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Spatially varying regularization weights for one-step
spectral CT with SQS

Pierre-Antoine Rodesch, Salim Si-Mohamed and Simon Rit

Abstract—Photon-counting detectors provide spectral informa-
tion for x-ray acquisitions. Taking advantage of this information
currently requires iterative algorithms to reconstruct basis ma-
terial CT images. One-step reconstruction is the simultaneous
inversion of the spectral distortion occurring in the detector
and the geometrical projection. Separable quadratic surrogate
(SQS) algorithms have been applied to this one-step problem with
satisfactory convergence and material separation. However, this
class of method leads to numerical instabilities stemming from
voxels out of the field-of-view (FOV) which need to be included
in the forward model for reconstructing the FOV. We aim at
improving one-step spectral CT reconstruction by investigating
two possible corrections of this effect: replacing the exponential in
the forward model by a linear function for negative attenuations
and spatially varying regularization depending on the geometrical
conditioning. We demonstrate the efficiency of the second method
using experimental data acquired on a clinical prototype CT
scanner with a photon-counting detector.

I. INTRODUCTION

IN spectral computed tomography (CT), one-step ap-
proaches directly decompose photon counts in basis mate-

rial density volumes. This class of methods is opposed to two-
step methods, in which decomposition occurs before or after
tomographic reconstruction, and which are less computation-
ally expensive. The explicit one-step modeling enables regu-
larization of material volumes while simultaneously inverting
line integrals and the spectral distortion of the detector. This
provides density maps with less correlated noise and can also
be applied to K-edge imaging and unconventional scanning
geometries [1].

Several algorithms have been proposed to inverse the one-
step forward model. A combination of separable quadratic
surrogate (SQS) and Nesterov’s momentum methods have
proved efficient in solving the one-step reconstruction problem
of spectral CT with a K-edge material map from data acquired
with photon-counting detectors [2]. In SQS approaches, each
voxel is updated separately by minimizing a quadratic sur-
rogate of the cost function at each iteration. Several SQSs
have been developed for one-step spectral CT [3], [4], [6]. We
chose the SQS proposed by Weidinger et al. [3] combined with
ordered subsets (OS) and Nesterov’s momentum technique as
proposed in [4].

The problem addressed in this article are artifacts originat-
ing from voxels which are not in the field-of-view (FOV) but
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UMR5220 ; Inserm U1206 ; INSA-Lyon ; Université Lyon 1, France and
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which are iteratively updated to accurately model the forward
problem. These voxels are present in axial scans (the red
stripped parts in Fig. 1) and helical scans. They cannot be
accurately reconstructed due to limited angle data (since they
are not in the FOV) but they influence the FOV because they
are traversed by rays also going through the FOV (which is
why they are reconstructed) and due to three-dimensional (3D)
spatial regularization. This problem has already been described
in [5] for SQS applied to mono-energetic CT in a helical
acquisition case. The authors proposed to use a spatially
varying update step based on their geometrical conditioning,
i.e., the amount of projection data contributing to each voxel
(which is less for voxels outside the FOV).

We have observed the same problem in spectral CT but the
observed consequences are more severe. We focus here on
the case of axial CT acquisitions. Since the forward problem
generally involves the exponential function, negative values
in these regions quickly translate to numbers which cannot
be handled numerically. Unlike Kim et al [5], this behavior
is observed without OS, but OS enhance the phenomenon. A
potential solution would be the initialization of the one-step
reconstruction with material volumes close to the solution [4],
[6], e.g., a two-step reconstruction decomposition. We also
investigate solutions for these numerical instabilities using
a zero initialization to avoid the difficult question of the
influence of the accuracy of the initialization.

This paper investigates two corrections. The first one is the
replacement in the forward model of the exponential function
by a soft-exponential as proposed by Sidky et al. [7]. The
second one, inspired by [5] but formulated differently, is the

Fig. 1. Axial scan configuration with selected volume geometry. Displayed
numbers correspond to slice indices used in the results section.
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implementation of regularization weights which vary in the
volume according to the geometrical conditioning. We also
study the combination of both and compare the results to the
conventional SQS algorithm, with and without initialization.

II. MATERIALS AND METHODS

A. SQS

We briefly summarize in this subsection common equations
used in SQS techniques applied to the one-step problem. We
explain the choice we made for our uncorrected method. As
usual, the spectral discrete forward model is:

cib(f) =

Nε∑

ε=1

sib(ε) e
−ti(f,ε) (1)

where cib(f) is the expected counts in bin b for indexed
detector pixel i, sib(ε) is the effective spectrum at energy ε
and ti(f, ε) the attenuation of the object expressed by:

ti(f, ε) =

Nm∑

m=1

Nv∑

j=1

µm(ε)Aijfmj (2)

with µm(ε) the m-th basis (material) function, A the geomet-
rical projection matrix and f the unknown basis volumes to
be reconstructed with j the voxel index.

