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Abstract

Baltag, Moss, and Solecki proposed an expansion of classical modal logic, called

logic of epistemic actions and knowledge (EAK), in which one can reason about

knowledge and change of knowledge. Kurz and Palmigiano showed how duality

theory provides a flexible framework for modelling such epistemic changes, al-

lowing one to develop dynamic epistemic logics on a weaker propositional basis

than classical logic (for example an intuitionistic basis). In this paper we show

how the techniques of Kurz and Palmigiano can be further extended to define

and axiomatize a bilattice logic of epistemic actions and knowledge (BEAK).

Our propositional basis is a modal expansion of the well-known four-valued logic

of Belnap and Dunn, which is a system designed for handling inconsistent as

well as potentially conflicting information. These features, we believe, make our

framework particularly promising from a computer science perspective.

Keywords: Dynamic epistemic logic, bilattices, modal logic, algebraic models,

duality
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You are lost on Place Stanislas in the historical center of Nancy and

you need to catch a train. So you accost a friendly and French looking

person and there you go, pointing to the right: “Is this the way to

the railway station?” “Oui.” (Yes.) Merci, etc., you each go your

way, but, a few moments later, while still remaining in some doubt,

you ask another person, and then pointing in the opposite direction:

“Is this the way to the railway station?” “Oui.” What will you do?
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(First lesson: when asking directions, never suggestively point in one

direction.) You will probably resolve the inconsistency by yet further

communication (or consultation of a map, say) before you continue

on your way. And sure enough, the next person you ask does not

even answer the question and shrugs her shoulders before walking

on. Inconsistent or absent responses in dynamic interaction are just

as common as inconsistency in static information. Propositions that

can be true, false, both (true and false), or neither are modelled with

bilattices. In this work we investigate the dynamic modal logic of

bilattices, where not only propositions but also actions have four-

valued features.

1. Introduction

In the past decades, reasoning about knowledge and information change has

gained a prominent place in various areas of artificial intelligence and computer

science such as distributed systems [26], protocol verification [27], and game

theory [3]. In these areas agents have to deal with incomplete and inconsistent

information. For example, in distributed systems, agents receive information

from multiple sources that may be inconsistent. Moreover, in real-world situa-

tions, agents do not have complete information about all aspects of the world

and their reasoning power is bounded by thresholds such as time and limited

memory [11]. Under such circumstances, applying a classical approach to model

information change may not be appropriate because it suffers from the logical

omniscience problem [46]; that is, the agents know all the consequences of what

they know. As a result, they cannot hold contradictory knowledge without

“knowing” every sentence of the language, because a contradiction classically

entails any formula. Several approaches have been proposed to formalize incon-

sistent and incomplete information in the literature, see e.g. [6, 7, 31, 30, 11, 12].

To set the stage for future discussion, we are going to review the most closely

related works. In [6] Belnap proposed a four-valued logic whose semantics in-
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Figure 1: The four-element Belnap lattice in its two orders, the bilattice FOUR

volves, besides the classical truth values t and f, two intermediate values: >

(both true and false) for handling inconsistent information and ⊥ (neither true

nor false) for incomplete information. In this logic, each atomic formula can

be assigned one of the four values chosen from the set 4 = {t, f,⊥,>}. Belnap

observed that his four values can be arranged in a lattice in two ways: ordering

them either by information degree (the knowledge order ≤k) or by the truth

degree (the truth order ≤t). The set 4 together with ≤k and ≤t forms two

complete lattices, which are shown in Figure 1. Given two truth values x and

y, x ≤t y can be read as “y is at least as true as x”, while x ≤k y means that

“y contains at least as much information as x”.

Belnap’s four-valued logic inspired Levesque to address the logical omni-

science problem. In [31] he proposed a logic of explicit and implicit belief.

Explicit beliefs are actively entertained by the agent, whereas implicit beliefs

include the logical consequences of her explicit beliefs. This logic has a modal-

ity for explicit belief and a modality for implicit belief. The interpretation of

these operators is based on situation semantics. Unlike in possible worlds, in

a situation a sentence can be true, false, both true and false (incoherent situa-

tion), or neither true nor false (incomplete situation). From our perspective, [31]

establishes a significant link between many-valued logics and epistemic logics.

An objection raised against Levesque’s model is that it is restricted to a single

agent environment and therefore does not account for nested beliefs [37]. Fagin

and Halpern address multi-agent belief in their logic of knowledge (or belief)

and awareness [12]. The semantics of this awareness logic is based on possi-
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ble worlds and does not allow the agents to have contradictory knowledge, but

the awareness function at each possible world provides an effect that is similar

to an incomplete situation. In [42, 43], Sim compares the approaches of [31]

and [12] in detail and shows that the situations of [31] and the Kripke models

with (un)awareness of [12] can be associated with a model based on a bilattice

structure.

Bilattices are algebraic structures introduced by Ginsberg [22] to unify log-

ical formalisms for default reasoning and non-monotonic reasoning. A bilattice

is a set B equipped with two partial orders, the knowledge order (≤k) and the

truth order (≤t), such that (B,≤k) and (B,≤t) are both complete lattices. The

partial orders ≤k and ≤t have similar interpretations as in Belnap’s logic. Bel-

nap’s four-element lattice is the smallest non-trivial bilattice. It is called FOUR.

See Figure 1.

Bilattices have found applications in different research areas such as logic

programming [14], semantics of natural language questions [35] and philosoph-

ical logic [13, 17]. In the 1990s Arieli and Avron [1, 2] carried bilattices to

a new stage introducing bilattice-based logical systems that are suitable for

non-monotonic and paraconsistent reasoning. Later on, Jung and Rivieccio [28]

introduced a modal expansion of the logic of [1] that can be used to reason

about knowledge, belief, time, and obligation. The formulas of this logic are

interpreted in Kripke frames wherein both the accessibility relation and the val-

uation function are four-valued. Four-valued accessibility relations go back to

Fitting [15, 16], who suggested a family of many-valued modal logics and gener-

alized Kripke models involving many-valued accessibility relations. He argued in

[16] that many-valued accessibility relations are natural to formalize that some

worlds alternative to the real world are more relevant than others.

A similar formalism to that of [28] was proposed in [36]. They studied a

Belnapian version of the modal logic K. The semantics of this logic is based

on Kripke models where valuations are four-valued (as in [28]), however, the

accessibility relation is classical. Because of this, the modal operators of [36]

differ from those of [28], although the propositional base of both logics is the
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same. The formalism of [28] is the more general, because one can define the

modal operators of [36] in the language [28], but not the other way round [28,

Prop. 2].

In this work we develop a bilattice-based modal logic with dynamic operators

that enable us to reason about information change in the presence of incomplete

or inconsistent information. We build our logic by combining the logic of epis-

temic action and knowledge (EAK) of [5] with the bilattice-valued modal logic

of [28]. The logic EAK extends classical modal logic with an operator for rea-

soning about the effects of epistemic actions, as represented by action models.

Epistemic actions are events by which agents receive new information about the

world, whilst leaving the facts of the world itself unchanged. An action model is

a relational structure similar to a Kripke model, where the accessibility relation

between two actions (points in the action model domain) represent an agent’s

uncertainty as to which action actually occurred. The structure of action models

should of course fit that of Kripke models, with four-valued accessibility rela-

tions. How to give intuitive interpretations to such four-valued action models is

non-trivial, and we will give this ample attention.

Formally, epistemic changes are modeled via the so-called product update

construction on the Kripke models that provides a relational semantics for

EAK. Through the product update, a Kripke model encoding the current epis-

temic setup of a group of agents is replaced by an updated model.

An adequate formal treatment of EAK and dynamic epistemic logics, from a

syntactic as well as a semantic point of view, faces non-trivial technical problems

which become even more serious when moving to a non-classical setting [18].

Such problems can be addressed in an algebraic framework. An elegant and

versatile approach to the algebraic treatment of dynamic epistemic logic has

been developed in a recent series of papers [29, 32, 38, 39, 9], in which the

authors define non-classical counterparts of dynamic logics.

The contribution of the present paper is that we extend the methods of

[29, 38, 39] by introducing a suitable notion of product update on relational and
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algebraic models of bilattice modal logic, thus obtaining a semantics and a com-

plete axiomatization for a bilattice-based version of EAK (called BEAK). We

restrict ourselves to the single-agent setting, but the multi-agent generalization

is straightforward. We provide motivating examples for our logic.

The paper is organized as follows. Section 2 recalls the necessary definitions

and results on modal bilattice logic. It provides the static modal fragment on

which we build our bilattice-based dynamic epistemic logic. Section 3 expounds

the technical details of the update mechanism on the algebraic structures (modal

bilattices), and introduces an algebraic semantics and a relational semantics for

our logic, that are then shown to be equivalent via duality. In Section 4 we

introduce a Hilbert-style calculus for BEAK, and we show its soundness and

completeness. Completeness is shown by a reduction to the static fragment.

Section 5 gives a detailed case study illustrating the usage of epistemic dynamics

in a bilattice setting. Readers wishing to sharpen their intuitions on knowledge

(change) and bilattices, or wanting to ascertain the relevance of our framework

for such settings, are suggested to read this section earlier.

2. Bilattice modal logic

In this section we introduce bilattice modal logic and recall facts and defini-

tions that will be needed to develop our bilattice-based logic of epistemic actions

and knowledge. We refer the reader to [28, 40] for further details, as well as for

background discussion and motivation on bilattices (see also Section 5).

Bilattice modal logic is defined by four-valued Kripke models (W,R, V ), in

which both valuations and the accessibility relation R : W ×W → FOUR take

values into the four-element Belnap bilattice FOUR (Figure 1). The sentential

language is that of classical modal logic (augmented with constants representing

the elements of FOUR), but propositional connectives and modal operators are

interpreted using the algebraic operations of FOUR. This logic can be easily

extended to define bilattice-based logics where the modal operators are intended

to model epistemic attitudes of agents, for example a four-valued analogue of

6



modal logic S5.

The non-modal base of bilattice modal logic is the four-valued logic intro-

duced by Arieli and Avron [1], which can be defined using the four-element

Belnap bilattice.

We view FOUR as an algebra having operations (∧,∨,⊗,⊕,⊃,¬, f, t,⊥,>) of

type (2, 2, 2, 2, 2, 1, 0, 0, 0, 0). We note that both reducts (FOUR,∧,∨, f, t) and

(FOUR,⊗,⊕,⊥,>) are bounded distributive lattices, where the lattice orders

are denoted, respectively, by ≤t (truth order) and ≤k (knowledge order). We

have, moreover, a binary weak implication operation ⊃ defined by x ⊃ y := y if

x ∈ {t,>} and x ⊃ y := t otherwise. Negation is a unary operation ¬ having

⊥ and > as fixed points and such that ¬f = t and ¬t = f. We call it bilattice

negation.

The operations ⊗ and ⊕ need not be included in the primitive signature

because they can be retrieved as terms in the language (∧,∨,⊃,¬, f, t,⊥,>).

Thus, we will consider them as abbreviations of the terms shown below, together

with the following defined operations:

x⊗ y := (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y)

x⊕ y := (x ∧ >) ∨ (y ∧ >) ∨ (x ∧ y)

∼x := x ⊃ f

x→ y := (x ⊃ y) ∧ (¬y ⊃ ¬x)

x ∗ y := ¬(y → ¬x)

x⇔ y := (x ⊃ y) ∧ (y ⊃ x)

x↔ y := (x→ y) ∧ (y → x).

