOMPOSITIONS OF FAMILIES WITH TATE FIBERS 13

is fully faithful when restricted to DMA
sm(S,Q) and induces an equivalence of trian-

gulated monoidal categories:

ρB : DMA
sm(S,Q)→ Db

(
RepA

Q(π)
)
.

The proof uses the same argument as in the case of the previous proposition,
given that hS(X) is realized to the complex R fan

∗ (QX) which is concentrated in
degree 0 and equal to the continuous representation of π represented by the Galois
cover Xan over San.

Remark 2.2.6. The two previous propositions are obviously compatible: in the
assumptions of the second one, we get according to a theorem of Grothendieck:

π1(Sét) ' ̂π1(San)

where the right hand-side denotes profinite completion. In particular, we get equiv-
alence of (abelian semi-simple monoidal) categories:

RepA
Q
(
π1(Sét)

)
' RepA

Q

(
̂π1(San)

)
' RepA

Q
(
π1(San)

)
.

2.3. Weights on smooth Artin-Tate motives. The purpose of this section is
to extend results of Wildeshaus, [Wil16] on Artin-Tate motives over a field to the
case of a regular base scheme S. Moreover, for the purpose of our main theorem,
we will need to restrict the type of allowed Artin motives, as in loc. cit. So we
introduce the next definition.

Definition 2.3.1. Let S be a regular connected scheme with étale fundamental
group π = π1(Sét). Let A be a full Q-linear sub-category of RepA

Q(π) which is stable

under retracts.15

We define the triangulated category of smooth Artin-Tate motives of type A over
S as the thick triangulated subcategory of DMc(S,Q) generated by motives of the
form ρ!(A)(n) for an object A of A and an integer n ∈ Z (see Proposition 2.2.4 for
the definition of ρ!). We denote it by DMAT

sm (S,Q).

When A = RepA
Q(π), the above category is simply the category of smooth Artin-

Tate motives over S, denoted by DMAT
sm (S,Q).

Remark 2.3.2. Note that compared to Definition 1.6 of [Wil16], we do not as-
sume that A is closed under tensor product. As a consequence DMAT

sm (S,Q) is not
monoidal in general.

Theorem 2.3.3. Consider the above notations and assumptions of the above defi-
nition.

Then the weight structure on DMc(S,Q) restricts to a weight structure on the
triangulated sub-category DMAT

sm (S,Q). Moreover, any motive M in DMAT
sm (S,Q)

of weight 0 admits a decomposition:

(2.3.3.a) M '
⊕
i∈I

ρ!(Vi)(ni)[2ni]

where I is a finite set, Vi is a simple Artin representation of π in A and ni is an
integer. (See Paragraph 2.2.3 for ρ!).

15And therefore stable under kernel and cokernel as RepA
Q (π) is abelian semi-simple. In par-

ticular, A is abelian semi-simple.
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Remark 2.3.4. (1) Another way of stating the second assertion is that the
canonical functor

Db(A)→ DMAT
sm (S,Q)w=0 = DMAT

sm (S,Q) ∩ CHM(S,Q)

(Vn)n∈Z 7→
⊕
n∈Z

ρ!(Vn)(n)[2n]

is essentially surjective. Contrary to what happens in [Wil16], over a perfect
field, this functor is not an equivalence of triangulated categories. The
problem comes from the non-triviality of CHn(V )Q for n > 0 and V/S
finite étale. So in particular, the preceding functor is an equivalence when
S is (regular) semi-local.

(2) The decomposition (2.3.3.a) is a particular case of the Corti-Hanamura
decomposition: If we apply the `-adic realization functor ρ` to an Artin
representation Vn we get (according to the last assertion of Prop. 2.2.4)

ρ`(M) '
⊕
i∈I

(Vi ⊗Q Q`)(ni)[2ni].

In particular, if the decomposition (2.3.3.a) of M is not unique. But the
pairs (Vi, ni) for i ∈ I are uniquely determined by M (or its realization).

Proof. Let us show the first assertion. Let H be the full Q-linear sub-category of
DMAT

sm (S,Q) whose objects are of the form (2.3.3.a), where Vi is a simple object
of A. As S is regular, all motives in H are of weight 0. In particular, given such
motives M , N , one has Hom(M,N [i]) = 0 for i > 0. This condition implies that
there is a unique weight structure on DMAT

sm (S,Q) (see eg. [Wil09, 1.5]), whose
heart is the pseudo-abelianization K of H. It follows from the axioms of weight
structures that this weight structure is just the restriction of the Chow weight
structure, thus proving the first assertion.

To prove the second assertion, it is sufficient to prove that K = H, i.e. that H
is pseudo-abelian. Let e : M →M be an idempotent of H. By assumption, we can
write M =

∑r
i=1 ρ!(Vi)(ni)[2ni] where Vi is an object of A (semi-simple, but not

necessary simple) and n1 < n2 < ... < nr. We prove by induction on the number
of factors r of M that e admits a kernel in H.

We treat the case r = 1. According to Proposition 2.2.4, and the fact that twists
are invertible, the category of motives of the form ρ!(V1)(n1)[2n1] for an object V1

of A and an integer n1 is equivalent to the abelian (semi-simple) category A. This
implies that any idempotent of a motive of this form admits a kernel, giving the
case r = 1.

Assume the result is known for any integer less than r > 1, and prove the
case where M has exactly r factors as above. Put P = ρ!(V1)(n1)[2n1] and Q =∑r
i=2 ρ!(Vi)(ni)[2ni] so that M = P ⊕Q. Given that decomposition, we can write

the idempotent e as a 2 by 2 matrix:

e =

(
a b
c d

)
.

Then c belongs to

⊕ri=2 Hom
(
ρ!(Vi)(ni)[2ni], ρ(V1)(n1)[2n1]) = CHn1−ni(Vi ×S V1)

using the auto-duality of ρ!(V ) (see the proof of Prop. 2.2.4) — in the right hand-
side, we identify the sheaf Vi with the finite étale S-scheme which represent it.
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As by assumption, n1 < ni for i > 1, we get that c = 0. Note that a and d
are idempotent, respectively of P and Q. According to the induction case, these
idempotents admit a kernel in H. One easily deduces from the matrix form of e
that Ker(a)⊕Ker(d) is a kernel of e in H. This concludes the induction step, and
the proof. �

2.4. First decomposition theorem. For the needs of the proof of our first de-
composition theorem, we will extend some definitions of [Wil12]. Let us first recall
the following theorem, Th. 1.7 of loc. cit.

Theorem 2.4.1 (Wildeshaus). Let j : U → S be an open immersion. Then the
weight-exact functor j∗ induces an additive exact functor

j∗ : CHM(S)→ CHM(U)

which is essentially surjective and full.