The problem is solved by minimizing the negative log-
likelihood:

DPL(c, f) =

Np∑

i=1

Nb∑

b=1

cib(f)− cib log
[
cib(f)

]
(3)

with c the measured photon counts.
A penalization term is added to the cost function with

a spatial regularization applied independently on each basis
volume:

R(f) =

Nm∑

m=1

βm

Nv∑

j=1

Nv∑

ξ∈Vj
φ(fmj − fmξ) (4)

with βm the regularization weight per material and φ a twice
differentiable convex function. In this study, we used the Green
prior which, unlike others like the Huber function, does not
require an extra hyperparameter. Only the βm have to be tuned.

The SQS method for one-step reconstruction relies on the
application of Newton’s method at each voxel j. It enables the
analytical minimization of Qn, the SQS calculated at iteration
n:

fn+1
j = fnj − [H(Qn)j ]

−1
.[(∇Qn)j ] (5)

where (∇Qn)j ∈ RNm is the gradient of Qn and H(Qn)j ∈
RNm×Nm its Hessian. This update scheme is accelerated with
OS and Nesterov’s momentum technique as described by Kim
et al. [8]. The gradient of the surrogate of the data fidelity
term is:

(∇Qn)j =
Np∑

i=1

Aij× (6)

Nb∑

b=1

(
1− cib

cib(fn)

) Nε∑

ε=1

sib(ε)e
−ti(fn,ε)µ(ε)

where µ(ε) ∈ RNm is the vector of attenuation coefficient
at energy ε. Note that by definition of surrogates, (∇Qn) =
(∇DPL|f=fn).

The Hessian of Weidinger’s surrogate [3] is:

H(Qn)j =

Np∑

i=1

Aij

( Nv∑

ξ=1

Aiξ

)
× (7)

Nb∑

b=1

Nε∑

ε=1

sib(ε)e
−ti(fn,ε) Tµ(ε)⊗ µ(ε)

where Tµ(ε)⊗ µ(ε) ∈ RNm×Nm .
As each basis material is regularized separately, we can
directly apply the regularization surrogate of De Pierro [9]
demonstrated in a mono-energetic case.

B. Proposed corrections
We now introduce modifications of the method described

in the previous subsection. We investigated two solutions in
order to stabilize voxels outside the FOV.

1) Soft-exponential (Soft-E): Even though negative values of
attenuation ti(f, ε) are unphysical, they can occur, in particular
in early iterations. The calculation of an exponential on a
positive number will produce large gradient values causing
divergence. To counteract this effect, we investigated the use of
the (negative) soft-exponential (adapted from Sidky et al. [7]):

softexp(t) =

{
e−t if t ≥ 0,
1− t if t < 0.

(8)

By replacing the exponential function in (1) with softexp(t),
we expect to lower the effect of negative attenuation
values and to prevent numerical instabilities. This leads to
straightforward modifications of (6) and (7).

2) Spatial regularization weights (SRW): there is not enough
projection data to reconstruct voxels outside the FOV. Intu-
itively, their values should therefore be more impacted by the
regularization with respect to voxels in the FOV. To realize
this, we implemented regularization weights which vary ac-
cording to the geometrical conditioning, formally defined by

λj =
Nθ

Np∑
i=1

Aij

(9)

with Nθ the number of scanned views in the 360 degree
axial scan configuration. The denominator represents the back-
projection of a sinogram filled with ones. The number λj
is equal to 1 in the FOV and is inversely proportional to
the number of projections contributing to the voxel update.
It is comparable to the scaling factor proposed by Kim et
al. [5] to handle helical data with an SQS algorithm for mono-
energetic data and used in their data attachment term. Instead,
we make regularization stronger in regions out of the FOV.
The penalization term (4) becomes

RSRW(f) =

Nm∑

m=1

βm

Nv∑

j=1

λj

Nv∑

ξ∈Vj
φ(fmj − fmξ). (10)
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Fig. 2. Iodine, gadolinium and water maps coming from 2D reconstruction configuration. The display windows are [-5,10], [-3,7], and [-500,1500] mg/ml
for iodine, gadolinium and water maps, respectively

C. Experiments

We tested the proposed solution on real spectral data of
the abdomen QRM phantom acquired with an axial scan on a
Philips’ prototype clinical scanner recently installed in Lyon
(France), which is an upgrade of [10] with mainly a larger
photon counting detector. Iodine and gadolinium tubes at
different concentrations were placed inside the QRM phantom.
For this study, projection data were binned in 462 columns
and 16 rows with 2.06 mm × 2.01 mm pixel size. The source
voltage was 120 kV and 2400 views were acquired with a total
330 mA.s exposure.

The phantom was decomposed in iodine/gadolinium/water
material maps. Voxel size was 1 mm × 1 mm × 3 mm. The
FOV is 500 mm × 500 mm × 17.5 mm but only 450 ×
330 voxels were reconstructed per slice for this object. A
total of 11 slices were reconstructed, 5 central slices with
only voxels in the FOV and 3 extra slices at both ends as
shown in Fig. 1. The number of subsets was set to 8 and
Nesterov’s momentum was reset every 50 iterations (i.e. 400
voxel updates). Regularization uses a 27 voxels neighborhood.
Reconstructed volumes were post-processed with an image-
based correction for ring artifacts.