The operation ∼ provides an alternative negation (that one might call two-

valued negation, to distinguish it from the bilattice negation ¬; note that ∼x

only takes values t and f), while → is an alternative implication called strong

implication, which is adjoint to the operation ∗, called strong conjunction or

fusion.

The logic of bilattices (LB) of [1] can then be introduced as the propositional
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(⊃1⊃1⊃1) ϕ ⊃ (ψ ⊃ ϕ) (⊃ f⊃ f⊃ f) f ⊃ ϕ

(⊃2⊃2⊃2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)) (⊃>⊃>⊃>) ϕ ⊃ >

(⊃3⊃3⊃3) ((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ (⊃⊥⊃⊥⊃⊥) ⊥ ⊃ ϕ

(¬¬¬¬¬¬) ϕ⇔ ¬¬ϕ (¬∧¬∧¬∧) ¬(ϕ ∧ ψ)⇔ (¬ϕ ∨ ¬ψ)

(∧⊃∧⊃∧⊃) (ϕ ∧ ψ) ⊃ ϕ (ϕ ∧ ψ) ⊃ ψ (¬∨¬∨¬∨) ¬(ϕ ∨ ψ)⇔ (¬ϕ ∧ ¬ψ)

(⊃∧⊃∧⊃∧) ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ)) (¬⊃¬⊃¬⊃) ¬(ϕ ⊃ ψ)⇔ (ϕ ∧ ¬ψ)

(⊃ t⊃ t⊃ t) ϕ ⊃ t

(⊃∨⊃∨⊃∨) ϕ ⊃ (ϕ ∨ ψ) ψ ⊃ (ϕ ∨ ψ) (MPMPMP) from ϕ and ϕ ⊃ ψ infer ψ

(∨⊃∨⊃∨⊃) (ϕ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ ((ϕ ∨ ψ) ⊃ χ))

Table 1: The proof system LB of bilattice logic [1]

logic defined by the matrix (FOUR, {t,>}) as follows. Starting from a count-

able set of propositional variables p, one constructs the formula algebra Fm =

(Fm,∧,∨,⊃,¬, f, t,⊥,>) in the usual way. Given formulas Γ, {ϕ} ⊆ Fm, we

define Γ � ϕ iff, for all homomorphisms V : Fm → FOUR, if V (γ) ∈ {t,>} for

all γ ∈ Γ, then also V (ϕ) ∈ {t,>}. Arieli and Avron [1] provided an axiomati-

zation for LB, which is given in Table 1. The axioms of LB are the axioms of

classical logic in the language (∧,∨,⊃, f, t), plus the axioms that characterize

the interaction of negation with other operators and constants.

In [28] it was proposed to expand this logic semantically with modal oper-

ators, by considering four-valued Kripke models, i.e., structures (W,R, V ) such

that R and V are both four-valued. That is, one defines R : W×W → FOUR and

V : Fm×W → FOUR. We call (W,R) a four-valued Kripke frame. Valuations

are required to be homomorphisms in their first argument, so they preserve all

non-modal connectives (including the four constants). The modal operator ♦ is

defined as follows: for every w ∈W and every ϕ ∈ Fm,

V (♦ϕ,w) :=
∨
{R(w,w′) ∗ V (ϕ,w′) | w′ ∈W}

where
∨

denotes the infinitary version of ∨ in FOUR and ∗ is the strong con-

junction introduced above. The dual operator � is defined as V (�ϕ,w) :=
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∧
{R(w,w′) → V (ϕ,w′) | w′ ∈ W}, where

∧
denotes the infinitary version

of ∧ in FOUR, and → is the strong implication.1 It holds that V (�ϕ,w) =

V (¬♦¬ϕ,w) for all w ∈ W and all valuations V , that is, the two modal opera-

tors are inter-definable as in the classical case. In the present paper we take ♦

as primitive, and use � as a shorthand for ¬♦¬.

A modal consequence relation can now be introduced in the usual way. We

say that a point w ∈W of a four-valued model M = (W,R, V ) satisfies a formula

ϕ ∈ Fm iff V (ϕ,w) ∈ {t,>}, and we write M,w � ϕ. For a set of formulas

Γ ⊆ Fm, we write M,w � Γ to mean that M,w � γ for each γ ∈ Γ. The (local)

consequence Γ � ϕ holds if, for every model M = (W,R, V ) and every w ∈ W ,

it is the case that M,w � Γ implies M,w � ϕ. For ∅ |= ϕ we write |= ϕ (for ‘ϕ

is valid’).

This consequence relation inherits from the non-modal fragment the deduc-

tion theorem in the following form: Γ � ϕ if and only if there is a finite Γ′ ⊆ Γ

such that �
∧

Γ′ ⊃ ϕ, where
∧

Γ′ :=
∧
{γ ∈ Γ′}. This will remain true for the

dynamic expansion BEAK. It implies that in our axiomatization task we can

without loss of generality restrict our attention to valid formulas. This conse-

quence relation is axiomatized in [28], in the logic that we call here LB���. The

axiomatization of LB��� is displayed in Table 2.

A derivation is a sequences of formulas such that every formula is an in-

stantiation of an axiom or the result of applying a rule to formulas prior in the

sequence. If ϕ occurs in a derivation we write ` ϕ, for ‘ϕ is a theorem’. By

Γ ` ϕ we mean that there is a finite subset Γ′ of Γ such that `
∧

Γ′ ⊃ ϕ.

The necessitation rule “from ϕ, infer �ϕ” does not hold [28, Section III.A],

and the normality axiom �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) also does not hold [8]. We give

a brief account of completeness results for LB���, and of the proof of algebraic

1Alternative definitions of � and ♦ are discussed in [28, p. 440]. If one were to replace →

by ⊃ in the definition of �, i.e., V (�ϕ,w) :=
∧
{R(w,w′) ⊃ V (ϕ,w′) | w′ ∈ W}, then this

is equivalent to V (�ϕ,w) :=
∧
{V (ϕ,w′) | w′ ∈ W,R(w,w′) ∈ {t,>}}. This alternative is

employed in [36]. As shown in [28], it is less expressive than the version with →.
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(�t�t�t) �t↔ t

(�∧�∧�∧) �(ϕ ∧ ψ)↔ (�ϕ ∧�ψ)

(�⊥�⊥�⊥) �(⊥ → ϕ)↔ (⊥ → �ϕ)

(���−monotonicity) from ϕ→ ψ infer �ϕ→ �ψ

Table 2: The proof system for LB��� consists of all axioms and rules of LB (Table 1) plus

these three axioms and rule [28].

completeness, as we will build on them later on. We begin with completeness

with respect to Kripke models (relational completeness).

Theorem 1 (Relational completeness [28, Theorem 19])

For all Γ, {ϕ} ⊆ Fm, Γ ` ϕ iff Γ |= ϕ. a

In order to state the algebraic completeness theorem we need to introduce a

class of algebras providing an alternative semantics for bilattice modal logic.

A modal bilattice is an algebra B = (B,∧,∨,⊃,∼,♦, f, t,⊥,>) (where we may

label the operations and constants with the name of the algebra, as in ♦B,

fB, etc., to distinguish them from those in other algebras) such that the ♦-free

reduct of B is an implicative bilattice (i.e., satisfies exactly all identities that

are valid in FOUR) and the following identities are satisfied: (i) ♦f = f, (ii)

♦(x∨ y) = ♦x∨♦y, (iii) �(x ⊃ ⊥) = ♦x ⊃ ⊥. It is easy to show that identities

(i)-(iii) correspond, respectively, to axioms (i)-(iii) of our calculus, and that the

presentation of modal bilattices given here is equivalent to the one in [28].

We say that a subset F ⊆ B of a modal bilattice B is a bifilter if F is a

lattice filter of the truth lattice such that > ∈ F (in which case it follows that

F is also a filter of the knowledge lattice). Given a pair (B, F ) and formulas

Γ, {ϕ} ⊆ Fm, we write Γ �(B,F ) ϕ to mean that, for every modal bilattice

homomorphism V : Fm→ B, if V (γ) ∈ F for all γ ∈ Γ, then also V (ϕ) ∈ F . A

valid formula ϕ is one satisfying V (ϕ) ≥t >B for every B and V . We can then

state algebraic completeness.
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Theorem 2 (Algebraic completeness [28, Theorem 10]) For all Γ, {ϕ} ⊆

Fm, Γ ` ϕ iff Γ �(B,F ) ϕ for any modal bilattice B and any bifilter F ⊆ B.a

Just as with classical modal logic, the relational and the algebraic seman-

tics for bilattice modal logic are related via a Stone-type duality [28, Theo-

rem 18]. In the case of bilattices, another key ingredient that greatly simpli-

fies the picture is the so-called twist structure representation, which works as

follows. Let A = (A,∧,∨,∼,♦+,♦−, 0, 1) be a bimodal Boolean algebra [28,

Definition 11], i.e., a structure such that (A,♦+) and (A,♦−) are both modal

Boolean algebras [10], and no relation between ♦+ and ♦− is assumed. The

dual operators �+ and �− are defined in the usual way by setting �+x :=

∼♦+∼x and �−x := ∼♦−∼x. The twist structure over A is defined as the

algebra A./ = (A×A,∧,∨,⊃,¬,♦, f, t,⊥,>) with operations given, for all

(a1, a2), (b1, b2) ∈ A×A, by:

(a1, a2) ∧ (b1, b2) := (a1 ∧ b1, a2 ∨ b2)

(a1, a2) ∨ (b1, b2) := (a1 ∨ b1, a2 ∧ b2)

(a1, a2) ⊃ (b1, b2) := (∼a1 ∨ b1, a1 ∧ b2)

¬(a1, a2) := (a2, a1)

♦(a1, a2) := (♦+a1, �
+a2 ∧ ∼♦−a1)

f := (0, 1)

t := (1, 0)

⊥ := (0, 0)

> := (1, 1)

Any twist structure is a modal bilattice. Conversely, any modal bilattice is

isomorphic to a twist structure [28, Theorem 12]. This means that instead of

working directly with modal bilattices, we will work with twist structures.

The twist structure construction allows us to relate four-valued Kripke frames

and modal bilattices via Jónsson-Tarski duality for classical modal logic (see,

e.g., [23]). Given a modal bilattice B viewed as a twist structure A./, we
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can consider the structure (A•, R
+, R−), where (A•, R

+) and (A•, R
−) are the

classical Kripke frames associated to the modal Boolean algebras (A,♦+) and

(A,♦−) according to the Jónsson-Tarski duality. The relations R+ and R− can

obviously be combined into one four-valued relation R by letting R(w,w′) = t

iff (w,w′) ∈ R+ ∩ R−, R(w,w′) = > iff (w,w′) ∈ R+\R−, R(w,w′) = ⊥ iff

(w,w′) ∈ R−\R+, and R(w,w′) = f iff (w,w′) 6∈ R+ ∪ R−. In this way we ob-

tain a four-valued Kripke frame (A•, R). Conversely, every four-valued Kripke

frame F = (W,R) can be viewed as a pair of frames (W,R+, R−) by defining

(w,w′) ∈ R+ iff R(w,w′) ∈ {t,>} and (w,w′) ∈ R− iff R(w,w′) ∈ {t,⊥}.