2.4.2. Consider an open immersion j : U → S and a Chow motive M over U . A
Chow extension of M along j will be a pair (M̄, α) where M̄ is a Chow motive

over S and α is an isomorphism j∗(M̄)
∼−→ M . Morphisms of such extensions are

defined in the obvious way.
According to the previous theorem, extensions of M along j always exist. The

goal of the work of Wildeshaus is to find (and to define) the intermediate extension
of M along j: see [Wil17], Summary 2.12. For the needs of our first decomposition
theorem, we will use a special type of Chow extensions that we now introduce.

Definition 2.4.3. Consider the above notations, assuming that j is dense. Then
a Chow extension (M̄, α) of M along j will be called fair if the induced map

End(M̄) −→ End
(
j∗(M)

) α∗−−→ End(M)

is an isomorphism — i.e. a monomorphism according to the previous theorem.

The proof of the following result is identical to that of [Wil12, Th. 3.1(a)].

Theorem 2.4.4. Consider the notations of the previous definition. Assume a fair
Chow extension (M̄, α) of M along j exists.

Then for any extension (P, β) of M along j, there exists a decomposition of P
of the form:

ψ : P
∼−−→ M̄ ⊕ i∗(LZ)

where LZ is a Chow motive over Z, satisfying the relation: j∗(ψ) = α−1 ◦ β.
If moreover (P, β) is fair, then LZ = 0 and the isomorphism ψ is uniquely

determined by the preceding relation.

Example 2.4.5. A fair Chow extension as above is a particular instance of Wilde-
shaus’s theory of intermediate extension j!∗(M), as shown for example by the char-
acterizing property (4a) of Summary 2.12 of [Wil17]. The preceding theorem can
also be interpreted as a minimality property of the extension (M̄, α).

One cannot always expect that such minimal extensions exist (the correct hope
is formulated in loc. cit., Conjecture 3.4; cfr. Rmk. 3.1.5). However, here are some
interesting examples.

(1) Assume that U is regular, and the normalization of X is regular. Then 1U

admits a fair Chow extension: this is [Wil12, Th. 3.11(a)].
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(2) Assume that both U and S are regular. Let V/U be an étale cover. Using
a classical terminology, we will say that V is non-ramified along (S −U) if
there exists an étale cover V̄ /S whose restriction to U is V . In that case,
for any integer n ∈ Z, the Artin-Tate motive M̄ = hS(V̄ )(n)[2n] is a fair
Chow extension of M = hU (V )(n)[2n] along j.

Indeed, M̄ is obviously a Chow extension of M along j (using the six
functors formalism). Moreover, as in the proof of Prop. 2.2.4, one gets:

End(M̄) ' Qπ0(V̄×S V̄ ), End(M) ' Qπ0(V×UV ).

As V ×U V is a dense open of V̄ ×S V̄ , we get that M̄ is fair as claimed.

Remark 2.4.6. The reader can check that one can replace, in [Wil12, Th. 3.11]
points (a) and (b), the constant motive 1U by a smooth Artin-Tate motive hU (V )
such that V is unramified along (S − U).

2.4.7. Recall also that a Chow motive over a field k is said to be Tate if it is
isomorphic to a finite sum of motives of the form 1(i)[2i] for an integer i ∈ Z.
By extension, a smooth proper k-scheme is said to be Tate if its associated Chow
motive is Tate.

Theorem 2.4.8. Let S be a regular connected scheme with étale fundamental group
π. Let f : X → S be a smooth proper morphism whose geometric fibers are Tate.

Then there exists an isomorphisms of motives over S:

hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]

where I is a finite set, Vi is a simple Artin representation of π and ni is a non-
negative integer. In other words, hS(X) is a smooth Artin-Tate motive over S of
weight 0 — see Theorem 2.3.3.

Moreover, this decomposition is a BCH-decomposition of the Chow motive hS(X)
(see Def. 2), and the set

{(
[Vi], ni

)
, i ∈ I

}
where [Vi] denotes the isomorphism class

in RepA
Q(π) (or what amount to the same in the corresponding category of simple

étale S-covers) is uniquely determined by the property that for any prime integer `
and any n ≥ 0:

(2.4.8.a) R2n f ′∗(Q`) '
⊕

i∈I|ni=n

V ′i ⊗Q Q`(−ni)

where f ′ and V ′i are pullback of f and Vi along the open immersion U [`−1]→ U .

Proof. Let η̄ be a geometric generic point of S. By assumption, one gets:

hη̄(Xη̄) '
∑
i∈I

1η̄(−ni)[−2ni].

According to the continuity property of DMc (see Proposition 1.0.1), there exists
a dense open j : U → S and an étale cover p : V → U such that the above
isomorphism lifts to:

hV (XV ) '
⊕
j∈J

1V (−mj)[−2mj ].

In particular, hU (XV ) = p∗(hV (XV )) '
∑
j∈J p∗(1V )(−mj)[−2mj ] is a smooth

Artin-Tate motive over U . As p is finite étale, the natural map

p∗ : hU (XU )→ hU (XV )
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is a split monomorphism, with splitting 1
d .p∗ where p∗ is the Gysin morphism

associated with p (see e.g. [CD19, 13.7.4 and 13.7.6]). In particular, hU (XU ) is a
smooth Artin-Tate motive, and it follows from Theorem 2.3.3 that there exists a
decomposition:

hU (XU ) '
⊕
i∈I

ρ!(Wi)(−ni)[−2ni]

where Wi is a simple Artin representation of π1(U). Given a prime `, we let U ′ =
U [`−1], fU ′ the pullback of f over U ′, W ′i the Artin representation of π1(U ′) induced
by Wi. According to Remark 2.3.4(2), and because ρ`(hU ′(XU ′)) ' R fU ′∗(Q`), one
gets:

(2.4.8.b) R2n fU ′∗(Q`) '
⊕

i∈I|ni=n

W ′i ⊗Q Q`(−ni).

