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Introduction

In the past decades, reasoning about knowledge and information change has gained a prominent place in various areas of artificial intelligence and computer science such as distributed systems [START_REF] Halpern | Knowledge and common knowledge in a distributed environment[END_REF], protocol verification [START_REF] Halpern | A little knowledge goes a long way: Knowledge-based derivations and correctness proofs for a family of protocols[END_REF], and game theory [START_REF] Aumann | Agreeing to disagree[END_REF]. In these areas agents have to deal with incomplete and inconsistent information. For example, in distributed systems, agents receive information from multiple sources that may be inconsistent. Moreover, in real-world situations, agents do not have complete information about all aspects of the world and their reasoning power is bounded by thresholds such as time and limited memory [START_REF] Etherington | Reasoning with Incomplete Information[END_REF]. Under such circumstances, applying a classical approach to model information change may not be appropriate because it suffers from the logical omniscience problem [START_REF] Vardi | On epistemic logic and logical omniscience[END_REF]; that is, the agents know all the consequences of what they know. As a result, they cannot hold contradictory knowledge without "knowing" every sentence of the language, because a contradiction classically entails any formula. Several approaches have been proposed to formalize inconsistent and incomplete information in the literature, see e.g. [START_REF] Belnap | How a computer should think[END_REF][START_REF] Belnap | A useful four-valued logic[END_REF][START_REF] Levesque | A logic of implicit and explicit belief[END_REF][START_REF] Lakemeyer | Tractable meta-reasoning in propositional logics of belief[END_REF][START_REF] Etherington | Reasoning with Incomplete Information[END_REF][START_REF] Fagin | Belief, awareness, and limited reasoning[END_REF].

To set the stage for future discussion, we are going to review the most closely related works. In [START_REF] Belnap | How a computer should think[END_REF] Belnap proposed a four-valued logic whose semantics in- (both true and false) for handling inconsistent information and ⊥ (neither true nor false) for incomplete information. In this logic, each atomic formula can be assigned one of the four values chosen from the set 4 = {t, f, ⊥, }. Belnap observed that his four values can be arranged in a lattice in two ways: ordering them either by information degree (the knowledge order ≤ k ) or by the truth degree (the truth order ≤ t ). The set 4 together with ≤ k and ≤ t forms two complete lattices, which are shown in Figure 1. Given two truth values x and y, x ≤ t y can be read as "y is at least as true as x", while x ≤ k y means that "y contains at least as much information as x".

f t ⊥ ≤ k t ⊥ f ≤ t
Belnap's four-valued logic inspired Levesque to address the logical omniscience problem. In [START_REF] Levesque | A logic of implicit and explicit belief[END_REF] he proposed a logic of explicit and implicit belief.

Explicit beliefs are actively entertained by the agent, whereas implicit beliefs include the logical consequences of her explicit beliefs. This logic has a modality for explicit belief and a modality for implicit belief. The interpretation of these operators is based on situation semantics. Unlike in possible worlds, in a situation a sentence can be true, false, both true and false (incoherent situation), or neither true nor false (incomplete situation). From our perspective, [START_REF] Levesque | A logic of implicit and explicit belief[END_REF] establishes a significant link between many-valued logics and epistemic logics.

An objection raised against Levesque's model is that it is restricted to a single agent environment and therefore does not account for nested beliefs [START_REF] Reichgelt | Logics for reasoning about knowledge and belief[END_REF]. Fagin and Halpern address multi-agent belief in their logic of knowledge (or belief) and awareness [START_REF] Fagin | Belief, awareness, and limited reasoning[END_REF]. The semantics of this awareness logic is based on possi-ble worlds and does not allow the agents to have contradictory knowledge, but the awareness function at each possible world provides an effect that is similar to an incomplete situation. In [START_REF] Mong | Beliefs and bilattices[END_REF][START_REF] Mong | Epistemic logic and logical omniscience: A survey[END_REF], Sim compares the approaches of [START_REF] Levesque | A logic of implicit and explicit belief[END_REF] and [START_REF] Fagin | Belief, awareness, and limited reasoning[END_REF] in detail and shows that the situations of [START_REF] Levesque | A logic of implicit and explicit belief[END_REF] and the Kripke models with (un)awareness of [START_REF] Fagin | Belief, awareness, and limited reasoning[END_REF] can be associated with a model based on a bilattice structure.