Thus, according to Jónsson-Tarski duality, we obtain classical frames F+ =

(W,R+) and F− = (W,R−), to which one associates modal Boolean algebras

(F+)+ = (P(W ),∩,∪,∼,♦+) and (F−)+ = (P(W ),∩,∪,∼,♦−) according to

Jónsson-Tarski duality, in which ∼ is the Boolean complementation and the

operations ♦+, ♦− are defined, for each U ⊆ W , by ♦+U := (R+)−1[U ] and

♦−U := (R−)−1[U ]. Since (F+)+ and (F−)+ share the same carrier set, we actu-

ally have a bimodal Boolean algebra F+ = (P(W ),∩,∪,∼,♦+,♦−), from which

a modal bilattice (F+)./ can be obtained via the twist structure construction.

We then define the complex algebra of a Kripke frame F = (W,R+, R−) as the

twist structure F• := (P(W ),∩,∪,∼,♦+,♦−)./. The correspondence between

four-valued Kripke frames and modal bilattices extends to Kripke models and

algebraic models, which implies that the relational and the algebraic semantics

for bilattice modal logic are indeed equivalent [28].

3. Epistemic updates on bilattices

3.1. Language of BEAK and action models

In this section we introduce the bilattice logic of epistemic action and knowl-

edge (BEAK) through an algebraic semantics and through a relational seman-

tics. The algebraic semantics of BEAK draws inspiration from the algebraic

analysis of epistemic updates and pseudo-quotients on modal bilattices. We use
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duality to define a relational semantics based on four-valued Kripke models. We

then show that the relational semantics is equivalent to the algebraic semantics.

Definition 3 (Language of BEAK and action models) Let AtProp be a count-

able set of propositional variables. The set L of formulas ϕ of BEAK is de-

fined over the signature (∧,∨,⊃,¬,♦, 〈α〉, f, t,⊥,>), with new inductive con-

struct 〈α〉ϕ, where α is a four-valued action model over L, defined as a tuple

α = (K, k,Rα,Preα) such that K is a finite non-empty set, k ∈ K, Rα : K ×

K → FOUR and Preα : K → L. a

The point of action model α will always be k. If we wish to emphasize the point

we may write α(k) or αk instead of α. We overload the use of Preα: it is not

merely the function Preα, but also stands for the formula Preα(k) (where the

context easily disambiguates use). When shifting points to l ∈ K with l 6= k

we are explicit and always write α(l) (or αl) and Preα(l). Derived connectives

∼,�,⊕,⊗,→, ∗,↔ are defined as before. Moreover, we let [α]ϕ := ¬〈α〉¬ϕ.

We refer the reader to [5] for further explanations and motivation on action

models. Two considerations justify a four-valued relation Rα. Firstly, in the

EAK setting action models are Kripke frames, and in bilattice modal logic

Kripke frames are four-valued [28, 40]. Secondly, our choice is more general

from a mathematical point of view, because by restricting the range of values

of Rα to t and f we obtain two-valued action models as a special case.

The dynamic formulas have the same meaning as in EAK. The meaning of

〈α〉ϕ is: there is an execution of action model α after which ϕ is the case.

As mentioned, defining non-classical counterparts of dynamic logics is more

easily accomplished with algebraic tools, which provide us with a flexible seman-

tics that can be accommodated with incomplete and contradictory information.

3.2. Algebraic semantics for BEAK

Epistemic updates are modeled on the algebraic counterpart of the logic

through the pseudo-quotient construction. The definition of pseudo-quotient

adopted is that of [38, 39]. In the EAK setting, we also need to introduce a

13



suitable notion of intermediate structure. First, we need to define an action

model over a modal bilattice.

Definition 4 (Action model over a modal bilattice) An action model over

a modal bilattice B is a tuple a = (K, k,Ra,Prea) such that K is a finite non-

empty set, k ∈ K, Ra : K × K → FOUR is a four-valued accessibility relation

and Prea : K → B. a

The notation for action models over a logical language (interpreted on relational

models) and the notation for action models over a modal bilattice (i.e., defined

algebraically) is of course very similar. The reason for that similar notation is

that we will later show a correspondence between the relational semantics and

the algebraic semantics. We should further point out that action models over

a logical language are presented as a somewhat hybrid syntactic/semantic (lan-

guage/models) object, whereas action models over bilattices are pure semantics.

(An alternative presentation wherein action models frames are semantic, and

action models are syntax would also have been possible.)

Note that, as for action models α, by convention the point of an action model

a over a modal bilattice is k, unless explicitly indicated otherwise. Given a modal

bilattice B and an action model a = (K, k,Ra,Prea) over B, we can consider

the direct power BK having as carrier set the collection of maps BK . Obviously

BK is an algebra in the same equational class, but as [29] points out, in the cases

in which B is the complex algebra of some Kripke frame F = (W,R+, R−), it is

not a suitable candidate for an intermediate structure, because it only depends

on B and K, ignoring the rest of the information carried by the action model.

In order to avoid this, we let all non-modal operations on BK be defined as in

a direct power, and we lift the modal operator.

Definition 5 (Intermediate structure) For every Kripke frame F = (W,R+, R−),

and every action model a = (K, k,R+
a , R

−
a , P rea) over the complex algebra of

F , the intermediate structure is defined as
∐
a F = (

∐
KW,R

+×R+
a , R

−×R−a )

where
∐
KW is the |K|-fold coproduct of W (which is isomorphic, as a set, to
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the Cartesian product W ×K), and

(R+×R+
a )((w, i), (u, j)) iff R+(w, u) and R+

a (i, j);

(R−×R−a )((w, i)(u, j)) iff R−(w, u) and R−a (i, j).

Also, the updated frame structure Fa is defined as the subframe of
∐
a F the

domain of which is the subset

Wa = {(w, j) ∈
∐
K

W | w ∈ Prea(j)}.
a

Note that the precondition part of the action model is not used in the definition

of the intermediate structure, but only plays a role in the subsequently defined

updated frame Fa.

The following dual characterization of intermediate structures on modal bi-

lattices is based on the ideas used in [29].

Definition 6 (Intermediate algebra) For every modal bilattice B and every

action model a = (K, k,Ra,Prea) over B, the intermediate algebra
∏
aB is the

algebra in which all non-modal operations are defined as in the direct power BK ,

and the modal operator is given, for each f ∈ BK and j ∈ K, by

♦∏
aB
f(j) =

∨
{♦Bf(i) | i ∈ K and Ra(j, i) ∈ {t,>}}

where
∨

denotes the join in B (because the set K is finite, it always exists). a

Proposition 7 Let a = (K, k,Ra,Prea) be an action model over a modal bi-

lattice B. Then the intermediate bilattice
∏
aB is a modal bilattice in which the

dual operator is given, for each f ∈ BK and j ∈ K, by

�∏
aB
f(j) =

∧
{�Bf(i) | i ∈ K and Ra(j, i) ∈ {t,>}}.

Taking advantage of the twist-structure representation one can equivalently

restate Definition 5 as follows. We view a modal bilattice (B,♦) as a twist

structure over some bimodal Boolean algebra (A,♦+,♦−). Similarly, we view

the four-valued relation Ra as a pair of two-valued relations R+
a , R−a defined,
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for all i, j ∈ K, as R+
a (i, j) iff Ra(i, j) ∈ {t,>} and R−a (i, j) iff Ra(i, j) ∈

{t,⊥}. Then the intermediate bilattice is given by the modal twist structure

over (AK ,♦+∏
aA
,♦−∏

aA
) where, for each g ∈ AK and j ∈ K,

♦+∏
aA
g(j) =

∨
{♦+g(i) | R+

a (j, i)}, ♦−∏
aA
g(j) =

∨
{♦−g(i) | R−a (j, i)}.

The following result shows that this notion of complex algebra is consistent

with our algebraic definition of intermediate structure (Definition 6).

Theorem 8 Let B be the complex algebra of some frame F = (W,R+, R−)

and let a = (K, k,R+
a , R

−
a , P rea) be an action model over B. Then the algebra

(
∏
aB,♦

∏
aB

) is isomorphic to the complex algebra of
∐
a F . a

Proof. By definition, B = (P(W ),∩,∪,∼,♦+,♦−)./. To simplify notation,

let A = (P(W ),∩,∪,∼,♦+,♦−), and let a+ = (K, k,R+
a ,Pre+

a ) and a− =

(K, k,R−a ,Pre−a ) be two standard action models over A, where Pre+
a and Pre−a

are first and second components of Prea according to the twist-structure rep-

resentation of B. Then
∏
aB = (AK ,∩,∪,∼,♦∏

a+A
,♦∏

a−A
)./, where

∏
a+ A

and
∏
a− A are the intermediate algebras of A for the action models a+ and a−

[29, Section 3]. By [29, Proposition 3.1], it follows that (AK ,∩,∪,∼,♦∏
a+A)

and (AK ,∩,∪,∼,♦∏
a−A) are isomorphic to the complex algebras of

∐
a+F and∐

a−F , respectively. Then

(P(W ×K),∩,∪,∼,♦+,♦−) ∼= (AK ,∩,∪,∼,♦∏
a+A,♦∏

a−A)

which means that (
∐
aF)• ∼= (

∏
aB,♦

∏
aB

).

At this point we can apply the definition of pseudo-quotient from [38, 39]

to obtain a suitable notion of quotient of an intermediate structure. Given

an action model a = (K, k,Ra,Prea) over a modal bilattice B, we define the

relation ≡a on
∏
aB as follows:

For all f, g ∈ BK : f ≡a g iff f ∧ ∼∼Prea = g ∧ ∼∼Prea.

Because Prea ∈
∏
aB and ∧,∼ are algebraic operations of

∏
aB, it follows from

[38, Fact 2.2] that ≡a is a congruence of the non-modal reduct of
∏
aB. We

16



will denote the equivalence class of f ∈ BK by [f ]a (or simply by [f ] when

there is no risk of confusion) and the quotient set BK/≡a by Ba. Note that,

as mentioned in [38] in the similar context of public announcements, the double

negations appearing in the definition of the congruence ≡a ensure that elements

that interpret equivalent propositions in
∏
aB are indeed identified.

Proposition 9 ([38, Fact 2.3]) Let a = (K, k,Ra,Prea) be an action model

over a modal bilattice B. Then:

(i) [f ∧∼∼Prea] = [f ] for every f ∈
∏
aB. Hence, for every f ∈

∏
aB, there

exists a unique g ∈
∏
aB such that g ∈ [f ] and g ≤t Prea.

(ii) For all f, g ∈
∏
aB, we have [f ] ≤t [g] iff f ∧ ∼∼Prea ≤t g ∧ ∼∼Prea.

Item (i) above implies that each ≡a-equivalence class has a canonical rep-

resentative, which is the unique element in the given class which is below

the element ∼∼Prea in the truth order. Hence we can define an (injective)

map i
′
: Ba →

∏
aB by [f ] 7→ f ∧ ∼∼Prea for all [f ] ∈ Ba. Denoting by

π :
∏
aB→ Ba the canonical projection map, we clearly have that the compo-

sition π ◦ i′ is the identity on Ba.

