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MOTIVIC DECOMPOSITIONS OF FAMILIES WITH TATE

FIBERS: SMOOTH AND SINGULAR CASES

M. CAVICCHI, F. DÉGLISE, AND J. NAGEL

Abstract. We apply Wildeshaus’s theory of motivic intermediate extensions

to the motivic decomposition conjecture, formulated by Deninger-Murre and
Corti-Hanamura. We first obtain a general motivic decomposition for the

Chow motive of an arbitrary smooth projective family f : X → S whose geo-

metric fibers are Tate. Using Voevodsky’s motives with rational coefficients,
the formula is valid for an arbitrary regular base S, without assuming the

existence of a base field or even of a prime integer ` invertible on S. This

result, and some of Bondarko’ ideas, lead us to a generalized formulation of
Corti-Hanamura’s conjecture. Secondly we establish the existence of the mo-

tivic decomposition when f : X → S is a projective quadric bundle over a

characteristic 0 base, which is either sufficiently general or whose discrimi-
nant locus is a normal crossing divisor. This provides a motivic lift of the

Bernstein-Beilinson-Deligne decomposition in this setting.
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1. Introduction

An important conjecture in the theory of motives is the nilpotency conjecture.
It is related to the functor

T : CHM(k)→ HM(k)

from the category of Chow motives to the category of homological motives (mo-
tives modulo homological equivalence, for a choice of Weil cohomology theory e.g.
Betti cohomology if k = C.) This functor is full but not faithful. The nilpotency
conjecture states that if M is a Chow motive and Mhom the corresponding motive
modulo homological equivalence (sometimes called the Grothendieck motive), the
kernel of the ring homomorphism

End(M)→ End(Mhom)

is a nilpotent ideal. If we take M = h(X), the Chow motive of a smooth projective
variety X over k, the nilpotency conjecture N(X) states that the kernel of the
homomorphism

Corr0(X,X)→ End(H∗(X,Q))

from the ring of correspondences of degree zero to the endomorphism ring of H∗(X)
is a nilpotent ideal. (Note that if X has pure dimension d, the left hand side is

the Chow group CHd(X × X)Q, the right hand side is isomorphic to H2d(X ×
X,Q) by Poincaré duality and the above map is just the cycle class map.) The
nilpotency conjecture has important consequences. First of all, it implies that the
functor T is conservative (i.e., it detects isomorphisms), hence essentially injective
(nonexistence of phantom motives). The nilpotency conjecture is also related to the
standard conjecture C(X), the Künneth conjecture, which states that the Künneth
components pi ∈ H∗(X ×X,Q)) of the diagonal are algebraic (i.e., they are in the
image of the cycle class map). Jannsen proved that conjectures C(X) and N(X)
imply the Chow–Künneth conjecture CK(X), i.e., the Künneth projectors lift to a
set of mutually orthogonal projectors πi ∈ Corr0(X,X) (i = 0, . . . , 2d) such that

∆X =

2d∑
i=0

πi

in CHd(X×X)⊗Q and such that πi depends only on the motive modulo homological
equivalence. In this case the motive of X admits a Chow–Künneth decomposition

h(X) =

2d⊕
i=0

hi(X)

with hi(X) = (X,πi).

The nilpotency conjecture is known to hold for finite-dimensional motives. This
means in particular that isomorphisms between finite-dimensional Chow motives
can be detected by passing to the corresponding homological motives. An applica-
tion is the following result.

Theorem (Kimura, Vial). Assume k is an algebraically closed field of characteristic
0. Suppose that X is a smooth projective variety over k such that the Chow motive
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h(X) is finite dimensional and such that H∗(X) is algebraic (i.e, the rational cycle
class maps CHi(X)Q → H2i(X,Q) are surjective for all i.). Then

h(X) =
⊕
i

Q(−i)b2i

is Tate (i.e., it is a direct sum of Lefschetz motives).

This result generalises a theorem of Jannsen and was observed by Vial [Via13b]
and Kimura [Kim09] (in the case where one replaces h(X) by an arbitrary Chow
motive M). It is a direct consequence of the conservativity of the homological
realisation on finite-dimensional motives. 1

In this paper we consider possible generalisations of these results to the case of
relative motives. In their fundamental work [CH00], Corti and Hanamura defined
a category CHM(S) of relative Chow motives over a quasi–projective base scheme
S defined over a field k, together with realisation functors

ρB : CHM(S)→ Db
c(S

an,Q),

ρ` : CHM(S)→ Db
c(Sét,Ql)

(R1)

where ρB (resp. ρ`) is the Betti (resp. `-adic) realization functor associated to a
given place σ : k → C (resp. a prime ` invertible in k). Depending on the field
k, we can use these two realisation interchangeably, so we let Q be either Q in the
first case, Q` in the second.

In this setup, one works with proper morphisms f : X → S with X smooth and
quasi–projective over k. Relative correspondences are elements of CH∗(X ×S X)
and composition of correspondences is defined using refined Gysin homomorphisms.
The relative analogue of the nilpotency conjecture states that the kernel of the map

Corr0
S(X,X)→ End

(
Rf∗(QX)

)
is a nilpotent ideal. (If X has dimension d the above map can be identified with the
cycle class map CHd(X ×S X)Q → HBM

2d (X ×S X,Q) to Borel–Moore homology.)
Corti and Hanamura have considered a relative analogue of the notion of Chow–
Künneth decomposition.

The smooth case. Let us first consider the case where f : X → S is in addition
smooth. According to Deligne’s theorem, one gets a decomposition in Db

c(S,Q):

(D) Rf∗(QX) ∼=
⊕
i

Rif∗(QX)[−i].

One usually says that hS(X) admits a relative Chow–Künneth decomposition (in
short CK-decomposition) if there exist relative motives Mi ∈ CHM(S) such that
hS(X) =

⊕
iMi and ρ(Mi) = Rf∗(QX)[−i] for all i.

After the seminal work of Voevodsky, finalized by Ayoub and Cisinski-Déglise, we
now have at our disposal a complete formalism of constructible rational mixed mo-
tives DMc(S), where S is a very general base scheme (noetherian quasi-excellent),

1If H∗(X) is algebraic there exists a finite set of algebraic cycles {Zi}i∈I , Zi ∈ CHpi (X),
whose cycles classes generate the cohomology. These cycles define a morphism of Chow motives α :

⊕iZ(−pi)→ h(X) such that T (α) is an isomorphism, hence α is an isomorphism by conservativity.
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satisfying the six functors formalism and Grothendieck-Verdier duality. Moreover,
we also have triangulated realization functors:

ρB : DMc(S,Q)→ Db
c(S

an,Q),

ρ` : DMc(S,Q)→ Db
c(Sét,Ql)

(R2)

commuting with the six operations2, where:

• ρB is the Betti realization functor, defined when S is a finite type k-scheme
with a given complex place σ : k → C ([Ayo10]);
• ρ` is the `-adic realization functor, for a Z[1/`]-scheme S ([CD16, 7.2.24]).

Moreover, a key property of rational mixed motives is the existence of the so-called
Chow weight structure constructed by Bondarko (see Theorem 2.1.2 for recall). One
then defines the (pseudo-abelian monoidal) category CHM(S) of Chow motives over
a scheme S as the weight 0 part of DM(S). Combining this definition with the
realization functors (R2), one therefore get an extension of the Corti-Hanamura
functors (R1) to more general base schemes.3

Our first theorem exploits this level of generality. It is the natural generalization
of the theorem of Kimura-Vial stated before to the relative case. A first result in this
direction was obtained by Vial in [Via13a, Thm. 4.2]. It states that if f : X → S
is a flat morphism between k-varieties such that CHi(Xs) ⊗ Q ∼= Q for all i and
for all s ∈ S(Ω) (where Ω is a universal domain over k) then the relative motive
hS(X) is a Tate motive. Our theorem extends this result in two directions. First
we consider geometric fibers: this implies that we will get more general motives
than Tate motives. Secondly, we work over an arbitrary regular base scheme S,
with no assumption on the existence of a base field or of a prime ` invertible on S.4

Theorem A (see Theorem 2.5.8). Let S be a regular connected scheme with étale
fundamental group π. Let f : X → S be a smooth proper morphism whose geometric
fibers are Tate ( i.e. the associated Chow motives are Tate). Then there exists an
isomorphism of motives over S:

hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]

where I is a finite set, Vi is a simple Artin Q-representation of π, ni is a non-
negative integer and ρ!(Vi) is the rational motive naturally associated with Vi.

Moreover, the set
{(

[Vi], ni
)
, i ∈ I

}
where [Vi] denotes the isomorphism class in

the category of Artin representations RepA
Q(π) of π is uniquely determined by the

property that for any prime integer ` and any n ≥ 0:

R2n f ′∗(Q`) '
⊕

i∈I|ni=n

V ′i ⊗Q Q`(−ni)

where f ′ and V ′i are pullbacks of f and Vi along the open immersion U [`−1]→ U ,
and V ′i ⊗Q Q` denotes the Q`-sheaf represented by V ′i .

2for quasi-excellent finite dimensional base schemes, and morphisms of finite type between
them

3Indeed, when S is quasi-projective over a perfect field, it is proved in [Jin16] that the weight
0 part of DMc(S) is equivalent to the category defined by Corti and Hanamura.

4This is the first example of a BCH-decomposition: see Def. 2.2.3 and the following paragraph
for further discussion of its properties.
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In the above statement, the functor ρ! sends any étale sheaf over S to its image
in the category DMc(S). We show that when restricted to the bounded derived
category of Artin π-representations, it induces an equivalence of categories with
the full subcategory DMAT

sm (S,Q) of smooth Artin-Tate motives in DMc(S) (Prop.
2.3.4), extending a classical result of Voevodsky-Orgogozo (the case when S is
the spectrum of a field). Hence, in particular, Theorem A shows that the naive
generalisation of the theorem of Kimura-Vial to the relative situation is false: if
f : X → S is a smooth, projective morphism such that h(Xs) is finite dimensional
and such that H∗(Xs) is algebraic for all s ∈ S, the relative motive hS(X) does not
necessarily decompose as a direct sum of relative Lefschetz motives5, since it is an
object of a more general kind - an object of DMAT

sm (S,Q). This can be seen already
on the topological level. If f : X → S is a smooth, projective morphism whose fibers
have algebraic cohomology then the direct image sheaves Rif∗Q are local systems
with finite monodromy, but they are not necessarily constant. A concrete example
is given by smooth quadric fibrations of even relative dimension (Corollary 2.5.13).
We have recorded in Example 2.5.14 some constructions of smooth proper quadrics
over Spec(Z), and more generally over rings of integers of number fields, to which
our result applies; for rings of integers whose spectrum is non-simply connected, we
give explicit cases where relative Artin-Tate motives with non-trivial monodromy
actually appear.

The proof of Theorem A combines a ”spreading-out” technique valid for con-
structible motives, a weight argument for (smooth) Artin-Tate motives (see in par-
ticular Thm. 2.4.3), and an extension argument based on Wildeshaus’s analysis
of weights and of minimal/intermediate extensions of pure motives. This first re-
sult relies on a new notion of fair extension (Def. 2.5.3) based on Wildeshaus’s
work. Note secondly that we rely on the proper base change theorem for étale
torsion sheaves to check that the local systems have the required property for a fair
extension to exist (see the end of the proof of Theorem 2.5.8).

The singular case. The general case is more complicated and involves the
theory of perverse sheaves. Recall that this theory exists either in the analytical
setting, or in the `-adic étale one. So let us denote as above by Q either the field Q
or Q`, intending that one uses sheaves on the associated analytical site in the first
case, and étale `-adic sheaves in the second.

