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Arbitrary public announcement logic (APAL) reasons about how the knowledge of a set of agents changes after true public announcements and after arbitrary announcements of true epistemic formulas. We consider a variant of arbitrary public announcement logic called positive arbitrary public announcement logic (APAL + ), which restricts arbitrary public announcements to announcement of positive formulas. Positive formulas prohibit statements about the ignorance of agents. The positive formulas correspond to the universal fragment in first-order logic. As two successive announcements of positive formulas need not correspond to the announcement of a positive formula, APAL + is rather different from APAL. We show that APAL + is more expressive than public announcement logic PAL, and that APAL + is incomparable with APAL. We also provide a sound and complete infinitary axiomatisation.

Introduction and overview

Public announcement logic (PAL) [START_REF] Gerbrandy | Reasoning about information change[END_REF][START_REF] Plaza | Logics of public communications[END_REF] extends epistemic logic with operators for reasoning about the effects of specific public announcements. The formula [ψ]ϕ means that "ϕ is true after the truthful announcement of ψ". This means that, when interpreted in an epistemic model with designated state, after submodel restriction to the states where ψ is true (this includes the designated state, and 'truthful' here means true), ϕ is true in that restriction. Arbitrary public announcement logic (APAL) [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] augments this with operators for quantifying over public announcements. The formula ϕ means that "ϕ is true after the truthful announcement of any formula that does not contain ".

Quantifying over the communication of information as in APAL has applications to epistemic protocol synthesis, where we wish to achieve epistemic goals by communicating information to agents, but where we do not know of a specific protocol that will achieve the goal, and where we may not even know if such a protocol exists. In principle, synthesis problems can be solved by specifying them as formulas in the logic, and applying model-checking or satisfiability procedures. However in the case of APAL, while there is a PSPACE-complete model-checking procedure [START_REF] Ågotnes | Group announcement logic[END_REF], the satisfiability problem is undecidable in the presence of multiple agents [START_REF] French | Undecidability for arbitrary public announcement logic[END_REF].

We consider a variant of APAL called positive arbitrary public announcement logic (APAL + ), we obtain various semantic results relating refinements to positive formulas, we give various rather surprising expressivity results, and we give a non-surprising axiomatization. In APAL the arbitrary public announcements quantify over quantifier-free formulas, that are equivalent to epistemic formulas (basic modal logic). Whereas in APAL + the arbitrary public announcements quantify over quantifier-free positive formulas: formula + ϕ means that "ϕ is true after the truthful public announcement of any positive formula". A formula is positive if, roughly, the knowledge modalities are never bound by negations. Positive formulas consist only of positive knowledge statements, such as "it is known that", and prohibit negative knowledge statements such as "it is not known that" and "it is uncertain that". In the standard translation, such formulas correspond to the universal fragment [START_REF] Andréka | Modal languages and bounded fragments of predicate logic[END_REF].

The restriction to positive formulas is natural in view of possible applications. There are many protocols wherein the messages convey that an agent knows an atomic proposition and wherein only the invariants or postconditions require that an agent does not know an atomic proposition. Knowledge of atomic propositions is stable and easy to verify whereas absence of knowledge is fragile and, typically, hard to verify. For example, verifying knowledge is done by direct observation such as witnessing a communication, or by message passing between principals in a security protocol (where messages are considered atomic components), or by reading a time-stamped blockchain ledger [START_REF] Swan | Blockchain: Blueprint for a New Economy[END_REF]. However, verifying that an agent does not know a proposition requires an assumption that there are no private communication channels or clandestine messages, and thus negative knowledge cannot be verified in the same way as positive knowledge. Consequently, quantifying over positive announcements can often be viewed as quantifying over protocols consisting of straightforwardly verifiable information. The decidability of positive arbitrary public announcement logic therefore means that we can answer the question whether it is possible to achieve a particular knowledge state by means of such protocols.

Let us give some other concrete examples. In the alternating bit protocol [START_REF] Halpern | A little knowledge goes a long way: Knowledge-based derivations and correctness proofs for a family of protocols[END_REF] the communicating agents achieve partial correctness of message transfer by stacking acknowledgements (where 'acknowledge' means 'know'). The internet protocol TCP/IP manages package transfer, taking into account of missing packages and time-outs, again by means of stacked knowledge [START_REF] Stulp | A knowledge-based algorithm for the internet transmission control protocol (TCP)[END_REF]. In those case there are no concerns involving ignorance, it is a matter of guaranteeing (partial) knowledge. In various security protocols the worst-case scenario is that all messages between principals are intercepted, in other words, that they become public announcements (all aspects of the protocol except private keys may be assumed public). For example, in cards cryptography two communicating agents attempt to learn the card deal without other players (eavesdroppers) learning the card deal (or even any single card other than their own) [START_REF] Fischer | Bounds on secret key exchange using a random deal of cards[END_REF][START_REF] Van Ditmarsch | The Russian cards problem[END_REF][START_REF] Cordón-Franco | A colouring protocol for the generalized russian cards problem[END_REF]. The dining cryptographers protocol [START_REF] Chaum | The dining cryptographers problem: Unconditional sender and recipient untraceability[END_REF][START_REF] Van Der Meyden | Symbolic model checking the knowledge of the dining cryptographers[END_REF] has semi-public (coin tossing, observed by an agent and its neighbour) and public aspects (announcing bits, depending on the outcome of the coin toss and whether the agent paid for the meal), in order to guarantee an ignorance epistemic goal (who paid for the meal?). The public part consists of positive announcements (namely of known values of bits).

The logic APAL + is decidable. The proof of this result is substantial and of a fairly technical nature and it is therefore reported in a companion paper [START_REF] Van Ditmarsch | Decidability of arbitrary positive announcement logic[END_REF]. As this result puts APAL + in perspective to similar logics, let us summarily sketch the picture. For an in-depth discussion we refer to [START_REF] Van Ditmarsch | Decidability of arbitrary positive announcement logic[END_REF]. With respect to other logics with quantification over announcements, APAL, the related group announcement logic, and coalition announcement logic are all undecidable [START_REF] Ågotnes | The undecidability of quantified announcements[END_REF] (and all three are only known to have infinitary axiomatisations), whereas the 'mental model' arbitrary public announcement logic of [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF] and Boolean arbitrary public announcement logic (BAPAL) [START_REF] Van Ditmarsch | Quantifying over boolean announcements[END_REF] are decidable.

As the name suggests, BAPAL has quantification over Boolean announcements [START_REF] Van Ditmarsch | Quantifying over boolean announcements[END_REF]. This form of quantification is therefore even more restricted than in APAL + . Its axiomatisation is finitary, unlike APAL + , for which we only report an infinitary axiomatisation.

From the dynamic epistemic logics that are quantifying over non-public information change, arbitrary arrow update logic [START_REF] Van Ditmarsch | The undecidability of arbitrary arrow update logic[END_REF] is undecidable, whereas the already mentioned refinement modal logic [START_REF] Bozzelli | Refinement modal logic[END_REF] and arbitrary action model logic [START_REF] Hales | Arbitrary action model logic and action model synthesis[END_REF] are decidable. For the last two logics this is an elementary consequence of the fact that they are as expressive as the base modal logic. This is shown with respect to K models (models for arbitrary accessibility relations). In [START_REF] Hales | Refinement quantified logics of knowledge and belief for multiple agents[END_REF] it is also shown that refinement modal logic interpreted on models of the class S5 (where all accessibility relations are equivalence relations; the logic is then called refinement epistemic logic) is as expressive as the modal logic S5.

We hope that the logic APAL + offers a valuable contribution to this already diverse landscape of logics with quantification over information change.

In Section 2 we give an overview of structures and structural notions, such as epistemic model, bisimulation, and refinement, and we present public announcement logic and arbitrary public announcement logic. In Section 3 we give the syntax and semantics of positive arbitrary public announcement logic APAL + . In Section 4 we show that APAL + model checking is PSPACE-complete. In Section 5 we demonstrate that APAL and APAL + are incomparable. In Section 6 we give the complete infinitary axiomatisation of APAL + .

Public announcement logics

We recall definitions and technical results from epistemic logic, public announcement logic [START_REF] Gerbrandy | Reasoning about information change[END_REF][START_REF] Plaza | Logics of public communications[END_REF] and arbitrary public announcement logic [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. Throughout this contribution, let A be a countable set of agents and let P be a countable set of propositional atoms (or atoms, or propositional variables).

Structural notions

In this subsection we define epistemic models, model restrictions, and various types of bisimulation.

Definition 2.1 An epistemic model M = (S , ∼, V ) consists of a domain S , which is a non-empty set of states, a set of accessibility relations ∼, indexed by agents a ∈ A, where ∼ a ⊆ S × S is an equivalence relation on states (a relation that is reflexive, transitive and symmetric), and a valuation V : S → P(P ), which is a function from states to subsets of propositional atoms (namely those true in that state).

The class of all epistemic models is called S5 . A pointed epistemic model M s = ((S , ∼, V ), s) consists of an epistemic model M along with a designated state s ∈ S . A pointed epistemic model will often also be called an epistemic model. Given two states s, t ∈ S , we write s∼ a t to denote that (s, t) ∈ ∼ a . We write [s] a to denote the a-equivalence class of s, which is the set of states [s] a = {t ∈ S | s∼ a t}. As we will often be required to discuss several models at once, we will use the convention that

M s = ((S , ∼, V ), s), M ′ s ′ = ((S ′ , ∼ ′ , V ′ ), s ′ ), M γ s γ = ((S γ , ∼ γ , V γ ), s γ ), etc.
If s ∼ a t, we say that there is an a-link (a-step) between s and t. An epistemic model is connected if between any two states in its domain there is a path consisting of such links, i.e., if for any states s, t there are states s = s 1 , s 2 , . . . , s n = t and agents a 1 , . . . , a n-1 such that for all 

1 ≤ i ≤ n -1, s i ∼ a i s i+1 .
S |T = T ∼ a |T = ∼ a ∩ (T × T ) V |T (p) = V (p) ∩ T If N is a restriction of M we write N ⊆ M. A restriction N of M is also called a submodel of M. Definition 2.3 Let M = (S , ∼, V ) ∈ S5 and M ′ = (S ′ , ∼ ′ , V ′ ) ∈ S5 be epistemic models.
A non-empty relation R ⊆ S × S ′ is a bisimulation if and only if for every (s, s ′ ) ∈ R, p ∈ P , and a ∈ A the conditions atoms-p, forth-a and back-a hold.

• atoms-p: s ∈ V (p) if and only if s ′ ∈ V ′ (p).
• forth-a: For every t∼ a s there exists

t ′ ∼ ′ a s ′ such that (t, t ′ ) ∈ R. • back-a: For every t ′ ∼ ′ a s ′ there exists t∼ a s such that (t, t ′ ) ∈ R. If (s, s ′ ) ∈ R then we call M s and M ′ s ′ bisimilar and write M s ≃ M ′ s ′ or (to indicate the relation) R : M s ≃ M ′ s ′ . If for all s ∈ S there is an s ′ ∈ S ′ such that M s ≃ M ′ s ′ , and for all s ′ ∈ S ′ there is an s ∈ S such that M s ≃ M ′ s ′ , we write M ≃ M ′ .
We note that the union of two bisimulations is a bisimulation, and that there is a maximal bisimulation between the states of an epistemic model, which is an equivalence relation, see [START_REF] Blackburn | Modal Logic[END_REF] for such standard notions. A model is bisimulation minimal iff for any s, t ∈ S with s = t, M s is not bisimilar to M t . We will also require the notions of restricted bisimulation (restricted to a set of atoms Q ⊆ P ) and bounded bisimulation (bounded to a depth n ∈ N). Q-Bisimulations are intended to preserve modal formulas that contain only atoms from Q, whereas n-bisimulations are intended to preserve the truth of formulas ϕ with wherein stacks of epistemic operators have maximal depth n (this notion will be defined later).

Definition 2.4 Let M , M ′ ∈ S5 be epistemic models and let Q ⊆ P be a set of propositional atoms. A non-empty relation R ⊆ S × S ′ is a Q-bisimulation if and only if for every (s, s ′ ) ∈ R and a ∈ A, forth-a and back-a hold, whereas atoms-p is only required to hold for all p ∈ Q.

If (s, s ′ ) ∈ R then we call M s and M ′ s ′ Q-bisimilar and write M s ≃ Q M ′ s ′ .
The notion of n-bisimulation, for n ∈ N, is given by defining a set of relations

R 0 ⊇ • • • ⊇ R n .
Definition 2.5 Let M , M ′ ∈ S5 be epistemic models, and n ∈ N. A non-empty relation R 0 ⊆ S × S ′ is a 0-bisimulation if and only if for every (s, s ′ ) ∈ R 0 and for every p ∈ P

• atoms-p: s ∈ V (p) if and only if s ′ ∈ V ′ (p).