This is the decomposition of the locally constant sheaf R2n fU ′∗(Q`) into semi-
simple components (beware the W ′i might not be simple). As this sheaf admits an
extension to all S, namely R2n f ′∗(Q`), f ′ = f [`−1], it follows that each representa-
tion W ′i is unramified along (S − U). As this is true for any prime `, one deduces
that Wi is unramified along (S−U); i.e. it admits an extension Vi to S. According
to Example 2.4.5(2), one deduces that⊕

i∈I
ρ!(Vi)(−ni)[−2ni]

is a fair Chow extension of hU (XU ). As hS(X) is obviously a Chow extension of
hU (XU ), one deduces from Theorem 2.4.4 that there exists a decomposition:

(2.4.8.c) hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]⊕ i∗(MZ)

for some Chow motive MZ over Z. Note that Relation (2.4.8.b) implies Relation
(2.4.8.a).16

It remains to prove that MZ = 0. As the morphism p : S′ =
∑
` prime S[`−1]→ S

is a pro-open cover, the pullback functor p∗ : DM(S) → DM(S′) is conservative
(use the continuity property of DM [CD19, Th. 14.3.1] and the Zariski separation
property as in the proof of [CD19, Prop. 4.3.9]). In particular, we can fix a prime
` and work over S[`−1]. To simplify notation, let us assume S = S[`−1]. Consider
a point x ∈ Z, and let ix : {x} → Z be the canonical immersion. Let x̄ be a
geometric point over x. By assumption, hx̄(Xx̄) is a Tate motive. In other words,
the motive i∗xhS(X) = hx(Xx) is an Artin-Tate motive over the residue field κ(x).
Decomposition (2.4.8.c) gives:

hx(Xx) '
⊕
i∈I

ρ!(Vi,x)(−ni)[−2ni]⊕ i∗x(MZ)

where Vi,x denotes the pullback of Vi to x (seen as an étale sheaf). As recalled
in Remark 2.3.4(2), applied over κ(x), the `-adic realization of hx(Xx) determines
the factors of the decomposition of hx(Xx) into twists of Artin motives (up to
isomorphisms and permutations). Thus relation (2.4.8.a) (which we have already
established), specialized at x using the smooth base change theorem in `-adic étale
cohomology, implies that the set of isomorphism classes of the Vi,x describes all

16In particular, we know that ρ`(MZ) vanishes but this is not sufficient to conclude (as we do

not know yet that the `-realization is conservative).
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the possible factors of the weight 0 Artin-Tate motive hx(Xx) and this implies
i∗x(MZ) = 0. One concludes as (i∗x)x∈Z is a conservative family of functors on
DMc(Z,Q) (see [CD19, 4.3.17]). �

Remark 2.4.9. Note also that we deduce from Example 2.4.5 that for any dense open
immersion j : U → S, hS(X) is a fair Chow extension of hU (XU ). In particular,
hS(X) = j!∗(hU (XU ).

Example 2.4.10. Relative Severi-Brauer schemes, étale locally cellular schemes, rel-
ative homogeneous varieties, smooth quadrics.

Corollary 2.4.11. Under the assumption of the previous theorem, for any integer
n ≥ 0, the integer:

dimQ`
(

Rn f∗(Q`)
)

is independent of the prime ` invertible on S.

2.4.12. An important corollary for us is the case of smooth quadrics: following
[DK73, XII, Def. 2.4], a smooth quadric over a scheme S is a smooth proper
morphism f : X → S whose geometric fibers are smooth quadric hypersurfaces in
the classical sense.

Let us introduce some notations in order to state the next corollary. Assume f
has constant relative dimension n. According to .op. cit., 2.6, there exists a Severi
Brauer S-scheme P (X) which contains X as an effective Cartier divisor of degree
2. If n = 2m, the center of the Clifford OS-algebra associated with the closed pair(
P (X), X

)
is an étale cover Z(X) over S of degree 2; op. cit., 2.7.

Then, applying Theorem 2.4.8 and [DK73, Th. 3.3] one gets:

Corollary 2.4.13. Consider the above notations. Assume that S is regular and
that there exists a prime ` invertible on S.

Then there exists a decomposition of Chow motives over S as follows:

hS(X) '

{⊕n
i=0 1S(i)[2i] if n = 2m+ 1,

hS
(
Z(X)

)
⊕
⊕n

i=0,i6=m 1S(i)[2i] if n = 2m.

3. Recall on Wildeshaus’ motivic intermediate extension

3.1. Semi-primary categories and motivic intermediate extensions. Recall
the following definition.

Definition 3.1.1. A Q-linear category C is semi-primary if

(1) for all objects B of C, the radical

radC(B,B) := {f ∈ HomC(B,B)|∀ g ∈ HomC(B,B), idB −gf is invertible}
is nilpotent;
(2) the quotient category C/ radC is semisimple.

Adopt the notations of subsection 2.1. We are now going to explain how the
notion of semi-primality leads to a definition of an intermediate extension functor,
following Wildeshaus.

Let · denote any of the schemes U , S or Z, and fix C(·) full pseudo-abelian
subcategories of the categories DMc(·,Q), related by gluing. Assume that they
inherit a weight structure (automatically compatible with the gluing) from the
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restrictions of the motivic weight structure. The subscript w = 0 will mean that
we are taking the heart of such weight structures.

Moreover, denote by C(S)uw=0 the quotient of the category C(S)w=0 by the two-
sided ideal17 g generated by HomC(S)(A, i∗B) and HomC(S)(i∗B,A), with (A,B)
varying on the collection of objects of C(S)w=0 × C(Z)w=0 such that A admits
no non-zero direct factor belonging to C(Z)w=0. Finally, denote by C(Z)uw=0 the
quotient of the category C(Z)w=0 by the restriction of g to C(Z)w=0 (with respect
to the fully faithful inclusion i∗ : C(Z)w=0 ↪→ C(S)w=0).

Theorem 3.1.2. [Wil17, Theorem 2.9]

(1) If C(Z)w=0 is semi-primary, then the functors j∗ and i∗ induce a canonical
equivalence of categories

(3.1.2.a) C(S)uw=0 ' C(U)w=0 × C(Z)uw=0

(2) If both C(Z)w=0 and C(U)w=0 are semi-primary, then so is C(S)w=0.

Definition 3.1.3. Suppose that C(Z)w=0 is semi-primary. The intermediate ex-
tension is the fully faithful functor

j!∗ : C(U)w=0 ↪→ C(S)uw=0

corresponding to the functor (idC(U)w=0
, 0) under the equivalence of categories

(3.1.2.a).

It follows from its very definition that the motivic intermediate extension functor
j!∗ enjoys the following property ([Wil17, Summary 2.12 (b)]):

Proposition 3.1.4. Consider the notation and the assumptions of the previous
definition. Then, any object M of C(S)w=0 is isomorphic to a direct sum j!∗MU ⊕
i∗N , for an object MU of C(U)w=0 and an object N of C(Z)w=0. The object MU is
such that j∗M ' MU (hence unique up to unique isomorphism) and N is unique
up to an isomorphism, which becomes unique in C(Z)uw=0.