When k is an algebraically closed field of characteristic zero or the separable clo-
sure of a finite field, the decomposition theorem of Beilinson-Bernstein-Deligne says
that a decomposition of the form (D) still exists provided one replaces the canon-
ical t-structure by the perverse one. Moreover, each perverse cohomology sheaf
pRf∗(QX) is semi-simple in the perverse heart of Db

c(S). These two statements can
be expressed by the existence of a topological decomposition in Db

c(S,Q)

(BBD) Rf∗(QX) =
⊕
λ

jλ!∗(Lλ)

where there exists an integer nλ such that Lλ[nλ] is a simple local system on a
smooth locally closed subscheme jλ : Uλ ⊂ X and jλ!∗(Lλ) denotes the intermediate
extension (or intersection complex) defined in [BBD82a].6

5This statement is even false if one assumes that the fibers are homogeneous spaces as in [Iyer]
6 Note in particular that one deduces isomorphisms pRf∗(QX)[−n] '

⊕
λ|nλ=n jλ!∗(Lλ) and:

(D’) pRf∗(QX) ' ⊕npRnf∗(QX)[−n].
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According to [CH00, Th. 2], it is expected from the standard conjectures that
the above decomposition should lift to the category of Chow motives. In other
words, there should exist a motivic decomposition of the form

(1.0.0.a) hS(X) '
⊕
λ

Mλ

in the pseudo-abelian category CHM(S), and such that ρB(Mλ) = jλ!∗(Lλ). Here
again, using the more general definition of Chow motives as pure motives of weight
0 in DM(S), it is not unreasonable to assume that such motivic decompositions
exist when we only assume that f : X → S is proper and X is regular, without
assuming that S is defined over a field. Following ideas of Bondarko in [Bon15],
this can in fact be deduced from the existence of a suitable motivic t-structure. We
refer the interested reader to Definition 2.2.3. Let us also recall that Theorem A
gives plenty of examples of such a generalized decomposition.

The existence of motivic decompositions, in the presence of singularities of f ,
has only been obtained in a few cases. First by Gordon, Hanamura, Murre in
[GHM03, Th. I in §2] and then by Nagel and Saito in [NS09], for conic bundles
over a surface (see also [Bou16]). Nonetheless, the conjectural existence of such
decompositions, in the form (1.0.0.a), suggests a notable theoretical fact, which
was of course already intended by Beilinson’s conjectures: there should exist a lift
of the (algebraic) intersection complexes of [BBD82b], and more generally of the
intermediate extension operator j!∗. This is especially important in the motivic
part of the Langlands program, where the first construction of a Chow motive
realizing to intersection cohomology was provided by Scholl in [Sch90], in the case
of modular curves. In recent years, Wildeshaus has started a systematic study of
motivic intermediate extensions based on the formalism of DM(S) and Bondarko’s
weight structures. He and his students successfully applied these methods to many
families of higher dimensional Shimura varieties, the most recent one being the
case of genus two Hilbert-Siegel varieties treated by the first author in [Cav19].
The most general construction applies to some relative motives of ”abelian type”
(see [Wil17]).

Wildeshaus’s techniques have never been applied to the motivic decomposition
problem. This is the original motivation of our paper. In our second main theorem,
we adapt the construction of loc. cit. to extend the result of Nagel and Saito to
two types of projective quadric bundles, eventually with singular fibers, and over
arbitrary characteristic 0 bases.

Theorem B (see Cor. 4.1.7, Cor. 4.2.5). Let S be a scheme over a field of
characteristic 0, and f : X → S be a projective quadric bundle such that one of the
following conditions holds:

(1) the discriminant of X/S is a normal crossing divisor in X;
(2) X/S is regular (which means ”generic” in a precise sense, see Def. 4.1.4).

We consider the stratification {Sφ} of S given respectively by

(1) the intersections of the irreducible components of the discriminant (see Def.
4.2.2) in case (1);

(2) corank (see after Def. 4.1.4) in case (2).
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Then hS(X) admits a motivic decomposition

hS(X) '
⊕
i,φ

jφ!∗(ρ!(Vi,φ)(−ni,φ))[−2ni,φ]

with Vi,φ a simple Artin representation of π1(Sφ).

Let us describe the strategy of proof and the difficulties that arise when trying
to adapt the construction of [Wil17] to our situation. First recall that Wildeshaus’s
construction, given a stratification Φ = {Sφ} of the base S, consists in constructing
a glued subcategory of Chow motives starting from constant local systems upstairs.
Based on a criterion of semi-primality (see Def. 3.1.1), this glueing procedure
guarantees the existence of the functors j!∗ when j is the immersion between (union
of) strata. We have two difficulties to circumvent in order to apply this construction.

The first one is that we need to consider more general local systems, as it is known
from the work of Beauville that in the case of an algebraically closed base field, Prym
motives should appear in the motives of quadric bundles. As these correspond to an
étale cover of degree 2,7 we are led to consider smooth Artin-Tate motives as natural
motivic local systems. But then, in order to adapt Wildeshaus’s construction, one
needs to control the degeneracy of smooth Artin-Tate motives, as was already
done in the smooth case, in the proof of Theorem A. Fortunately, by purity of the
branch locus we need only to control the degeneracy in codimension 1. Then it
is sufficient to assume that the smooth Artin-Tate motives are tamely ramified to
ensure sufficient regularity of the degenerations; see the proof of Theorem 3.2.4.

The second difficulty is that to perform the glueing construction, Wildeshaus
has to assume that the closures of strata of {Sφ} are smooth. This assumption is
satisfied in the case (1), but not in the case (2) of regular quadric bundles. In order
to deal with these singularities, we have to construct a suitable resolution of the
strata, S → Φ, in such a way that we can control the pushforward of the tamely
ramified smooth Artin-Tate motives appearing on the (abstract) blow-ups. This is
achieved by considering the geometry of quadrics, more precisely by using the flag
variety associated with the quadratic vector bundle of the regular quadric bundle.
This is where the assumption regular appears; see Proposition 4.1.3 and Lemma
4.1.5.

Then Wildeshaus’s glueing construction goes through and one obtains a suitable
category of tamely ramified (S/Φ)-constructible Artin-Tate motives DMAT

tr (S/Φ)
(see Definition 3.2.7). Moreover, this category satisfies the following good proper-
ties:

• Bondarko’s weight structure restricts to this subcategory. The correspond-
ing weight 0 part, denoted by ATtr(S/Φ), is a pseudo-abelian subcategory
of CHM(S) which is semi-primary (Theorem 3.2.10).

• The functor j!∗ exists, for j an inclusion of strata , and commutes with the
realization functors (Theorem 3.3.1).

• The realization functors restricted to DMAT
tr (S/Φ) are conservative (The-

orem 3.3.2).

Finally, we prove that, under the hypothesis of Theorem B, hS(X) belongs to
DMAT

tr (S/Φ), and get our main theorem.

7given by the spectrum of the associated Clifford algebra see 2.5.12, or by the Stein factorization

of the Fano scheme see the proof of Theorem 4.1.6
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Possible developments. We believe that our method for proving Theorem B,
based in particular on Theorem A, should apply to other situations. Firstly one
could investigate projective families of a different type, for example degenerations of
Grassmannians or Severi-Brauer varieties. The geometry of hyper-kähler varieties
or K3 surfaces should also offer a suitable playground. Lastly, the Example 2.5.14
suggests that one could look at the arithmetic case, where we work with (flat
regular) schemes over rings of integers. In particular, the theory of regular quadric
fibrations in this case still seems manageable according to [APS15].

Plan of the paper

In the first section, we recall the theory of gluing and weights for rational mixed
motives, and state several versions of motivic decompositions, in order of generality.
We then give some basic definitions and computation of relative smooth Artin
motives, analog of Artin motives over a field, and show that smooth Artin-Tate
motives have weights, extending work of Levine and Wildeshaus. Finally, we deduce
our first motivic decomposition theorem, based on the previous preparations.

The second section deals with an extension of Wildeshaus’s theory of motivic in-
termediate extensions in order to be able to deal with (smooth) Artin-Tate motives
and their extensions along immersions. Along the lines of Wildeshaus’s theory, we
first recall the abstract notion of semi-primary category and its application to in-
termediate extensions. We then specialize the construction to treat our own version
of gluing adapted to some Artin-Tate motives. The key idea here is that the well-
known condition of tame ramification allows us to control the degeneracy of this
particular type of motives (see Definition 3.2.2). Then, we are able to construct a
suitable category of glued well-ramified Artin-Tate motives, which satisfies several
good properties, as explained in the introduction.

The last section deals with our last theorem, the motivic decomposition of certain
families of projective quadric bundles. We first explain our notion of regularity for
quadric bundles (Definition 4.1.4), and then deduce from the construction of Section
2 our first motivic decomposition (Corollary 3.2.13). The last part of Section 3 deals
with the motivic decomposition in the case where the discriminant locus is a normal
crossing divisor.
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Notations and conventions

Given an arbitrary group G, and a field K of characteristic 0, we will denote by
RepA

K(G) the abelian monoidal category of finite dimensional K-representations V
of G which factor through a finite quotient of G. When G is a pro-finite group, this
amounts to the continuity of the action. WhenG = π is the étale fundamental group
of a geometrically pointed scheme X, or the usual fundamental group of a complex
variety, representations in RepA

K(π) are classically called Artin representations. In

any case, thanks to Maschke’s lemma, the category RepA
K(G) is semi-simple.
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All our schemes are implicitly assumed to be excellent noetherian finite and
dimensional.

Given (such) a scheme S, we denote by DMc(S,Q) the triangulated category
of constructible rational motives over S.8 We let 1S be the constant motive over
S (which is also the unit of the monoidal structure). We will use cohomological
motives over S: given any morphism f : X → S, we put:

hS(X) = f∗(1X).

We will also heavily rely on the Bondarko’s theory of weight structure, and espe-
cially the canonical (Chow) weight structure on DMc(S,Q). We recall these notions
in Section 2.1.

Another important property of rational mixed motives from [CD19] that we will
use is the so-called continuity property (see Def. 4.3.2, Prop. 14.3.1 of op. cit.).
We will use it in the following form (see Prop. 4.3.4 of op. cit.):

Proposition 1.0.1. Let (Si)i∈I be a projective system of schemes with a projective
limit S in our category of schemes. Then the canonical functor:

2− lim−→
i∈I

DMc(Si,Q)→ DMc(S,Q)

is an equivalence of categories.

We will use two kinds of triangulated realization functors:

• Let ` be a prime invertible on S. We have the `-adic realization:

ρ` : DMc(S,Q)→ Db
c(Sét,Ql)

where the right-hand side is the constructible derived category of Ekedahl’s
`-adic étale sheaves with rational coefficients (see [CD16, 7.2.24]).
• Let E be a characteristic 0 field given with a complex embedding σ : E → C.

Assume S is a finite type E-scheme. We have the Betti realization:

ρB : DMc(S,Q)→ Dc(S
an,Q)

where the right-hand side is the constructible derived category of rational
sheaves over the analytical site of San = Sσ(C). This realization is obtained
from that of [Ayo10] as the following composite:

DMc(S,Q) ' SHc(S)Q+ ⊂ SHc(S)Q
Betti′S⊗Q−−−−−−−→ Dc(S

an,Q
where:

– SHc(S) is the constructible stable A1-homotopy category (made of
compact spectra over S).

– SHc(S)Q+ is plus-part of the rationalization of SHc(S) (see eg. [CD19,
16.2.1])

– the first equivalence is given by [CD19, Th. 16.2.13].
– the functor BettiS is (the obvious restriction of that) defined in [Ayo10,

Def. 2.1].

8In [CD19], several models of this category are given: Beilinson motives (Def. 15.1.1), Voevod-
sky’s h-motives (Th. 16.1.2), Voevodsky’s motivic complexes (S geometrically unibranch scheme,

Th. 16.1.4), the plus-part of the rational stable homotopy category (Th. 16.2.13 and 5.3.35), the

P1-stable A1-derived étale category (Th. 16.2.22). All models being equivalent, the reader is free
to choose his preferred one.
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These two realization functors admit a right adjoint and commute with the six
operations.9

2. Smooth Artin-Tate motives and motivic decompositions

2.1. Gluing and weights on Beilinson motives.

2.1.1. In the theory of rational mixed motives, a crucial property is given by the glu-
ing formalism [BBD82a, Sec. 1.4.3], which is a consequence of Morel-Voevodsky’s
localization theorem [MV99, Th. 2.21, p. 114]. Given a closed immersion i : Z ↪→ S
with complementary open immersion j : U ↪→ S, one has six functors

(2.1.1.a) DMc(U,Q)
j! //

j∗
// DMc(S,Q)j∗oo

i∗ //

i!
// DMc(Z,Q) ,i∗oo

satisfying the formalism of [BBD82a, Sec. 1.4.3].10

This property will be at the heart of our results (see in particular Section 2.1).
They are the starting point of Hébert’s and Bondarko’s extension of the weight
structure on rational motives, from the case of perfect fields to that of arbitrary
bases. Let us recall this theory, from [Héb11, Thm. 3.3, thm. 3.8 (i)-(ii)], for future
references.