A non-empty relation R n+1 ⊆ S × S ′ is an (n + 1)-bisimulation if and only if for every (s, s ′ ) ∈ R n+1 , for all p ∈ P , and for every a ∈ A, there is an n-bisimulation R n ⊇ R n+1 such that:

• (n + 1)-forth-a: For every t∼ a s there exists t ′ ∼ ′ a s ′ such that (t, t ′ ) ∈ R n ; • (n + 1)-back-a: For every t ′ ∼ ′ a s ′ there exists t∼ a s such that (t, t ′ ) ∈ R n .

If (s, s ′ ) ∈ R n for an n-bisimulation R n , then we call M s and M ′ s ′ n-bisimilar and write

M s ≃ n M ′ s ′ .

Syntax and semantics of public announcement logics

We now define the syntax and semantics of epistemic logic S5 , public announcement logic PAL, and arbitrary public announcement logic APAL.

Definition 2.6

The language of arbitrary public announcement logic L apal is the set of formulas generated by the following rule, where p ∈ P and a ∈ A. Typical members of L apal are denoted by lower case Greek letters ϕ, ψ, etc., possibly primed.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K a ϕ | [ϕ]ϕ | ϕ
We will follow the usual rules for omission of parentheses. We use all of the standard abbreviations for propositional logic, and additionally the abbreviations L a ϕ ::= ¬K a ¬ϕ, ϕ ψ ::= ¬[ϕ]¬ψ, and ϕ ::= ¬ ¬ϕ. We also consider the language of public announcement logic, L pal , consisting of L apal without the operator, the language of epistemic logic, L el , consisting of L pal without [•] operators, and the language of propositional logic, L pl , without any modalities. A formula in L el is an epistemic formula, and a formula in L pl is a Boolean. The epistemic depth of a formula in L apal counts the number of stacked K a operators (while ignoring the operators), i.e., d(K a ϕ) = d(ϕ) + 1, and

d(p) = 0, d( ϕ) = d(¬ϕ) = d(ϕ), d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}, d([ϕ]ψ) = d(ϕ) + d(ψ).
We write v(ϕ) for the set of propositional variables occurring in ϕ, where

v(p) = {p}, v(K a ϕ) = v( ϕ) = v(¬ϕ) = v(ϕ), and v([ϕ]ψ) = v(ϕ ∧ ψ) = v(ϕ) ∪ v(ψ).
Definition 2.7 The binary satisfaction relation |= between pointed epistemic models and L apal formulas is defined as follows by induction on formula structure. Let M = (S , ∼, V ) ∈ S5 be an epistemic model. Then:

M s |= p iff s ∈ V (p) M s |= ¬ϕ iff M s |= ϕ M s |= ϕ ∧ ψ iff M s |= ϕ and M s |= ψ M s |= K a ϕ iff for every t ∼ a s : M t |= ϕ M s |= [ϕ]ψ iff if M s |= ϕ then (M|ϕ) s |= ψ M s |= ϕ iff for every ψ ∈ L el : M s |= [ψ]ϕ where M|ϕ = M|[[ϕ]] M with [[ϕ]] M = {s ∈ S | M s |= ϕ}.
When M s |= ϕ, we say that ϕ is true in M s (or in state s of M), or that M s satisfies ϕ. In the semantics of , a ψ such that M s |= [ψ]ϕ is called a witness of the quantifier .

A model restriction M|ϕ to a formula ϕ restricts the domain of M to those states where ϕ is true. This is the basis of the semantics of public announcements. We note that ϕ may no longer be true in that model restriction. A typical counterexample is the Moore sentence p ∧ ¬K a p: whenever true, after its announcement it is false. The restriction M|ϕ is also called the result of the announcement of ϕ in M.

Whenever APAL but defined on the languages L pal and L el , respectively. The notation used for modal equivalence in L el is ≡ el (we do not need similar notation for L pal , as every formula in L pal is equivalent to a formula in L el [START_REF] Plaza | Logics of public communications[END_REF], see also the next subsection on expressivity); for the same up to modal depth n it is ≡ n el , and in the language restricted to atoms in Q ⊆ P it is ≡ Q el . We continue with elementary results on the relation between bisimulation and modal equivalence.

Lemma 2.8 ([24]) Let M s , M ′ s ′ ∈ S5 be epistemic models. Then M s ≃ M ′ s ′ implies M s ≡ el M ′ s ′ .
Lemma 2.9 ([24]) Let M s , M ′ s ′ ∈ S5 be image-finite epistemic models (each state has finitely many accessible states). Then

M s ≡ el M ′ s ′ implies M s ≃ M ′ s ′ .
These are well-known results. We observe that Lemma 2.8 can be generalised to the languages L pal and L apal (i.e., to modal equivalence of pointed epistemic models in the respective logics), as public announcements and arbitrary public announcements are bisimulation invariant operations. The latter was shown in [START_REF] Ågotnes | Group announcement logic[END_REF] for the logic GAL, but the proof also applies to APAL; see also the similar proof for APAL + in Lemma 3.12, later. Analogous results to Lemma 2.8 apply to Q-bisimulations when we restrict the language of epistemic formulas to propositional atoms in Q, and analogous results also apply to nbisimulations.

Lemma 2.10 ( [START_REF] Agostino | Logical questions concerning the µ-calculus: Interpolation, Lyndon and Los-Tarski[END_REF][START_REF] French | Bisimulation quantified modal logics: Decidability[END_REF]) Let M s , M ′ s ′ ∈ S5 be epistemic models and let Q ⊆ P . Then

M s ≃ Q M ′ s ′ implies M s ≡ Q el M ′ s ′ .
Lemma 2.11 ([7, Prop. 2.31]) Let M s , M ′ s ′ ∈ S5 be epistemic models and let n ∈ N.

Then M s ≃ n M ′ s ′ implies M s ≡ n el M ′ s ′ .
Again, both generalise to the language L pal . However, they do not generalise to the language L apal . This is because in the restricted logical language the arbitrary announcement still quantifies over all propositional variables and not only over those in Q, and, respectively, because the arbitrary announcement quantifies over formulas of arbitrarily large epistemic depth, and not only over formulas of at most the epistemic depth of the formula bound by the arbitrary announcement. We will get back to this after presenting the expressivity results for public announcement logics, in the next section.

A common epistemic model in our contribution is the a-b-chain. We therefore introduce it in this section, as well as results on distinguishing formulas for a-b-chains.

Consider the epistemic model M = (S, ∼, V ) for two agents a, b and a set of atoms P (often a singleton P = {p}) such that S is a subset of the integers Z, ∼ a is the symmetric and reflexive closure of S 2 ∩ {(2n, 2n + 1) | n ∈ Z}, ∼ b is the symmetric and reflexive closure of S 2 ∩ {(2n, 2n -1) | n ∈ Z}, such that between any two states in the domain S a path of a-links and b-links exists (in other words, such that M is connected), and without any requirement on the valuation. As the a-links and b-links between states alternate in the model, such a model is called an a-b-chain, or simply a chain. The names of the states are arbitrary; any isomorphic model will also be called a chain. A chain is finite iff the domain S is finite. A finite chain has a largest and a smallest element (with respect to Z) of the domain. These are called the ends or the edges of the chain. Observe that an edge is a singleton ∼ a -class or ∼ b -class, and that all other equivalence classes consist of two states. A chain with only a largest or smallest element has only one edge. Such a one-edged chain is isomorphic to N. A prefix of a one-edged a-b-chain is a submodel that is an a-b-chain and that contains that edge.

We now introduce the distinguishing formula. Given a logical language L and a semantics, such as the above for L apal , and given a model M = (S, ∼, V ) and a subset T ⊆ S, a distinguishing formula for T is some δ ∈ L such that M t |= δ for all t ∈ T and M t |= δ for all t ∈ T .

It is well-known that all subsets of a finite (bisimulation minimal) epistemic model are distinguishable in the language L el of epistemic logic (see [START_REF] Van Benthem | Dynamic odds and ends[END_REF] or the more recent [START_REF] Van Ditmarsch | On the definability of simulation and bisimulation in epistemic logic[END_REF] discussing it; an older source in a slightly different setting is [START_REF] Browne | Characterizing Kripke structures in temporal logic[END_REF]).

Lemma 2.12 Let M = (S, ∼, V ) be a (bisimulation minimal) finite a-b-chain and let B ⊆ S. Then B has a distinguishing formula.

Similarly, if the edge of a one-edged infinite a-b-chain has a distinguishing formula, then all finite subsets of that chain can be distinguished. In order to prove this we first define: L 0 ab = L 0 ba := ǫ, and for n ≥ 0, L 2n+1 ab

δ 0 := L b L 2n ab , L 2n+2 ab := L a L 2n+1 ab , L 2n+1 ba δ 0 := L a L 2n ba , L 2n+2 ba := L b L 2n+1 ba . Informally, L n
ab is a stack of n alternating L a and L b operators of which the last one, if any, is L b , whereas L n ba is a stack of n alternating L a and L b operators of which the last one, if any, is L a . Note that for any formula ϕ, L 0 ab ϕ = L 0 ba ϕ = ϕ. Similarly to L n ab and L n ba , we define K n ab and K n ba . Lemma 2.13 Let M = (S, ∼, V ) be a one-edged infinite a-b-chain such that the edge has a distinguishing formula and let B ⊆ S be finite. Then B has a distinguishing formula.

Proof Without loss of generality we assume that S = N (so that B ⊆ N is a finite set of natural numbers), that the edge is state 0, and that 0 ∼ a 1. Let δ 0 ∈ L el be the assumed distinguishing formula of edge 0. In other words, M 0 |= δ 0 and for all i > 0, M i |= δ 0 .1 Obviously, M n |= L n ba δ 0 . However, also, for all states i ≤ n, M i |= L n ba δ 0 , as all states are a-accessible and b-accessible to themselves. Now let for n > 0,

δ n := L n ba δ 0 ∧ ¬L n-1 ba δ 0 . From M i |= L i ba δ 0 for all i ≤ n and M j |= ¬L j-1 ba δ 0 for all j > n it follows that M n |= δ n and that M k |= δ n for any k = n. Therefore δ n is a distinguishing formula for state n ∈ N,
and thus the distinguishing formula δ B for B is i∈B δ i .

We will use this result frequently in subsequent proofs.

Expressivity of public announcement logics

Given logical languages L and L ′ , and a class of models in which L and L ′ are both interpreted (employing a satisfaction relation |= resp. |= ′ ), we say that L is at least as

{p} {} a M s : {p, q} {} {p, q} {q} a a b b M ′ s ′ : {p, q} {} {p, q} {q} a b (M ′ |q) s ′ :
Figure 1: Models used in the proof of Proposition 2.16. The actual states are underlined. We will always assume reflexive and symmetric closure of accessibility relations.

expressive as L ′ , if every formula in L ′ is equivalent to a formula in L (where 'ϕ ′ ∈ L ′ is equivalent to ϕ ∈ L' means: for all M s , M s |= ′ ϕ ′ if and only if M s |= ϕ).
If L is not at least as expressive as L ′ and L ′ is not at least as expressive as L, then L is incomparable to L ′ (L and L ′ are incomparable). If L is at least as expressive as L ′ , and L ′ is at least as expressive as L, then L is as expressive as L ′ (L and L ′ are equally expressive). Finally, if L is at least as expressive as L ′ but L ′ is not at least as expressive as L, then L is more expressive than L ′ . So, 'more' means 'strictly more'. The combination of a language with a semantics given a class of models determines a logic. In this work we only consider model class S5. Also, in this work the clause of the satisfaction relation for a modality is the same for all languages containing that modality, so that it suffices only to employ |=. "Given logic L 1 with language L 1 interpreted on model class X 1 by way of satisfaction relation |= 1 , and logic L 2 with language L 2 interpreted on model class X 2 by way of satisfaction relation |= 2 , L 1 is more expressive than L 2 ," therefore becomes "given language L, model class X and satisfaction relation |=, logic L 1 with language L 1 ⊆ L, and logic L 2 with language L 2 ⊆ L, L 1 is more expressive than L 2 ." We therefore abbreviate the latter by "L 1 is more expressive than L 2 ," and similarly for other expressivity terminology.

The following expressivity results are shown by Plaza [START_REF] Plaza | Logics of public communications[END_REF] (Proposition 2.14), and by Balbiani et al. [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] (Propositions 2.15 and 2.16). We give the proof of Proposition 2.16 in detail, including an alternative proof (that is not known from the literature), as we will use these methods later when obtaining additional expressivity results for positive arbitrary public announcement logic. Lemma 2.14 PAL is as expressive as S5 (for single or multiple agents). Proposition 2.15 APAL is as expressive as PAL for a single agent. Proposition 2.16 APAL is (strictly) more expressive than PAL for multiple agents.