Remark 3.1.5. It is believed that for any S, the heart CHM(S) of the motivic weight
structure on DMc(S,Q) is semi-primary (cfr. [Wil17, Conj. 3.4]). This conjecture
is at the moment completely out of reach, but it would permit, by choosing as C(·)
the whole of the categories DMc(·,Q), to define (up to non-unique isomorphism)
the intermediate extension to S of any Chow motive on U .

3.2. Semi-primary categories of Chow motives. The aim of this section is
to single out some subcategories of Chow motives which can actually be shown
to be semi-primary and which will be suited for our geometric applications. We
will adapt Wildeshaus’ methods from [Wil17], in order to show semiprimality of
subcategories which are different18 from the ones considered in op. cit..

Fix a scheme S admitting a good stratification S, i.e. such that S may be written
as a finite (set-theoretic) disjoint union

⊔
σ∈S Sσ of locally closed subschemes such

that the closure Sσ of each stratum Sσ is a union of strata.
We make the following assumption on our good stratification:

Assumption 3.2.1. For all σ ∈ S, the strata Sφ are regular, with regular closure.

17Note that in our setting, this ideal will always be contained in radC(S)w=0
([Wil17, Cor. 1.5

(a)]).
18See Rmk. 3.2.10 for a comment on these differences.
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Fix a stratum Sσ and consider the categories DMAT
sm (Sσ,Q) introduced in Defi-

nition 2.3.1. In order to define the subcategories A that we need, observe that by
applying Zariski’s main theorem, any finite étale morphism q : XSσ → Sσ extends
to a finite morphism q′ : X → Sσ.

Definition 3.2.2. The category of well ramified smooth Artin-Tate motives over
Sσ is the category DMAwrT

sm (Sσ,Q) obtained by choosing A = Awr, where Awr is the
full subcategory of direct factors of objects corresponding to finite étale morphisms
q : XSσ → Sσ verifying the following condition (cfr. the terminology of 2.4.5 (2)):

either XSσ is non-ramified along Zσ := Sσ \ Sσ,
or there exists a q′ as above, inducing XZσ ' Zσ.

Theorem 3.2.3. (cfr. [Wil17, Thm. 4.5]) Let S be a scheme with a good stratifi-
cation S satisfying Assumption 3.2.1. Then:

(1) the categories DMAwrT
sm (Sσ,Q) of well ramified smooth Artin-Tate motives over

Sσ, σ ∈ S, can be glued to give a full, triangulated sub-category DMAT
wr (S) of

DMc(S,Q), called the category of S-constructible well ramified Artin-Tate motives
over S. This subcategory is dense.
(2) Let M ∈ DMc(S,Q). Then the following conditions are equivalent.
(a) M ∈ DMAT

wr (S).
(b) j∗M ∈ DMAwrT

sm (Sσ,Q) for all σ ∈ S, where j denotes the immersion Sσ ↪→ S.
(c) j!M ∈ DMAwrT

sm (Sσ,Q) for all σ ∈ S.
In particular, the triangulated category DMAT

sm (S,Q) of smooth Artin-Tate motives
over S is contained in DMAT

wr (S).
(3) The category DMAT

wr (S) is pseudo-abelian.

Proof. The proof imitates the one of [Wil17, Thm. 4.5], and proceeds by induction
on the number of strata. If there is only one stratum, all claims are trivial, except
for the last claim of part (1) and for part (3). Of course, it suffices to prove part (3).
But in the case we are treating, the category in question is just DMAT

sm (S,Q), and
it has been shown in the proof of Thm. 2.3.3 that this category has a (bounded)
weight structure whose heart is pseudo-abelian. Hence (by [Bon10, Lemma 5.2.1]),
the category DMAT

sm (S,Q) itself is pseudo-abelian.
As for the induction step, we have that the theorem is true for the complement

Z of any open stratum U , with its stratification SZ , by the induction hypothesis.
Write jU , resp. iZ , for the open, resp. locally closed immersion of U , resp. Z, in
S.

In order to prove (1), we will prove that the criterion given by [Wil17, Prop.
4.1. (a)] is satisfied; it says that DMAwrT

sm (U,Q) and DMAT
wr (SZ) can be glued if

and only if for all objects M ∈ DMAwrT
sm (U,Q), i∗ZjU,∗M belongs to DMAT

wr (SZ).
For this, we can suppose that the closure of U in S is the whole of S, and we
take a direct factor MU of some motive hU (XU/U), with q : XU → U finite étale
satisfying the conditions in Def. 3.2.2. We will treat only the case in which q
extends to a finite morphism q′ : X → S inducing XZ ' Z (the other one being
easier). Since Z is regular, by our Assumption 3.2.1), we have that X is regular,
too. By proper base change and absolute purity, this implies that for any p ∈ Z,
both i!ZhS(X/S)(p) and i∗ZhS(X/S)(p) belong to DMAT

wr (SZ). Now, again using
proper base change, we see that i∗ZjU,∗hU (XU/U)(p) is a cone of the canonical
morphism i!ZhS(X/S)(p) → i∗ZhS(X/S)(p). Hence, it belongs to DMAT

wr (SZ). But
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the latter category is dense by the induction hypothesis, so i∗ZjU,∗MU (p) belongs to
it as well. This means that the functor i∗ZjU,∗ maps the generators of DMAwrT

sm (U,Q)
to DMAT

wr (SZ). As a consequence, the whole of DMAwrT
sm (U,Q) is mapped to the

latter category under i∗ZjU,∗, and the criterion is fulfilled.
The proof of the remaining points carries over word by word from the proof of

the analogous points in [Wil17, Thm. 4.5]. �

Let us now set up a slightly different notation, in order to treat the more general
geometric situations which we are interested in. Come back to the setting U ↪→
S ←↩ Z of subsection 2.1 and suppose that S is equipped with a good stratification
Φ. The subcategories we are interested in will depend on the choice of a proper
morphism π : S′ → S from a scheme S′ which admits a good stratification, such
that the preimage via π of any stratum of Φ is a union of strata (i.e. π is a morphism
of good stratifications). We may always suppose that U is the only open stratum
of Φ (with an induced, trivial stratification denoted by the same symbol U). The
closed complement Z inherits a good stratification ΦZ ; moreover, we have that S′U ,
resp. S′Z , inherit good stratifications SU , resp. SZ , and that π induces morphisms
of good stratifications S′U → U , S′Z → Z.