Theorem 2.1.2. For each scheme S, there is a canonical weight structure w on the
triangulated category DMc(S,Q) called the motivic weight structure. The family
of these weight structures indexed by schemes S is uniquely characterized by the
following properties.

(1) The objects 1S(p)[2p] belong to the heart DMc(S,Q)w=0 for all integers p,
whenever S is regular.

(2) For any morphism f : T → S, the functor f∗ (resp. f∗) preserves negative
weights (resp. positive weights). When f is separated of finite type, the functor f !

(resp. f!) preserves positive weights (resp. negative weights).

We will only use the motivic weight structure in this paper. So w will always
mean weights for the motivic weight structure. Over a base scheme S, the heart
of this weight structure will be denoted by CHM(S) and is called the category of
Chow motives over S.

Remark 2.1.3. Gluing of (motivic) weights. Note in particular from point (2) that
when f is finite (resp. etale separated of finite type), f∗ (resp. f∗) preserves
weights. Moreover, under the assumption of the paragraph preceding the theorem,
it follows from the gluing diagram (2.1.1.a) and point (2) that the motivic weight
structure on S ”satisfies gluing”: a motive M on S is w-positive (resp. w-negative)
if and only if j∗(M) and i!(M) (resp. j∗(M) and i∗(M)) are w-positive (resp.
w-negative).

Remark 2.1.4. Assumptions on base schemes. Note that in loc. cit., it is assumed
that schemes are of finite type over an excellent base scheme B of dimension less
than 3. First, this assumption is not used in the proof of the above statement.
Secondly, the only reason this assumption appeared in motivic homotopy theory
is for the proof of the Grothendieck-Verdier duality (also called ”local duality”),

9This is proved in the references indicated above.
10This is the so-called localization property of motives, extensively studied in [CD19, §2.3].
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[CD19, Th. 4.4.21].11 Since then, this result has been generalized to the schemes
considered in our paper by Cisinski in [Cis19, §2.3]. It is used in [Héb11] only in
the statement of Corollary 3.9.

2.2. Motivic decompositions. In this section, we formulate several forms of mo-
tivic decompositions, which are extensions of the classical Chow-Künneth decom-
position, as well as its relative form recalled in the introduction (see Introduction,
”The smooth case”, page 3). Recall that the first example of a relative Chow-
Künneth decomposition was obtained for abelian schemes by Deninger and Murre
in [DM91].

The first generalized form of motivic decompositions is due to Corti and Hana-
mura [CH00]. Let us recall the definition.

Definition 2.2.1. Let k be an algebraically closed field of characteristic 0, and
consider ρ either the Betti realization ρB associated with a fixed complex embedding
of k, or the `-adic realization ρ` (see our Notations and conventions, page 8). Let
f : X → S be a projective morphism of quasi-projective k-schemes such that X is
smooth over k, and the associated BBD-decomposition (BBD).

A Corti-Hanamura decomposition (in short: CH-decomposition) of the Chow
motive hS(X) is a finite decomposition

hS(X) '
⊕
λ

Mλ

in the pseudo-abelian category CHM(S) such that ρ(Mλ) = jλ!∗(Lλ).

When f is smooth, the decomposition (BBD) is a refinement of the decomposi-
tion (D) discussed in the introduction. So in the smooth case, a CH-decomposition
is similarly a refinment of a CK-decomposition.

Example 2.2.2. Such decompositions have been constructed in a few cases, partic-
ularly in complex algebraic geometry: cf. [GHM03, dCM10, MSS12].

The specificity of the above definition is to incorporate the singular case as well.
The statement of our first motivic decomposition theorem, 2.5.8, together with
Bondarko’s work [Bon15] lead us to the following more general kind of motivic
decompositions of pure weight 0 motives.

Definition 2.2.3. Let f : X → S be a proper morphism such that X is regular.
A Bondarko-Corti-Hanamura decomposition (in short: BCH-decomposition) of the
Chow motive hS(X) is a finite decomposition

hS(X) '
⊕
λ

jλ!∗(Mλ)

in CHM(S) where jλ : Vλ → S is a locally closed immersion, Vλ is regular, Mλ is
a weight 0 motive over Vλ whose `-adic realisation is a local system up to a shift,
and ρ`jλ!∗(Mλ) = jλ!∗

(
ρ`(Mλ)

)
.

The interest of this definition is that it does not require a base field, and more-
over, it makes sense without having to choose a prime invertible on S; in particular
over Z. Note also that our formulation implies the existence of a decomposition

11More precisely, it is used to obtain some resolution of singularity statement; see loc. cit.
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of the form (D’) (see footnote 6, page 5), for all primes `, and contains an ”inde-
pendence of `” result: under the existence of a BCH-decomposition, the rank of
pRnf∗(Q`) will be independent of ` (see also Cor. 2.5.11).

2.2.4. Link with Bondarko’s version of the motivic conjectures. As said before,
the definition is partly motvivated by analysing the work of Bondarko [Bon15]. In
particular, we can conjecturally justify the existence of BCH-decompositions. In-
deed, the existence of such decompositions would be a consequence of the existence
of the motivic t-structure together with the assumption that it is transversal (see
[Bon15, Def. 1.4.1]) to the Chow weight structure.12 More precisely, to get the
BCH-decomposition under the previous assumption, one can apply op. cit.:

• Prop. 1.4.2, point (3) to the weight 0 motive hS(X) to get the analogue
of the relative Chow Künneth decomposition: hS(X) ' ⊕iHi(hS(X))[−i],
Hi computed for the motivic t-structure.
• Prop. 4.2.3, to get the decomposition for each Hi(hS(X)) given it is pure

of weight i.
• Rem. 4.2.4, point 2 to get the statement about the `-adic realisation of the

BCH-decomposition.

Note moreover that Bondarko obtains in his Proposition 4.2.3 the uniqueness of the
set of isomorphism classes of the factors of the BCH-decomposition. We have not
stated this uniqueness property in the above definition. Indeed, to give a proper
statement we either need the existence of the heart of the motivic t-structure,
or conservativity of the `-adic realisations.13 However, we think that establish-
ing BCH-decompositions is a good way to approximate the conjectural motivic
t-structure, as shown by Deligne’s formula (D’).

Example 2.2.5. There is at least one easy example where a BCH-decomposition
exists: this is the case of relative lci cellular morphisms, first addressed by Karpenko
(see [ADN20, Def. 5.3.1, Cor. 5.3.7] for the more general case).14 Theorem 2.5.8
gives many more examples in the smooth case (see also 2.5.10), and has indeed
served as a motivation for the previous definition.

2.3. Smooth Artin motives. It is possible to extend the known results on Artin
motives over a field to the relative case. Let us start with the definition.

Definition 2.3.1. We define the category of (constructible) smooth Artin motives
over S as the thick triangulated subcategory of DMc(S,Q) generated by motives of
the form hS(X) (resp. hS(X)(n)) for X/S finite and étale. We denote this category
by DMA

sm(S,Q).

12Note also that Bondarko shows that this would be a consequence of Beilinson’s conjec-

tures (see op. cit., Prop. 4.1.1). He also gives an argument to get it as a consequence of the
standard conjecture D together with Murre’s conjectures. Note that to get the existence of BCH-

decompositions in all cases, we need to apply these conjectures for all residue fields of S, and
all `-adic realisations! Of course, this kind of exercise in juggling between motivic conjectures
has its limit; we only hope to convince the reader that our definition of BCH-decompositions is

reasonable.
13Note however that in our Theorems A and B below, the involved motives belong to subcat-

egories on which the realisations can be proven to be conservative (Thm. 3.3.1). So, in our cases
we do get uniqueness of isomorphism classes in the BCH-decompositions.

14This is not surprising as one can interpret the BCH-decomposition as an attempt to find an

algebraic analogue of cellular decompositions of differential varieties.
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Note that for X/S finite étale, hS(X) coincides with the Voevodsky motive
MS(X).

Example 2.3.2. Let k be a perfect field. Then it follows from [VSF00, Chap. 5,
Rem. 2. after 3.4.1] (see also [Org04] for details) that there exists a canonical
equivalence of triangulated monoidal categories:

DMA
sm(k,Q) ' Db

(
RepA

Q(Gk)
)

where Gk is the absolute Galois group of k, and RepA
Q(Gk) denotes the continuous

representations of Gk with rational coefficients.

2.3.3. Let us recall that one model of DM(S,Q) is obtained as the P1-stable A1-
derived category of the category Sh(SmS,ét,Q) of rational étale sheaves on SmS

(see [CD19, 16.2.18]).
The inclusion ρ : Sét → SmS,ét of étale sites induces a fully faithful and exact

functor:
ρ! : Sh(Sét,Q)→ Sh(SmS,ét,Q).

Note ρ! is moreover (symmetric) monoidal. One deduces a canonical composite
functor:

D(Sét,Q)
ρ!−→ D

(
Sh(SmS,ét,Q)

)
→ DM(S,Q)

the last functor being obtained by projection to the A1-localization and then taking
infinite suspensions. We will still denote the latter composite by ρ!.

Then ρ! is triangulated and monoidal. By definition, it sends the sheaf repre-
sented by a finite étale scheme X/S on Sét to the same object on SmS,ét, seen as a
motivic complex. This is just MS(X) = hS(X).

Proposition 2.3.4. Assume S is a regular connected scheme. Let π = π1(Sét) be
the étale fundamental group of S associated with some geometric base point. Then
the functor ρ! is fully faithful when restricted to the full subcategory Db

(
RepA

Q(π)
)

and induces an equivalence of triangulated monoidal categories:

ρ! : Db
(

RepA
Q(π)

)
→ DMA

sm(S,Q).

Moreover, the `-adic realisation functor restricted to DMA
sm(S,Q) lands into the

bounded derived category of Artin `-adic Galois representations and the composite
functor:

Db
(

RepA
Q(π)

) ρ!−→ DMA
sm(S,Q)

ρ`−→ Db
(

RepA
Q`(π)

)
is just the extension of scalar functor associated with Q`/Q.

Proof. We prove the first assertion: fully faithful nature of the restriction of ρ!.
Note that the functor ρ! admits a right adjoint ρ∗. The functor ρ∗ commutes with
direct sums: this follows formally as D(Sét,Q) is compactly generated.15 We have

to prove that for all complexes K,L in Db
(

RepA
Q(π)

)
, and say any n ∈ Z for the

next reduction, the map:

Hom(K,L[n])→ Hom(ρ!K, ρ!L[n]) = Hom(K, ρ∗ρ!L[n])

is an isomorphism. Now we use the fact Db
(

RepA
Q(π)

)
is generated by shifts of

sheaves representable by some finite étale cover X/S. So we are reduced to the

15In fact, it is equivalent to D(SNis,Q) as π is pro-finite.
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case K = Q(X), L = Q(Y ) for X and Y étale cover of S. Explicitly, we have to
prove that the following map is an isomorphism:

Hom(Q(X),Q(Y )[n])→ Hom(hS(X), hS(Y )[n]).

In the monoidal category Sh(Sét,Q), and therefore in D(Sét,Q), the sheaf Q(Y )
is auto-dual. The same result holds for hS(X) in DM(S,Q) (as for example ρ! is
monoidal). Applying the formulas Q(X)⊗Q(Y ) = Q(X×SY ) and hS(X)⊗hS(Y ) =
hS(X ×S Y ), we are reduced to the case Y = S. In other words we have to prove
that the canonical map:

(2.3.4.a) Hn(Xét,Q)→ Hom(hS(X),Q[n]) = Hn,0
M (X,Q)

is an isomorphism. Note that X is regular, as it is étale over S. Thus it is geomet-
rically unibranch and we get from [AGV73, IX, 2.14.1]:

Hn(Xét,Q) = Qπ0(X) for n = 0, 0 otherwise.

Also, according to [CD19, 14.2.14], we get:

Hn,0
M (X,Q) = Gr0

γK−n(X)Q = Qπ0(X) for n = 0, 0 otherwise,

and so the map (2.3.4.a) is necessarily an isomorphism.
The other assertions are clear, by definition of the category of smooth Artin

motives. �

In the complex case, we get a simpler formulation.

Proposition 2.3.5. Let E be a field of characteristic zero, S a smooth connected
E-scheme and π = π1(San) for any choice of base point of San.

Then the Betti realisation functor:

ρB : DMc(S,Q)→ D(San,Q)

is fully faithful when restricted to DMA
sm(S,Q) and induces an equivalence of trian-

gulated monoidal categories:

ρB : DMA
sm(S,Q)→ Db

(
RepA

Q(π)
)
.