Bilattices are algebraic structures introduced by Ginsberg [START_REF] Ginsberg | Multivalued logics: A uniform approach to reasoning in artificial intelligence[END_REF] to unify logical formalisms for default reasoning and non-monotonic reasoning. A bilattice is a set B equipped with two partial orders, the knowledge order (≤ k ) and the truth order (≤ t ), such that (B, ≤ k ) and (B, ≤ t ) are both complete lattices. The partial orders ≤ k and ≤ t have similar interpretations as in Belnap's logic. Belnap's four-element lattice is the smallest non-trivial bilattice. It is called FOUR.

See Figure 1.

Bilattices have found applications in different research areas such as logic programming [START_REF] Fitting | Bilattices and the semantics of logic programming[END_REF], semantics of natural language questions [START_REF] Nelken | Bilattices and the semantics of natural language questions[END_REF] and philosophical logic [START_REF] Fitting | Bilattices and the theory of truth[END_REF][START_REF] Fitting | Bilattices are nice things[END_REF]. In the 1990s Arieli and Avron [START_REF] Arieli | Reasoning with logical bilattices[END_REF][START_REF] Arieli | The value of the four values[END_REF] carried bilattices to a new stage introducing bilattice-based logical systems that are suitable for non-monotonic and paraconsistent reasoning. Later on, Jung and Rivieccio [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF] introduced a modal expansion of the logic of [START_REF] Arieli | Reasoning with logical bilattices[END_REF] that can be used to reason about knowledge, belief, time, and obligation. The formulas of this logic are interpreted in Kripke frames wherein both the accessibility relation and the valuation function are four-valued. Four-valued accessibility relations go back to Fitting [START_REF] Fitting | Many-valued modal logics[END_REF][START_REF] Fitting | Many-valued modal logics II[END_REF], who suggested a family of many-valued modal logics and generalized Kripke models involving many-valued accessibility relations. He argued in [START_REF] Fitting | Many-valued modal logics II[END_REF] that many-valued accessibility relations are natural to formalize that some worlds alternative to the real world are more relevant than others.

A similar formalism to that of [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF] was proposed in [START_REF] Odintsov | Modal logics with Belnapian truth values[END_REF]. They studied a Belnapian version of the modal logic K. The semantics of this logic is based on Kripke models where valuations are four-valued (as in [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]), however, the accessibility relation is classical. Because of this, the modal operators of [START_REF] Odintsov | Modal logics with Belnapian truth values[END_REF] differ from those of [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF], although the propositional base of both logics is the same. The formalism of [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF] is the more general, because one can define the modal operators of [START_REF] Odintsov | Modal logics with Belnapian truth values[END_REF] in the language [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF], but not the other way round [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]Prop. 2].

In this work we develop a bilattice-based modal logic with dynamic operators that enable us to reason about information change in the presence of incomplete or inconsistent information. We build our logic by combining the logic of epistemic action and knowledge (EAK) of [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF] with the bilattice-valued modal logic of [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]. The logic EAK extends classical modal logic with an operator for reasoning about the effects of epistemic actions, as represented by action models. Formally, epistemic changes are modeled via the so-called product update construction on the Kripke models that provides a relational semantics for EAK. Through the product update, a Kripke model encoding the current epistemic setup of a group of agents is replaced by an updated model.

An adequate formal treatment of EAK and dynamic epistemic logics, from a syntactic as well as a semantic point of view, faces non-trivial technical problems which become even more serious when moving to a non-classical setting [START_REF] Frittella | A proof-theoretic semantic analysis of dynamic epistemic logic[END_REF]. Such problems can be addressed in an algebraic framework. An elegant and versatile approach to the algebraic treatment of dynamic epistemic logic has been developed in a recent series of papers [START_REF] Kurz | Epistemic updates on algebras[END_REF][START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF][START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF][START_REF] Cabrer | Lukasiewicz public announcement logic[END_REF], in which the authors define non-classical counterparts of dynamic logics.

The contribution of the present paper is that we extend the methods of [START_REF] Kurz | Epistemic updates on algebras[END_REF][START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF] by introducing a suitable notion of product update on relational and algebraic models of bilattice modal logic, thus obtaining a semantics and a complete axiomatization for a bilattice-based version of EAK (called BEAK). We restrict ourselves to the single-agent setting, but the multi-agent generalization is straightforward. We provide motivating examples for our logic.

The paper is organized as follows. Section 2 recalls the necessary definitions and results on modal bilattice logic. It provides the static modal fragment on which we build our bilattice-based dynamic epistemic logic. Section 3 expounds the technical details of the update mechanism on the algebraic structures (modal bilattices), and introduces an algebraic semantics and a relational semantics for our logic, that are then shown to be equivalent via duality. In Section 4 we introduce a Hilbert-style calculus for BEAK, and we show its soundness and completeness. Completeness is shown by a reduction to the static fragment.