Proof Suppose that arbitrary public announcement logic is as expressive as public announcement logic in S5 for more than one agent. We note that public announcement logic is also as expressive as epistemic logic S5 . Consider the formula (K a p ∧ ¬K b K a p). Then there exists a formula ϕ ∈ L el that is equivalent to (K a p ∧ ¬K b K a p). There will be some propositional variable q not occurring in ϕ. Consider S5 models M and M ′ as in Figure 1; let the underlined states be called s and s ′ , respectively. We note that M s ≃ p M ′ s ′ and, as q does not appear in ϕ, then

M s |= ϕ if and only if M ′ s ′ |= ϕ. However M s |= (K a p ∧ ¬K b K a p), whereas M ′ s ′ |= (K a p ∧ ¬K b K a p) because M ′ s ′ |= q (K a p ∧ ¬K b K a p). This is a contradiction.
Another proof of larger expressivity does not use that quantifies over arbitrarily many propositional variables but that quantifies over formulas of arbitrarily large epistemic depth. It is due to Barteld Kooi. It is relevant to mention this alternative proof here, because we will use a similar technique in Section 5 on the expressivity of APAL + . Note that all models used in this proof are a-b-chains.

Proof Suppose that arbitrary public announcement logic is as expressive as public announcement logic in S5 for more than one agent. Then (again) there exists a formula ϕ ∈ L el that is equivalent to (K a p ∧ ¬K b K a p). Let d(ϕ) be the epistemic depth of this formula. Now consider (see Figure 2) model N t . We can see it as some sort of infinite S5 unwinding of model M s : N t is bisimilar to M s . A bisimulation between M s and N t links all the p-states in N to the single p-state in M, and all the ¬p-states in N to the single ¬p-state in M. So, in particular, this bisimulation contains pair (t, s). Now consider a model that is like N t , but cut off at the right-hand side, as in model N ′ t ′ in Figure 2, where the cut-off is beyond the epistemic depth of ϕ: let j > d(ϕ) be such that the length of the a-b-path from the root t ′ to the edge is j and let that rightmost point be called v. State v is the unique state satisfying K a p. Because of Lemma 2.13 we now can uniquely identify all finite subsets of N ′ t ′ . Therefore, there is an announcement ψ such that (N ′ |ψ) t ′ is the final depicted model, where we note that, ignoring the value of q, it is the same as the model (M ′ |q) s ′ in Figure 1. Announcement ψ is the formula

(L j ba K a p ∧ ¬L j-1 ba K a p) ∨ (L j+1 ba K a p ∧ ¬L j ba K a p) ∨ (L j+2 ba K a p ∧ ¬L j+1 ba K a p).
(We refer to the proof of Lemma 2.13 for definition of L n ab and L n ba .) This formula can be simplified to

L j+2 ba K a p ∧ ¬L j-1 ba K a p. From (N ′ |ψ) t ′ |= K a p ∧ ¬K b K a p follows N ′ t ′ |= ψ (K a p ∧ ¬K b K a p) and thus N ′ t ′ |= (K a p ∧ ¬K b K a p).
However, as before, M s |= (K a p ∧ ¬K b K a p), and therefore, as M s ≃ N t , also N t |= (K a p ∧ ¬K b K a p). On the other hand, (M s and) N t and N ′ t ′ have the same value for ϕ, as the difference between the two models is beyond the epistemic depth of ϕ:

As j > d(ϕ), up to depth d(ϕ) the models N t and N ′ t ′ are isomorphic and therefore bisimilar, i.e.,

N t ≃ d(ϕ) N ′ t ′ . Now applying Lemma 2.11 we obtain N t ≡ d(ϕ) el N ′ t ′ , and therefore in particular N t |= ϕ iff N ′ t ′ |= ϕ.
Again we have a contradiction. These different proofs to establish larger expressivity illustrate a important difference between APAL and other public announcement logics. Let us first introduce additional notation. Let M s ≡ Q apal M ′ s ′ (where Q ⊆ P ) mean that for all ϕ ∈ L apal with atoms

restricted to Q, M s |= ϕ if and only if M ′ s ′ |= ϕ, and let M s ≡ n apal M ′ s ′ (where n ∈ N) mean that for all ϕ ∈ L apal with d(ϕ) ≤ n, M s |= ϕ if and only if M ′ s ′ |= ϕ. Although M s ≃ M ′ s ′ implies M s ≡ apal M ′ s ′ , we do not have that M s ≃ Q M ′ s ′ (always) implies M s ≡ Q apal M ′ s ′ and we also do not have that M s ≃ n M ′ s ′ (always) implies M s ≡ n apal M ′ s ′ .
The models used in Figure 1 

M s ≃ p M ′ s ′ but M s ≡ p apal M ′ s ′ , because M s |= (K a p ∧ ¬K b K a p) whereas M ′ s ′ |= (K a p ∧ ¬K b K a p).
In the language L apal restricted to p, the arbitrary announcement modalities are still interpreted over all atoms P , so they quantify not only over L el formulas only containing atom p but also over L el formulas possibly containing atom q as well.

Similarly, we note that, as shown in the alternative proof for Prop. 2.16,

N t ≃ 2 N ′ t ′ but N t ≡ 2 apal N ′ t ′
. This is because on the one hand N t |= (K a p ∧ ¬K b K a p), whereas on the other hand

N ′ t ′ |= (K a p ∧ ¬K b K a p), as N ′ t ′ |= ψ (K a p ∧ ¬K b K a p) for some ψ ∈ L el with d(ψ) > 2.
However, this does not rule out that bounded (to some n) bisimilarity implies bounded modal equivalence in a particular model. This will be used in an expressivity proof comparing APAL and APAL + , later (Theorem 5.19 on page 33).

Positive formulas

The positive formulas are the universal fragment of epistemic logic. They play an important role in our work, also in relation to the structural notion of refinement, that is therefore only defined in this section. Definition 2.17 The language of positive formulas L + el is defined inductively as:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | K a ϕ
where p ∈ P and a ∈ A.

We note that L + el is a fragment of L el .

Lemma 2.18 Positive formulas are preserved under public announcements:

For all ϕ ∈ L + el , ψ ∈ L el : M s |= ϕ implies M s |= [ψ]ϕ.
Corollary 2.19 Positive formulas are successful as public announcements:

For all ϕ ∈ L + el : M s |= ϕ implies M s |= [ϕ]ϕ.
Corollary 2.20 Positive formulas are idempotent as public announcements:

For all ϕ ∈ L + el , ψ ∈ L el : M s |= [ϕ]ψ implies M s |= [ϕ][ϕ]ψ.
These results were shown by van Ditmarsch and Kooi [START_REF] Van Ditmarsch | The secret of my success[END_REF]Prop. 8] for an extended fragment also containing the inductive clause [¬ϕ]ϕ. In their work positive formulas are called preserved formulas instead. The results go back to van Benthem [START_REF] Van Benthem | One is a lonely number: on the logic of communication[END_REF].

A refinement is a relation that is a generalisation of bisimulation, and that only requires the atoms and back condition to hold. Refinements (in this form) were introduced in [START_REF] Bozzelli | Refinement modal logic[END_REF].

Definition 2.21 Let M , M ′ ∈ S5 be epistemic models. A non-empty relation R ⊆ S × S ′
is a refinement if and only if for every (s, s ′ ) ∈ R, p ∈ P , and a ∈ A, the conditions atoms-p and back-a hold.

If (s, s ′ ) ∈ R then we call M ′ s ′ a refinement of M s and call M s a simulation of M ′ s ′ . We write M ′ s ′ M s or equivalently M s M ′ s ′ .
There are other notions of refinement. For example, in [START_REF] Blackburn | Modal Logic[END_REF], simulation is defined with an inclusion requirement for atoms: for each pair (s, s ′ ) in the relation, . We note that the union of two refinements is a refinement and that there is a maximal refinement between epistemic models (this is shown just as for bisimulation). The relation between positive formulas and refinement is intricate. One important (and unreported) result is as follows. It follows from similar reasoning to Lemma 2.9, but in view of its novelty and because we will refer to it later, we give the proof. Lemma 2.24 Let M , M ′ ∈ S5 be image-finite epistemic models and let R ⊆ S × S ′ be the relation such that (s, s ′ ) ∈ R if and only if for every

s ∈ V (p) implies s ′ ∈ V ′ (p); instead of full correspondence atoms: s ∈ V (p) if and only if s ′ ∈ V ′ (p).
ϕ ∈ L + el : if M s |= ϕ then M ′ s ′ |= ϕ. If R is non-empty, then R is a refinement. Proof Let (s, s ′ ) ∈ R.
The clause atoms is satisfied because M s |= p implies M ′ s ′ |= p, and also M s |= ¬p implies M ′ s ′ |= ¬p. Let us now consider back, and suppose this clause is not satisfied. Then there is a t ′ with s ′ ∼ a t ′ (i.e., an a-successor t ′ of s ′ ) such that none of the finite a-successors t 1 , . . . , t n of s are in the relation R with t ′ , i.e., (t 1 , t ′ ) ∈ R,. . . ,(t n , t ′ ) ∈ R. Therefore, using the definition of R, for each t i , where i = 1, . . . , n, there is a

ϕ i ∈ L + el such that M t i |= ϕ i but M ′ t ′ |= ϕ i . Therefore M s |= K a (ϕ 1 ∨ . . . ∨ ϕ n ), whereas M s ′ |= K a (ϕ 1 ∨ . . . ∨ ϕ n ). Observe that K a (ϕ 1 ∨ . . . ∨ ϕ n ) is
a positive formula (the positive formulas are closed under disjunction and under K a ). This contradicts our assumption that (s, s ′ ) ∈ R.

Positive arbitrary public announcement logic

In this section we give the syntax and semantics of positive arbitrary public announcement logic APAL + , and we provide some semantic results about the properties of positive announcements and arbitrary positive announcement operators. Definition 3.1 The language of positive arbitrary public announcement logic L + apal is defined inductively as:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K a ϕ | [ϕ]ϕ | + ϕ
where p ∈ P and a ∈ A.

We use the abbreviation + ϕ ::= ¬ + ¬ϕ. The epistemic depth and the set of variables of a formula are defined as before.

Definition 3.2 Let M = (S, ∼, V ) ∈ S5 be an epistemic model. The interpretation of ϕ ∈ L +
apal is defined inductively as in Def. 2.7, but with the following clause for positive arbitrary announcement:

M s |= + ϕ iff for every ψ ∈ L + el : M s |= [ψ]ϕ
So, the difference with the semantics for the arbitrary announcement in APAL is the part 'for every ψ ∈ L + el ' instead of 'for every ψ ∈ L el '. Validity, satisfiability and modal equivalence (notation ≡ apal + ) are defined as before. An important observation is the partial correspondence between the results of positive announcements and model restrictions that are closed under refinements, a notion that we will define now. Definition 3.3 Let M = (S , ∼, V ) ∈ S5 be an epistemic model and let T ⊆ S be a nonempty set of states. We say that T is closed under refinements in M if and only if for every s, t ∈ S such that M s M t : if s ∈ T then t ∈ T . We say that the model restriction M |T is closed under refinements if and only if T is closed under refinements in M . Proof Let M = (S, ∼, V ) ∈ S5 be an epistemic model and let T ⊆ S be a non-empty set of states such that M |T is closed under refinements. Then for every s ∈ T and t ∈ S \ T we have that M s M t . As M is image-finite it then follows from Lemma 2.24 that for every s ∈ T and t ∈ S \ T there exists ϕ s,t ∈ L + el such that M s |= ϕ s,t but M t |= ϕ s,t . Let ϕ = s∈T t∈S \T ϕ s,t . Then ϕ ∈ L + el ; for every s ∈ T : M s |= ϕ; and for every t ∈ S \ T :

M t |= ϕ. So [[ϕ]] M = T and therefore M |T is the result of a positive announcement.
In contrast to public announcements, a sequence of positive announcements cannot generally be expressed as a single positive announcement. Proposition 3.6 Arbitrary positive announcements are not composable in S5 , i.e., it is not the case that S5 |= + + ϕ → + ϕ for all ϕ ∈ L + apal .