The proof uses the same argument as in the case of the previous proposition,
given that hS(X) is realized to the complex R fan

∗ (QX) which is concentrated in
degree 0 and equal to the continuous representation of π represented by the Galois
cover Xan over San.

Remark 2.3.6. The two previous propositions are obviously compatible: in the
assumptions of the second one, we get according to a theorem of Grothendieck:

π1(Sét) ' ̂π1(San)

where the right hand-side denotes profinite completion. In particular, we get equiv-
alence of (abelian semi-simple monoidal) categories:

RepA
Q
(
π1(Sét)

)
' RepA

Q

(
̂π1(San)

)
' RepA

Q
(
π1(San)

)
.
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2.4. Weights on smooth Artin-Tate motives. The purpose of this section is
to extend results of Wildeshaus, [Wil16] on Artin-Tate motives over a field to the
case of a regular base scheme S. Moreover, for the purpose of our main theorem,
we will need to restrict the type of allowed Artin motives, as in loc. cit. So we
introduce the next definition.

Definition 2.4.1. Let S be a regular connected scheme with étale fundamental
group π = π1(Sét). Let A be a full Q-linear sub-category of RepA

Q(π) which is stable

under retracts.16

We define the triangulated category of smooth Artin-Tate motives of type A over
S as the thick triangulated subcategory of DMc(S,Q) generated by motives of the
form ρ!(A)(n) for an object A of A and an integer n ∈ Z (see Proposition 2.3.4 for
the definition of ρ!). We denote it by DMAT

sm (S,Q).

When A = RepA
Q(π), the above category is simply the category of smooth Artin-

Tate motives over S, denoted by DMAT
sm (S,Q).

Remark 2.4.2. Note that compared to Definition 1.6 of [Wil16], we do not as-
sume that A is closed under tensor product. As a consequence DMAT

sm (S,Q) is not
monoidal in general.

Theorem 2.4.3. Consider the above notations and assumptions of the above defi-
nition.

Then the weight structure on DMc(S,Q) restricts to a weight structure on the
triangulated sub-category DMAT

sm (S,Q). Moreover, any motive M in DMAT
sm (S,Q)

of weight 0 admits a decomposition:

(2.4.3.a) M '
⊕
i∈I

ρ!(Vi)(ni)[2ni]

where I is a finite set, Vi is a simple Artin representation of π in A and ni is an
integer. (See Paragraph 2.3.3 for ρ!).

Remark 2.4.4. (1) Another way of stating the second assertion is that the
canonical functor

Db(A)→ DMAT
sm (S,Q)w=0 = DMAT

sm (S,Q) ∩ CHM(S,Q)

(Vn)n∈Z 7→
⊕
n∈Z

ρ!(Vn)(n)[2n]

is essentially surjective. Contrary to what happens in [Wil16], over a perfect
field, this functor is not an equivalence of triangulated categories. The
problem comes from the non-triviality of CHn(V )Q for n > 0 and V/S
finite étale. So in particular, the preceding functor is an equivalence when
S is (regular) semi-local.

(2) The decomposition (2.4.3.a) is a particular case of the Corti-Hanamura
decomposition: If we apply the `-adic realization functor ρ` to an Artin
representation Vn we get (according to the last assertion of Prop. 2.3.4)

ρ`(M) '
⊕
i∈I

(Vi ⊗Q Q`)(ni)[2ni].

16And therefore stable under kernel and cokernel as RepA
Q (π) is abelian semi-simple. In par-

ticular, A is abelian semi-simple.
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In particular, if the decomposition (2.4.3.a) of M is not unique. But the
pairs (Vi, ni) for i ∈ I are uniquely determined by M (or its realization).

Proof. Let us show the first assertion. Let H be the full Q-linear sub-category of
DMAT

sm (S,Q) whose objects are of the form (2.4.3.a), where Vi is a simple object
of A. As S is regular, all motives in H are of weight 0. In particular, given such
motives M , N , one has Hom(M,N [i]) = 0 for i > 0. This condition implies that
there is a unique weight structure on DMAT

sm (S,Q) (see eg. [Wil09, 1.5]), whose
heart is the pseudo-abelianization K of H. It follows from the axioms of weight
structures that this weight structure is just the restriction of the Chow weight
structure, thus proving the first assertion.

To prove the second assertion, it is sufficient to prove that K = H, i.e. that H
is pseudo-abelian. Let e : M →M be an idempotent of H. By assumption, we can
write M =

∑r
i=1 ρ!(Vi)(ni)[2ni] where Vi is an object of A (semi-simple, but not

necessary simple) and n1 < n2 < ... < nr. We prove by induction on the number
of factors r of M that e admits a kernel in H.

We treat the case r = 1. According to Proposition 2.3.4, and the fact that twists
are invertible, the category of motives of the form ρ!(V1)(n1)[2n1] for an object V1

of A and an integer n1 is equivalent to the abelian (semi-simple) category A. This
implies that any idempotent of a motive of this form admits a kernel, giving the
case r = 1.

Assume the result is known for any integer less than r > 1, and prove the
case where M has exactly r factors as above. Put P = ρ!(V1)(n1)[2n1] and Q =∑r
i=2 ρ!(Vi)(ni)[2ni] so that M = P ⊕Q. Given that decomposition, we can write

the idempotent e as a 2 by 2 matrix:

e =

(
a b
c d

)
.

Then c belongs to

⊕ri=2 Hom
(
ρ!(Vi)(ni)[2ni], ρ(V1)(n1)[2n1]) = CHn1−ni(Vi ×S V1)

using the auto-duality of ρ!(V ) (see the proof of Prop. 2.3.4) — in the right hand-
side, we identify the sheaf Vi with the finite étale S-scheme which represent it.
As by assumption, n1 < ni for i > 1, we get that c = 0. Note that a and d
are idempotent, respectively of P and Q. According to the induction case, these
idempotents admit a kernel in H. One easily deduces from the matrix form of e
that Ker(a)⊕Ker(d) is a kernel of e in H. This concludes the induction step, and
the proof. �

2.5. First decomposition theorem. For the needs of the proof of our first de-
composition theorem, we will extend some definitions of [Wil12]. Let us first recall
the following theorem, Th. 1.7 of loc. cit.

Theorem 2.5.1 ((Wildeshaus)). Let j : U → S be an open immersion. Then the
weight-exact functor j∗ induces an additive exact functor

j∗ : CHM(S)→ CHM(U)

which is essentially surjective and full.

2.5.2. Consider an open immersion j : U → S and a Chow motive M over U . A
Chow extension of M along j will be a pair (M̄, α) where M̄ is a Chow motive
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over S and α is an isomorphism j∗(M̄)
∼−→ M . Morphisms of such extensions are

defined in the obvious way.
According to the previous theorem, extensions of M along j always exist. The

goal of the work of Wildeshaus is to find (and to define) the intermediate extension
of M along j: see [Wil17], Summary 2.12. For the needs of our first decomposition
theorem, we will use a special type of Chow extensions that we now introduce.

Definition 2.5.3. Consider the above notations, assuming that j is dense. Then
a Chow extension (M̄, α) of M along j will be called fair if the induced map

End(M̄) −→ End
(
j∗(M)

) α∗−−→ End(M)

is an isomorphism — i.e. a monomorphism according to the previous theorem.

The proof of the following result is identical to that of [Wil12, Th. 3.1(a)].

Theorem 2.5.4. Consider the notations of the previous definition. Assume a fair
Chow extension (M̄, α) of M along j exists.

Then for any extension (P, β) of M along j, there exists a decomposition of P
of the form:

ψ : P
∼−−→ M̄ ⊕ i∗(LZ)

where LZ is a Chow motive over Z, satisfying the relation: j∗(ψ) = α−1 ◦ β.
If moreover (P, β) is fair, then LZ = 0 and the isomorphism ψ is uniquely

determined by the preceding relation.

Example 2.5.5. A fair Chow extension as above is a particular instance of Wilde-
shaus’s theory of intermediate extension j!∗(M), as shown for example by the char-
acterizing property (4a) of Summary 2.12 of [Wil17]. The preceding theorem can
also be interpreted as a minimality property of the extension (M̄, α).

One cannot always expect that such minimal extensions exist (the correct hope
is formulated in loc. cit., Conjecture 3.4; cfr. Rmk. 3.1.5). However, here are some
interesting examples.

(1) Assume that U is regular, and the normalization of X is regular. Then 1U

admits a fair Chow extension: this is [Wil12, Th. 3.11(a)].
(2) Assume that both U and S are regular. Let V/U be an étale cover. Using

a classical terminology, we will say that V is non-ramified along (S −U) if
there exists an étale cover V̄ /S whose restriction to U is V . In that case,
for any integer n ∈ Z, the Artin-Tate motive M̄ = hS(V̄ )(n)[2n] is a fair
Chow extension of M = hU (V )(n)[2n] along j.

Indeed, M̄ is obviously a Chow extension of M along j (using the six
functors formalism). Moreover, as in the proof of Prop. 2.3.4, one gets:

End(M̄) ' Qπ0(V̄×S V̄ ), End(M) ' Qπ0(V×UV ).

As V ×U V is a dense open of V̄ ×S V̄ , we get that M̄ is fair as claimed.

Remark 2.5.6. The reader can check that one can replace, in [Wil12, Th. 3.11]
points (a) and (b), the constant motive 1U by a smooth Artin-Tate motive hU (V )
such that V is unramified along (S − U).

2.5.7. Recall also that a Chow motive over a field k is said to be Tate if it is
isomorphic to a finite sum of motives of the form 1(i)[2i] for an integer i ∈ Z.
By extension, a smooth proper k-scheme is said to be Tate if its associated Chow
motive is Tate.
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Theorem 2.5.8. Let S be a regular connected scheme with étale fundamental group
π. Let f : X → S be a smooth proper morphism whose geometric fibers are Tate.

Then there exists an isomorphisms of motives over S:

hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]

where I is a finite set, Vi is a simple Artin representation of π and ni is a non-
negative integer. In other words, hS(X) is a smooth Artin-Tate motive over S of
weight 0 — see Theorem 2.4.3.

Moreover, this decomposition is a BCH-decomposition of the Chow motive hS(X)
(see Def. 2.2.3), and the set

{(
[Vi], ni

)
, i ∈ I

}
where [Vi] denotes the isomorphism

class in RepA
Q(π) (or what amount to the same in the corresponding category of

simple étale S-covers) is uniquely determined by the property that for any prime
integer ` and any n ≥ 0:

(2.5.8.a) R2n f ′∗(Q`) '
⊕

i∈I|ni=n

V ′i ⊗Q Q`(−ni)

where f ′ and V ′i are pullback of f and Vi along the open immersion U [`−1]→ U .

Proof. Let η̄ be a geometric generic point of S. By assumption, one gets:

hη̄(Xη̄) '
∑
i∈I

1η̄(−ni)[−2ni].

According to the continuity property of DMc (see Proposition 1.0.1), there exists
a dense open j : U → S and an étale cover p : V → U such that the above
isomorphism lifts to:

hV (XV ) '
⊕
j∈J

1V (−mj)[−2mj ].

In particular, hU (XV ) = p∗(hV (XV )) '
∑
j∈J p∗(1V )(−mj)[−2mj ] is a smooth

Artin-Tate motive over U . As p is finite étale, the natural map

p∗ : hU (XU )→ hU (XV )

is a split monomorphism, with splitting 1
d .p∗ where p∗ is the Gysin morphism

associated with p (see e.g. [CD19, 13.7.4 and 13.7.6]). In particular, hU (XU ) is a
smooth Artin-Tate motive, and it follows from Theorem 2.4.3 that there exists a
decomposition:

hU (XU ) '
⊕
i∈I

ρ!(Wi)(−ni)[−2ni]

where Wi is a simple Artin representation of π1(U). Given a prime `, we let U ′ =
U [`−1], fU ′ the pullback of f over U ′, W ′i the Artin representation of π1(U ′) induced
by Wi. According to Remark 2.4.4(2), and because ρ`(hU ′(XU ′)) ' R fU ′∗(Q`), one
gets:

(2.5.8.b) R2n fU ′∗(Q`) '
⊕

i∈I|ni=n

W ′i ⊗Q Q`(−ni).