As we will learn in the next section 3.2, the map i
′
: Ba →

∏
aB plays a key

role in the definition of interpretation of BEAK formulas on algebraic models.

In the next theorem we dually characterize i
′

in terms of the inclusion map

i : Fa →
∐
a F .

Assume a modal bilattice B is the complex algebra of some frame F (i.e.,

B = F•) and a = (K, k,Ra,Prea) is an action model over B. Then we know

from [39, Section 5.2] that there is a modal bilattice isomorphism ν : (Fa)• →

Ba. Letting µ := ν−1, we have the following characterization.

Theorem 10 Let B = F• for some frame F , and let a = (K, k,Ra,Prea) be

an action model over B. Then i′(b) = i[µ(b)] for every b ∈ Ba. It follows that

i[c] = i′(ν(c)) for every c ∈ (Fa)•. a

Proof. Apply [29, Proposition 3.6] to the twist structure over Ba.
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Modal operator(s) on the pseudo-quotient can now be introduced as another ap-

plication of the definitions in [38, 39]. For every action model a = (K, k,Ra,Prea)

over a modal bilattice B and every f ∈
∏
aB, we let

♦a[f ] := [♦∏
aB

(f ∧ ∼∼Prea)].

The dual operator is given by �a[f ] := ¬♦a¬[f ].

Proposition 11 ([38, Fact 2.4]) For every action model a = (K, k,Ra,Prea)

over a modal bilattice B, the algebra (Ba,♦a) is a modal bilattice. a

Definition 12 (Algebraic model) An algebraic model of BEAK is a tuple

M = (B, V ) such that B is bilattice and V : AtProp → B. For every algebraic

model M and every action model α over L, we let
∏
αM = (

∏
αB,

∏
αV ), where∏

αB =
∏
aB and a = (K, k,Ra,Prea) is the action model over B induced by α

via V with Prea = V ◦ Preα. Moreover, we let (
∏
αV )(p) :=

∏
a V (p) for every

p ∈ AtProp. Likewise, we define Ma := (Ba, π ◦
∏
αV ). a

Definition 13 (Algebraic semantics for BEAK) Given an algebraic model

M = (B, V ), the extension map [[.]] : L → B is defined as follows:

[[p]]M := V (p)

[[c]]M := cB for c ∈ {f, t,⊥,>}

[[◦ϕ]]M := ◦B[[ϕ]]M for ◦ ∈ {¬,♦}

[[ϕ • ψ]]M := [[ϕ]]M •B [[ψ]]M for • ∈ {∧,∨,⊃}

[[〈α〉ϕ]]M := ∼∼[[Preα]]M ∧B πk ◦ i′([[ϕ]]Mα)

[[[α]ϕ]]M := [[Preα]]M ⊃B πk ◦ i′([[ϕ]]Mα
)

where i
′
: Ba →

∏
aB is defined as above and πk :

∏
α B → B is the projection

onto the k-th coordinate. a

We define Γ |=BEAK ϕ iff, for every algebraic model M = (B, V ) and every

bifilter F ⊆ B, we have that [[γ]]M ∈ F for all γ ∈ Γ implies [[ϕ]]M ∈ F .
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3.3. Relational semantics for BEAK

We will now use this algebraic semantics and duality theory to introduce a

relational semantics for BEAK. We mimic the algebraic update construction

using duality. Again, the line of argument is as in [38, 39].

Let M = (F , V ) be a Kripke model with underlying frame F = (W,R+, R−),

and let α = (K, k,R+
α , R

−
α ,Preα) be a four-valued action model over L. In

exactly the same way as Definition 5, we can define the Kripke frame
∐
α F :=

(
∐
KW, R

+×R+
α , R

−×R−α ).

For any formula ϕ ∈ L, we denote V +(ϕ) := {w ∈ W | V (ϕ,w) ∈ {t,>}}

and V −(ϕ) := {w ∈ W | V (ϕ,w) ∈ {f,>}}. The intermediate model M × α is

then defined as the coproduct structure∐
α

M = (
∐
α

F , V ∗)

where V ∗ : AtProp ×
∐
KW → FOUR is given, for every p ∈ AtProp and every

(w, k) ∈
∐
KW , by

V ∗(p, (w, k)) = V (p, w).

Finally, we define the updated model Mα := (W×, R
+
×, R

−
×, V×) as follows:

W× := {(w, j) ∈
∐
K

W | w ∈ V +(Preα(j))}

R+
× := (R+ ×R+

α ) ∩ (W× ×W×)

R−× := (R− ×R−α ) ∩ (W× ×W×)

V×(p, (w, j)) := V ∗(p, (w, j)) �AtProp×W×

The intermediate model M × α above is of course very similar to the in-

termediate structure of Definition 5, and the (frame underlying the) updated

model Mα is similar to the the update frame structure Fa of Definition 5. In

particular, note that the relations R+ ×R+
α in the former and R+ ×R+

a in the

latter correspond, and also R− ×R−α in the former and R− ×R−a in the latter.

Then, in the former, R+
× as the restriction of R+ ×R+

a to the domain W× con-

sisting of the (world, action) pairs satisfying the precondition of that action in
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that world), corresponds, in the latter, to the (unnamed) restriction of R+×R+
a

to the domain Wa.

We can extend the valuation V× supplied by Mα to arbitrary formulas in

the usual way. In particular, the notion of satisfaction for dynamic BEAK

modalities can now be defined relationally.

Definition 14 (Relational semantics for BEAK)

M,w |= 〈α〉ϕ iff M,w |= Preα and Mα, (w, k) |= ϕ a

Since M,w |= ϕ iff M,w |= ∼∼ϕ, the above definition is in keeping with the

algebraic semantics of Definition 13.

3.4. Equivalence of the algebraic and the relational semantics for BEAK

To prove the equivalence of the algebraic and the relational semantics for

BEAK we use the method of [29], also applied in [39].

We first take a closer look at the modal bilattices that arise as complex

algebras of Kripke frames, which we call perfect modal bilattices [39, Section

5.2].

A modal Boolean algebra (A,♦) is called perfect if (i) A is complete, (ii)

atomic, i.e. A is completely join-generated by its set of atoms At(A) := {x ∈

A | x 6= 0 and, for all y ∈ A, y < x implies y = 0}, and ♦ preserves infinitary

joins. In a similar way, modal bilattices arising from four-valued Kripke frames

correspond to twist structures over complete and atomic bimodal Boolean alge-

bras, have the form (A,♦+,♦−)./ where A is a bimodal Boolean algebra that

is complete and atomic.

We define a perfect bimodal Boolean algebra as a bimodal Boolean algebra

(A,♦+,♦−)./ such that (A,♦+) and (A,♦−) are both perfect modal Boolean

algebras. As [38] has pointed out, it follows from the duality for classical logic

that the complex algebra of a Kripke frame (W,R), that (P(W ),∩,∪,∼,♦+,♦−)

is a perfect bimodal Boolean algebra.

A bilattice B is called perfect iff B = A./, where A is a perfect bimodal

Boolean algebra.
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Now we show by duality that there is a 1-1 correspondence between twist

structures over perfect bimodal Boolean algebras and four-valued Kripke frames.

Let B = A./, where A = (A,∧,∨,∼,♦+,♦−, 0, 1) is a bimodal Boolean

algebra. We define a Kripke frame B• = (At(A), R+, R−) where the relations

R+ and R− are given, for all x, y ∈ At(A), by

R+(x, y) iff x ≤ ♦+y, R−(x, y) iff x ≤ ♦−y.

The following result summarizes the duality between perfect modal bilattices

and four-valued Kripke frames [39, Proposition 5.5].

Proposition 15 For every four-valued Kripke frame F and every perfect modal

bilattice B, we have that F ∼= (F•)• and that B ∼= (B•)
•.

Our next aim is to show that, for every perfect modal bilattice B = A./ and

every action model a = (K, k,R+
a , R

−
a ,Prea) over B, we have (Ba)• ∼= (B•)ā,

where ā := (K, k,R+
a , R

−
a ,Prea) is the action model over the complex algebra

of B• and Prea : K → (B•)
• is defined as

Prea : j 7→ ({y ∈ At(A) | y ≤ Pre+
a (j)}, {y ∈ At(A) | y ≤ Pre−a (j)})

where Pre+
a and Pre−a are the components of Prea according to the twist struc-

ture presentation of
∏
aB. We then have the following.

Proposition 16 (Cf. [29, Fact 4.8]) For every perfect modal bilattice B and

every action model a = (K, k,R+
a , R

−
a ,Prea) over B, we have : (i) (

∏
aB)• ∼=∐

a(B•), and (ii) (Ba)• ∼= (B•)ā. a

Proof. Let A = (A,∧,∨,∼,♦+,♦−). We can assume without loss of gen-

erality that B = A./. Let a = (K, k,R+
a , R

−
a ,Prea) be an action model

over B. It can be easily seen that
∏
aB
∼= (
∏
a A,♦+∏

aA,♦
−∏
aA)./, in which

(
∏
a A,♦+∏

aA,♦
−∏
aA) is a bimodal boolean algebra [28, Definition 11]. Then

(
∏
a A,♦+∏

aA) and (
∏
a A,♦−∏

aA) are modal boolean algebras. Fact 4.8 in [29]

can be applied to the present setting, because a bimodal boolean algebra is

made of two boolean algebras that share the same non-modal boolean struc-

ture, and the two diamonds are not related in any non-trivial way. Applied to
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the present setting it then states that (At(
∏
a A), R+) ∼= (

∏
a A,♦+∏

aA), and

likewise that (At(
∏
a A), R−) ∼= (

∏
a A,♦−∏

aA). These isomorphisms show that

indeed (
∏
aB)• ∼=

∐
a(B)•.

For (ii) it is enough to apply [29, Fact 4.8] to the twist structure correspond-

ing to Ba.

As shown above, the identification between the two relational structures implies

that the mechanism of epistemic updates remains essentially unchanged when

moving from the classical to a bilattice setting.

We are now going to rewrite the definition of satisfaction for formulas of

type 〈α〉ϕ. To this end we introduce the notation

M
ιk−→
∐
α

M
i←↩ Mα

where the map i : Mα →
∐
αM is the submodel embedding and ιk : M →∐

αM is the embedding of M into its k-colored copy. This is the copy cor-

responding to the distinguished point k of α. The satisfaction condition for

〈α〉-formulas (Definition (14)) can be equivalently written as follows, where

Mα = (W×, R
+
×, R

−
×, V×): w ∈ V +(〈α〉ϕ) iff ∃x ∈W× such that i(x) = ιk(w) ∈

(V ∗)+(Preα) and x ∈ V +
× (ϕ). Since the map i : Mα ↪→

∐
αM is injective, we

have x ∈ V +
× (ϕ) iff ιk(w) = i(x) ∈ i(V +

× (ϕ)), iff w ∈ ι−1
k (i(V +

× (ϕ))). Hence

we have w ∈ V +(〈α〉ϕ) iff w ∈ V +(Preα) ∩ ι−1
k [i(V +

× (ϕ))], i.e., V +(〈α〉ϕ) =

V +(Preα) ∩ ι−1
k (i(V +

× (ϕ))).