It will be necessary to make the following assumptions on the nature of the
stratifications S and Φ and of the morphism π:

Assumption 3.2.4. (cfr. [Wil17, Ass. 5.6])

(1) the good stratification S on S′ satisfies Assumption 3.2.1;
(2) for all φ ∈ Φ, the strata Sφ are regular;
(3) the morphism π is surjective, and for all φ ∈ Φ and σ ∈ S such that S′σ is a
stratum of π−1(Sφ), the morphism πσ : S′σ → Sφ is proper with geometrically con-
nected fibres, smooth, and such that the motive h(S′σ/Sφ) belongs to the category
of Tate motives over Sφ.

Remark 3.2.5. Since we ask πσ to be proper and smooth, the previous assumption
actually implies that h(S′σ/Sφ) belongs to the category of weight zero, smooth Tate
motives over Sφ.

Fix a morphism π : S′ → S of good stratifications Φ and S, satisfying Assump-
tion 3.2.4.(1). For any φ ∈ Φ, we will denote by SSφ the stratification induced by
S on the pullback of Sφ via π.

Definition 3.2.6. (cfr. [Wil17, Def. 4.9]) The category DMAT
wr (S/Φ) is the

pseudo-abelian completion of the strict, full, Q-linear triangulated subcategory of
DMc(S,Q) generated by the images under π∗ of the objects of DMAT

wr (S).

Suppose moreover that Assumption 3.2.4.(2) is satisfied. Then, reasoning in the
same way as in the proof [Wil17, Cor. 4.11], we see:

Lemma 3.2.7. (1) The restriction of the motivic weight structure on DMc(S,Q)
induces a bounded weight structure on DMAT

wr (S/Φ). For π = id, this gives a
bounded weight structure on DMAT

wr (S).
(2) The heart of the above weight structure on DMAT

wr (S/Φ) is the pseudo-Abelian
completion of the strict, full, Q-linear additive subcategory of DMc(S,Q) gener-
ated by the images under π∗ of the objects of the heart of the weight structure on
DMAT

wr (S).
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Definition 3.2.8. The heart of the weight structure on DMAT
wr (S/Φ) given by the

preceding Lemma is denoted by ATwr(S/Φ).

Now we can finally state the result that we want to employ.

Theorem 3.2.9. Let π : S′ → S be a proper morphism of good stratifications S,
Φ satisfying Assumption 3.2.4. Then, the categories DMAT

wr (SU/U), DMAT
wr (S/Φ)

and DMAT
wr (SZ/ΦZ) are related by gluing, and the category ATwr(SZ/ΦZ) is semi-

primary.

Proof. The first claim follows from Thm. 3.2.3 and proper base change (cfr. the
analogous [Wil17, Cor. 4.10 (b)]). So, the category DMAT

wr (SZ/ΦZ) itself is obtained
by gluing. Hence, in order to prove the second claim, it is enough to prove semi-
primality of ATwr(SSφ/Sφ) for each stratum Sφ of Z and then to apply Thm.
3.1.2.(2).

We first observe that by Lemma 3.2.7.(2), the category ATwr(SSφ/Sφ) is the
pseudo-Abelian completion of the strict, full, Q-linear triangulated subcategory
of DMc(Sφ) of objects, which are isomorphic to images under πσ of well-ramified
Artin-Tate motives over S′σ, for σ ∈ S such that S′σ is a stratum of π−1(Sφ). This
implies that, by reasoning as in [Wil17, Thm. 5.4], the claim will follow as soon as
we prove that the objects of the latter form are finite dimensional in the sense of
Kimura.

Choose a couple of strata πσ : S′σ → Sφ as above and take a well-ramified finite
étale morphism q : D → S′σ. The Stein factorization of the morphism πσ ◦ q gives
rise to a commutative diagram

D
q //

p

��

S′σ

πσ

��
S̃φ

r // Sφ

where p is proper with connected fibres and r is finite étale. Moreover, the fiber
of r over each point s of Sφ is in set-theoretic bijection with the set of connected
components of the fiber of πσ ◦ q over s. Thus, because of our assumption 3.2.4.(3)
on the properties of πσ, the degree of r is the same as the degree of q, say equal to
d. We get a diagram

D

p

��

ι

$$

q

))
S̃φ ×Sφ S′σ

q′
//

p′

��

S′σ

πσ

��
S̃φ

r // Sφ

where q′ is finite étale of degree d, so that ι has to be finite étale of degree 1, i.e.
it embeds D as a connected component of S̃φ ×Sφ S′σ. Call the latter scheme D′.
Then, using proper base change and the fact that q′ and r are finite étale, we get

h(D′/S̃φ) = p′∗1D′ ' p′∗q′∗1S′σ ' r
∗πσ,∗1S′σ = r∗h(S′σ/Sφ)
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Since h(S′σ/Sφ) belongs to the category of weight zero, smooth Tate motives over

Sφ (again by Assumption 3.2.4.(3) and Rem. 3.2.5), we obtain that h(D′/S̃φ)

belongs to the category of weight zero, smooth Tate motives over S̃φ. The motive

h(D/S̃φ), being a direct factor of h(D′/S̃φ), belongs to the same category as well.

Now h(D/Sφ) is isomorphic to the direct image of h(D/S̃φ) under the finite étale
morphism r, and as a consequence, it is actually a weight zero, smooth Artin-Tate
motive over Sφ. As such, it is indeed finite dimensional (apply for example [Wil17,
Prop. 5.8 (c)]). As the objects we were interested in are direct factors of objects of
the form h(D/Sφ), we conclude.

�

Remark 3.2.10. (1) The proof of the above theorem actually uses a little less than
Assumption 3.2.4: denoting by πZ the restriction of π to Z, we only need the
requirements of point (3) to be met for all φ ∈ ΦZ and σ ∈ S such that S′σ is a
stratum of π−1

Z (Sφ). Admitting Assumption 3.2.4 to be verified as it is, the proof
shows that in fact, the whole category ATwr(S/Φ) is semi-primary.
(2) If we relax point (3) of Assumption 3.2.4 by asking that h(S′σ/Sφ) be simply
finite dimensional, the proof of the above theorem carries through, with the fol-
lowing adjustments. First, one exploits the commutative diagram coming from the
Stein factorization and invokes proper base change and [Wil17, Prop. 5.8 (a)] in

order to show that h(D/S̃φ) is also finite dimensional. Then, one shows that the
same holds for h(D/Sφ), by applying [Wil17, Prop. 5.8 (c)].
(3) The above theorem differs in the following way from the analogous Thm. 5.4 in
[Wil17]. On the one hand, in order to deal with the gluing, we are forced to be more
restrictive on the choice of possible morphisms S′ → S. In fact, we ask for regularity
of the closure of the strata of S′, whereas in loc. cit., it is only asked the weaker
condition that for every immersion iσ of a stratum S′σ in the closure of a stratum,
the functor i!σ send the unit object to a Tate motive. Moreover, the morphisms πσ
in loc. cit. can belong to a more general class than the one considered here. On
the other hand, our stronger restrictions are necessary because, for a fixed S′ which
fulfils our requirements, the categories that we glue along the strata of S′ are more
general than the ones of loc. cit.