This is the decomposition of the locally constant sheaf R2n fU ′∗(Q`) into semi-
simple components (beware the W ′i might not be simple). As this sheaf admits an
extension to all S, namely R2n f ′∗(Q`), f ′ = f [`−1], it follows that each representa-
tion W ′i is unramified along (S − U). As this is true for any prime `, one deduces
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that Wi is unramified along (S−U); i.e. it admits an extension Vi to S. According
to Example 2.5.5(2), one deduces that⊕

i∈I
ρ!(Vi)(−ni)[−2ni]

is a fair Chow extension of hU (XU ). As hS(X) is obviously a Chow extension of
hU (XU ), one deduces from Theorem 2.5.4 that there exists a decomposition:

(2.5.8.c) hS(X) '
⊕
i∈I

ρ!(Vi)(−ni)[−2ni]⊕ i∗(MZ)

for some Chow motive MZ over Z. Note that Relation (2.5.8.b) implies Relation
(2.5.8.a).17

It remains to prove that MZ = 0. As the morphism p : S′ =
∑
` prime S[`−1]→ S

is a pro-open cover, the pullback functor p∗ : DM(S) → DM(S′) is conservative
(use the continuity property of DM [CD19, Th. 14.3.1] and the Zariski separation
property as in the proof of [CD19, Prop. 4.3.9]). In particular, we can fix a prime
` and work over S[`−1]. To simplify notation, let us assume S = S[`−1]. Consider
a point x ∈ Z, and let ix : {x} → Z be the canonical immersion. Let x̄ be a
geometric point over x. By assumption, hx̄(Xx̄) is a Tate motive. In other words,
the motive i∗xhS(X) = hx(Xx) is an Artin-Tate motive over the residue field κ(x).
Decomposition (2.5.8.c) gives:

hx(Xx) '
⊕
i∈I

ρ!(Vi,x)(−ni)[−2ni]⊕ i∗x(MZ)

where Vi,x denotes the pullback of Vi to x (seen as an étale sheaf). As recalled
in Remark 2.4.4(2), applied over κ(x), the `-adic realization of hx(Xx) determines
the factors of the decomposition of hx(Xx) into twists of Artin motives (up to
isomorphisms and permutations). Thus relation (2.5.8.a) (which we have already
established), specialized at x using the smooth base change theorem in `-adic étale
cohomology, implies that the set of isomorphism classes of the Vi,x describes all
the possible factors of the weight 0 Artin-Tate motive hx(Xx) and this implies
i∗x(MZ) = 0. One concludes as (i∗x)x∈Z is a conservative family of functors on
DMc(Z,Q) (see [CD19, 4.3.17]). �

Remark 2.5.9. Note also that we deduce from Example 2.5.5 that for any dense open
immersion j : U → S, hS(X) is a fair Chow extension of hU (XU ). In particular,
hS(X) = j!∗(hU (XU ).

Example 2.5.10. Relative Severi-Brauer schemes, étale locally cellular schemes, rel-
ative homogeneous varieties, smooth quadrics.

Corollary 2.5.11. Under the assumption of the previous theorem, for any integer
n ≥ 0, the integer:

dimQ`
(

Rn f∗(Q`)
)

is independent of the prime ` invertible on S.

17In particular, we know that ρ`(MZ) vanishes but this is not sufficient to conclude (as we do

not know yet that the `-realization is conservative).
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2.5.12. An important corollary for us is the case of smooth quadrics: following
[DK73, XII, Def. 2.4], a smooth quadric over a scheme S is a smooth proper
morphism f : X → S whose geometric fibers are smooth quadric hypersurfaces in
the classical sense.

Let us introduce some notations in order to state the next corollary. Assume f
has constant relative dimension n. According to op. cit., 2.6, there exists a Severi
Brauer S-scheme P (X) which contains X as an effective Cartier divisor of degree
2. If n = 2m, the center of the Clifford OS-algebra associated with the closed pair(
P (X), X

)
is an étale cover Z(X) over S of degree 2; op. cit., 2.7.

Then, applying Theorem 2.5.8 and [DK73, Th. 3.3] one gets:

Corollary 2.5.13. Consider the above notations. Assume that S is regular and
that there exists a prime ` invertible on S.

Then there exists a decomposition of Chow motives over S as follows:

hS(X) '

{⊕n
i=0 1S(i)[2i] if n = 2m+ 1,

hS
(
Z(X)

)
⊕
⊕n

i=0,i6=m 1S(i)[2i] if n = 2m.

Example 2.5.14. Let us give some concrete examples illustrating the above Corollary
when S is an arithmetic scheme.

(1) It is known that smooth quadrics over Spec(Z) exist: one way to see this has
been explained by Buzzard in [hb]. One considers a quadric hypersurface X in PNQ
whose Hessian matrix H is a symmetric, integer valued (N + 1)× (N + 1) matrix
with detH = ±1 and even entries down the diagonal; e.g., the Gram matrix of
any even unimodular lattice (these exist in any positive dimension divisible by 8)
provides such an H. As detH is non-zero mod p for any prime p, the quadric X
admits a proper and smooth model over Z.
(2) Since Spec(Z) is simply connected (a consequence of Minkowski’s theorem),
the previous construction yields quadrics whose motive decomposes, according to
Cor. 2.5.13, as a sum of Tate motives (the Artin factors are necessarily trivial).
In order to find cases where genuine Artin-Tate motives appear, we have to place
ourselves over a non-simply connected base. Let then F be a number field with
ring of integers OF , such that S := Spec(OF ) has non-trivial étale fundamental
group. In this setting, examples abound, as we are going to argue following a line
of thought suggested to us by G. Ancona.

Let N be a positive integer. Analogously to Example (1) above, we look to a
OF -valued 2N × 2N matrix H, such that any entry on the diagonal is divisible by
2, and detH is invertible in OF . We may take for example N = 2, OF = Z[

√
−5]

(we have then π1,ét(S) ' Z/2Z) and

(2.5.14.a) H =

(
A 0
0 B

)
, A =

(
−4
√
−5 9

9 4
√
−5

)
, B =

(
2

√
−5√

−5 −2

)
The matrix H is then the Hessian matrix of a smooth quadric X in P2N−1

S .
We want to exhibit examples where the motive hS(Z(X)) of Cor. 2.5.13 is non-
Tate. By proper base change and Thm. 2.3.4, it is enough to make sure that there
exists a prime p of OF such that the Galois representation on HN−1

ét (Xp,Q`), for
` 6= p := carOF /p, is non-trivial. The Lefschetz fixed point formula shows that the
latter property is equivalent to the condition

Card
(
Xp(Fq)

)
6= 1 + q + ...+ 2qN−1 + ...q2N−2,
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where Fq denotes the field OF /p and q = pr for some r. This can be checked in
specific cases, using the following elementary fact: a quadratic form in at least three
variables over a finite field always admits an isotropic vector, hence always contains
an hyperbolic plane.

We make explicit this principle when N = 2. Let m be the quadratic form
in four variables over Fq obtained by reducing the coefficients of H modulo p.
By the fact just recalled, m can be written in the form ut = rx2 + sy2, with
r, s ∈ F×q . Now a computation shows that if rx2 + sy2 has no isotropic vectors,

then Card
(
Xp(Fq)

)
= 1 + q2, thus giving us the desired quadric. For example, if

we choose A and B as in (2.5.14.a) and suppose that p 6= 2, we have r = s = 1, and
the fact that the bilinear form x2 + y2 has no isotropic vectors is equivalent to ask
that 1 = disc(x2 + y2) 6= −1 mod (F×q )2, which is equivalent to ask −1 not being
a square in Fq. Now choose as p one of the two prime ideals above the completely
split prime p = 3. Then, Fq = Z/3Z, and −1 is not a square mod 3.

3. Recall and complement on Wildeshaus’s motivic intermediate
extensions

3.1. Semi-primary categories and motivic intermediate extensions. Recall
the following definition.

Definition 3.1.1. A Q-linear category C is semi-primary if

(1) for all objects B of C, the radical

radC(B,B) := {f ∈ HomC(B,B)|∀ g ∈ HomC(B,B), idB −gf is invertible}
is nilpotent;
(2) the quotient category C/ radC is semisimple.

Adopt the notations of subsection 2.1. We are now going to explain how the
notion of semi-primality leads to a definition of an intermediate extension functor,
following Wildeshaus.

Let · denote any of the schemes U , S or Z, and fix C(·) full pseudo-abelian
subcategories of the categories DMc(·,Q), related by gluing. Assume that they
inherit a weight structure (automatically compatible with the gluing) from the
restrictions of the motivic weight structure. The subscript w = 0 will mean that
we are taking the heart of such weight structures.

Moreover, denote by C(S)uw=0 the quotient of the category C(S)w=0 by the two-
sided ideal18 g generated by HomC(S)(A, i∗B) and HomC(S)(i∗B,A), with (A,B)
varying on the collection of objects of C(S)w=0 × C(Z)w=0 such that A admits
no non-zero direct factor belonging to C(Z)w=0. Finally, denote by C(Z)uw=0 the
quotient of the category C(Z)w=0 by the restriction of g to C(Z)w=0 (with respect
to the fully faithful inclusion i∗ : C(Z)w=0 ↪→ C(S)w=0).

Theorem 3.1.2. [Wil17, Theorem 2.9]

(1) If C(Z)w=0 is semi-primary, then the functors j∗ and i∗ induce a canonical
equivalence of categories

(3.1.2.a) C(S)uw=0 ' C(U)w=0 × C(Z)uw=0

(2) If both C(Z)w=0 and C(U)w=0 are semi-primary, then so is C(S)w=0.

18Note that in our setting, this ideal will always be contained in radC(S)w=0
([Wil17, Cor. 1.5

(a)]).
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Definition 3.1.3. Suppose that C(Z)w=0 is semi-primary. The intermediate ex-
tension is the fully faithful functor

j!∗ : C(U)w=0 ↪→ C(S)uw=0

corresponding to the functor (idC(U)w=0
, 0) under the equivalence of categories

(3.1.2.a).

It follows from its very definition that the motivic intermediate extension functor
j!∗ enjoys the following property ([Wil17, Summary 2.12 (b)]):

Proposition 3.1.4. Consider the notation and the assumptions of the previous
definition. Then, any object M of C(S)w=0 is isomorphic to a direct sum j!∗MU ⊕
i∗N , for an object MU of C(U)w=0 and an object N of C(Z)w=0. The object MU is
such that j∗M ' MU (hence unique up to unique isomorphism) and N is unique
up to an isomorphism, which becomes unique in C(Z)uw=0.

Remark 3.1.5. It is believed that for any S, the heart CHM(S) of the motivic weight
structure on DMc(S,Q) is semi-primary (cfr. [Wil17, Conj. 3.4]). This conjecture
is at the moment completely out of reach, but it would permit, by choosing as C(·)
the whole of the categories DMc(·,Q), to define (up to non-unique isomorphism)
the intermediate extension to S of any Chow motive on U .

3.2. Semi-primary categories of Chow motives. The aim of this section is
to single out some subcategories of Chow motives which can actually be shown
to be semi-primary and which will be suited for our geometric applications. We
will adapt Wildeshaus’ methods from [Wil17], in order to show semiprimality of
subcategories which are different19 from the ones considered in op. cit..

Fix a scheme S admitting a good stratification S, i.e. such that S may be written
as a finite (set-theoretic) disjoint union

⊔
σ∈S Sσ of locally closed subschemes such

that the closure Sσ of each stratum Sσ is a union of strata.
We make the following assumption on our good stratification:

Assumption 3.2.1. For all σ ∈ S, the strata Sφ are nilregular20, with nilregular
closure.

Fix a stratum Sσ and consider the categories DMAT
sm (Sσ,Q) introduced in Defi-

nition 2.4.1.

Definition 3.2.2. The category of tamely ramified smooth Artin-Tate motives over
Sσ is the category DMAtrT

sm (Sσ,Q) obtained by choosing A = Atr, where Atr is the
full subcategory of direct factors of objects corresponding to finite étale morphisms
q : XSσ → Sσ which are tamely ramified in codimension 1 ([dJ, 57.31, tag 0BSE])).

Remark 3.2.3. In the previous definition, suppose that Sσ is a scheme of charac-
teristic zero. Then any finite étale morphism with target Sσ is tamely ramified in
codimension 1, and the category DMAtrT

sm (Sσ,Q) equals DMAT
sm (Sσ,Q).