Proof We construct a counter-example. Consider model M = (S , ∼, V ) in Figure 3, where S = {s, t, u, v, w, s

′ , t ′ , u ′ , v ′ }, s∼ a t∼ a s ′ ∼ a t ′ , u∼ a v∼ a w, u ′ ∼ a v ′ , s∼ b s ′ , t∼ b u, t ′ ∼ b u ′ , V (p) = {s, t, u, v, s ′ , t ′ , u ′ , v ′ }, and V (q) = {t, v, s ′ , t ′ , v ′ }.
We claim that

M s |= + + (L a q ∧ K a (K b q ∨ K b ¬q)) but M s |= + (L a q ∧ K a (K b q ∨ K b ¬q)).
We note that (M |K a p|(¬q ∨ K b q)) s |= L a q ∧ K a (K b q ∨ K b ¬q) (see Figure 3) and so

M s |= + + (L a q ∧ K a (K b q ∨ K b ¬q)). Let R = {(x, x) | x ∈ S } ∪ {(t, t ′ ), (u, u ′ ), (v, v ′ ), (s ′ , t ′ ), (t ′ , v ′ ), (s, u ′ )}. We note that R is a refinement. As M s ′ M t ′ , M t M t ′
, and M t ′ M t ′ , then by Lemma 3.4 any positive announcement that is true in M s and that preserves s ′ or t (or t ′ ) will also preserve t ′ so any positive announcement after which L a q is true will preserve t ′ .

Also, as M s M u ′ then by Lemma 3.4 any positive announcement that is true in M s will preserve u ′ .

Therefore, any positive announcement that is true in M s and preserves one of the a-accessible states t, s ′ and t ′ (such that L a q is true after the announcement), will also preserve t ′ , and also u ′ that is b-accessible from t ′ , such that ¬(K b q ∨ K b ¬q) is true in t ′ after the announcement, and therefore L a ¬(K b q ∨ K b ¬q) true in s.

So if after any positive announcement in s L a q is true, then

¬K a (K b q ∨ K b ¬q) is also true. Therefore M s |= + (L a q → ¬K a (K b q∨K b ¬q)) and so M s |= + (L a q∧K a (K b q∨K b ¬q)).
However, other validities involving the quantifier are the same for APAL and for APAL + . We list a few. 

1. S5 |= + (ϕ ∧ ψ) ↔ ( + ϕ ∧ + ψ); 2. S5 |= ϕ implies S5 |= + ϕ; 3. S5 |= + ϕ → ϕ; 4. S5 |= K a + ϕ → + K a ϕ.
Proof The proofs are exactly as in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. The first two directly follow from the semantics of + . For the third, note that

S5 |= + ϕ → [⊤]ϕ and S5 |= [⊤]ϕ ↔ ϕ.
For the last, suppose that

M s |= K a + ϕ, that M s |= ψ for ψ ∈ L +
el , and that t is in the domain of M|ψ such that s ∼ a t. We have to show that (M|ψ) t |= ϕ. As s ∼ a t also holds in M, from the assumption

M s |= K a + ϕ it follows that M t |= + ϕ. As t is in the domain of M|ψ, M t |= ψ. From M t |= + ϕ and M t |= ψ follows (M|ψ) t |= ϕ, as required.
We now proceed to prove that, like the APAL quantifier, the APAL + quantifier also satisfies the Church-Rosser and McKinsey properties. As our proof of Church-Rosser is very different from that in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF], we give the proofs of these properties and also the proofs of the lemmas on which they depend in detail.

Given a model M = (S, ∼, V ), if for all p ∈ Q ⊆ P , V (p) = ∅ or V (p) = S, we say that the valuation of the atoms in Q is constant on M. Given a model M s and a (finite) set of propositional variables Q, we write δ s Q for the conjunction of literals expressing the values of the atoms from Q in s. This is the so-called characteristic formula of the (restricted) valuation in state s. Note that M s |= δ s Q .

Proposition + ϕ and also M s |= + + ϕ.

Nowhere in the proofs of Lemma 3.7, Lemma 3.8, Proposition 3.11 and Proposition 3.10 is it essential that the announced formulas are positive. A closer comparison with the results in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] may therefore be of interest:

The proofs of Lemma 3.7 and Proposition 3.11 (McKinsey) are virtually identical to, respectively, [5, Lemma 3.2] and [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]Prop. 3.4]. The proof of Lemma 3.8 is more detailed than that of [5, Lemma 3.3], but it seems to amount to the intentions of that more schematic proof. However, the proof of Proposition 3.10 (Church-Rosser) is very different from the proof of [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]Prop. 3.8], that is not only more involved but also based on a lemma that was later shown by Kuijer to be incorrect. We have therefore not attributed Proposition 3.10 to [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF].

Again, we note that analogous results to Lemma 2.8 and Lemma 2.9 on bisimulation correspondence also apply to the language L + apal : bisimilarity preserves modal equivalence (APAL + is bisimulation invariant), and on image-finite models modal equivalence implies bisimilarity. As we also consider some variations, we will give the crucial detail to prove the first.

Lemma 3.12 Let M s , M ′ s ′ ∈ S5 . Then M s ≃ M ′ s ′ implies M s ≡ apal + M ′ s ′ .
Proof We prove the equivalent proposition:

Let ϕ ∈ L + apal be a formula. Then for all epistemic models M s , M ′

s ′ ∈ S5 such that M s ≃ M ′ s ′ , M s |= ϕ if and only if M ′ s ′ |= ϕ.
This is a straightforward proof by induction over the complexity of the formula ϕ occurring the proposition (just as the proof in [START_REF] Ågotnes | Group announcement logic[END_REF]), where it is important that this formula is declared before the two models. The clause for + ϕ goes as follows.

M s |= + ϕ ⇔ For all ψ ∈ L + el , M s |= [ψ]ϕ ⇔ For all ψ ∈ L + el , M s |= ψ implies (M|ψ) s |= ϕ ⇔ (*) For all ψ ∈ L + el , M ′ s ′ |= ψ M ′ s ′ |= ψ M ′ s ′ |= ψ implies (M|ψ) s |= ϕ ⇔ (**) For all ψ ∈ L + el , M ′ s ′ |= ψ implies (M ′ |ψ) s ′ |= ϕ (M ′ |ψ) s ′ |= ϕ (M ′ |ψ) s ′ |= ϕ ⇔ For all ψ ∈ L + el , M ′ s ′ |= [ψ]ϕ ⇔ M ′ s ′ |= + ϕ.
Step (*) is justified because

M s ≃ M ′ s ′ implies M s ≡ el M ′ s ′ (Lemma 2.8). Therefore, M s |= ψ iff M ′ s ′ |= ψ.
Step (**) is justified as follows. Given the assumption M s ≃ M ′ s ′ , let R : M s ≃ M ′ s ′ . Define R ′ as follows: R ′ (t, t ′ ) iff (R(t, t ′ ) and M t |= ψ). From Lemma 2.8 it follows that also M ′ t ′ |= ψ, so that R ′ is indeed a relation between M|ψ and M ′ |ψ. We now show that R ′ : (M|ψ) s ≃ (M ′ |ψ) s ′ . The clause atoms-p is obviously satisfied. Concerning forth-a, take any pair (t, t ′ ) such that R ′ (t, t ′ ) and let u in the domain of M|ψ be such that t ∼ a u. As u is in the domain of M|ψ, M u |= ψ. From R ′ (t, t ′ ) follows R(t, t ′ ). As t ∼ a u in M|ψ, also t ∼ a u in M. From R(t, t ′ ), t ∼ a u in M, and forth-a (for R) it follows that there is u ′ in the domain of M ′ such that R(u, u ′ ) and t ′ ∼ a u ′ . From R(u, u ′ ), M u |= ψ, and Lemma 2.8 it follows that M ′ u ′ |= ψ, i.e., u ′ is also in the domain of M|ψ. From R(u, u ′ ), M u |= ψ, and the fact the u ′ is in the domain of M|ψ it follows that R ′ (u, u ′ ), as required. This proves forth-a. The step back-a is shown similarly. Note that in particular R ′ (s, s ′ ). This therefore establishes that (M|ψ) s ≃ (M ′ |ψ) s ′ .

We now use that the induction hypothesis for ϕ not merely holds for epistemic models M s , M ′ s ′ , but for any pair of epistemic models N t , N ′ t ′ , so in particular for (M|ψ) s , (M ′ |ψ) s ′ . (In the formulation of the proposition to be proved, the formula is declared before the models.) We thus conclude that (M|ψ) s |= ϕ iff (M ′ |ψ) s ′ |= ϕ, as required.

The above lemma is the analogue of bisimulation invariance for epistemic logic (Lemma 2.8). This analogue does not hold for APAL + when we replace bisimulations with Qbisimulations. This is because in the formula + ϕ, the positive announcements can range over atoms that do not appear in ϕ. It similarly fails for the logic APAL; see the discussion at the end of Subsection 2.3.

We end this section with a fairly obvious result for compactness, that is similarly obtained for APAL + as for APAL.

A logic with language L is compact if for any Φ ⊆ L, if every finite Φ ′ ⊆ Φ is satisfiable, then Φ is satisfiable. Like APAL, APAL + is not compact. Proposition 3.13 APAL + is not compact.

This follows from the same reasoning used by Balbiani et al. [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] to show that APAL is not compact. Specifically, under the semantics of APAL + the set of formulas

{[ψ](K a p → K b K a p) | ψ ∈ L + el } ∪ {¬ + (K a p → K b K a p)}
is unsatisfiable but every finite subset is satisfiable. (The only difference with the proof in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] is that instead of 'ψ ∈ L + el ' above it there says 'ψ ∈ L el '.) Any finite subset is satisfiable because the epistemic depth of such a

set {[ψ](K a p → K b K a p) | ψ ∈ L +
el } is bounded (or, alternatively, because there must be an atom q ∈ P not occurring in such a set). We then proceed fairly similarly as in the proof of Proposition 2.16.

Model checking complexity

We now address the model checking complexity for APAL + . In this section we will assume that we are working with a finite fragment of the language (so A and P are finite sets) and finite models M = (S , ∼, V ) (where S is finite). The model checking problem for APAL + , for which we write MC(APAL + ), is as follows: given a finite pointed model M s and ϕ ∈ L + apal , determine whether M s |= ϕ. The model checking problem for APAL + is PSPACE-complete. We adapt the proof given for the PSPACE-complete model checking complexity for GAL, by Ågotnes et al. [START_REF] Ågotnes | Group announcement logic[END_REF]Theorems 24 & 25]. We note that APAL model checking is also PSPACE-complete, which was shown in [1, p. 74] by an even simpler adaptation of the proof for GAL than our adaptation for APAL + .

Lemma 4.1 Let M = (S , ∼, V ), M ′ = (S ′ , ∼ ′ , V ′ ) ∈ S5 be finite epistemic models.
Given that a refinement from M to M ′ exists, there is a unique, maximal refinement R ⊆ S × S ′ from M to M ′ and it is computable in polynomial time.

Proof This follows from similar reasoning used to show that the unique, maximal bisimulation between two models is computable in polynomial time, defining the refinement as a greatest fixed point of a monotone function, however relaxing the forth condition appropriately. Specifically, we define the function f : ℘(S × S ′ ) -→ ℘(S × S ′ ) by (s, s ′ ) ∈ f (R) if and only if:

• (s, s ′ ) ∈ R; • for all p ∈ P , s ∈ V (p) if and only if s ′ ∈ V ′ (p);
• for all a ∈ A, for every t ′ ∼ ′ a s ′ , there exists t ∼ a s such that (t, t ′ ) ∈ R;

It is clear that the function is monotone (i.e., if R ⊆ R ′ , then f (R) ⊆ f (R ′ ))
, and that any non-empty fixed point of this function is a refinement. Furthermore, every refinement, R from M to M ′ , is a fixed point of f . Therefore, the greatest fixed point will be a unique maximal refinement. The function f can be computed in polynomial time, and at most |S| • |S ′ | iterations will be required to reach a fixed point, so the maximal refinement is computable in polynomial time.

Theorem 4.2 MC(APAL + ) is in PSPACE.

Proof We adapt an alternating polynomial time (APTIME) model-checking algorithm used for GAL [1, Algorithm 1, p. 74]. The main variation required is that we must be able to that sat(M, s, ϕ) accepts if and only if M s |= ϕ by induction over the complexity of ϕ. The correctness of the (∀) + ϕ and (∃) + ϕ cases follows directly from Proposition 3.4, Proposition 3.5 and Lemma 4.1, as mentioned above. In particular, the (∀) + ϕ and (∃) + ϕ cases in Algorithm 1 can be shown to match the semantic interpretation of the + and + operators respectively. Focusing on the + case, if there is a positive announcement α such that (M|α) s |= ϕ, then there is some restriction

M ′ = (S ′ , ∼ ′ , V ′ ) of M such that s ∈ S ′ , M ′ s |= ϕ, and for all t, t ′ ∈ S such that M t M t ′ , if t ∈ S ′ then t ′ ∈ S ′ .
Applying the inductive hypothesis, choosing such a restriction will lead to an accepting run. Conversely, if there is some restriction satisfying these properties, from Lemma 3.5, there must be some corresponding positive announcement α that realises this refinement. Again, applying the inductive hypothesis we have (M|α) s |= ϕ and hence M s |= + α. The case for + is treated in a similar manner.