As observed earlier, V +(ϕ) = V +(∼∼ϕ) for any ϕ ∈ Fm and any valuation

V . Satisfaction of a formula in bilattice modal logic only depends, for each

valuation V , on its positive part V +(ϕ). This implies that the result of [39,

Prop. 5.1] indeed extends to any BEAK formula:

Theorem 17 For every Kripke model (F , V ), s in the domain of F , and for-

mula ϕ of BEAK: (i) (F , V ), s |= ϕ iff s ∈ V +(ϕ), and (ii) (F , V ) � ϕ iff

(F•, V •) � ϕ. a

With this statement of the equivalence of the relational semantics and the

algebraic semantics of BEAK we close the section.
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(〈α〉〈α〉〈α〉-constants) 〈α〉f ↔ f 〈α〉t↔ ∼∼Preα

〈α〉> ↔ (Preα ∧ >) 〈α〉⊥ ↔ ¬(Preα ⊃ ⊥)

(〈α〉〈α〉〈α〉-atoms) 〈α〉p↔ (∼∼Preα ∧ p)

(〈α〉∧〈α〉∧〈α〉∧) 〈α〉(ϕ ∧ ψ)↔ (〈α〉ϕ ∧ 〈α〉ψ)

(〈α〉∨〈α〉∨〈α〉∨) 〈α〉(ϕ ∨ ψ)↔ (〈α〉ϕ ∨ 〈α〉ψ)

(〈α〉⊃〈α〉⊃〈α〉⊃) 〈α〉(ϕ ⊃ ψ)↔ (∼∼Preα ∧ (〈α〉ϕ ⊃ 〈α〉ψ))

(〈α〉¬〈α〉¬〈α〉¬) 〈α〉¬ϕ↔ (∼∼Preα ∧ ¬〈α〉ϕ))

(〈α〉♦〈α〉♦〈α〉♦) 〈α〉♦ϕ↔ (∼∼Preα ∧
∨
{♦〈αj〉ϕ | Rα(k, j) ∈ {t,>}})

(RE) from ϕ↔ ψ infer χ[ϕ/p]↔ χ[ψ/p]

Table 3: The axiomatization BEAK for the logic BEAK consists of all rules and axioms of

the axiomatization for LB��� (see Tables 1 and 2) and the above axioms and rule.

4. Axiomatization

In this section we give a Hilbert-style proof system for BEAK on the class

of four-valued frames, and we show that it is sound and complete. The proof

system BEAK for the logic BEAK consists of all the rules and axioms given in

the Tables 1, 2, and 3. Table 1 contains the propositional part, Table 2 contains

the (static) modal part, and Table 3 contains the dynamic (modal) part. In the

rule RE, called ‘replacement of equivalents’, χ[ϕ/p] means uniform substitution

of all occurrences of p in χ by ϕ (this can be easily defined inductively).

The axioms in Table 3 are the expected reduction rules for any logical struc-

ture following a dynamic modality for action model execution. Clearly, as in

BEAK we have constants, we have axioms for the reduction of each of those

constants. But there is nothing surprising about them. The other axioms may

look more familiar to the reader informed about dynamic epistemic logics, ex-

cept for the occasional need of the ∼∼ binding of preconditions Preα: this is to

ensure the restriction of the possible values of ∼∼Preα, namely to t and f only.

In the axiom (〈α〉♦〈α〉♦〈α〉♦), note that α = αk with designated action k. This axiom

is the typical reduction for modality ♦ after update 〈·〉 in dynamic epistemic
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logics [45, 34]: after an update α (i.e., αk) the agent considers it possible that ϕ,

if and only if α is executable and for some conceivable αj (i.e., for some αj with

Rα(k, j)) the agent considers it possible that after αj , ϕ. The non-typical part

of the reduction is that Rα(k, j) ∈ {t,>}. This is to be expected in a four-valued

relational setting, and of course similar to the restriction of announcements ϕ

to values t,> in bilattice public announcement logic [39].

We recall mentioning in the introduction that the multi-agent generalization

of our work is straightforward. This is a good moment to see why the multi-

agent generalization of the axiomatization is straightforward. If we were to

replace the single axiom (〈α〉♦〈α〉♦〈α〉♦) by, for each agent n, axioms

(〈α〉♦n〈α〉♦n〈α〉♦n) 〈α〉♦nϕ↔ (∼∼Preα ∧
∨
{♦n〈αj〉ϕ | Rnα(k, j) ∈ {t,>}})

where Rnα denotes the relation in α for agent n, and if we were to similarly

replace the LB�LB�LB� axioms of Table 2 by the set of their multi-agent equivalents,

then we already have the axiomatization of the multi-agent setting. There are

no interaction axioms for different agents.

The derivation rule ‘replacement of equivalents’ (RE) was erroneously miss-

ing in previous axiomatizations of non-classical dynamic epistemic logics [32, 29,

38, 39]. In the absence of (RE), the reduction strategy of BEAK to its static

fragment, as sketched in the proof of Theorem 24, later, would not succeed.2

The axiom 〈α〉p ↔ (∼∼Preα ∧ p), called (〈α〉〈α〉〈α〉-atoms), guarantees that the

value of atoms is preserved after update. Such an axiom is often formulated both

for positive and for negative atoms (i.e., for literals). The axiom for negative

atoms is indeed a theorem of our axiomatization. We show its derivation as an

example.

2The rule RE is needed because we use an inside-out reduction strategy. For the alternative

outside-in reduction strategy, RE is not needed, but then one needs a reduction axiom of shape

“〈α〉〈β〉ϕ ↔ . . . ” as well as a rule “from ϕ → ψ infer 〈α〉ϕ → 〈α〉ψ” (α-monotonicity). For

classical dynamic epistemic logics, for the special case of public announcement logics, such

variants are discussed in detail in [47].
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Example 18 〈α〉¬p↔ ∼∼Preα ∧ ¬p is a theorem of BEAK.

〈α〉¬p↔ ∼∼Preα ∧ ¬〈α〉p (〈α〉¬〈α〉¬〈α〉¬)

〈α〉¬p↔ ¬(∼∼Preα) ∨ ¬p LB, (〈α〉〈α〉〈α〉-atoms)

¬(∼∼Preα)↔ ∼Preα (¬⊃¬⊃¬⊃), p ∧ t↔ p

〈α〉¬p↔ (∼∼Preα ∧ (∼Preα ∨ ¬p)) LB

〈α〉¬p↔ (∼∼Preα ∧ ∼Preα) ∨ (∼∼Preα ∧ ¬p) LB

(∼∼Preα ∧ ∼Preα)↔ f LB

〈α〉¬p↔ (f ∨ (∼∼Preα ∧ ¬p)) LB

〈α〉¬p↔ (∼∼Preα ∧ ¬p) p↔ p ∨ f a

We now proceed by showing soundness and completeness. The following

lemmas are needed to establish that BEAK is sound with respect to the algebraic

semantics. Most proofs are straightforward adaptations of the lemmas from [39].

Lemma 19 ([39], Lemma 6.1) Let M = (B, V ) be an algebraic model and ϕ

a formula such that [[ϕ]]Mα
= π([[ϕ]]∏

αM
) for any four-valued action α over L.

Then:

(i) [[〈α〉ϕ]]M = ∼∼[[Preα]]M ∧ [[ϕ]]M

(ii) [[[α]ϕ]]M = [[Preα]]M ⊃ [[ϕ]]M

Lemma 20 ([39], Fact 6.2) Let B be a modal bilattice and a be a four-valued

action model over B, and let i′ : Ba →
∏
a B be given by [g] 7→ g ∧ ∼∼Prea.

Then for every [b], [c] ∈ Ba:

(i) i′([b] ∧ [c]) = i′([b]) ∧ i′([c]);

(ii) i′([b] ∨ [c]) = i′([b]) ∨ i′([c]);

(iii) i′([b] ⊃ [c]) = ∼∼Prea ∧ (i′([b]) ⊃ i′([c]));

(iv) i′(¬[b]) = ∼∼Prea ∧ ¬i′([b]);

(v) i′(�a[b]) = ∼∼Prea ∧�∏
aB

(Prea ⊃ i′([b]));

(vi) i′(♦a[b]) = ∼∼Prea ∧ ♦∏
aB

(i′([b]) ∧ ∼∼Prea).
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Lemma 21 ([39, Lemma 6.3]) Let M = (B, V ) be an algebraic model with

underlying modal bilattice B = (B,∧,∨,⊃,¬,♦,�, f, t,⊥,>). For every four-

valued action model α over L and all formulas ϕ and ψ:

(i) [[〈α〉(ϕ ∨ ψ)]]M = [[〈α〉ϕ]]M ∨ [[〈α〉ψ]]M ;

(ii) [[〈α〉(ϕ ∧ ψ)]]M = [[〈α〉ϕ]]M ∧ [[〈α〉ψ]]M ;

(iii) [[〈α〉(ϕ ⊃ ψ)]]M = ∼∼[[Preα]]M ∧ ¬[[〈α〉ϕ]]M ;

(iv) [[〈α〉¬ϕ]]M = ∼∼[[Preα]]M ∧ ¬[[〈α〉ϕ]]M ;

(v) [[〈α〉♦ϕ]]M = ∼∼[[Preα]]M ∧
∨
{♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}};

(vi) [[〈α〉�ϕ]]M = ∼∼[[Preα]]M ∧
∧
{�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}}.

Proof. We only show non-trivial items (v) and (vi). Concerning (v), first

observe that:

πk ◦ i′([[♦ϕ]]Mα) = πk(∼∼Preα ∧ ♦∏
αB

(∼∼Preα ∧ i′([[ϕ]]Mα)))

= ∼∼Prea ∧
∨{

♦B(∼∼Prea(j) ∧ i′([[ϕ]]Mα
))(j) | Rα(k, j) ∈ {t,>}

}
= ∼∼[[Preα]]M ∧

∨{
♦B(∼∼Prea(j)) ∧ i′([[ϕ]]Mα))(j) | Rα(k, j) ∈ {t,>}

}
= ∼∼[[Preα]]M ∧

∨{
♦B(∼∼[[Preα(j)]]M ∧ πj ◦ i′([[ϕ]]Mα

))(j) | Rα(k, j) ∈ {t,>}
}

= ∼∼[[Preα]]M ∧
∨{

♦B(∼∼[[Preα(j)]]M ∧ πj ◦ i′([[ϕ]]Mαj
))(j) | Rα(k, j) ∈ {t,>}

}
= ∼∼[[Preα]]M ∧

∨{
♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}

}
.

To justify the equality between lines 4 and 5 above, note that Mα is independent

from the point of α, i.e., (Mα =) Mαk = Mαj . Then:

[[〈α〉♦ϕ]]M = ∼∼[[Preα]]M ∧ πk ◦ i′([[♦ϕ]]Mα)

= ∼∼[[Preα]]M ∧ ∼∼[[Preα]]M ∧
∨{

♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

= ∼∼[[Preα]]M ∧
∨{

♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}
}
.