Theorem 3.2.4. Let S be a scheme with a good stratification S satisfying Assump-
tion 3.2.1. Then:

19See Rmk. 3.2.11 for a comment on these differences.
20I.e., the underlying reduced scheme is regular.
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(1) the categories DMAtrT
sm (Sσ,Q) of tamely ramified smooth Artin-Tate motives

over Sσ, σ ∈ S, can be glued to give a full, triangulated sub-category DMAT
tr (S)

of DMc(S,Q), called the category of S-constructible tamely ramified Artin-Tate
motives over S. This subcategory is dense.
(2) Let M ∈ DMc(S,Q). Then the following conditions are equivalent.
(a) M ∈ DMAT

tr (S).
(b) j∗M ∈ DMAtrT

sm (Sσ,Q) for all σ ∈ S, where j denotes the immersion Sσ ↪→ S.
(c) j!M ∈ DMAtrT

sm (Sσ,Q) for all σ ∈ S.
In particular, the triangulated category DMAT

sm (S,Q) of smooth Artin-Tate motives
over S is contained in DMAT

tr (S).
(3) The category DMAT

tr (S) is pseudo-abelian.

Proof. One proceeds by induction on the number of strata. If there is only one
stratum, all claims are trivial, except for the last claim of part (1) and for part
(3). Of course, it suffices to prove part (3). But in the case we are treating, the
category in question is just DMAT

sm (S,Q), and it has been shown in the proof of
Thm. 2.4.3 that this category has a (bounded) weight structure whose heart is
pseudo-abelian. Hence (by [Bon10, Lemma 5.2.1]), the category DMAT

sm (S,Q) itself
is pseudo-abelian.

As for the induction step, we have that the theorem is true for the complement
Z of any open stratum U , with its stratification SZ , by the induction hypothesis.
Write jU , resp. iZ , for the open, resp. locally closed immersion of U , resp. Z, in
S.

In order to prove (1), we will prove that the criterion given by [Wil17, Prop. 4.1.
(a)] is satisfied; it says that DMAtrT

sm (U,Q) and DMAT
tr (SZ) can be glued if and only

if for all objects M ∈ DMAtrT
sm (U,Q), i∗ZjU,∗M belongs to DMAT

tr (SZ). For this, we
can suppose that the closure of U in S is the whole of S, that S is connected, and
that S and Z are regular (and not just nilregular, cfr. Assumption 3.2.1). Then, we
take a direct factor MU of some motive hU (XU/U), with q : XU → U finite étale
and tamely ramified in codimension 1. Suppose now that Z is of codimension 1 in S.
Then by [dJ, Lem. 57.31.5, tag 0EYH], the normalization q′ : X → S of S in XU is
a finite morphism such that the restriction of X to U is isomorphic to XU and such
that Z ′ := ((q′)−1(Z))red is an effective Cartier divisor which is a regular scheme.
This shows that X is regular, because otherwise, any singular point of X would lie
in Z ′, and by a standard argument, it would be a singular point of Z ′. We can now
apply absolute purity to the closed immersion Z ′ ↪→ X, and by proper base change
and the fact that q′ induces an isomorphism Z ′ ' Z, we get that for any p ∈ Z, both
i!ZhS(X/S)(p) and i∗ZhS(X/S)(p) belong to DMAT

tr (SZ). Now, again using proper
base change, we see that i∗ZjU,∗hU (XU/U)(p) is a cone of the canonical morphism
i!ZhS(X/S)(p) → i∗ZhS(X/S)(p). Hence, it belongs to DMAT

tr (SZ). But the latter
category is dense by the induction hypothesis, so i∗ZjU,∗MU (p) belongs to it as
well. This means that the functor i∗ZjU,∗ maps the generators of DMAtrT

sm (U,Q) to
DMAT

tr (SZ). As a consequence, the whole of DMAtrT
sm (U,Q) is mapped to the latter

category under i∗ZjU,∗, and the criterion is fulfilled.
If Z is of codimension ≥ 2 in S, then q extends to a finite étale morphism

q′ : X → S by purity of the branch locus (see [dJ, Lem. 53.20.4, tag 0BMB]) and
we conclude by reasoning as above.

The proof of the remaining points carries over word by word from the proof of
the analogous points in [Wil17, Thm. 4.5]. �
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Let us now set up a slightly different notation, in order to treat the more general
geometric situations which we are interested in. Suppose that S is equipped with a
good stratification, denoted from now on by Φ. The subcategories we are interested
in will depend on the choice of a proper morphism π : S′ → S from a scheme S′

which admits a good stratification S, such that the preimage via π of any stratum
of Φ is a union of strata (i.e. π is a morphism of good stratifications). Whenever T
is a subscheme of S, we will denote by ST the stratification induced by S on S′T .

It will be necessary to make the following assumptions on the nature of the
stratifications S and Φ and of the morphism π:

Assumption 3.2.5. (cfr. [Wil17, Ass. 5.6])

(1) the good stratification S on S′ satisfies Assumption 3.2.1;
(2) for all φ ∈ Φ, the strata Sφ are nilregular;
(3) the morphism π is surjective, and for all φ ∈ Φ and σ ∈ S such that S′σ is a
stratum of π−1(Sφ), the morphism πσ : S′σ → Sφ is proper with geometrically con-
nected fibres, smooth, and such that the motive h(S′σ/Sφ) belongs to the category
of Tate motives over Sφ.

Remark 3.2.6. Since we ask πσ to be proper and smooth, the previous assumption
actually implies that h(S′σ/Sφ) belongs to the category of weight zero, smooth Tate
motives over Sφ.

Fix a morphism π : S′ → S of good stratifications Φ and S, satisfying Assump-
tion 3.2.5.(1).

Definition 3.2.7. The category DMAT
tr (S/Φ) is the pseudo-abelian completion of

the strict, full, Q-linear triangulated subcategory of DMc(S,Q) generated by the
images under π∗ of the objects of DMAT

tr (S).

Suppose moreover that Assumption 3.2.5.(2) is satisfied. Then, reasoning in the
same way as in the proof [Wil17, Cor. 4.11], we see:

Lemma 3.2.8. (1) The restriction of the motivic weight structure on DMc(S,Q)
induces a bounded weight structure on DMAT

tr (S/Φ). For π = id, this gives a
bounded weight structure on DMAT

tr (S).
(2) The heart of the above weight structure on DMAT

tr (S/Φ) is the pseudo-Abelian
completion of the strict, full, Q-linear additive subcategory of DMc(S,Q) gener-
ated by the images under π∗ of the objects of the heart of the weight structure on
DMAT

tr (S).

Definition 3.2.9. The heart of the weight structure on DMAT
tr (S/Φ) given by the

preceding Lemma is denoted by ATtr(S/Φ).

Now we can finally state the result that we want to employ.

Theorem 3.2.10. Let π : S′ → S be a proper morphism of good stratifications S,
Φ satisfying Assumption 3.2.5. Then, the category ATtr(S/Φ) is semi-primary.

Proof. By Thm. 3.2.4 and proper base change (cfr. the analogous [Wil17, Cor. 4.10
(b)]), the category DMAT

tr (S/Φ) is obtained by gluing the categories DMAT
tr (SSφ/Sφ)

for all φ ∈ Φ. Hence, to prove our claim, it is enough to prove semi-primality of
ATtr(SSφ/Sφ) for each stratum Sφ and then to apply Thm. 3.1.2.(2) iteratively.

We first observe that by Lemma 3.2.8.(2), the category ATtr(SSφ/Sφ) is the
pseudo-Abelian completion of the strict, full, Q-linear triangulated subcategory of
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DMc(Sφ) of objects, which are isomorphic to images under πσ of tamely ramified
Artin-Tate motives over S′σ, for σ ∈ S such that S′σ is a stratum of π−1(Sφ). This
implies that, by reasoning as in [Wil17, Thm. 5.4], the claim will follow as soon as
we prove that the objects of the latter form are finite dimensional in the sense of
Kimura.

Choose a couple of strata πσ : S′σ → Sφ as above and take a tamely ramified
finite étale morphism q : D → S′σ. The Stein factorization of the morphism πσ ◦ q
gives rise to a commutative diagram

D
q //

p

��

S′σ

πσ

��
S̃φ

r // Sφ

where p is proper with connected fibres and r is finite étale. Moreover, the fiber
of r over each point s of Sφ is in set-theoretic bijection with the set of connected
components of the fiber of πσ ◦ q over s. Thus, because of our assumption 3.2.5.(3)
on the properties of πσ, the degree of r is the same as the degree of q, say equal to
d. We get a diagram

D

p

��

ι

$$

q

))
S̃φ ×Sφ S′σ

q′
//

p′

��

S′σ

πσ

��
S̃φ

r // Sφ

where q′ is finite étale of degree d, so that ι has to be finite étale of degree 1, i.e.
it embeds D as a connected component of S̃φ ×Sφ S′σ. Call the latter scheme D′.
Then, using proper base change and the fact that q′ and r are finite étale, we get

h(D′/S̃φ) = p′∗1D′ ' p′∗q′∗1S′σ ' r
∗πσ,∗1S′σ = r∗h(S′σ/Sφ)

Since h(S′σ/Sφ) belongs to the category of weight zero, smooth Tate motives over

Sφ (again by Assumption 3.2.5.(3) and Rem. 3.2.6), we obtain that h(D′/S̃φ)

belongs to the category of weight zero, smooth Tate motives over S̃φ. The motive

h(D/S̃φ), being a direct factor of h(D′/S̃φ), belongs to the same category as well.

Now h(D/Sφ) is isomorphic to the direct image of h(D/S̃φ) under the finite étale
morphism r, and as a consequence, it is actually a weight zero, smooth Artin-Tate
motive over Sφ. As such, it is indeed finite dimensional (apply for example [Wil17,
Prop. 5.8 (c)]). As the objects we were interested in are direct factors of objects of
the form h(D/Sφ), we conclude.

�

Remark 3.2.11. (1) If we relax point (3) of Assumption 3.2.5 by asking that h(S′σ/Sφ)
be simply finite dimensional, the proof of the above theorem carries through, with
the following adjustments. First, one exploits the commutative diagram coming
from the Stein factorization and invokes proper base change and [Wil17, Prop. 5.8
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(a)] in order to show that h(D/S̃φ) is also finite dimensional. Then, one shows that
the same holds for h(D/Sφ), by applying [Wil17, Prop. 5.8 (c)].
(2) The above theorem differs in the following way from the analogous Thm. 5.4 in
[Wil17]. On the one hand, in order to deal with the gluing, we are forced to be more
restrictive on the choice of possible morphisms S′ → S. In fact, we ask for regularity
of the closure of the strata of S′, whereas in loc. cit., it is only asked the weaker
condition that for every immersion iσ of a stratum S′σ in the closure of a stratum,
the functor i!σ send the unit object to a Tate motive. Moreover, the morphisms πσ
in loc. cit. can belong to a more general class than the one considered here. On
the other hand, our stronger restrictions are necessary because, for a fixed S′ which
fulfils our requirements, the categories that we glue along the strata of S′ are more
general than the ones of loc. cit.

The proof of the above theorem shows in particular that for each φ ∈ Φ, denoting
by Zφ the complement of a stratum Sφ in its closure Sφ, the category ATtr(SZφ/Zφ)
is semiprimary. So we get:

Corollary 3.2.12. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.5. For each φ ∈ Φ, denote by jφ : Sφ ↪→ Sφ the
open immersion of a stratum in its closure. Then for each φ ∈ Φ, the intermediate
extension functor

jφ,!∗ : ATtr(SSφ/Sφ) ↪→ ATtr(SSφ
/Sφ)u

is defined (as in Def. 3.2.12).

Corollary 3.2.13. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.5. Let M be an object of the category ATtr(S/Φ).
Consider the notations of the previous Corollary, and denote moreover by iφ : Sφ ↪→
S the closed immersion of the closure of a stratum. Then, there exist a subset
Φ′ ⊂ Φ, objects Nφ in ATtr(SSφ/Sφ), φ ∈ Φ′, and a non-canonical isomorphism

M '
⊕
φ∈Φ′

iφ,∗jφ,!∗Nφ

Proof. We may always suppose, for simplicity, that there is only one open stratum
U := Sφ1

of Φ, and denote jφ1
by j : U ↪→ S. By using Cor. 3.2.12 and applying

Prop. 3.1.4, we know that we have an isomorphism

M ' j!∗MU ⊕ i∗N
with N an object of ATtr(SZ/Z). By proper base change and part (2) of Thm.
3.2.4, and the fact that pullback along open immersions sends weight-zero objects
to weight-zero objects, we know that the pullback of N to any stratum Sφ which
is open in Z belongs to ATtr(SSφ/Sφ). Thus, we can apply to it the functor
jφ,!∗ (defined using again Cor. 3.2.12). The statement then follows by an iterated
application of Prop. 3.1.4. �

Notations 3.2.14. To ease notation, in future applications we will often write jφ
for the immersion iφ ◦ jφ, and write jφ,!∗ for the functors iφ,∗jφ,!∗ appearing in the
decomposition of the previous Corollary.
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3.3. Compatibility with realizations and conservativity. . In this paragraph,
we will fix a generic point Spec(k)→ S of our base S, and we will make use of the

two realization functors with target the categories Db
c(Sk,ét,Q`) and Db

c(S
an
k ,Q),

obtained by composition with base change through Spec(k)→ S from the functors
ρ`, ρB introduced in the “Notations and conventions” section. Whenever we em-
ploy one of these two functors, we will implicitly assume that the hypotheses on S
and ` are satisfied. These functors will still be denoted by the same symbols.