Since sat can be implemented in polynomial time, MC(APAL + ) is in APTIME, which is equivalent to PSPACE [START_REF] Chandra | Alternation[END_REF].

(s 1 , 0) x - 1 (s 2 , 0) x - 2 . . . (s k , 0) x - k (s 1 , 1) x + 1 (s 2 , 1) x + 2 . . . (s k , 1) x + k s x 0 M Ψ :
Figure 4: The model M Ψ used to encode the quantified Boolean formula Ψ. The agent's relation is universal, so it is the transitive closure of the depicted relation.

Theorem 4.3 MC(APAL + ) is PSPACE-hard.
Proof This follows from similar reasoning used to show that MC(GAL) is PSPACEhard, [START_REF] Ågotnes | Group announcement logic[END_REF]. The basic approach is to show that instances of the QBF-SAT problem can be solved through model-checking a L + apal formula on an appropriately constructed model. A quantified Boolean formula may be given as Ψ = Q 1 x 1 . . . Q k x k ϕ(x 1 , . . . , x k ), where Q i ∈ {∀, ∃}, x 1 , . . . , x k are propositional variables, and ϕ(x 1 , . . . , x k ) is a Boolean formula. (Following custom in QBF-SAT, the variables are not named p 1 , . . . , p n but x 1 , . . . , x n instead.) The notation ϕ(x 1 , . . . , x k ) means that each variable x 1 , . . . , x k binds to all its occurrences, possibly none, in ϕ. For 1 ≤ n ≤ k, we will use the abbreviation Ψ n = Q n x n . . . Q k x k ϕ(x 1 , . . . , x k ) to represent the fragment of Ψ where x 1 , . . . , x n-1 (if n = 1 none at all) are unquantified.

The satisfiability problem for quantified Boolean problems (QBF-SAT) is well-known to be the canonical problem for PSPACE-completeness. Given any quantified Boolean formula Ψ, we can construct a model, M Ψ s , and a APAL + formula, ψ, such that M Ψ s |= ψ if and only if Ψ is satisfiable.

The model M Ψ = (S, ∼, V ) is specified with respect to a set of atoms {x + i , x - i | 1 ≤ i ≤ k}, an additional auxiliary variable x 0 , and a single agent. The model represents each Boolean variable x i for 1 ≤ i ≤ k by a pair of states (s i , 0) and (s i , 1), so we let S = {s 1 , . . . , s k } × {0, 1} ∪ {s}, including the s state as designated state from which to evaluate the formula. The single agent with a universal relation is unable to distinguish any state, so ∼ = S × S. Finally we have V (x + i ) = {(s i , 1)} and V (x - i ) = {(s i , 0)}, and V (x 0 ) = {s}. The model is depicted in Figure 4.

We are then able to encode the satisfiability of Ψ = Q 1 x 1 . . . Q k x k ϕ(x 1 , . . . , x k ) inductively. For each i from 1 to k we define the formulas

X i = L j x + i , X i = L j x - i , U i = X i ∧ X i and D i = X i ↔ ¬X i ,
for, respectively: X i is true, X i is false, X i is undetermined and X i is determined. Additionally, U 0 represents L j x 0 . As the base case of the induction we have

f (ϕ(x 1 , . . . , x k )) = U 0 ∧ k i=1 D i ∧ ϕ(X 1 , .
. . , X k ), that may be satisfied by some restriction of M Ψ , as in Figure 5.

(s 1 , 0) x - 1 (s 2 , 1) x + 2 . . . (s k , 1) x + k s x 0 M Ψ : Figure 5: A restriction of M Ψ satisfying f (¬x 1 ∧ x 2 ∧ x k ) .
We have two inductive cases, for

Q n = ∀ and Q n = ∃. If Q n = ∀, then f (Ψ n ) = + U 0 ∧ n i=1 D i ∧ k i=n+1 U i → f (Ψ n+1 ) . If Q n = ∃, then f (Ψ n ) = + U 0 ∧ n i=1 D i ∧ k i=n+1 U i ∧ f (Ψ n+1 ) .
The Boolean quantifier Q i is simulated using a + or + operator, appropriately guarded so that it removes precisely one of (s i , 0) and (s i , 1) from the model, and does not affect any of the other states. This is achieved by the subformulas: n i=1 D i , which requires either (s i , 0) or (s i , 1) to remain in the restriction, for i = 1 . . . n; and k i=n+1 U i which requires both (s i , 0) and (s i , 1) to remain in the restriction for i = n + 1 . . . k. Since the model is finite, and each state has a unique evaluation, this can always be achieved by a positive public announcement. After all the quantifiers have been applied in turn, we able to interpret the Boolean formula ϕ, by checking which states remain. The encoding of this formula and the constructed model are polynomial in the size of Ψ, so model-checking APAL + is PSPACE-hard. A more extensive discussion of the construction and proof can be found in [START_REF] Ågotnes | Group announcement logic[END_REF].

Expressivity

The relative expressivity of APAL + and PAL

In this section we establish various expressivity results, mainly that (for more than one agent) APAL + is more expressive than S5 (or PAL), which is obvious, and that APAL + and APAL are incomparable, which is not obvious. Proposition 5.1 Arbitrary positive announcement logic is as expressive as public announcement logic in S5 for a single agent.

Proof We recall that single-agent APAL is as expressive as S5 [5, Prop. 3.11 and 3.12]. The same proof applies to single-agent APAL + : it plays no role anywhere in the proof in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] whether the announcement witnessing an APAL quantifier is an epistemic formula or a positive epistemic formula. Proposition 5.2 Arbitrary positive announcement logic is (strictly) more expressive than public announcement logic in S5 for more than one agent.

Proof We refer to the proof of Proposition 2.16. Observe that the announcement q used in that proof is a positive formula. Therefore, this also shows that no epistemic formula is equivalent to the L + apal formula + (K a p ∧ ¬K b K a p).

APAL + is not at least as expressive as APAL

We now consider the relative expressivity of APAL and APAL + . In this subsection we show in Theorem 5.11, further below, that APAL + is not at least as expressive as APAL for multiple agents, by the standard method of providing two pointed epistemic models and a formula (in L apal ) such that the models can be distinguished by that formula but cannot be distinguished by any formula in the other language (in L + apal ). The theorem and its proof are preceded by the definition of the respective models and by various lemmas to be used in that proof. The next subsection is devoted to the other direction of expressivity, namely that APAL is not at least as expressive as APAL + for multiple agents. From these two results we can then conclude that APAL + and APAL are incomparable in expressivity.

Consider the models M ω 0 and M m 0 in Figure 6. We will use these two epistemic models in the expressivity result of this section. They are both a-b-chains. We first define the base model, M ω . Formally M ω = (S, ∼, V ) where S = N ∪ N ′ (where We define an ordering over S ∪{ω, ω ′ } as follows. This use of the symbol is different from that for models in the refinement relation and is therefore unambiguous.

N ′ = {i ′ | i ∈ N}), {} 1 {} 2 {} 3 • • • {} 1 ′ {} 2 ′ {} 3 ′ • • • {p} 0 {p} 0 ′ M ω 0 : b a b b a b b a a {} 1 {} 2 {} 3 • • • {} 1 ′ {} 2 ′ • • • {} m ′ {p} 0 {p} 0 ′ M m 0 :
x y iff            x ∈ N and y = ω x, y ∈ N and x ≤ y, x, y ∈ N ′ , x = w ′ , y = z ′ , and w ≥ z, x = ω ′ and y ∈ N ′ , or x ∈ N ′ ∪ {ω ′ } and y ∈ N ∪ {ω}
For convenience, in this proof we will denote the set S y x = {z ∈ S | x z y} where x, y ∈ N∪{ω, ω ′ }. For m ∈ N, M m 0 will be used as an abbreviation for the model (M|S ω m ′ ) 0 , as depicted in Figure 6. We will show that no formula of APAL + can distinguish the set of models {M m 0 | m ∈ N} from the set of models {M m 0 | m ∈ N} ∪ {M ω 0 }, while the sets are distinguishable in APAL. The assumption that such a distinguishing APAL + formula exists is contradictory, as it must then in particular be true in M m 0 for some m ∈ N sufficiently large, in which case we can show that it must also be true in M ω 0 . Models M m 0 and M ω 0 in Figure 6 are the same except that in M m 0 the lower leg is cut off at the world named m ′ . As m is arbitrary, the final indistinguishability link between (m -1) ′ and m ′ could be for b or for a. In subsequent proofs we assume without loss of generality that it is a b-link and that (therefore) m ≥ 2 is even. Proof We show that the state m ′ in M m is the unique point satisfying the formula K a L m ba K b p ∧ ¬L m-1 ba K b p (see Lemma 2.12 for notation). We can see this as follows. The denotation of K b p is {0, 0 ′ }. Therefore, the denotation of L a K b p is {0, 0 ′ , 1, 1 ′ }, and the denotation of

L b L a K b p is {0, 0 ′ , 1, 1 ′ , 2, 2 ′ }, and in general the denotation of any L k ba K b p for k ≤ m is {0, 0 ′ , . . . , k -1, (k -1) ′ , k, k ′ }. In particular, the denotation of L m ba K b p is {0, 0 ′ , . . . , m -1, (m -1) ′ , m, m ′ }. Then, as m ′ is an edge state, the denotation of K a L m ba K b p is {0, 0 ′ , . . . , m-1, (m-1)
′ , m ′ } (so, without state m), as in state m agent a considers a state m + 1 possible (where L m ba K b p is false), but in the edge m ′ agent a does not consider another state possible.

Next, the denotation of ¬L m-1 ba K b p is the complement of {0, 0 ′ , . . . , m -1, (m -1) ′ }, i.e., {m, m ′ , m + 1, m + 2, . . . }. The denotation of the conjunction

δ m ′ := K a L m ba K b p ∧ ¬L m-1 ba K b p of these two formulas is the intersection of these two sets: {0, 0 ′ , . . . , m -1, (m -1) ′ , m ′ } ∩ {m, m ′ , m + 1, m + 2, . . . } = {m ′ }, as required.
This shows that m ′ has a distinguishing formula δ m ′ .

Lemma 5.4 M m 0 |= (K b K a p ∨ K b ¬K a p) Proof As edge state m ′ of model M m
has a distinguishing formula, it follows from Lemma 2.13 that any finite subset T ⊆ S of model M m has a distinguishing formula.

In particular, we can therefore distinguish the set

T = {0, 0 ′ , 1 ′ }. Let formula δ T ∈ L el be such that M m 0 |= δ T and [[δ T ]] M m = {0, 0 ′ , 1 ′ }. Note that (M m |δ T ) 0 |= K b K a p ∨ K b ¬K a p. Therefore, M m 0 |= (K b K a p ∨ K b ¬K a p).
As an example of the Lemmas 5.3 and 5.4, consider model M 2 . The distinguishing formula of world 2 ′ is δ

2 ′ = K a L b L a K b p ∧ ¬L a K b p,
and the submodel consisting of domain {0, 0 ′ , 1 ′ }, using the method of Lemma 2.13, has distinguishing formula

(L b δ 2 ′ ∧ ¬δ 2 ′ ) ∨ (L a L b δ 2 ′ ∧ ¬L b δ 2 ′ ) ∨ (L b L a L b δ 2 ′ ∧ ¬L a L b δ 2 ′ ), which is equivalent to L b L a L b δ 2 ′ ∧ ¬δ 2 ′ , i.e., to L b L a L b (K a L b L a K b p ∧ ¬L a K b p) ∧ ¬(K a L b L a K b p ∧ ¬L a K b p).
Similarly, we thus obtain that δ T in the proof of Lemma 5.4 is equivalent to the formula

L m+2 ab (K a L m+1 ba K b p ∧ ¬L m ba K b p) ∧ ¬L m-1 ab (K a L m+1 ba K b p ∧ ¬L m ba K b p). Lemma 5.5 M ω 0 |= (K b K a p ∨ K b ¬K a p)
Proof Consider the relation R on M ω defined as the symmetric and reflexive closure of {(i, i ′ ) | i ∈ N}. It is obvious that this relation R is a bisimulation (and even an isomorphism). Differently said, the 0, 1, . . . chain is the mirror image of the 0 ′ , 1 ′ , . . . chain. Therefore, M ω 0 |= (K b K a p ∨ K b ¬K a p): firstly, any announcement must preserve actual state 0 and therefore also preserves the bisimilar 0 ′ ; secondly, either 1 and the bisimilar 1 ′ are both eliminated by an announcement, after which K b K a p is true at 0, or 1 and 1 ′ are both preserved, after which K b ¬K a p is true at 0. We continue by preparing the ground for the result that M ω 0 and M m 0 cannot be distinguished in L + apal by a formula of epistemic depth at most m. The main observation required for this result, is that given the very sparse structure of the model M ω , there are only three meaningful positive announcements. We can show this by looking in detail at the maximal refinements on M ω and some of its restrictions. Lemma 5.6 Consider the relation R on M ω consisting of: (0, 0), (0, 0 ′ ), (0 ′ , 0), (0 ′ , 0 ′ ), and all pairs (i, j), (i, j ′ ), (i ′ , j), and (i ′ , j ′ ) such that i, j ∈ N, i, j > 0, and i ≤ j. Then R is a refinement.