Corollary 3.2.11. (cfr. [Wil17, Cor. 5.7]) Let π : S′ → S be a proper morphism of
good stratifications S and Φ, satisfying Assumption 3.2.4. Then, the intermediate
extension functor

j!∗ : ATwr(SU/U) ↪→ ATwr(S/Φ)
u

is defined (as in Def. 3.2.11).

Corollary 3.2.12. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.4. For each φ ∈ Φ, denote by jφ : Sφ ↪→ Sφ the

open immersion of a stratum in its closure, by iφ : Sφ ↪→ S the closed immersion
of the closure of a stratum.

Let M be an object of the category ATwr(S/Φ). Then, there exist a subset
Φ′ ⊂ Φ, objects Nφ in ATwr(SSφ/Sφ), φ ∈ Φ′, and a non-canonical isomorphism

M '
⊕
φ∈Φ′

iφ,∗jφ,!∗Nφ
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Proof. By applying Prop. 3.1.4, we know that we have an isomorphism

M ' j!∗MU ⊕ i∗N
with N an object of ATwr(SZ/Z). By proper base change and part (2) of Thm.
3.2.3, and the fact that pullback along open immersions sends weight-zero objects
to weight-zero objects, we know that the pullback of N to any stratum Sφ which
is open in Z belongs to ATwr(SSφ/Sφ). Thus, we can apply to it the functor
jφ,!∗ (defined applying Cor. 3.2.11). The statement then follows by an iterated
application of Prop. 3.1.4. �

3.3. Compatibility with realizations and conservativity. . In this paragraph,
we will fix a generic point Spec(k)→ S of our base S, and we will make use of the

two realization functors with target the categories Db
c(Sk,ét,Q`) and Db

c(S
an
k ,Q),

obtained by composition with base change through Spec(k)→ S from the functors
ρ`, ρB introduced in the “Notations and conventions” section. Whenever we em-
ploy one of these two functors, we will implicitly assume that the hypotheses on S
and ` are satisfied. These functors will still be denoted by the same symbols.

Let us denote any of the two families of categories Db
c(Sk,ét,Q`) and Db

c(S
an
k ,Q)

by the same symbol Db
c(Sk). Both families of categories are equipped with a perverse

t-structure, whose heart (the corresponding category of perverse sheaves) will be
denoted Pervc(Sk) in both cases. We will then denote by

Hm : Db
c(Sk)→ Pervc(Sk)

the perverse cohomology functors, and by

j!∗ : Pervc(Uk)→ Pervc(Sk)

the intermediate extension of perverse sheaves ([BBD82, Déf. 1.4.22]). The com-
position of the collection of the perverse cohomology functors with one of the real-
ization functors will be called the corresponding perverse cohomological realization
functor.

The following result gives the compatibility of the functor of Def. 3.2.11 (when
available) with the realization functors:

Theorem 3.3.1. (cfr. [Wil17, Thm. 7.2]) Let π : S′ → S be a proper morphism
of good stratifications S and Φ, satisfying Assumption 3.2.4. Denote by ρ any of
the two realization functors ρ` or ρB. Then:

(1) for any integer m, the restriction of the composition

Hm ◦ ρ : DMc(S,Q)→ Pervc(Sk)

to ATwr(S/Φ) factors over ATwr(S/Φ)
u

;
(2) for any integer m, the diagram

ATwr(SU/U)
j!∗ //

Hm◦ρ
��

ATwr(S/Φ)
u

Hm◦ρ
��

Pervc(Uk)
j!∗ // Pervc(Sk)

commutes.

Proof. The same proof of [Wil17, Thm. 7.2] applies. Indeed, the only ingredient
occurring in that proof, which has to be generalized, is op. cit., Cor. 7.13: we
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need to obtain an analogous statement in our situation, i.e. we need to show that
the radical (cfr. Def. 3.1.1) of our category ATwr(S/Φ) is mapped to zero under
the perverse cohomological realization. The proof of Thm. 3.2.9 tells us that over
each stratum Sφ of S, the category ATwr(SSφ/Sφ) is actually contained in the
category AT(Sφ) of weight zero, smooth Artin-Tate motives over Sφ. Then, the
same strategy of proof of op. cit., Cor. 7.13, based on op. cit., Thm. 7.12, shows
that we can obtain the desired statement as soon as we prove the following claim:
for any couple of finite étale morphisms

q1 : D1 → X, q2 : D2 → X

the ideal
radCHM(X)(hX(D1), hX(D2))

consists of morphisms which are mapped to zero under the perverse cohomological
realization. Now, by the same reasoning as in the proof of loc. cit., Thm. 7.12, we
may assume that X is the spectrum of a field k. But then, hX(D1) and hX(D2) are
Artin motives over k, i.e. objects of a full semisimple subcategory of CHM(X) =
CHM(k). Hence, the radical in question is zero. �

We end this section by discussing the conservativity of the restriction of the
realization functors to the categories DMAT

wr (S/Φ).

Theorem 3.3.2. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.4. Denote by ρ any of the two realization functors
ρ` or ρB. Then, the restriction of ρ to DMAT

wr (S/Φ),

ρ : DMAT
wr (S/Φ)→ Db

c(Sk)

is conservative.

Proof. We will adopt the strategy of [Wil18, Thm. 4.3], which adapts to our set-
ting and shows that conservativity of both realizations (`-adic and Betti) can be
deduced if the following properties hold19: (1) the weight structure on DMAT

wr (S/Φ)
is bounded, (2) its heart ATwr(S/Φ) is semi-primary and pseudo-Abelian, (3) the
restriction of ρ to ATwr(S/Φ) maps the radical to zero, and (4) zero is the only
object of ATwr(S/Φ) mapped to zero by ρ. The first two properties have been
verified before (Lemma 3.2.7 and Rmk. 3.2.10.(1)), and property (3) has been seen
to hold in the course of the proof of Thm. 3.3.1. With this in our hands, we can
imitate step by step the proof of op. cit., Thm. 4.2 to show that property (4) is also
verified and to conclude. In fact, to argue as in loc. cit. we only need the existence
of the intermediate extension functor defined in Cor. 3.2.11, the fact that objects
in ATwr(S/Φ) decompose as direct sums of intermediate extensions (Cor. 3.2.12),
and the finite dimensional nature of the objects of the categories ATwr(SSφ/Sφ)
(proof of Thm. 3.2.9). �

19These are precisely all of the assumptions which are shown to be sufficient for conservativity

in op. cit., Thm. 2.10, except for one: strictness of any morphism in the image of the perverse
cohomological realization, with respect to the weight filtration of the latter functor. Only the

`-adic realization is known to satisfy this last assumption. Building on this, Thm. 4.3 of loc. cit.
then shows how to obtain conservativity for the Betti realization, too.
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4. Corti-Hanamura decomposition of general quadrics

4.1. Corti-Hanamura decomposition of general quadrics. In this section we
work over an algebraically closed field k of characteristic zero. Let V be a k–vector
space of dimension n. A quadratic form Q ∈ S2V ∨ can be viewed as a symmetric
map Q : V → V ∨. Its radical is the subspace Rad(Q) = ker(Q). It is known
from the theory of quadratic forms that Q descends to a symmetric bilinear form
Q on the quotient space V = V/Rad(Q) (cf. [Cas78, 2.6]). The corank of Q is
n − r, where r = dim(Rad(Q)). The zero locus of Q defines a quadric X ⊂ P(V )
which is smooth if and only if r = 0. If r > 0 its singular locus is the linear
subspace Λ = P(Rad(Q)), and X is a cone with vertex Λ over the smooth quadric
X = V (Q) ⊂ P(V ) ∼= Pn−r−1

k .

Let
∆k = {Q ∈ S2V ∨|dim(kerQ) ≥ k}

be the space of quadratic forms of corank ≥ k. The standard desingularization of
∆k is

∆̂k = {(Q,F ) ∈ S2V ∨ ×G(k, V )|F ⊂ kerQ}.
For our purposes it is convenient to use a slightly different construction. We denote
by Fl(V ) = Fl(1, . . . , n− 1, V ) the variety of complete flags

F1 ⊂ ... ⊂ Fn−1 ⊂ V
where dim(Fi) = i. Define

∆̃k = {(Q,F•) ∈ S2V ∨ × Fl(V )|Fk ⊂ kerQ}.

The fiber of the projection map p2 : ∆̃k → Fl(V ) over F• is the vector space

H0(P(V ), IP(Fk)(2)). Hence ∆̃k is smooth. The advantage over the previous con-
struction is that we have inclusions

∆̃k+1 ⊂ ∆̃k ⊂ Fl(V )

for all k.

We now discuss the analogue of these constructions in the relative case. Let S
be a quasi–projective scheme over k. Let E be a rank n vector bundle over S, and
let L be a line bundle over S. A quadratic form on E with values in L is a global
section q ∈ H0(S, S2E∨ ⊗ L), or equivalently a symmetric homomorphism

q : E → E∨ ⊗ L.
Let ρ : P(E)→ S be the associated projective bundle with tautological line bundle
ξE = OP(E)(1). Using the isomorphism

H0(S, S2E∨ ⊗ L) ∼= H0(P(E), ξ2
E ⊗ ρ∗L)

we can identify q with a global section (still denoted by q) of ξ2
E ⊗ ρ∗L. The

associated quadric bundle is X = V (q) ⊂ P(E). The fiber of f : X → S over s ∈ S
is the zero locus of q(s) ∈ S2E∨s ⊗ Ls.

We write

∆i(q) = {s ∈ S| corank q(s) ≥ i}, Ui = ∆i(q) \∆i+1(q).

The restriction of q to Ui defines a homomorphism of vector bundles

qi : Ei → E∨i ⊗ Li
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whose kernel Fi = ker(qi) is a subbundle of Ei of rank i. As before, the quadratic
form qi descends to a quadratic form qi on the quotient Ei = Ei/Fi. Geometrically
this means that the subscheme Xi = f−1(Ui) is a relative cone over Xi = V (qi) ⊂
P(Ei) with vertex P(Fi) i.e., for every s ∈ Ui the quadric Xs = f−1(s) is a cone
with vertex P(Fi,s) over Xs ⊂ P(Ei,s).

Let Fl(E) be the bundle of complete flags in E with projection map π : Fl(E)→
S. The vector bundle π∗E has a flag of universal subbundles Si of rank i, i =
1, . . . , n− 1. The composition of

π∗q : π∗E → π∗E∨ ⊗ π∗L
and the inclusion λi : Si → π∗E defines

q̃i = π∗(q) ◦ λi : Si → π∗E∨ ⊗ π∗L.
Define

∆̃i(q) = V (q̃i) ⊂ Fl(E).

Proposition 4.1.1. If E∨ ⊗ E∨ ⊗ L is generated by global sections and q ∈
H0(X,S2E∨ ⊗ L) is general, then

(1) ∆i(q) is empty or has the expected codimension
(
i+1
2

)
and Sing(∆i(q)) =

∆i+1(q).

(2) ∆̃i(q) is smooth.

Proof. Note that if E∨ ⊗E∨ ⊗ L is generated by global sections, then the bundles
S2E∨ ⊗L, π∗(E∨ ⊗E∨ ⊗L) and S∨i ⊗ π∗E∨ ⊗ π∗L are globally generated. Part 1

is proved by adapting the argument of [B9̆1, 4.1] to the symmetric case; cf. [Ott95,
2.17]. Part 2 follows from Bertini’s theorem. �

Definition 4.1.2. We say that X → S is a regular quadric bundle if it satisfies the
conditions of the Proposition 4.1.1.

A quadric bundle f : X → S admits a natural stratification by corank. Write
Ui = ∆i(q) \ ∆i+1(q), Xi = f−1(Ui). As the stratification Φ = {Ui}i∈I does
not verify Assumption 1, we have to pass to a suitable base change and verify
Assumption 2. Define S′ = Fl(E) and consider the stratification U ′ given by

U ′i = ∆̃i(q) \ ∆̃i+1(q). Write X ′ = X ×S S′ and X ′i = Xi ×Ui U ′i .

Lemma 4.1.3. Let X → S be a regular quadric bundle. Then the stratification
S = {U ′i}i∈I satisfies Assumption 3.2.4.

Proof. Proposition 4.1.1 implies that the stratification S satisfies conditions (1)

and (2) of Assumption 3.2.4. The definition of ∆̃i(q) shows that the fiber of πi :

∆̃i(q)→ ∆i(q) over s ∈ ∆i(q) is

{(W•) ∈ Fl(Es)|Wi ⊂ ker q(s)}.
If s ∈ Ui then ker(q(s)) has dimension i, hence the fiber of the induced map U ′i → Ui
over s ∈ Ui is

{(W•) ∈ Fl(Es)|Wi = ker(q(s)} ∼= Fl(ker(q(s))× Fl(i+ 1, . . . , n, Es).