Let us denote any of the two families of categories Db
c(Sk,ét,Q`) and Db

c(S
an
k ,Q)

by the same symbol Db
c(Sk). Both families of categories are equipped with a perverse

t-structure, whose heart (the corresponding category of perverse sheaves) will be
denoted Pervc(Sk) in both cases. We will then denote by

Hm : Db
c(Sk)→ Pervc(Sk)

the perverse cohomology functors, and if j : U ↪→ S is an open immersion, by

j!∗ : Pervc(Uk)→ Pervc(Sk)

the intermediate extension of perverse sheaves ([BBD82a, Déf. 1.4.22]). The com-
position of the collection of the perverse cohomology functors with one of the real-
ization functors will be called the corresponding perverse cohomological realization
functor.

The following result gives the compatibility of the functor of Def. 3.2.12 (when
available) with the realization functors:

Theorem 3.3.1. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.5. Denote by ρ any of the two realization functors
ρ` or ρB. For each φ ∈ Φ, denote by jφ : Sφ ↪→ Sφ the open immersion of a stratum
in its closure. Then:

(1) for any φ ∈ Φ, for any integer m, the restriction of the composition

Hm ◦ ρ : DMc(Sφ,Q)→ Pervc(Sφk)

to ATtr(SSφ
/Sφ) factors over ATtr(SSφ

/Sφ)u;

(2) for any φ ∈ Φ, for any integer m, the diagram

ATtr(SSφ/Sφ)
jφ,!∗ //

Hm◦ρ
��

ATtr(SSφ
/Sφ)u

Hm◦ρ
��

Pervc(Sφ,k)
j!∗ // Pervc(Sφk)

commutes.

Proof. The same proof of [Wil17, Thm. 7.2] applies. Indeed, the only ingredient
occurring in that proof, which has to be generalized, is op. cit., Cor. 7.13: we
need to obtain an analogous statement in our situation, i.e. we need to show that
the radical (cfr. Def. 3.1.1) of our categories ATtr(SSφ

/Sφ) is mapped to zero

under the perverse cohomological realization. The proof of Thm. 3.2.10 tells us
that over each stratum Sφ of S, the category ATtr(SSφ/Sφ) is actually contained
in the category AT(Sφ) of weight zero, smooth Artin-Tate motives over Sφ. Then,
the same strategy of proof of op. cit., Cor. 7.13, based on op. cit., Thm. 7.12,
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shows that we can obtain the desired statement as soon as we prove the following
claim: for any couple of finite étale morphisms

q1 : D1 → X, q2 : D2 → X

the ideal
radCHM(X)(hX(D1), hX(D2))

consists of morphisms which are mapped to zero under the perverse cohomological
realization. Now, by the same reasoning as in the proof of loc. cit., Thm. 7.12, we
may assume that X is the spectrum of a field k. But then, hX(D1) and hX(D2) are
Artin motives over k, i.e. objects of a full semisimple subcategory of CHM(X) =
CHM(k). Hence, the radical in question is zero. �

We end this section by discussing the conservativity of the restriction of the
realization functors to the categories DMAT

tr (S/Φ).

Theorem 3.3.2. Let π : S′ → S be a proper morphism of good stratifications S
and Φ, satisfying Assumption 3.2.5. Denote by ρ any of the two realization functors
ρ` or ρB. Then, the restriction of ρ to DMAT

tr (S/Φ),

ρ : DMAT
tr (S/Φ)→ Db

c(Sk)

is conservative.

Proof. We will adopt the strategy of [Wil18, Thm. 4.3], which adapts to our set-
ting and shows that conservativity of both realizations (`-adic and Betti) can be
deduced if the following properties hold21: (1) the weight structure on DMAT

tr (S/Φ)
is bounded, (2) its heart ATtr(S/Φ) is semi-primary and pseudo-Abelian, (3) the
restriction of ρ to ATtr(S/Φ) maps the radical to zero, and (4) zero is the only ob-
ject of ATtr(S/Φ) mapped to zero by ρ. The first two properties have been verified
before (Lemma 3.2.8 and Thm. 3.2.10), and property (3) has been seen to hold in
the course of the proof of Thm. 3.3.1. With this in our hands, we can imitate step
by step the proof of op. cit., Thm. 4.2 to show that property (4) is also verified
and to conclude. In fact, to argue as in loc. cit. we only need the existence of
the intermediate extension functor defined in Cor. 3.2.12, the fact that objects in
ATtr(S/Φ) decompose as direct sums of intermediate extensions (Cor. 3.2.13), and
the finite dimensional nature of the objects of the categories ATtr(SSφ/Sφ) (proof
of Thm. 3.2.10). �

4. Motivic decompositions of projective quadric bundles

4.1. Corti-Hanamura decomposition of general quadrics.

4.1.1. In this section we work over a field k of characteristic zero. Let V be a
k–vector space of dimension n. A quadratic form Q ∈ S2V ∨ can be viewed as a
symmetric map Q : V → V ∨. Its radical is the subspace Rad(Q) = ker(Q). It is
known from the theory of quadratic forms that Q descends to a symmetric bilinear
form Q on the quotient space V = V/Rad(Q) (cf. [Cas78, 2.6]). We say that Q
has corank r if dim(Rad(Q)) = r. The zero locus of Q defines a quadric X ⊂ P(V )

21These are precisely all of the assumptions which are shown to be sufficient for conservativity

in op. cit., Thm. 2.10, except for one: strictness of any morphism in the image of the perverse

cohomological realization, with respect to the weight filtration of the latter functor. Only the
`-adic realization is known to satisfy this last assumption. Building on this, Thm. 4.3 of loc. cit.

then shows how to obtain conservativity for the Betti realization, too.
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which is smooth if and only if r = 0. If r > 0 its singular locus is the linear
subspace Λ = P(Rad(Q)), and X is a cone with vertex Λ over the smooth quadric
X = V (Q) ⊂ P(V ) ∼= Pn−r−1

k .

Let
∆k = {Q ∈ S2V ∨|dim(kerQ) ≥ k}

be the space of quadratic forms of corank ≥ k. The standard desingularization of
∆k is

∆̂k = {(Q,F ) ∈ S2V ∨ ×G(k, V )|F ⊂ kerQ}.
For our purposes it is convenient to use a slightly different construction. We denote
by Fl(V ) = Fl(1, . . . , n− 1, V ) the variety of complete flags

F1 ⊂ ... ⊂ Fn−1 ⊂ Fn = V

where dim(Fi) = i. Define

∆̃k = {(Q,F•) ∈ S2V ∨ × Fl(V )|Fk ⊂ kerQ}.

The fiber of the projection map p2 : ∆̃k → Fl(V ) over F• is the vector space

H0(P(V ), IP(Fk)(2)). Hence ∆̃k is smooth. The advantage over the previous con-
struction is that we have inclusions

∆̃k+1 ⊂ ∆̃k ⊂ Fl(V )

for all k.

4.1.2. We now discuss the analogue of these constructions in the relative case. Let
S be a quasi–projective scheme over k. Let E be a rank n vector bundle over S,
and let L be a line bundle over S. A quadratic form on E with values in L is a
global section q ∈ H0(S, S2E∨ ⊗ L), or equivalently a symmetric homomorphism

q : E → E∨ ⊗ L.
Let ρ : P(E)→ S be the associated projective bundle with tautological line bundle
ξE = OP(E)(1). Using the isomorphism

H0(S, S2E∨ ⊗ L) ∼= H0(P(E), ξ2
E ⊗ ρ∗L)

we can identify q with a global section (still denoted by q) of ξ2
E ⊗ ρ∗L. The

associated quadric bundle is X = V (q) ⊂ P(E). The fiber of f : X → S over s ∈ S
is the zero locus of q(s) ∈ S2E∨s ⊗ Ls.

We write

∆i(q) = {s ∈ S| corank q(s) ≥ i}, Ui = ∆i(q) \∆i+1(q).

The restriction of q to Ui defines a homomorphism of vector bundles

qi : Ei → E∨i ⊗ Li
whose kernel Fi = ker(qi) is a subbundle of Ei of rank i. As before, the quadratic
form qi descends to a quadratic form qi on the quotient Ei = Ei/Fi. Geometrically
this means that the subscheme Xi = f−1(Ui) is a relative cone over Xi = V (qi) ⊂
P(Ei) with vertex P(Fi) i.e., for every s ∈ Ui the quadric Xs = f−1(s) is a cone
with vertex P(Fi,s) over Xs ⊂ P(Ei,s).
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Let Fl(E) be the bundle of complete flags in E with projection map π : Fl(E)→
S. The vector bundle π∗E has a flag of universal subbundles Si of rank i, i =
1, . . . , n− 1. The composition of

π∗q : π∗E → π∗E∨ ⊗ π∗L
and the inclusion λi : Si → π∗E defines

q̃i = π∗(q) ◦ λi : Si → π∗E∨ ⊗ π∗L.
Define

∆̃i(q) = V (q̃i) ⊂ Fl(E).

Proposition 4.1.3. If E∨ ⊗ E∨ ⊗ L is generated by global sections and q ∈
H0(X,S2E∨ ⊗ L) is general, then

(1) ∆i(q) is empty or has the expected codimension
(
i+1
2

)
and Sing(∆i(q)) =

∆i+1(q).

(2) ∆̃i(q) is smooth.

Proof. Note that if E∨ ⊗E∨ ⊗ L is generated by global sections, then the bundles
S2E∨ ⊗L, π∗(E∨ ⊗E∨ ⊗L) and S∨i ⊗ π∗E∨ ⊗ π∗L are globally generated. Part 1

is proved by adapting the argument of [B9̆1, 4.1] to the symmetric case; cf. [Ott95,
2.17]. Part 2 follows from Bertini’s theorem. �

Definition 4.1.4. We say that X → S is a regular quadric bundle if it satisfies the
conditions of the Proposition 4.1.3.

A quadric bundle f : X → S admits a natural stratification by corank. Write
Ui = ∆i(q) \ ∆i+1(q), Xi = f−1(Ui). As the stratification Φ = {Ui}i∈I does
not verify Assumption 1, we have to pass to a suitable base change and verify
Assumption 2. Define S′ = Fl(E) and consider the stratification S given by U ′i =

∆̃i(q) \ ∆̃i+1(q). Write X ′ = X ×S S′ and X ′i = Xi ×Ui U ′i .

Lemma 4.1.5. Let X → S be a regular quadric bundle. Then the stratification
S = {U ′i}i∈I satisfies Assumption 3.2.5.

Proof. Proposition 4.1.3 implies that the stratification S satisfies conditions (1)

and (2) of Assumption 3.2.5. The definition of ∆̃i(q) shows that the fiber of πi :

∆̃i(q)→ ∆i(q) over s ∈ ∆i(q) is

{(W•) ∈ Fl(Es)|Wi ⊂ ker q(s)}.
If s ∈ Ui then ker(q(s)) has dimension i, hence the fiber of the induced map U ′i → Ui
over s ∈ Ui is

{(W•) ∈ Fl(Es)|Wi = ker(q(s)} ∼= Fl(ker(q(s))× Fl(i+ 1, . . . , n, Es).