To show item (vi), we preliminarily observe that

πk ◦ i′([[�ϕ]]Mα) = πk(∼∼Prea ∧�∏
αB

(Prea ⊃ i′([[ϕ]]Mα)))

= ∼∼Prea ∧
∧{

�B(Prea(j) ⊃ i′([[ϕ]]Mα
))(j) | Rα(k, j) ∈ {t,>}

}
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= ∼∼[[Preα]]M ∧
∧{

�B(Prea(j) ⊃ i′([[ϕ]]Mα
))(j) | Rα(k, j) ∈ {t,>}

}
= ∼∼[[Preα]]M ∧

∧
{�B([[Preα(j)]]M ⊃ πj ◦ i′([[ϕ]]Mα

))(j) | Rα(k, j) ∈ {t,>}
}

= ∼∼[[Preα]]M ∧
∧
{�B([[Preα(j)]]gM ⊃ πj ◦ i′([[ϕ]]Mαj

))(j) | Rα(k, j) ∈ {t,>}
}

= ∼∼[[Preα]]M ∧
∧
{�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}

}
.

Hence:

[[〈α〉�ϕ]]M = ∼∼[[Preα]]M ∧ πk ◦ i′([[�ϕ]]Mα
)

= ∼∼[[Preα]]M ∧ (∼∼[[Preα]]M ∧
∧{

�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

)

= ∼∼[[Preα]]M ∧
∧{

�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}
}
.

The next lemma is also helpful for the intuition linking the relational and

algebraic setting, but is not strictly necessary in the completeness proof, wherein

we use that 〈α〉ϕ is a primitive language construct and [α]ϕ a derived one. Item

(v) of this lemma justifies our usage of [α]ϕ as an abbreviation for ¬〈α〉¬ϕ.

Lemma 22 ([39, Fact 6.4]) Let M = (B, V ) be an algebraic model with un-

derlying modal bilattice B = (B,∧,∨,⊃,¬,♦,�, f, t,⊥,>). For every action

model α over L and all formulas ϕ and ψ in L:

(i) [[[α](ϕ ∧ ψ)]]M = [[[α]ϕ]]M ∧ [[[α]ψ]]M

(ii) [[[α](ϕ ∨ ψ)]]M = [[[α]Preα]]M ⊃ ([[〈α〉ϕ]]M ∨ [[〈α〉ψ]]M )

(iii) [[[α](ϕ ⊃ ψ)]]M = [[〈α〉ϕ]]M ⊃ [[〈α〉ψ]]M

(iv) [[[α]¬ϕ]]M = ¬[[〈α〉ϕ]]M

(v) [[[α]ϕ]]M = [[¬〈α〉¬ϕ]]M

(vi) [[[α]♦ϕ]]M = [[Preα]]M ⊃
∨{

♦B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

(vii) [[[α]�ϕ]]M = [[Preα]]M ⊃
∧{

�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

Proof. The items of interest are (vi) and (vii). Item (vi):

[[[α]♦ϕ]]M = [[Preα]]M ⊃ πk ◦ i′([[♦ϕ]]Mα)

= [[Preα]]M ⊃ (∼∼[[Preα]]M ∧
∨{

♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

)
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= [[Preα]]M ⊃
∨{

♦B([[〈αj〉ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

(∗)

Equivalence (∗) holds since in every modal bilattice we have that a ⊃ ∼∼a = t

and that (a ⊃ b) ∧ (a ⊃ c) = a ⊃ (b ∧ c). Concerning item (vii):

[[[α]♦ϕ]]M = [[Preα]]M ⊃ πk ◦ i′([[�ϕ]]Mα
) (∗∗)

[[Preα]]M ⊃
∧{

�B([[[αj ]ϕ]]M ) | Rα(k, j) ∈ {t,>}
}

For equivalence (∗∗) we refer to Lemma 21.vii.

Lemma 23 The rule RE is sound: if � ϕ↔ ψ then � χ[ϕ/p]↔ χ[ψ/p]. a

Proof. Let ϕ,ψ ∈ L be such that � ϕ↔ ψ. We will prove that for all χ ∈ L,

and any Kripke model M = (W,R, V ) and state w ∈W :

V (χ[ϕ/p], w) = V (χ[ψ/p], w)

The proof is by induction on χ.

— The case where χ is a logical constant or an atomic proposition is immediate.

— If χ = γ • δ, where • ∈ {∧,∨,⊃}, or χ = ¬γ, use that V is a homomorphism

in its first argument with respect to bilattice operators.

— If χ = ♦γ, then

V (♦γ[ϕ/p], w) =
∨
{R(w,w′) ∗ V (γ[ϕ/p], w′) | w′ ∈W}

=
∨
{R(w,w′) ∗ V (γ[ψ/p], w′) | w′ ∈W} (Inductive hyp.)

= V (♦γ[ψ/p], w).

— Finally, let χ = 〈α〉γ. We show that V +(〈α〉γ[ϕ/p]) = V +(〈α〉γ[ψ/p]) and

that V −(〈α〉γ[ϕ/p]) = V −(〈α〉γ[ψ/p]). Let Mα = (W×, R
+
×, R

−
×, V×). By induc-

tive hypothesis, for every (w, k) ∈W×, V×(γ[ϕ/p], (w, k)) = V×(γ[ψ/p], (w, k)).

Therefore, V +
× (γ[ϕ/p]) = V +

× (γ[ψ/p]) and V −× (γ[ϕ/p]) = V −× (γ[ψ/p]). Also, by

inductive hypothesis, Preα[ϕ/p] = Preα[ψ/p]. Hence,

V +(〈α〉γ[ϕ/p]) = V +(Preα[ϕ/p]) ∩ ι−1
k (i(V +

× (γ[ϕ/p])))

= V +(Preα[ψ/p]) ∩ ι−1
k (i(V +

× (γ[ψ/p])))
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= V +(〈α〉γ[ψ/p]).

A similar argument shows that V −(〈α〉γ[ϕ/p]) = V −(〈α〉γ[ψ/p]). Therefore,

V (〈α〉γ[ϕ/p]) = V (〈α〉γ[ψ/p]).

We now get to the announced completeness result.

Theorem 24 The proof system BEAK is sound and complete with respect to

algebraic and relational models. a

Proof. The soundness of the preservation of logical constants and proposi-

tional variables follows from Lemma 20. The soundness of the remaining axioms

is proved in Lemma 21. The soundness of RE is proved in Lemma 23.

The proof of completeness is analogous to that of classical and intuitionistic

EAK, and follows from the reducibility of BEAK to bilattice modal logic.

Let ϕ be valid. Let us assume that we only use primitive connectives of L

(so, for example, 〈α〉 but not [α]). Consider some innermost occurrence 〈α〉ψ

of a dynamic modality in ϕ, where ψ is in the static language. The axioms of

BEAK make it possible to transform 〈α〉ψ into an equivalent formula without a

dynamic modality:

We ‘push’ the dynamic modality down the generation tree of the formula,

through the static connectives, until it binds a proposition letter or a constant

symbol. There, the dynamic modality disappears, thanks to an application of

the appropriate axiom preserving proposition letters or constants, and, crucially,

applying the RE rule (we replace a subformula in a larger expression by an

equivalent formula without the dynamic modality).

This process is repeated for all the dynamic modalities of ϕ, so as to obtain

a formula ϕ′ which is provably equivalent to ϕ. Since ϕ is valid by assumption,

and since provable equivalence preserves validity, by soundness we can conclude

that ϕ′ is valid. By Theorem 2, we can conclude that ϕ′ is a theorem in bilattice

modal logic and thus in BEAK. Therefore, as ϕ and ϕ′ are provably equivalent,

ϕ is also a theorem. This concludes the proof.
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5. Case study: Knowledge of inconsistency and incompleteness

A good image for a recipient of possibly inconsistent information is the

database. You are Hendrik Edeling, a breeder of tulips. Consider the database

D1-Acuminata containing information on the colour of a particular tulip that is

a candidate for selective breeding. It may contain the information that the tulip

is red, or that it is not red, or it may lack this information, or it may, inconsis-

tently so, contain the information that it is both red and not red. In other words,

the proposition p for ‘the tulip is red’ can have one of the four values t, f,>,⊥.

Let us now consider the perspective of Edeling wishing to consult the database.

And let us assume that Edeling is uncertain which of the four states t, f,>,⊥ the

database is in, with respect to the proposition p. That makes four possible worlds

that he is unable to distinguish. If he now queries the database and get ‘yes’ as

an answer to the query ‘p?’, he can rule out two of these four possibilities and

keep the worlds wherein p has the value t and the value >. So this is a way

to process a public announcement of the proposition p. Now a further query

to narrow down the options would be querying the database on the value of ¬p,

or, more properly said, querying it on the falsity of p. A confirmation that p

is false reduces Hendrik Edeling’s uncertainty because the only remaining world

satisfying it, is the one where the value of p it >. In another sense, Hendrik

has become more uncertain again, because he has confirmation that the database

is inconsistent. We could also have communicated directly (in one formula) to

Edeling that the database is inconsistent. Or that it is consistent, or that it is

incomplete (value ⊥). How? Please read on.

Given initial uncertainty about p, Edeling may also have to interact with

his colleague Saartje Burgerhart, another renowned tulip expert. Maybe even a

competitor! Consider the action of Burgerhart being informed that the database

is lacking information on p (the datebase is incomplete), while Edeling remains

uncertain whether she gets this information.

The information that the agents receive may also be modal. Suppose that

Hendrik is being told that p ∧ ¬�p: “The tulip is red but you don’t know this!”
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Unlike in two-valued modal logic, this formula may remain true after its an-

nouncement. It need not be an unsuccessful update. How come? Again, please

read on.

Bilattice modal logic. We model the D1-Acuminata database containing infor-

mation on that tulip as a world. The proposition that the tulip is red is p.

There are four possible worlds. We use mnemonic names for the worlds: p⊥

is the world where V (p) = ⊥, pt is the world where V (p) = t, pf is the world

where V (p) = f, and p> is the world where V (p) = >. Uncertainty about the

four worlds is represented by the following model M . The box enclosing the

worlds means that they are indistinguishable (the accessibility relation R is the

universal relation on this domain) for Hendrik Edeling.

M : p⊥ pf pt p>

We can now evaluate, for example, that M, pt |= p, or that M, p> |= p (we

recall that M,w |= ϕ means that V (ϕ,w) ∈ {t,>}). We do not have that

M, pt |= �p, as both p and ¬p are considered possible. Hendrik is uncertain

about p. A public announcement p! restricts the model to the pt and p> state.

M : p⊥ pf pt p>
p!⇒ Mp: pt p>

A public announcement is a singleton action model with reflexive access.

Instead of writing that α is a public announcement of ϕ we write ϕ!; and for

the corresponding model update we write Mϕ instead of Mα. We can justify

the restriction to t and > by considering this semantics of announcement to

be the response to a query p?. In both cases the answer will be ‘yes’. In two-

valued public announcement logic, we are used to having [p!]�p as a validity for

propositional variables. This is no longer the case in our setting. In particular,

M, s 6|= [p!]�p. We recall the semantics of �, namely

V (�ϕ,w) :=
∧
{R(w,w′)→ V (ϕ,w′) | w′ ∈W},

where
∧

denotes the infinitary version of ∧ in FOUR and → is the strong

implication. So far, our models have two-valued accessibility relations, i.e.,
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(w,w′) ∈ R or (w,w′) 6∈ R for all pairs in M . This means that �p takes the

value
∧
{t → V (p, w) : w ∈ {p⊥, pt, pf , p>}}. As V (p, p>) = >, and t → > = f

(the other three values are t), �p is therefore false (in any state of M) and not

true. The intuition behind this is that in bilattice modal logic �ϕ is false if ϕ

is false in an accessible world. It is therefore not necessarily the case that �ϕ

is true if ϕ is true in all accessible worlds. In fact, if in one or more of those

accessible worlds ϕ has the value > (as in our example model M), then ϕ is

also false in an accessible world, and thus we are done for. From Mp, s 6|= �p

then follows, using that (M, s |= [α]ϕ iff (M, s |= Preα implies Mα, s |= ϕ)),

that M, s 6|= [p!]�p.