Proof The atoms-p requirement is satisfied as all pairs in the relation only relate states wherein p is true in both ((0, 0), (0, 0 ′ ), (0 ′ , 0), and (0 ′ , 0 ′ )) or wherein p is false in both (all other pairs).

For back-a, let (i, j ′ ) ∈ R for i, j ∈ N with i, j > 0 and suppose j ′ ∼ a k ′ . We need to consider several cases:

• if k = j -1 and j = 1, then: i = 1 and k ′ = 0 ′ and as 0 ∼ a 1 we choose (0, 0 ′ ) ∈ R;

• if k = j -1 and j = 1, then: if i ≤ j -1 then (i, (j -1) ′ ) ∈ R else i = j and (i -1) ∼ a i so (i -1, (j -1) ′ ) ∈ R;

• if k = j, then (choose i ∼ a i and) (i, j ′ ) ∈ R;

• if k = j + 1, then i ≤ j implies i ≤ j + 1 so (i, (j + 1) ′ ) ∈ R.

The cases where (i, j), (i ′ , j ′ ), (i ′ , j) ∈ R are similar, and the clause back-b can also be similarly proved. We further note that R is the maximal refinement on M ω .

The proof of Lemma 5.6 also holds for certain connected submodels of M ω such that 0 or 0 ′ and 1 or 1 ′ are in the connected part S y

x . We recall the order defined on N ∪ N ′ ∪ {ω, ω ′ }. These submodels are cases in the following Corollary 5.7 and they are needed in the subsequent Lemma 5.8. (The submodels only containing 0 or 0 ′ , or only excluding 0 and 0 ′ , are less of interest, as will become clear in the proof of Lemma 5.8.) Corollary 5.7 Let R ′ be the restriction of R to S y x for some x, y ∈ S ∪ {ω, ω}, where S = D(M ω ).

1. if x 1 ′ and 1 y then R ′ is a refinement on M ω |S y x . 2. if x = 0 then R ′ is a refinement on M ω |S y x .
3. if x = 0 ′ and 1 y then R ′ \ {(0 ′ , 0)} is a refinement on M ω |S y x .

4. if x 1 ′ and y = 0 then R ′ \ {(0, 0 ′ )} is a refinement on M ω |S y x .

5. if y = 0 ′ then R ′ is a refinement on M ω |S y x .

In the third item above the pair (0 ′ , 0) is now excluded because back-a fails, as the link 0 ∼ a 1 cannot be matched in state 0 ′ , wherein only 0 ′ ∼ a 0 ′ . In the fourth item above the pair (0, 0 ′ ) is now excluded because the link 0 ′ ∼ a 1 ′ cannot be matched in state 0.

Lemma 5.8 Let ϕ ∈ L + el , N be any submodel of M ω and t ∈ D(N). Then we have either (N|ϕ) t ≃ (N|p) t , or (N|ϕ) t ≃ (N|¬p) t , or (N|ϕ) t ≃ N t .

Proof For the purposes of bisimulation it is sufficient to consider the connected component of N|ϕ containing t. As the model N is an a-b-chain this connected component will be a model (M ω |S y x ) t for some x, y ∈ S ∪ {ω, ω ′ } with x t y. So we have that (N|ϕ) t ≃ (M ω |S y x ) t . Then we have the following cases: 1. If x = 0 ′ and y = 0 (or x = y = 0, or x = y = 0 ′ ), then p is true everywhere, and the connected component is bisimilar to a singleton model wherein p is true. An announcement of p suffices here, so (N|ϕ) t ≃ (N|p) t .

2. If x, y ∈ N\{0} or x, y ∈ N ′ \{0 ′ }, then p is false everywhere. An announcement of ¬p will equally result in a model restriction only containing ¬p states. Both restrictions are bisimilar to a singleton model wherein p is false, so (N|ϕ) t ≃ (N|¬p) t .

3. Finally, as we are in a connected component, if neither of the above cases are true, then we must have in our connected model a state i ∈ {0, 0 ′ } and a state j ∈ {1, 1 ′ } that were preserved by the announcement of ϕ. Now for every k ∈ D(N) where k ∈ (N \ {0}) ∪ (N ′ \ {0 ′ }) we have N k is a refinement of N j (Corollary 5.7), so every such k must have been preserved by the announcement of ϕ (Lemma 2.23). Further:

• if j = 1 and i = 0 ′ so that 0 is also in (N|ϕ), then N 0 ′ is a refinement of N 0 (Corollary 5.7.3) so that both 0 and 0 ′ are preserved;

• if i = 0 and j = 1 ′ so that 0 ′ is also in (N|ϕ), then N 0 is a refinement of N 0 ′ (Corollary 5.7.4) so that again both 0 and 0 ′ are preserved;

• if i = 0 ′ but 0 is not in (N|ϕ), then 0 ′ was preserved by assumption;

• if i = 0 but 0 ′ is not in (N|ϕ), then 0 was preserved by assumption.

Therefore every state in the connected component containing t is preserved by ϕ and (N|ϕ) t ≃ N t .

Lemma 5.9 Let M, N be submodels of M ω , s ∈ D(M), t ∈ D(N), and

k ∈ N. If M s ≃ k N t , then M s ≡ k apal + N t .
Proof By induction on ϕ we show the equivalent proposition:

Let ϕ ∈ L + apal , M, N be submodels of M ω , s ∈ D(M), t ∈ D(N), and d(ϕ) ≤ k where k ∈ N. If M s ≃ k N t , then M s |= ϕ iff N t |= ϕ.
We only show the relevant cases K a ϕ, [ψ]ϕ, and + ϕ. As k-bisimilarity is a symmetric relation it suffices to show just one direction for each case.

Let R 0 ⊇ • • • ⊇ R k be such that R 0 : M s ≃ 0 N t , . . . , R k : M s ≃ k N t .
Case K a ϕ: Suppose d(K a ϕ) ≤ k. We have M s |= K a ϕ if and only if for all s ′ ∼ a s, M s ′ |= ϕ. As R k : M s ≃ k N t , for all t ′ ∼ a t there is some s ′ ∼ a s such that R k-1 : M s ′ ≃ k-1 N t ′ . By the induction hypothesis we have for all ψ where d(ψ We define the following series of relations from (M|ψ) to (N|ψ) for ℓ = 0, . . . , ki:

) ≤ k -1, M s ′ |= ψ implies N t ′ |= ψ. As d(ϕ) ≤ k -1,
Q ℓ = {(s, t) ∈ R ℓ+i | M s |= ψ}.
Note that as (s, t) ∈ Q ℓ implies (s, t) ∈ R ℓ+i for any such pair (s, t), and d(ψ) = i ≤ ℓ + i, it follows by induction that N t |= ψ, so indeed these are relations from (M|ψ) to (N|ψ).

We now show that the clauses atoms, forth and back of bounded bisimulation (Definition 2.5) hold for

Q ℓ = Q 0 , . . . , Q k-i , for any pair (s, t) ∈ Q ℓ .
Case ℓ = 0. We show atoms-p, for p ∈ P . From (s, t) ∈ Q 0 it follows that (s, t) ∈ R i . As R 0 ⊇ R i , it also follows that (s, t) ∈ R 0 , i.e., s and t satisfy the same atoms. Therefore Q 0 : (M|ψ) s ≃ 0 (N|ψ) t .

Case ℓ > 0. We show ℓ-forth-a. Let s ∼ a s ′ and M s ′ |= ψ (i.e., s ∼ a s ′ in (M|ψ)). From R ℓ+i : M s ≃ ℓ+i N t and s ∼ a s ′ follows that there is a t ′ ∼ a t such that R ℓ+i-1 : In order to informally explain the method in the subsequent proof, first consider models M -1 0 and N 2 0 in Figure 8. In M -1 but not in N 2 , from the evaluation point 0, the a-link is closer to the edge than the b-link. The formula + (L b p → L a p) formalizes this property in L + apal . In M -1 , the prefixes of this chain are defined by the (positive) formulas: K b p (for {-1}), K a (¬p ∨ K b p) (for {-1, 0}), K b (p ∨ K a (¬p ∨ K b p)) (for {-1, 0, 1}), etc. As we build these prefixes from the left, the a-link from 0 is included before the b-link from 0 is included.

M s ′ ≃ ℓ+i-1 N t ′ . As ℓ > 0 and d(ψ) = i, d(ψ) ≤ ℓ + i -1. From R ℓ+i-1 : M s ′ ≃ ℓ+i-1 N t ′ , M s ′ |= ψ and d(ψ) ≤ ℓ + i -1 it follows by the induction hypothesis that N t ′ |= ψ. Therefore t ′ is in the domain of N|ψ. By definition, from R ℓ+i-1 : M s ′ ≃ ℓ+i-1 N t ′ it follows that Q ℓ-1 : (M|ψ) s ′ ≃ ℓ-1 (N|ψ) t ′ .
There are yet other positively definable subsets containing 0, such as the ¬p-states. But that cuts off both links. Differently said, if the b-link from state 0 to state 1 is included then the a-link from state 0 to state -1 is included. And both have a different value of p than in 0. This gives us L b p → L a p. And therefore, M -1 0 |= + (L b p → L a p). Now look at N 2 . There, similar reasoning makes us conclude that the b-link is always included before the a-link. So we can make a positive announcement, namely

K b (¬p ∨ K a (p ∨ K b ¬p)), resulting in the restriction to {0, 1, 2}, after which L b p is true but L a p is false. So N 2 0 |= + (L b p → L a p).
Of course the models M -1 0 and N 2 0 can be easily distinguished in L apal too. They can even be distinguished in L el , without APAL quantifiers, for example by a formula expressing that the distance to the edge is 1 in M -1 0 but more than 1 in

N 2 t . As K b p distinguishes state -1 in M -1 , this formula is L a K b p. We note that M -1 0 |= L a K b p whereas N 2 0 |= L a K b p.
But, tellingly, you need to have that distance explicitly in the formula, unlike in the L + Having prepared the ground for the proof, we now present Theorem 5.19 (at the end of this section) and preceding lemmas. Lemma 5.12 The positively definable restrictions of M l are: all states, the p-states, the ¬p-states, any finite prefix of the a-b-chain M l , and the union or intersection of any of the previous.

Proof The relation R :

= {(i + 2j, i) | j ∈ N, i ∈ Z, i ≥ l} is the maximal refinement on M l . It is a refinement because M l i+2j M l i iff M l i is isomorphic to a submodel of M l i+2j .
A submodel is the most typical example of the structural loss represented by a refinement. The relation R is also maximal. We cannot pair a p-state to a larger p-state, such as in (l, l + 2): back-b would then fail: from l + 2 we can reach a ¬p-state via l + 1 ∼ b l + 2, but we cannot reach a ¬p-state by a b-link from state l. Similarly we cannot have any other pair where the second argument is a state named with a larger number than the first argument, by iterating back steps.

Given R, the subsets of the domain of M l that are closed under refinement are: all states, the p-states, the ¬p-states, and the finite prefixes of the chain M l . To this we further add the union or intersection of any of the previous, where we note that the union of two prefixes is the longer prefix and the intersection of two prefixes is the smaller prefix. This means that also closed under refinement are: the p-states of any finite prefix, the ¬p-states of any finite prefix, and the union of a prefix of the chain with the set of p-states, or ¬p-states, of a larger prefix (such as the set {-1, 0, 1, 2, 3, 5, 7, 9}).

We now show that all refinement closed subsets of the domain of M l are positively definable. This is not evident, as the domain of M l is not finite (so Lemma 3.5 does not apply). We define: δ l l := K b p, δ l i+1 := K a (¬p ∨ δ l i ) for i an odd natural number, and δ l i+1 := K b (p ∨ δ l i ) for i an even natural number. The other positive formulas defining refinement closed subsets are conjunctions or disjunctions of the previous; none of those however will play a role in the continuation.