Over Ui we have an injective homomorphism of flag bundles

Fl(Fi)× Fl(i+ 1, . . . , n;Ei)→ Fl(Ei)
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whose image is U ′i . Hence U ′i → Ui is a relative homogeneous space and hUi(U
′
i) is

a relative Tate motive. This implies that the stratification S also satisfies condition
(3) of Assumption 3.2.4. �

Theorem 4.1.4. Let X → S be a regular quadric bundle. Then hS(X) ∈ ATwr(S/Φ).

Proof. We consider the stratifications Φ and S introduced above and write Xi =
f−1(Ui), X

′
i = Xi ×Ui U ′i . As we have seen before, Xi is a relative cone over

Xi with vertex P(Fi). The complement Vi = Xi \ P(Fi) is a locally trivial fiber
bundle over Xi with affine fibers. 20 A similar result holds after base change via
πi : U ′i → Ui: X

′
i contains the projective bundle P(F ′i ), where F ′i = π∗i (Fi), and the

projection of the complement V ′i = X ′i \ P(F ′i ) to U ′i factors as V ′i
ρi−→ X

′
i
σi−→ U ′i

where ρi is a locally trivial fiber bundle with affine fibers and σi is a smooth quadric

bundle. Hence hcU ′i
(V ′i ) ∼= hU ′i (X

′
i)(−i)[−2i]. As we have seen in Corollary 2.4.13,

the motive hU ′i (X
′
i) is either a relative Tate motive or a relative Artin-Tate motive

associated to a double étale covering Z(X
′
i)→ U ′i . The latter case arises if n− i is

even, say n− i = 2m. In this case the double covering Z(X
′
i)→ U ′i comes from the

Stein factorisation of the relative Fano scheme of m–planes Fm(X
′
i/U

′
i)→ U ′i . This

map is ramified over the boundary ∆̃i+1(q) since the quadrics over the boundary
become singular, and it is known that the Fano scheme Fm(Q) of a singular quadric

Q of dimension 2m is connected [Ter88, Prop. 4.1.2]. Hence Z(X
′
i) → U ′i is well–

ramified. Since hU ′i (P(F ′i )) is a relative Tate motive, the localisation triangle

hcU ′i (V
′
i )→ hU ′i (X

′
i)→ hU ′i (P(F ′i ))→ hcU ′i (V

′
i )[1]

then shows that hU ′i (X
′
i) ∈ DMAwrT

sm (U ′i ,Q) for all i. As the map hU ′i (P(F ′i )) →
hcU ′i

(V ′i )[1] is zero for weight reasons, it follows that hU ′i (X
′
i) has weight zero. Hence

hS′(X
′) ∈ DMAT

wr (S) thanks to part (2) of Thm. 3.2.3 and has weight zero by the
gluing property of motivic weights.

As S′ = Fl(E)
π−→ S is a relative homogeneous space we have

π∗1S′ ∼= 1S ⊕ (
⊕
i:ni>0

1S(−ni)[−2ni]).

By the projection formula we obtain

π∗hS′(X
′) = π∗π

∗hS(X) ∼= hS(X)⊕ (
⊕
i:ni>0

hS(X)(−ni)[−2ni]).

Hence hS(X) ∈ DMAT
wr (S/Φ). Since proper morphisms respect weights and hS′(X

′)
is of weight zero, π∗hS′(X

′) is of weight zero, as well as any of its direct factors.
So hS(X) ∈ ATwr(S/Φ). �

Corollary 4.1.5. A regular quadric bundle X → S admits a CH-decomposition
(see Def. 1).

20In fact, if πi : P(Ei) → Ui is the projection map and if one chooses local trivialisations

Fi|U ∼= W ⊗OU , Ei|U ∼= V ⊗OU over an open subset U ⊂ Ui then Vi ∩π−1
i (U) is the total space

of the vector bundle OU (−1)⊕W ⊗OU ; cf. [EH16, 9.3.2]
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Proof. By Corollary 3.2.12 every object M of the category ATwr(S/Φ) admits a
decomposition

M '
⊕
φ∈Φ′

iφ,∗jφ,!∗Nφ

withNφ in ATwr(SSφ/Sφ). The proof of Theorem 3.2.9 shows thatNφ ∈ DMAT
sm (Sφ,Q).

Using Theorem 2.3.3 we obtain a decomposition

Nφ '
⊕
i,φ∈Iφ

ρ!(Vi,φ)(ni,φ)[2ni,φ]

with Vi,φ a simple Artin representation of π1(Sφ). Taking M = hS(X) we get

hS(X) '
⊕
i,φ

iφ,∗jφ,!∗(ρ!(Vi,φ)(ni,φ))[2ni,φ]

which is a decomposition of hS(X) into simple objects of weight zero. Applying
the realisation functor ρB and using Thm. 3.3.1, we obtain a decomposition of
Rf∗QX into a sum of simple objects in Db

c(S,Q). The decomposition theorem of
Beilinson-Bernstein-Deligne gives isomorphisms

Rf∗QX '
⊕
k

pRkf∗QX [−k] '
⊕
k,λ

iλ,∗jλ,!∗(Lk,λ)[−k]

where Lk,λ is a local system on Sλ. Since the simple objects appearing in this
decomposition are unique, we conclude that they are realisations of Chow motives.
Hence X → S admits a Corti-Hanamura decomposition. �

Remark 4.1.6. Our proof gives a more precise statement: hS(X) is a direct sum of
motivic intermediate extensions of Artin-Tate motives of degree at most 2, hence
Rf∗QX decomposes as a sum of intersection complexes of local systems whose
monodromy is either trivial or Z/2Z. This has been observed in the example of
regular conic bundles over a surface [NS09]. In this case

Rf∗QX ' QS ⊕QS [−2]⊕ i∗L[−1]

where L is a local system on the smooth discriminant curve ∆ ⊂ S. The underlying
motivic decomposition is

hS(X) ' 1S ⊕ 1S(−1)[−2]⊕ Prym(∆̃/∆)(−1)[−2]

where Prym(∆̃/∆) is the Prym motive, an Artin-Tate motive of degree 2.
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[Héb11] D. Hébert, Structure de poids à la Bondarko sur les motifs de Beilinson, Composito
Mathematica 147 (2011), no. 5, 1447–1462 (French, with English summary). 10, 11

[Jin16] F. Jin, Borel–moore motivic homology and weight structure on mixed motives, Math.

Zeit. 283, Issue 3-4 (2016), 1149–1183. 4
[MSS12] Stefan Müller-Stach and Morihiko Saito, Relative Chow-Künneth decompositions for
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