Now consider the announcement of p ∧ ¬�p. This formula is known as the

Moore sentence [33, 44]. In two-valued public announcement logic, as the result

of truthfully announcing it, it becomes false; [(p ∧ ¬�p)!]¬(p ∧ ¬�p) is valid in

public announcement logic. It is not valid in BEAK. Similarly to above, we

have:

M : p⊥ pf pt p>
(p∧¬�p)!⇒ Mp∧¬�p: pt p>

Thus, because in Mp∧¬�p we have that R(pt, p>) = t and that V (p, p>) = >, it

follows that Mp∧¬�p, pt 6|= �p. In fact, we now have that Mp∧¬�p, pt |= p∧¬�p

and thus the (from a modal logical perspective) surprising result that:

[(p ∧ ¬�p)!](p ∧ ¬�p) is satisfiable in BEAK.

Having seen some simple examples of announcements and of formulas, and

modal formulas, let us present some simple announcements on the status quo

of a database, with regard to p.

• the database is consistent: announcement of ∼(p ∧ ¬p)

• the database is inconsistent: announcement of p ∧ ¬p

• the database is complete: announcement of p ∨ ¬p

• the database is incomplete: announcement of ∼(p ∨ ¬p)
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The four-valued truth tables of these formulas are illustrative.

∼ (p ∧ ¬ p)

t ⊥ ⊥ ⊥ ⊥

t f f t f

t t f f t

f > > > >

⇑

p ∧ ¬ p

⊥ ⊥ ⊥ ⊥

f f t f

t f f t

> > > >

⇑

p ∨ ¬ p

⊥ ⊥ ⊥ ⊥

f t t f

t t f t

> > > >

⇑

∼ (p ∨ ¬ p)

t ⊥ ⊥ ⊥ ⊥

f f t t f

f t t f t

f > > > >

⇑

Again, we do not necessarily have that after these announcements, the formulas

of the announcement are known: [∼(p∨¬p)!]�∼(p∨¬p) and [∼(p∧¬p)!]�∼(p∨

¬p) are valid, but [(p ∨ ¬p)!]�(p ∨ ¬p) and [(p ∧ ¬p)!]�(p ∧ ¬p) are invalid.

(Although [∼∼(p∨¬p)!]�∼∼(p∨¬p) and [∼∼(p∧¬p)!]�∼∼(p∨¬p) are valid.)

It is illustrative to see announcements as answers of queries to the database.

When Hendrik queries the database with p? then the answer he gets will be

‘yes’ if the state of the database is t or >, when he queries the database with

¬p? then the answer he gets will be ‘yes’ if the state of the database is f or

>. This is like Fitting’s Rosencrantz and Guildenstern (R and G) setting in

[15]. In question-answer analysis in two-valued logic [25], a question induces a

partition on the domain, and a yes/no question, such as a question ϕ? on the

truth of ϕ, a dichotomy. Fitting’s Rosencrantz and Guildenstern other answer is

‘no’. That is, for either of them, a classical dichotomy. However, it is tempting

to see a question in four-valued logic differently, namely as inducing (a set of

subsets that is) a partial cover of the domain. It is a cover, as two subsets may

have non-empty intersection (namely when they contain worlds where ϕ has the
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value >). It is partial, as some worlds may not be in any subset, namely when ϕ

has the value ⊥. If the world has no information on ϕ (value ⊥), then ‘there is

no answer’ or, differently said, the answer is: “I don’t know.” This becomes like

the introductory example where you were trying to find your way to the railway

station in Nancy. That example also serves to illustrate another, we think,

interesting feature of four-valued question-answer analysis: if the value of ϕ is

>, then the answer to the question ?ϕ is ‘yes’ (so not ‘yes and no’); whereas

the answer to the question ¬ϕ? is also ‘yes’. Knowledge of inconsistency is a

higher order feature for a database: whereas consulting memory directly is more

straightforward: if you already have the answer ‘yes’, why trying to rule out the

answer ‘no’? In other words, questions become leading questions. We do not

know if this analysis of questions in four-valued logics is common in inquisitive

semantics [25].

Roles in dynamic epistemics To understand dynamic epistemics, also on bi-

lattices, it is important to distinguish different roles: (i) the agent/object/process

identified with a propositional variable (the holder of the information), (ii) the

agent being uncertain about the proposition, and (iii) the provider of reliable

new information (on the proposition), the dynamic part. In our tulip example

we have distinguished (i) (the database) from (ii) (Hendrik Edeling), but not (i)

from (iii) (the database is queried and provides the answers). In the railway sta-

tion example (i) and (iii) are separate: accidental pedestrians perform the role

of (iii). It is common to view the source of new information, the ‘announcing

agent’, as an anonymous oracle or trusted authority (Hendrik Edeling’s system

manager, so to speak). In the tulip example we can even think of the different

roles as different components of ‘the database’ as hardware: (i) is RAM, (ii) is

the CPU, and (iii) is the interface. In multi-agent examples (where each agent

a has her own �i in the logical language) it is also easier to separate roles.

Truth values or possible worlds? If we see Hendrik Edeling as the database,

we can consider the value of p his uncertainty. Initially the value of p is ⊥. It

then changes into t once Hendrik gathers positive information on p, and may fur-
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ther change into > if he additionally receives negative information on p. These

are so-called factual (ontic) changes. But if we see Hendrik as different from the

database, then his uncertainty is between four worlds of a Kripke model, where

a world represents the fixed value of p in the database. Receiving information

now means restricting this model in order to finally find out the true value of

p. This is informational (epistemic) change. The former is quite different from

the latter. Factual change can also be modelled in dynamic epistemics, but is

outside our scope.

Multi-agent knowledge and actions. As mentioned, our framework generalizes

to a multi-agent modal setting, wherein instead of the modality � we have

modalities �i, for each agent i. Knowledge modalities come with an accessi-

bility relation that is an equivalence relation (and that, so far, is two-valued;

four-valued accessibility relations will be considered next). Other scenarios are

conceivable, for example for belief, intentions or obligations, or time (with tem-

poral modalities).

Hendrik Edeling has a colleague Sara Burgerhart who is another expert on

Acuminata tulips and who may also have access to the same database. We model

some scenarios and give typical formulas. Elementary checks on their adequacy

are left to the reader. The equivalence classes of the accessibility relation for

Hendrik are depicted as solid boxes and for Sara they are depicted as dashed

boxes. Modality �h represents Hendrik’s knowledge and �s represents Sarah’s

knowledge.

• Sara knows that the tulip is red.

pt

pt |= �sp

• Sara knows whether the tulip is red. Hendrik is uncertain whether she

knows that. (And we should now add; “and they are both aware of this

scenario.” We will refrain from doing so from now on.) Sara says to

Hendrik: “I know that the tulip is red.”
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pt pf p⊥ p>
�sp!⇒ pt

pt |= ¬�h(�sp ∨�s¬p) ∧ [�sp!]�hp

• Sara knows whether the tulip is red. Hendrik is uncertain whether she

knows that. Sara says to Hendrik: “I know whether the tulip is red.”

pt pf p⊥ p>
(�sp∨�s¬p)!⇒ pt pf

(pf or) pt |= ¬�h(�sp∨�s¬p)∧ [(�sp∨�s¬p)!](¬�hp∧�h(�sp∨�s¬p))

• Sara knows that the database is consistent, but she doesn’t know that it

is incomplete.

p⊥ pf pt

p⊥ |= �s∼(p ∧ ¬p) ∧ ¬�s∼(p ∨ ¬p)

• Sara knows whether the database is consistent.

p⊥ pf pt p>

p⊥ |= �s∼(p ∧ ¬p) ∨�s∼∼(p ∧ ¬p) is valid on this model.

• Sara knows whether the database is consistent. Hendrik does not. Sara

says to Hendrik: “The system manager just informed me that the database

is consistent.”

p⊥ pf pt p>
�i∼(p∧¬p)!⇒ p⊥ pf pt

• Sara and Hendrik are both uncertain about the status of the database.

The system manager says: “I will now inform Sara whether the database

is consistent.” He proceeds to do so, but by whispering into her ear, so

that Hendrik cannot hear what he says to Sara.

p⊥ pf pt p>
α⇒ p⊥ pf pt p>

Here, α represent the whisper action. This is non-deterministic choice

between action models αk and αl (and where for αk ∪ αl we write α),

where αk = (K, k,Rα,Preα) such that K = {k, l}, Preα(k) = ∼(p ∧ ¬p);

Preα(l) = ∼∼(p ∧ ¬p); Rsα(k, k) = t, Rsα(l, l) = t, Rsα(k, l) = f, and

36



Rsα(l, k) = f; Rhα(i, j) = t for all i, j ∈ {k, l}. Action model αl is the same

as αk but with the other designated point.

In all the above, we only considered a single propositional variable, p. How-

ever, we can also consider situations wherein Hendrik Edeling is the expert on p,

and controls that database, whereas Sara Burgerhart (possibly) has information

on the tulip’s petals. Are they round and wide, or are they narrow and sleek?

Let that be a proposition q. (In fact Acuminata tulips have sleek petals — they

approach more the Turkish ideal tulip than the Dutch ideal tulip.) We could

think of her as controlling another database. And both databases could contain

thousands of items of possibly inconsistent information. The scenarios merely

represent the most elementary setting to reason about database consistency and

completeness by interacting agents.

Four-valued accessibility relations. Our framework does not only permit four-

valued propositions but also four-valued relations. Using Fitting’s [15] fitting

words:

Now, two kinds of judgements are possible. 1) A is true in situation

w; and 2) w is a situation that should be considered.

Where A is any proposition, for which we tend to write ϕ, and where we call

w a world. Fitting considered many-valued logics in general, whereas we are in

bilattice logic, with judgements on truth and falsity. In other words, if R(w, u) =

t then u is in, and if R(w, u) = f then u is out.

Let a Kripke model M = (W,R, V ) be given with a two-valued relation R

((w,w′) ∈ R or (w,w′) 6∈ R). Let W ′ be a set of worlds disjoint from W .

Consider M ′ with domain W ∪W ′ and define a relation R′ such R′(w,w′) =

R′(w′, w) = R′(w′, w′) = f for any world w′ ∈W ′ and any w ∈W . Then for all

ϕ, M,w |= ϕ iff M ′, w |= ϕ. This follows easily, as f is the bottom of the truth

order ≤t. For non-modal formulas it is obvious that M,w |= ϕ iff M ′, w |= ϕ;

for modal formulas we can observe that V (♦ϕ,w) =
∨
{R′(w,w′) ∗ V (ϕ,w′) |

w′ ∈ W} =
∨
{R′(w,w′) ∗ V (ϕ,w′) | w′ ∈ W ∪W ′}, because when w′ ∈ W ′ we
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have that R′(w,w′)∗V (ϕ,w′) = f. Thus, this conjunct does not affect the value

of the join. Similarly, R′(w,w′)→ V (ϕ,w′) = t does not affect the value of the

meet defining V (�ϕ,w).