Over Ui we have an injective homomorphism of flag bundles

Fl(Fi)× Fl(i+ 1, . . . , n;Ei)→ Fl(Ei)

whose image is U ′i . Hence U ′i → Ui is a relative homogeneous space and hUi(U
′
i) is

a relative Tate motive. This implies that the stratification S also satisfies condition
(3) of Assumption 3.2.5. �

Theorem 4.1.6. Let X → S be a regular quadric bundle. Then hS(X) ∈ ATtr(S/Φ).
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Proof. We consider the stratifications Φ and S introduced above and write Xi =
f−1(Ui), X

′
i = Xi ×Ui U ′i . As we have seen before, Xi is a relative cone over

Xi with vertex P(Fi). The complement Vi = Xi \ P(Fi) is a locally trivial fiber
bundle over Xi with affine fibers. 22 A similar result holds after base change via
πi : U ′i → Ui: X

′
i contains the projective bundle P(F ′i ), where F ′i = π∗i (Fi), and the

projection of the complement V ′i = X ′i \ P(F ′i ) to U ′i factors as V ′i
ρi−→ X

′
i
σi−→ U ′i

where ρi is a locally trivial fiber bundle with affine fibers and σi is a smooth quadric

bundle. Hence hcU ′i
(V ′i ) ∼= hU ′i (X

′
i)(−i)[−2i]. As we have seen in Corollary 2.5.13,

the motive hU ′i (X
′
i) is either a relative Tate motive or a relative Artin-Tate motive

associated to a double étale covering Z(X
′
i) → U ′i . The latter case arises if n − i

is even, say n− i = 2m. In this case the double covering Z(X
′
i)→ U ′i comes from

the Stein factorisation of the relative Fano scheme of m–planes Fm(X
′
i/U

′
i) → U ′i .

Since we work in characteristic zero, the map Z(X
′
i) → U ′i is tamely ramified by

Remark 3.2.3. As hU ′i (P(F ′i )) is a relative Tate motive, the localisation triangle

hcU ′i (V
′
i )→ hU ′i (X

′
i)→ hU ′i (P(F ′i ))→ hcU ′i (V

′
i )[1]

then shows that hU ′i (X
′
i) ∈ DMAtrT

sm (U ′i ,Q) for all i. As the map hU ′i (P(F ′i )) →
hcU ′i

(V ′i )[1] is zero for weight reasons, it follows that hU ′i (X
′
i) has weight zero. Hence

hS′(X
′) ∈ DMAT

tr (S) thanks to part (2) of Thm. 3.2.4 and has weight zero by the
gluing property of motivic weights.

As S′ = Fl(E)
π−→ S is a relative homogeneous space we have

π∗1S′ ∼= 1S ⊕ (
⊕
i:ni>0

1S(−ni)[−2ni]).

By the projection formula we obtain

π∗hS′(X
′) = π∗π

∗hS(X) ∼= hS(X)⊕ (
⊕
i:ni>0

hS(X)(−ni)[−2ni]).

Hence hS(X) ∈ DMAT
tr (S/Φ). Since proper morphisms respect weights and hS′(X

′)
is of weight zero, π∗hS′(X

′) is of weight zero, as well as any of its direct factors.
So hS(X) ∈ ATtr(S/Φ). �

Corollary 4.1.7. A regular quadric bundle X → S admits a CH-decomposition
(see Def. 2.2.1).

Proof. By Corollary 3.2.13 every object M of the category ATtr(S/Φ) admits a
decomposition

M '
⊕
φ∈Φ′

iφ,∗jφ,!∗Nφ

withNφ in ATtr(SSφ/Sφ). The proof of Theorem 3.2.10 shows thatNφ ∈ DMAT
sm (Sφ,Q).

Using Theorem 2.4.3 we obtain a decomposition

Nφ '
⊕
i,φ∈Iφ

ρ!(Vi,φ)(ni,φ)[2ni,φ]

22In fact, if πi : P(Ei) → Ui is the projection map and if one chooses local trivialisations

Fi|U ∼= W ⊗OU , Ei|U ∼= V ⊗OU over an open subset U ⊂ Ui then Vi ∩π−1
i (U) is the total space

of the vector bundle OU (−1)⊕W ⊗OU ; cf. [EH16, 9.3.2]
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with Vi,φ a simple Artin representation of π1(Sφ). Taking M = hS(X) we get

hS(X) '
⊕
i,φ

iφ,∗jφ,!∗(ρ!(Vi,φ)(ni,φ))[2ni,φ]

which is a decomposition of hS(X) into simple objects of weight zero. Applying
the realisation functor ρB and using Thm. 3.3.1, we obtain a decomposition of
Rf∗QX into a sum of simple objects in Db

c(S,Q). The decomposition theorem of
Beilinson-Bernstein-Deligne gives isomorphisms

Rf∗QX '
⊕
k

pRkf∗QX [−k] '
⊕
k,λ

iλ,∗jλ,!∗(Lk,λ)[−k]

where Lk,λ is a local system on Sλ. Since the simple objects appearing in this
decomposition are unique, we conclude that they are realisations of Chow motives.
Hence X → S admits a Corti-Hanamura decomposition. �

Remark 4.1.8. Our proof gives a more precise statement: hS(X) is a direct sum of
motivic intermediate extensions of Artin-Tate motives of degree at most 2, hence
Rf∗QX decomposes as a sum of intersection complexes of local systems whose
monodromy is either trivial or Z/2Z. This has been observed in the example of
regular conic bundles over a surface [NS09]. In this case

Rf∗QX ' QS ⊕QS [−2]⊕ i∗L[−1]

where L is a local system on the smooth discriminant curve ∆ ⊂ S. The underlying
motivic decomposition is

hS(X) ' 1S ⊕ 1S(−1)[−2]⊕ Prym(∆̃/∆)(−1)[−2]

where Prym(∆̃/∆) is the Prym motive, an Artin-Tate motive of degree 2.

4.2. Corti-Hanamura decomposition of quadric bundles with normal cross-
ing discriminant.

4.2.1. The aim of this final section is to show that given the previous results, it is
also quite immediate to get a Corti-Hanamura decomposition for a class of quadric
bundles f : X → S over a field k of characteristic zero, which don’t satisfy anymore
the regularity assumption. We will instead suppose that the discriminant locus
i : D ↪→ S of f is a normal crossing divisor. To fix our conventions, this means
that D is a finite union of irreducible components

D =
⋃
i∈I

Di

such that for each finite subset J ⊆ I, the underlying reduced scheme of the scheme
DJ :=

⋂
j∈J

Dj is regular.

Fix now an ordering DJ1 , . . . , DJr of the set {DJ}J⊆I , in such a way that the
function dimDJi is (non-strictly) increasing with respect to i, and pose the follow-
ing:

Definition 4.2.2. The stratification S of S is the one obtained by choosing, for
each σ ∈ S := {1, . . . , r},

Sσ := DJσ \ (
⋃

k=1,··· ,σ−1

DJk)
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Note that the above defined S is a well-defined stratification (i.e., the closure of
each stratum is a union of strata). Then, it is clear from the definitions that we
have:

Lemma 4.2.3. The stratification S satisfies Assumption 3.2.1.

Hence, we can define the full, triangulated subcategory DMAT
tr (S) of DMc(S) as

in Thm. 3.2.4.

Theorem 4.2.4. Let X → S be a quadric bundle whose discriminant is a divisor
with normal crossings. Then, the motive hS(X) belongs to the category ATtr(S).

Proof. For each σ ∈ S, the fibers of XSσ over Sσ have constant corank. Hence, the
same computation as in the proof of Thm. 4.1.6 shows that hSσ (XSσ ) belongs to
DMAtrT

sm (Sσ,Q) for each σ ∈ S, and gives the conclusion. �

Finally, the proof of Corollary 4.1.7 can be repeated in order to show:

Corollary 4.2.5. A quadric bundle X → S whose discriminant is a divisor with
normal crossings admits a CH-decomposition.

We present an example where several nonconstant intersection motives appear
in the decomposition. First we need a Lemma.

Lemma 4.2.6. Let π : S′ → S be a finite morphism. Write U ′ = π−1(U), π′ = π|U ′
and let j : U → S, j′ : U ′ → S be the inclusions. If F is a perverse sheaf on U ′

then
j!∗(π

′
∗F ) ' π∗(j′!∗(F )).

Proof. As π and π′ are finite morphisms, the functors π∗ and π′∗ are t-exact for
the perverse t-structure [BBD82b, Cor. 2.2.6 (i)]. The result then follows from the
isomorphisms

π∗ ◦ j′∗ ' j∗ ◦ π′∗, π∗ ◦ j′! ' j! ◦ π′∗
using [loc.cit., 1.3.17 (iv) and 1.4.16]. �

Example 4.2.7. Let r be a nonnegative integer. Given a (r+1)x(2n+3) matrix
A = (aij) we define quadrics

Qi = {x ∈ P2n+2|
∑
j

aijx
2
j = 0} ⊂ P2n+2, i = 0, . . . , r.

The quadric bundle associated to the linear system of quadrics spanned byQ0, . . . , Qr
is f : X → Pr with

X = {(x, λ) ∈ P2n+2 × Pr|
∑
i,j

λiaijx
2
j = 0}.

The fiber Qλ of f over λ = (λ0 : . . . : λr) ∈ Pr is the zero locus of

qλ =
∑
j

(
∑
i

aijλi)x
2
j .

If A is a generic matrix, the discriminant locus of f is a simple normal crossing
divisor which is the union of 2n+ 3 hyperplanes: ∆ = D0 ∪ . . . ∪D2n+2 where

Dj = {λ ∈ Pr|
∑
i

aijλi = 0}, j = 0, . . . , 2n+ 2.
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By the previous Corollary f : X → S admits a CH-decomposition. We shall
show that it contains several nonconstant intersection motives by looking at the
topological realisation. Write dX = dimX = 2n + r + 1. By the decomposition
theorem 23

Rf∗(QX [dX ]) '
2n+1⊕

i=−2n−1

pRif∗(QX [dX ])[−i]

and the perverse direct images pRif∗(QX [dX ]) are direct sums of intermediate
extensions. By the perverse versions of the Lefschetz hyperplane theorem and the
hard Lefschetz theorem we have

pRif∗(QX [dX ]) =

{
Q[r] i 6= 0, i even

0 i 6= 0, i odd .

hence

Rf∗QX [dX ] '
n⊕

k=−n

Q[r − 2k − 1]⊕ pR0f∗(QX [dX ]).

Write
∆i = ∪j 6=iDi ∩Dj , Si = Di \∆i.

If λ ∈ Si then Qλ has an ordinary double point pλ and Qλ is a cone with vertex pλ
over a smooth quadric Qλ ⊂ P2n+1. Hence

R2n+2f∗Q|Si = Q⊕ Li
where Li is a nontrivial rank one local system on Si with monodromy Z/2Z. The
decomposition theorem then shows that

R2n+2f∗Q|Si = H−r+1(Rf∗QX [dX ]|Si) = Q[r − 1]⊕H−r+1(pR0f∗(QX [dX ]))

for all i. Thus, writing jα : Sα → Pr for the inclusion maps,

pR0f∗(QX [dX ]) '
r⊕

α=0

(jα)!∗(Lα)⊕R

whereR is a perverse sheaf supported in codimension≥ 2. Hence the CH-decomposition
of X → S is of the form

hS(X) '
n⊕
k=0

1(−k)[−2k]⊕
r⊕
i=0

Mi ⊕M

where ρ(M) = R and ρ(Mi) = j!∗(Li) for all i.

Remark 4.2.8. In the case r = 2 there is a direct construction of the motive Mi

underlying the intermediate extension of Li. In this case Di
∼= P1 and ∆i ⊂ Di is a

set of 2n+ 2 points. Let D′i → Di be the double covering ramified along ∆i. Then
D′i is a smooth hyperelliptic curve of genus n. Applying the previous lemma to the
diagram

S′i

π′

��

j′ // D′i

π

��
Si

j // Di

23For ease of comparison with the existing literature we have adopted the usual convention of
shifting by dX .
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we obtain π∗(j
′
!∗Q) ' Q⊕ j!∗(Li) since π′∗Q ' Q⊕ Li.

If we denote τ the hyperelliptic involution on D′i, the intermediate extension
j!∗(Li) is the realisation of the Prym motive Mi = (D′i,

1
2 (τ∗ + id)).

It is not clear whether there exists a similar description of the motives Mi if
r > 2. In this case the variety D′i is singular, hence Mi should be constructed as a
suitable direct factor of the ”intersection motive” of D′i.

Remark 4.2.9. If we take n = 0 and r = 2 in the example above (conic bundles
over P2) the result follows from [NS09] (The result in [loc.cit.] is more general and
applies to conic bundle over a surface with a reducible discriminant locus that is
not necessarily a simple normal crossing divisor.)
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