The material density volumes used for the non-zero initial-
ization (NZI) were obtained with a projection-based material
decomposition. The latter was calculated from a maximization
of Poissonian likelihood [11] solved with 5000 iterations of the
simplex algorithm of Nelder and Mead. The basis sinograms
were 3D-median filtered and then reconstructed using a least
squares data fidelity term and quadratic spatial regularization
solved with the conjugate gradient algorithm. Voxels outside
the FOV at each end were replaced from the closest ones in
the FOV in the axial direction.

For comparison and to study convergence, the volume was
also reconstructed in a simplified configuration. A 2D volume
was reconstructed from the two middle rows of the detector
averaged to form a one-row detector perfectly aligned with
the source and one axial slice. This 2D axial slice was
reconstructed with no subset and 1600 iterations. In this 2D
configuration, we did not observe the numerical instabilities
observed with the 3D configuration of Fig. 1 which is why it
was used as a reference to evaluate the central slice of the 3D
results (#6 in Fig. 1).

Fig. 3. Water volumes at 100 iterations, slice 6/11 is the central slice and
slice 8/11 is the last top slice in FOV (cf Fig. 1. a) Uncorrected method. b)
Uncorrected method with NZI. c) With Soft-E. d) With SRW. The display
window is [-500,1500] mg/ml.

III. RESULTS

The reference result is displayed in Fig. 2. The reconstruc-
tion of K-edge tubes with more than 2 mg/ml is visually satis-
factory while the separation between iodine and gadolinium is
subject to artifacts in the cortical part of the vertebra equivalent
material.

We only show the water maps in Fig. 3, but other material
decomposition images showed similar artifacts. This figure
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Fig. 4. RMSE between the central and the 2D volume for each methods.
(Horizontal line expresses the numerical error appearance.)

corresponds to the reconstruction after 100 iterations. The
process was continued until 200 iterations but faced numerical
error (not a number (NaN) after taking the exponential of
a too large number) at 130 iterations for the uncorrected
method and 140 for the uncorrected method with NZI (using
single precision floats). There was no such error with both
the Soft-E and SRW corrections after 200 iterations. Note that
we purposely chose large axial slice thickness because the
numerical errors occur earlier in the iterations compared to
isotropic 1 mm slice thickness but it also occurs with 1 mm
slice thickness.

Fig. 3 clearly illustrates the negative effect of voxels out
of the FOV and in the FOV with SQS algorithms. The NZI
does not help to stabilize the behavior while the image quality
with SRW is visually much more satisfactory with a minor
extra computation cost. The Soft-E seems to slow down the
divergent behavior of the reconstruction but cannot prevent it.

Fig. 4 shows the mean squared error between the central
slice and the 2D reference volume:

RMSE =
1

NvsNm

Nvs∑

j=1

Nm∑

m=1

√
(fbj − f2Dbj )

2 (11)

with Nvs the voxel number in a slice and fbj the central slice
values of each method.

Even if the central slice seems visually satisfactory after 100
iterations (Fig. 3), the RMSE reveals the divergent behavior
of methods without SRW. We investigated the combination of
Soft-E and SRW in the same algorithm but the contribution of
adding Soft-E was negligible, both visually and on the RMSE.

The numerical instabilites outside the FOV have also been
noticed without the OS implementation or the use of Nes-
terov’s momentum technique. The SRW methods can be linked
to the expression of the Hessian of the surrogate in SQS
methods. This term depends on the number

Nv∑

ξ=1

Aiξ (12)

which corresponds to the projection of a volume filled with
ones which appears in the SQS algorithm (7). It weights the
influence of a pixel in the current update. Due to geometrical
conditioning, this coefficient is smaller in voxels outside
the FOV. This term is crucial to accelerate convergence in
the FOV: without it, we have observed slower convergence.

However, out of the FOV, it leads to larger update steps in
Newton’s scheme. The SRW is a simple way to preserve its
effect in the FOV while guaranteeing convergence in the entire
volume grid required in an iterative reconstruction.

Results were demonstrated in an axial configuration scan.
We expect the helical case studied by Kim et al. [5] to be
similar. The proposed correction can be applied to a helical
source trajectory with a slight modification of the spatial
weights λj .

IV. CONCLUSION

One-step reconstruction with an SQS algorithm leads to
numerical instabilities stemming from voxels out of the FOV.
Using a so-called ’soft exponential’ only slightly reduces this
instability at a significant computational cost. We propose
to correct this effect by implementing regularization weights
which balance the larger SQS update steps in voxels out of
the FOV. This SRW solution is computationally efficient and
preserves convergence in the FOV. It can also be used in helical
scan configurations where a similar behavior is observed.
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