The argument is the same for the model N r . In this case relation R ′ := {(i -2j, i) | j ∈ N, i ∈ Z, i ≤ r} is the maximal refinement on N r , and any N r i is isomorphic to a submodel of N r i-2j . The positive formulas defining the prefixes are now defined as: δ r r := K b p, δ r i-1 := K a (¬p ∨ δ r i ) for i an even natural number, and δ r i-1 := K b (p ∨ δ r i ) for i an odd natural number.

Corollary 5. [START_REF] Cordón-Franco | A colouring protocol for the generalized russian cards problem[END_REF] The positively definable restrictions of N r are: all states, the p-states, the ¬p-states, any finite prefix of the a-b-chain N r , and the union or intersection of any of the previous. the induction hypothesis, given d(ϕ) ≤ n -1, we have for all j ′ ∼ a j, N j ′ |= ϕ. Therefore N j |= K a ϕ.

Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ n, and M i |= [ψ]ϕ. By the definition of d we may suppose that d(ψ) = x and d(ϕ) = y where x + y ≤ n. Let R 0 ⊇ • • • ⊇ R n be such that R 0 : M i ≃ 0 N j , . . . , R n : M i ≃ n N j . For all (i ′ , j ′ ) ∈ R x , we have M i ′ ≃ x N j ′ , so by the induction hypothesis, M i ′ |= ψ if and only if N j ′ |= ψ. Therefore, if M i |= ψ then N j |= ψ and vacuously N j |= [ψ]ϕ, as required. Suppose now that M i |= ψ. We define the series of relations from (M|ψ) to (N|ψ) for z = 0, . . . , y: Q z = {(i ′ , j ′ ) ∈ R n-z | M i ′ |= ψ}. The conditions atoms, forth and back for the bounded bisimulation of Definition 2.5 hold for Q 0 , . . . , Q y , and so (M|ψ) i ≃ y (N|ψ) j . Applying the induction hypothesis once again, we have (M|ψ) i |= ϕ implies (N|ψ) j |= ϕ, and so N j |= [ψ]ϕ.

Case ϕ:

To match the previous lemma, we show the dual diamond form. This is a contradiction. Therefore, no such equivalent L apal formula exists.

Corollary 5.20 APAL and APAL + have incomparable expressivity.

Proof From Theorem 5.11 and Theorem 5.19.

The relative expressivity of APAL + to group announcement logic and coalition announcement logic, mentioned in the introduction, has recently been addressed in [START_REF] French | Groups versus coalitions: On the relative expressivity of GAL and CAL[END_REF][START_REF] Galimullin | Coalition announcements[END_REF]. It is shown that GAL is not at least as expressive as CAL and that APAL is not at least as expressive as CAL, with chain models for three agents instead of the two agent a-b-chains in our contribution. Whether CAL is not at least as expressive as GAL is an open question.

Axiomatisation

In this section we provide a sound and complete axiomatisation for arbitrary positive announcement logic. It is as the (infinitary) axiomatisation for arbitrary public announcement logic given by Balbiani et al. [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF][START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF], but with restrictions to positive announcements in appropriate axioms. apal , where ψ(ϕ) stands for the substitution of the unique occurrence of ♯ in ψ(♯) by ϕ. We also call ψ(ϕ) an instantiation of ψ(♯).

The axiomatisation APAL + ω is given below. A formula is a theorem if it belongs to the least set of formulas containing all axioms and closed under the derivation rules. Definition 6.2 The axiomatisation APAL + ω consists of the following axioms and rules. In the rule R+ ω , the expressions χ([ψ]ϕ) and χ( + ϕ) are instantiations of a necessity form χ(♯). The axiomatisation APAL + ω is identical to the axiomatisation APAL ω in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] and to the axiomatisation APAL in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF], except for the replacement of the APAL by the APAL + + on two occasions, resulting in the axiom A+ and the rule R+ ω . Other, non-essential differences are the different names for axioms and rules, for example the axiom we call K they call A1, the axiom we call T they call A4, and so on; and the presence of additional, known to be derivable, axioms in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF].

P All propositional tautologies K K a (ϕ → ψ) → (K a ϕ → K a ψ) T K a ϕ → ϕ 4 K a ϕ → K a K a ϕ 5 ¬K a ϕ → K a ¬K a ϕ AP [ϕ]p ↔ (ϕ → p) AN [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) AC [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) AK [ϕ]K a ψ ↔ (ϕ → K a [ϕ]ψ) AA [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ A+ + ϕ → [ψ]
Note that the proof of completeness of APAL given in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] was wrong and that a correct proof of completeness has been given in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF][START_REF] Balbiani | Putting right the wording and the proof of the Truth Lemma for APAL[END_REF]. Theorem 6.3 The infinitary axiomatisation APAL + ω is sound and complete for the logic APAL + .

Proof The soundness of the axiomatisation is evident as the axiom A+ and the rule R+ ω follow the semantics of the + operator (just as their non-positive counterparts followed the semantics of the operator), and all remaining axioms and rules are, as well-known, standard from epistemic logic and public announcement logic.

The completeness proof proceeds exactly as in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF], with appropriate restrictions from epistemic announcements to positive announcements in the cases of A+ and R+ ω .

More precisely, the positive arbitrary announcement operator + only features in the subinductive case [ψ] + χ and in the inductive case + ψ of the proof of the Truth Lemma. The Truth Lemma for APAL is proved by a complexity measure wherein [ψ]ϕ is less complex than ϕ for any ψ ∈ L el . Similarly, [ψ]ϕ is less complex than + ϕ for any ψ ∈ L + el . This justifies that substituting 'epistemic' for 'positive' in appropriate places is sufficient.

No other changes are required.

We note that APAL + ω is an infinitary axiomatisation, as the rule R+ ω requires an infinite number of premises. Just as for the infinitary axiomatisation of the logic APAL, it is unknown if a finitary axiomatisation exists.

Conclusion

We presented a variant of arbitrary public announcement logic called positive arbitrary public announcement logic, APAL + , which restricts arbitrary public announcements to announcement of positive formulas. We showed that the model checking complexity of APAL + is PSPACE-complete, that APAL + is more expressive than public announcement logic PAL, that it is incomparable with APAL, and we provided a sound and complete infinitary axiomatisation. The proof of the decidability of APAL + is reported in a companion paper [START_REF] Van Ditmarsch | Decidability of arbitrary positive announcement logic[END_REF].

Definition 2 . 2

 22 Let M = (S , ∼, V ) ∈ S5 be an epistemic model and T ⊆ S where ∅ = T . We define the restriction of M to T as M |T = (S |T , ∼|T , V |T ) where:
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 2 Figure 2: More models used in the proof of Proposition 2.16.
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 34353 Figure 3: Counterexample for the composability of positive announcements. Left: initial model, with explicit refinement relation. Middle: after announcing K a p. Right: after subsequently announcing ¬q ∨ K b q.
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 375 Lemmas 3.1 & 3.9]) Let ϕ, ψ ∈ L + apal . Then:

Lemma 3 . 8 (

 38 [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] Lemma 3.2]) Let ϕ ∈ L + apal and let M ∈ S5 be a model on which the valuation of atoms in v(ϕ) is constant. Then M |= ϕ or M |= ¬ϕ.Proof Let p ∈ v(ϕ). Let ψ(⊤/p) be the substitution of all occurrences of p in ϕ by ⊤. As the valuation of p is constant, then if p is true on M we have that M |= ϕ ↔ ϕ(⊤/p). Similarly, if p is false on M, then M |= ϕ ↔ ϕ(⊥/p). Let ϕ ′ be the result of successively substituting all p ∈ v(ϕ) by ⊤ or ⊥ in this way. Clearly M |= ϕ ↔ ϕ ′ . Using theS5 validities K a ⊤ ↔ ⊤, K a ⊥ ↔ ⊥, using S5 |= + ⊤ ↔ ⊤ and S5 |= + ⊥ ↔ ⊥,and using propositional properties of combining ⊤ and ⊥, we obtain that S5 |= ϕ ′ ↔ ⊤ or S5 |= ϕ ′ ↔ ⊤. Thus we also have that M |= ϕ ↔ ⊤ or M |= ϕ ↔ ⊤, in other words, that M |= ϕ or M |= ¬ϕ. Lemma 3.9 ([5, Lemma 3.3]) Let ϕ ∈ L + apal and let M = (S, ∼, V ) ∈ S5 be a model on which the valuation of atoms in v(ϕ) is constant. Then M |= ϕ → + ϕ. Proof Let s ∈ S and M s |= ϕ. Now consider ψ ∈ L + el such that M s |= ψ. Note that the valuation of atoms in v(ϕ) on M|ψ is also constant, and that it is the same as the valuation of atoms on M. Consider the disjoint union M ′ = M + M|ψ of M and M|ψ (it is the model defined by the disjoint union of the respective domains, accessibility relations, and valuations). Like M and M|ψ, M ′ is a model on which the valuation of v(ϕ) is constant. Therefore, from Lemma 3.8, either M ′ |= ϕ or M ′ |= ¬ϕ. The second implies that M |= ¬ϕ which contradicts M s |= ϕ. Therefore, M ′ |= ϕ. From M ′ |= ϕ it follows that M|ψ |= ϕ, so that in particular (M|ψ) s |= ϕ. As ψ was arbitrary, we now have shown that: for all ψ ∈ L + el , if M s |= ψ then (M|ψ) s |= ϕ. By the semantics of public announcement this is equivalent to: for all ψ ∈ L + el , M s |= [ψ]ϕ. By the semantics of + this is equivalent to M s |= + ϕ. From that and the assumption it follows that M s |= ϕ → + ϕ, and as s was arbitrary, we thus have shown that M |= ϕ → + ϕ, as required.
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 6 Figure 6: Models M ω 0 and M m 0 used in the proof of Theorem 5.11.
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 53 The edge state m ′ of model M m can be distinguished by an epistemic formula.
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 78 Figure 7: Models used in the proof of Theorem 5.19

  apal formula. And d(L a K b p) = 2, larger than d( + (L b p → L a p)) = 1.

Lemma 5 .

 5 14 M l 0 |= + (L b p → L a p)Proof Let T ⊆ D(M) be positively definable and such that 0 ∈ T . Then either M l |T is a prefix of M l containing 0, or M l |T consists of disconnected parts of which M l |{0} is a singleton part. In the second case, from (M l |{0}) 0 |= ¬L a p and (M l |{0}) 0 |= ¬L b p follows (M l |{0}) 0 |= L a p → L b p. In the first case, as M l |T is a prefix of M containing 0, the a-link to -1 (where -1 may be l) must always be included in that restriction if the b-link to 1 is included. Therefore (M l |T ) 0 |= L b p → L a p. From (M l |T ) 0 |= L b p → L a p for all T containing 0, and the observation that all such T are positively definable (Lemma 5.12), it follows that M l 0 |= + (L b p → L a p).