Not surprisingly, with values ⊥ or > for pairs in the accessibility relation it

becomes harder to appeal to our modelling intuitions. For example, what does

it mean that ‘Hendrik Edeling considers world w possible’ has value >? Does

he then consider it possible and impossible at the same time? Our previous

visualization with boxes is no longer suitable, and from now on we depict all

pairs in the accessibility relation explicitly as arrows, labelled with the value of

that pair in R (so, for example, below we have that R(pf , pt) = >).

pf pt

>

t

t >

We could interpret this by saying that Hendrik’s beliefs are more inclined to-

wards p being false than towards p being true, as > is lower in the ≤t hierarchy

than t (worlds considered t are more plausible than worlds considered >). Still,

> access is good enough to get to know p. Compare the following three (distinct)

models:

M :
pt

t

M ′ :
pt

>

M ′′ :
p>

t

In M and M ′, �p is true, whereas in M ′′, �p is false. (In M ′, V (�p, pt) =

R(pt, pt) → V (p, pt) = > → t = t; whereas in M ′′, V (�p, p>) = R(p>, p>) →

V (p, p>) = t→ > = f.) The latter is easily explained: �p is false if there is an

accessible world where p is false. And value > means that p is (also) false. To

understand that �p is true in M ′, it is sufficient to observe that the pt world

is considered. It is in. That it is simultaneously out does not hurt. So Hendrik

still knows that tulips are red.

What properties are satisfied by Kripke models with four-valued relations

that are used to interpret knowledge modalities? Are they still equivalence

relations? Take transitivity: if (w,w′) ∈ R and (w′, w′′) ∈ R then (w,w′′) ∈ R;
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but if (w,w′) 6∈ R and (w′, w′′) 6∈ R then we need not have that (w,w′′) 6∈ R (for

example, suppose w′′ = w). Transitivity plays a role in the four-valued logic

BS4 of [36] (employing two-valued relations), and transitivity of four-valued

relations is summarily discussed in [16] in the context of combining knowledge

of different experts. The answer to our questions is in the logic, not in the

structures: for transitivity we need the properties enforcing the validity of �ϕ→

��ϕ. We can achieve this with simple means. First, an example.

Hendrik Edeling knows the colour of the tulips in the Acuminata database.

They are red, or white, or blue. His model of uncertainty is

r r′ w w′ b b′

There are three equivalence classes, and all pairs are either in or out (for (x, y) ∈

R read R(x, y) = t and for (x, y) 6∈ R read R(x, y) = f). We have that:

R(r, w) = f and R(w, r′) = f but R(r, r′) = t; R(r, w) = f and R(w, b) = f

and R(r, b) = f; R(r, w) = f and R(w,w′) = t and R(r, w′) = f. However,

R(x, y) = t and R(y, z) = t imply R(x, z) = t. That is only what matters: t or

> related worlds should relate the same to all other worlds.

The structural requirements to enforce the validity of the properties of knowl-

edge are as follows.

• If R(w, x) = t and R(x, y) = t, then R(w, y) = t.

• If R(w, x) = > and R(x, y) = >, then R(w, y) = >.

• If R(w, x) = t and R(x, y) = >, then R(w, y) = >.

• If R(w, x) = > and R(x, y) = t, then R(w, y) = t.

• R(w,w) ∈ {t,>}.

• If R(w, x) ∈ {t,>} and R(w, y) = i, then R(x, y) = i (where i = ⊥, t, f,>).

These cannot be properly called ‘frame properties’, as the manipulation of the

pairs in the relation depends on their values in a given model. If these properties

are fulfilled, then the schemata �ϕ → ϕ, �ϕ → ��ϕ, and ♦ϕ → �♦ϕ are all
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valid (this is easy to see). Similarly, we get �iϕ→ �i�iϕ, etc., for multi-agent

bilattice epistemic logic.

Four-valued action models. In our logical framework not only the accessibility

relations of Kripke models are four-valued but also the accessibility relations of

action models. Let us see some variations on the announcement of p. We have

replaced the names of action models by their preconditions. (The boxes only

serve to separate models and have no meaning.)

αi αii αiii αiv αv αvi αvii

p

t

p

>

t

t

>

t

p ∧ ¬p

t

p ∨ ¬p

t

¬p p
t

t t

Action αi is the public announcement of p (and also its correspondent in bilattice

logic [39]). The difference between αi and αii is that, when executed on a two-

valued Kripke model, all links between worlds get value > instead of t; and

in both cases the domain is restricted to the p-worlds (i.e., the V (p) ∈ {t,>}

worlds). For example, in a Kripke model M with two indistinguishable, two-

valued, p and ¬p worlds, both [αi]�p and [αii]�p are true. The difference

between i and ii only appears when evaluating knowledge of inconsistencies:

[αi]�(p ∧ ¬p) is false whereas [αii]�(p ∧ ¬p) is true, as t → > = f whereas

> → > = >. Action models αiii and αiv result (when executed on a given

model) in isomorphic models: they have the same update effect (namely, none

at all); the worlds preserved by precondition t are the same as those preserved

by precondition > (a public announcement of ϕ restricts the domain to worlds

where ϕ ∈ {t,>}; trivially, t ∈ {t,>} and > ∈ {t,>}). These actions are ‘clock

ticks’: executed on any model, the result will be isomorphic to it. Actions

αv and αvi we have already discussed: these are the announcements that p is

inconsistent, respectively, that there is complete information about p. Action

αvii has the same update effect as αvi. Actions αvi and αvii are different from

αiii and αiv: the latter two preserve ⊥ worlds at their execution, the former

two not. Given that, an interesting eighth version, with the same update effect

as αiii and αiv, is:
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¬p p ∼(p ∨ ¬p)t t

t

t t t

Now consider the following four alternative depictions as action models of a

public announcement of ϕ. The rightmost of the two points (in case there are

two) is the designated point.

αa αb αc αd

¬ϕ ϕ

f

t

¬ϕ ϕ
t

f

t

¬ϕ ϕ
t

f

f t

¬ϕ ϕ
f

f

f t

Again, αa (= αi) is the standard. Action model αb is known as the Gerbrandy-

style conscious update [21]. Instead of eliminating worlds that do not satisfy

the announcement formula, it eliminates arrows (pairs in the accessibility re-

lation) that do not point to worlds satisfying the announcement. An obvious

‘four-valued completion’ of this action model is αc. A less obvious four-valued

completion of αa is αd. Clearly the update effect of αa and αd is the same,

and also the update effect of αb and αc. Actions αa and αb have also the

same update effect (where it is important that the ϕ-world is the point of αb;

the correspondence only holds when the announcement is true). This does not

change for bilattice modal logic (it is about accessibility). Thus, all four describe

essentially the same action!

Similarly to above we could add a third point to αd with preconditions

∼(¬ϕ∨ϕ), however in this case equally f-accessible from and to the other points,

and while keeping the ϕ point as the designated one. Let this be αe. Again, αe

has the same update effect as all the others. But executing αe does not restrict

the domain of the model. On any model, we get the same result (logically

indistinguishable results) by arrow elimination when executing αe as by world

elimination when executing αa. This can be applied to any action model: given

any Kripke model M with domain W and action model α with domain K, once

having computed the |K|-fold coproduct of W (cartesian product W ×K), we
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need not restrict the domain as when computing Mα, but it suffices to restrict

the accessibility relation, i.e., we need to make enough R(v, w) swap their value

from t to f.

What is an announcement in four-valued logic? As well

known, public announcement logic is a misnomer, it is rather a logic

of public, information changing, events. Various communicative

phenomena including (informative) announcements count as (infor-

mation changing) events: (a) if you say something that is heard by

all (that is, an oral observation of a public announcement); (b) a

visual observation (by all) of a property of surrounding objects, for

example, when you see a red tulip blossoming in the fields; (c) writ-

ten information observed by all, such as a teacher writing 1 + 1 = 2

on a blackboard, or an envelope containing information on p, opened

in public. (Some events called ‘public announcements’ are not in-

formation changing events at all, but factual changing events, as in

“I hereby declare Donald Trump to be the president of the USA.”

We exclude those from consideration.) Not all of these make sense

in a setting where inconsistency or incompleteness plays a role. Di-

rect observations are hardly ever inconsistent. A tulip is red. Or

it is not red. Now it may be red or orange, or something indefin-

able in between. But then we would say that the proposition ‘the

tulip is red’ is in between true and false; we would not say that it

is simultaneously true and false. A visual illusion might count as a

contradictory observation (>): is the image below that of a young or

of an old woman?
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And what would it mean that a direct observation is absent (⊥)?

Whereas the contents of a letter can easily be contradictory or absent.

You open it. It contains a leaf, with p written on it. Or the leaf

contains ¬p. Or there was no leaf enclosed. Or two, one with p and

the other with ¬p.

6. Conclusions and future research

We proposed a four-valued bilattice-based modal logic including dynamic

modalities for the consequences of actions. Our logic is suitable for reasoning

about inconsistent and incomplete information, and about change of information

in such settings. We have presented an axiomatization of the logic and shown

completeness using algebraic logic and duality theory. We hope that our logic

may be useful in computer science applications.

The present paper is part of an ongoing enterprise that aims, on the applied

logic side, at extending dynamic epistemic logics beyond classical reasoning and,

on the theoretical side, at achieving a better understanding of the very mecha-

nism of epistemic updates.3 From the latter point of view, an intriguing direc-

tion for future research is the investigation of the most general conditions for

the algebraic/duality theoretic machinery to be applicable to epistemic updates.

The papers [32, 29, 38, 39, 9] have shown that a uniform methodology, with few

ad hoc adjustments, can be extended from the classical setting to those of in-

tuitionistic, bilattice and finite-valued  Lukasiewicz modal logics. Other logics

are likely to be easily dealt with, for example positive (i.e. negation-free) modal

logic and semilattice-based modal systems. The question then arises what could

be minimal requirements of algebraic/relational semantics that would allow for

a uniform definition of epistemic updates, perhaps one that does not heavily rely

(as is so far the case) on the particular algebraic language involved. For exam-

ple, since the pseudo-quotient construction involves the definition of a (partial)

3Added in proofs: a valuable recent addition is the four-valued public announcement logic

of [41].
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congruence by certain algebraic terms, we may wonder what kind of terms we

should postulate in an abstract setting. Algebraic logic may turn out to be

helpful here, and in particular the results from the general theory of the alge-

braization of logics that establish a link between logical filters (theories of a

logic) and congruences of the associated algebraic semantics.

The Hilbert-style axiomatization BEAK, although complete, may not be

very suitable for proof search. We do not know its complexity, but similar

calculi for dynamic epistemic logics tend to be NP or (in the multi-agent case)

PSPACE. Also, maybe more importantly, it is not very constructive, as common

for such calculi. Recent advances in proof calculi for dynamic epistemic logics,

typically from an algebraic perspective [18, 20, 19, 24, 4], may be applicable to

the bilattice dynamic epistemic logic presented in this work.
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