M

  i |= ϕ ⇔ there is ψ ∈ L el , M i |= ψ ϕ ⇔ there is ψ ∈ L el , M i |= ψ and (M|ψ) i |= ϕ ⇔ Lemma 5.16 there is ψ ′ ∈ L el , N j |= ψ ′ and (N|ψ ′ ) j |= ϕ ⇔ there is ψ ′ ∈ L el , N j |= ψ ′ ϕ ⇔ N j |= ψ Corollary 5.18 Let ϕ ∈ L apal , l < -d(ϕ) and r > d(ϕ). Then M l 0 |= ϕ iff N r 0 |= ϕ.Theorem 5.19 APAL is not at least as expressive as APAL + for multiple agents. Proof Consider the formula + (L b p → L a p). Let us suppose that + (L b p → L a p) is equivalent to a L apal formula ϕ. The epistemic depth of this formula is d(ϕ). Let M l 0 and N r 0 be such that |l|, r > d(ϕ). Then: 1. M l 0 |= + (L b p → L a p) (Lemma 5.14); 2. N r 0 |= + (L b p → L a p) (Lemma 5.15); 3. M l 0 |= ϕ iff N r 0 |= ϕ (Corollary 5.18).
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 61 Consider a new symbol ♯. The necessity forms are defined inductively as:ψ(♯) ::= ♯ | (ϕ → ψ(♯)) | [ϕ]ψ(♯) | K a ψ(♯)where ϕ ∈ L + apal and a ∈ A.A necessity form contains a unique occurrence of the symbol ♯. If ψ(♯) is a necessity form and ϕ ∈ L + apal , then ψ(ϕ) ∈ L +

  ϕ where ψ ∈ L + el MP From ϕ and ϕ → ψ infer ψ NecK From ϕ infer K a ϕ NecA From ϕ infer [ψ]ϕ R+ ω From χ([ψ]ϕ) for every ψ ∈ L + el infer χ( + ϕ)

  M s |= ϕ for all s ∈ S, we write M |= ϕ (ϕ is valid on M), and when M |= ϕ for all M of class S5 , we write S5 |= ϕ and we say that ϕ is valid. Formula ϕ ∈ L apal is satisfiable if there is an epistemic model M s such that M s |= ϕ.Let M s and M ′ s ′ be given. If for all ϕ ∈ L apal , M s |= ϕ if and only if M ′

	s ′ |= ϕ, then M s s ′ . For modal equivalence s ′ are modally equivalent, for which we write M s ≡ apal M ′ and M ′ for formulas up to modal depth n we write M s ≡ n apal M ′ s ′ , and for modal equivalence for
	formulas in the language restricted to atoms in Q ⊆ P we write M s ≡ Q apal M ′ s ′ .
	Public announcement logic PAL and epistemic logic S5 have the same semantics as

  M s |= ψ and (M|ψ) s |= + ϕ. In particular, (M|ψ) s |= [δ s Proposition 3.11 ([5, Prop. 3.4]) Arbitrary positive announcements have the McKinsey property in S5 , i.e. S5 |= + + ϕ → + + ϕ for all ϕ ∈ L + apal . Proof The proof is different from that of Proposition 3.10, but the crucial role of the announcement of values of all variables in ϕ is the same. Suppose M s |= + + ϕ. Then (as above) (M|δ s v(ϕ) ) s |= + ϕ. As M|δ s v(ϕ) is a model on which the valuation of the atoms in v(ϕ) is constant, we have (Lemma 3.10) that M|δ s v(ϕ) |= ϕ → + ϕ. Also using the dual M|δ s v(ϕ) |= + ϕ → ϕ of that lemma, we obtain M|δ s v(ϕ) |= + ϕ → + ϕ. From that and (M|δ s v(ϕ) ) s |= + ϕ it follows that (M|δ s v(ϕ) ) s |= + ϕ, and we therefore obtain M s |= δ s

	v(ϕ) ]ϕ. Therefore, since we also have that v(ϕ) ) s |= ϕ. Observe that M|ψ|δ s v(ϕ) , (M|ψ|δ s M s |= δ s v(ϕ) is a model on which the valuation of atoms in v(ϕ) is constant. Now let η ∈ L + el be arbitrary and such that M s |= η. Consider (M|η|δ s v(ϕ) ) s . The valuation of the atoms in v(ϕ) is also constant on M|η|δ s v(ϕ) . From Lemma 3.8 it follows that M|η|δ s v(ϕ) |= ϕ or M|η|δ s v(ϕ) |= ¬ϕ. Similarly to the reasoning in the proof of Lemma 3.9, the latter contradicts (the above) (M|ψ|δ s v(ϕ) ) v(ϕ)

3.10 Arbitrary positive announcements have the Church-Rosser property in

S5 , i.e. S5 |= + + ϕ → + + ϕ for all ϕ ∈ L + apal . Proof Let M s |= + + ϕ. Then there is ψ ∈ L +

el such that M s |= ψ + ϕ, i.e., s |= ϕ, and therefore M|η|δ s v(ϕ) |= ϕ. From that follows (M|η) s |= δ s v(ϕ) ϕ, so that (M|η) s |= + ϕ.

We have now shown that for all η ∈ L + el , M s |= η implies (M|η) s |= + ϕ, which by the semantics of + is equivalent to M s |= + + ϕ.

  it follows that for all t ′ ∼ a t, N t ′ |= ϕ. Therefore N t |= K a ϕ. Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ k, and M s |= [ψ]ϕ. By the definition of d we may suppose that d(ψ) = i and d(ϕ) = j where i + j ≤ k. As R k : M s ≃ k N t , by the induction hypothesis, M s |= ψ if and only if N t |= ψ. Therefore, if M s |= ψ then N t |= ψ and vacuously N t |= [ψ]ϕ, as required. Suppose now that M s |= ψ, so that also N t |= ψ.

  Therefore, t ′ satisfies the requirement for ℓ-forth-a for relation Q ℓ . The clause ℓ-back-a is shown similarly.In particular, (M|ψ) s ≃ k-i (N|ψ) t . From assumptions M s |= [ψ]ϕ and M s |= ψ it follows that (M|ψ) s |= ϕ. Therefore, using that d(ϕ) = j ≤ ki and applying the induction hypothesis once again, we obtain that (N|ψ) t |= ϕ, which with N t |= ψ delivers the required N t |= [ψ]ϕ. Case + ϕ: Suppose d( + ϕ) ≤ k, and M s |= + ϕ. Then M s |= [ψ]ϕ for all ψ ∈ L + el . Now for any ψ ∈ L + el , by Corollary 5.8 we have either: (N|ψ) t ≃ (N|p) t , (N|ψ) t ≃ (N|¬p) t or (N|ψ) t ≃ N t . 1. In the first case, since M s ≃ k N t , N t |= p implies M s |= p so both (M|p) s and (N|p) t are bisimilar to the singleton model where p is true. As M s |= + ϕ, we have (M|p) s |= ϕ and thus (N|p) t |= ϕ (Lemma 3.12). Since (N|p) t ≃ (N|ψ) t we have N u |= [ψ]ϕ.

2. The second case is similar: if (N|ψ) t ≃ (N|¬p) t , then N t |= ¬p implies M s |= ¬p. We then have that (M|¬p) s and (N|¬p) t are bisimilar to the singleton model where p is false, and thus (M|p) s |= ϕ implies (N|p) t |= ϕ. It follows that N t |= [ψ]ϕ.

We did not require that M is bisimulation minimal in the formulation of the lemma. The minimality follows from the existence of δ 0 . Further note that M |B need not be an a-b-chain, it may be disconnected.

support from ERC project EPS 313360. A preliminary version of this work was presented at the 2014 Software Engineering Research Conference organized by the UWA doctoral school, see http://jameshales.org/manuscripts/csse2014.pdf.

(∀) [ϕ 1 ]ϕ 2 : choose a restriction M ′ = (S ′ , ∼ ′ , V ′ ) of M; if for some s ′ ∈ S ′ , not sat(M, s ′ , ϕ 1 ) then accept else if for some s ′ ∈ S \ S ′ , sat(M, s ′ , ϕ 1 ) then accept else if s / ∈ S ′ then accept else sat(M ′ , s, ϕ 2 ); (∃) ϕ 1 ϕ 2 : choose a restriction M ′ = (S ′ , ∼ ′ , V ′ ) of M; if for some s ∈ S ′ , not sat(M, s ′ , ϕ 1 ) then reject else if for some

for all t ∈ S ′ , for all t ′ where (t, t ′ ) ∈ R M , we have t ′ ∈ S ′ if s ∈ S ′ then sat(M ′ , s, ϕ) else reject; end case test whether a submodel can be defined by a positive announcement. From Proposition 3.4 and Proposition 3.5 it follows that, in order for a restriction of a finite model to be definable as the result of a positive announcement, it must be closed under refinements. From Lemma 4.1 we can check that this condition is satisfied by first computing in polynomial time the maximal refinement from M to itself, R M , and then using this refinement to select only refinement preserving restrictions of the model.

We now present the algorithm, sat, for model-checking in APAL + . The algorithm sat takes as input a finite model M = (S, ∼, V ), some s ∈ S and a formula ϕ ∈ L + apal that we require to be in what is known as negation normal form. This means that the formula conforms to the syntax ϕ ::

It is clear that all formulas are semantically equivalent to a formula in negation normal form. One can easily compute it and its size is linear in the size of the given formula.

A run of the algorithm halts with either accept or reject. Each case of the algorithm is either existential or universal, where for an existential case to be accepting, one choice must lead to an accepting case, and for a universal case to be accepting, every choice must lead to an accepting case. The algorithm is presented as Algorithm 1.

The proof of correctness follows the inductive argument presented in [START_REF] Ågotnes | Group announcement logic[END_REF]: we can show As M m 0 ≃ m M ω 0 , the following corollary is rather a special case of the previous lemma.

Theorem 5.11 APAL + is not at least as expressive as APAL for multiple agents.

Proof Recall the L apal formula (K b K a p ∨ K b ¬K a p) from Lemmas 5.4 and 5.5. Let us assume that there is an equivalent formula ϕ ∈ L + apal and the epistemic depth of this formula is d(ϕ) = m. We recall that the epistemic depth counts the number of stacked knowledge modalities, but ignores the arbitrary (positive) announcement modalities.

Consider again the models M m 0 and M ω 0 of Figure 6. We have shown the following:

The assumption that (K b K a p ∨ K b ¬K a p) is equivalent to ϕ is in contradiction with these results. Therefore, no such equivalent ϕ exists.

APAL is not at least as expressive as APAL +

We wish to establish incomparability of APAL and APAL + , so it remains to show that APAL is not at least as expressive as APAL + for multiple agents. This we will do in the following Theorem 5.19, by, again, the standard method of providing two pointed epistemic models and a formula (in L + apal ) such that the models can be distinguished by that formula but cannot be distinguished by any formula in the other language (in L apal ). Before that theorem we will introduce the models used in its proof, present an intuitive example to illustrate the proof method, and introduce some lemmas to be used in that proof.

Consider models M l 0 and N r 0 in Figure 7. Both are a-b-chains, and such that a variable p is false in the evaluation point 0 and the values of p are swapped in adjoining states. However, the model M l terminates on the a-link side of the designated state 0 in state l (for left) and is infinite on b-link side of 0, whereas the model N r terminates on the b-link side of 0 in state r (for right) and is infinite on the left.

Formally, let l be a negative odd integer and let r be a positive even integer, then the domain of

Then, the domain of N r is {i | i ∈ Z, i ≤ r}; the relations and valuation in N r are similarly defined as in M l . We recall that M l and N r are a-b-chains. Both have a single edge. 

The following lemma is very crucial. Note that the restrictions below can be for any subset of the domain, not necessarily positively definable. Lemma 5.16 Given are restricted models M of M l and N of N r , and i, j ∈ N with i ∈ D(M) and j ∈ D(N). If M i ≃ n N j , then for all ψ ∈ L el such that M i |= ψ there is a ψ ′ ∈ L el such that (M|ψ) i ≃ n (N|ψ ′ ) j , and for all ψ ′ ∈ L el such that N j |= ψ ′ there is a ψ ∈ L el such that (M|ψ) i ≃ n (N|ψ ′ ) j .

Proof Given ψ ∈ L el with M i |= ψ, let M ′ i be obtained by restricting (M|ψ) i to states at most n steps, on either side, from i, and omitting components disconnected from i. We then have that M ′ i ≃ n (M|ψ) i , and that M ′ i is a finite chain of length at most 2n + 1. We recall that any finite subset in N r is distinguishable in L el , using the distance from endpoint r (see Lemma 2.13). Similarly, any finite subset in a connected part of N is distinguishable in L el from its complement in that part (which again follows from Lemma 2.13 or otherwise from Lemma 2.12). So, as M ′ ⊆ M and M i ≃ n N j , there is a ψ ′ ∈ L el and a finite N ′ ⊆ N such that N ′ j ≃ (N|ψ ′ ) j (i.e., unbounded) and M ′ i ≃ n N ′ j . From that and M ′ i ≃ n (M|ψ) i it follows that (M|ψ) i ≃ n (N|ψ ′ ) j . The proof in the other direction, assuming a ψ ′ ∈ L el such that N j |= ψ ′ , is similar.

It is important to note that in the above proof the epistemic depths d(ψ) and d(ψ ′ ) are not related to n: they are arbitrary and therefore can be larger than n.

Lemma 5.17 Let M ⊆ M l , N ⊆ N r , i, j ∈ N with i ∈ D(M) and j ∈ D(N), and n ∈ N:

Proof We show the equivalent formulation:

For all ϕ ∈ L apal , M ⊆ M l , N ⊆ N r , i, j ∈ N with i ∈ D(M) and j ∈ D(N),

and n ∈ N: if M i ≃ n N j and d(ϕ) ≤ n, then M i |= ϕ iff N j |= ϕ.

The proof is by induction on the structure of ϕ. The cases of interest are K a ϕ, [ψ]ϕ, and ϕ. The first two cases are similar to those shown in Lemma 5.9, and therefore shown in less detail. As n-bisimilarity is a symmetric relation, it suffices to show only one direction of the equivalence.

Case K a ϕ: Suppose d(K a ϕ) ≤ n. We have M i |= K a ϕ if and only if for all i ′ ∼ a i, M i ′ |= ϕ. As M i ≃ n N j , for all j ′ ∼ a j there is some i ′ ∼ a i such that M i ′ ≃ n-1 N j ′ . By