Section 5 gives a detailed case study illustrating the usage of epistemic dynamics in a bilattice setting. Readers wishing to sharpen their intuitions on knowledge (change) and bilattices, or wanting to ascertain the relevance of our framework for such settings, are suggested to read this section earlier.

Bilattice modal logic

In this section we introduce bilattice modal logic and recall facts and definitions that will be needed to develop our bilattice-based logic of epistemic actions and knowledge. We refer the reader to [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF][START_REF] Rivieccio | Four-valued modal logic: Kripke semantics and duality[END_REF] for further details, as well as for background discussion and motivation on bilattices (see also Section 5).

Bilattice modal logic is defined by four-valued Kripke models (W, R, V ), in which both valuations and the accessibility relation R : W × W → FOUR take values into the four-element Belnap bilattice FOUR (Figure 1). The sentential language is that of classical modal logic (augmented with constants representing the elements of FOUR), but propositional connectives and modal operators are interpreted using the algebraic operations of FOUR. This logic can be easily extended to define bilattice-based logics where the modal operators are intended to model epistemic attitudes of agents, for example a four-valued analogue of modal logic S5.

The non-modal base of bilattice modal logic is the four-valued logic introduced by Arieli and Avron [START_REF] Arieli | Reasoning with logical bilattices[END_REF], which can be defined using the four-element Belnap bilattice.

We view FOUR as an algebra having operations (∧, ∨, ⊗, ⊕, ⊃, ¬, f, t, ⊥, ) of type (2, 2, 2, 2, 2, 1, 0, 0, 0, 0). We note that both reducts (FOUR, ∧, ∨, f, t) and (FOUR, ⊗, ⊕, ⊥, ) are bounded distributive lattices, where the lattice orders are denoted, respectively, by ≤ t (truth order ) and ≤ k (knowledge order ). We have, moreover, a binary weak implication operation ⊃ defined by x ⊃ y := y if x ∈ {t, } and x ⊃ y := t otherwise. Negation is a unary operation ¬ having ⊥ and as fixed points and such that ¬f = t and ¬t = f. We call it bilattice negation.

The operations ⊗ and ⊕ need not be included in the primitive signature because they can be retrieved as terms in the language (∧, ∨, ⊃, ¬, f, t, ⊥, ).

Thus, we will consider them as abbreviations of the terms shown below, together with the following defined operations:

x ⊗ y := (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y) x ⊕ y := (x ∧ ) ∨ (y ∧ ) ∨ (x ∧ y) ∼x := x ⊃ f x → y := (x ⊃ y) ∧ (¬y ⊃ ¬x)
x * y := ¬(y → ¬x)

x ⇔ y := (x ⊃ y) ∧ (y ⊃ x) x ↔ y := (x → y) ∧ (y → x).
The operation ∼ provides an alternative negation (that one might call twovalued negation, to distinguish it from the bilattice negation ¬; note that ∼x only takes values t and f), while → is an alternative implication called strong implication, which is adjoint to the operation * , called strong conjunction or fusion.

The logic of bilattices (LB) of [START_REF] Arieli | Reasoning with logical bilattices[END_REF] can then be introduced as the propositional

(⊃ 1 ⊃ 1 ⊃ 1) ϕ ⊃ (ψ ⊃ ϕ) (⊃ f ⊃ f ⊃ f) f ⊃ ϕ (⊃ 2 ⊃ 2 ⊃ 2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)) (⊃ ⊃ ⊃ ) ϕ ⊃ (⊃ 3 ⊃ 3 ⊃ 3) ((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ (⊃ ⊥ ⊃ ⊥ ⊃ ⊥) ⊥ ⊃ ϕ (¬¬ ¬¬ ¬¬) ϕ ⇔ ¬¬ϕ (¬∧ ¬∧ ¬∧) ¬(ϕ ∧ ψ) ⇔ (¬ϕ ∨ ¬ψ) (∧ ⊃ ∧ ⊃ ∧ ⊃) (ϕ ∧ ψ) ⊃ ϕ (ϕ ∧ ψ) ⊃ ψ (¬∨ ¬∨ ¬∨) ¬(ϕ ∨ ψ) ⇔ (¬ϕ ∧ ¬ψ) (⊃ ∧ ⊃ ∧ ⊃ ∧) ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ)) (¬ ⊃ ¬ ⊃ ¬ ⊃) ¬(ϕ ⊃ ψ) ⇔ (ϕ ∧ ¬ψ) (⊃ t ⊃ t ⊃ t) ϕ ⊃ t (⊃ ∨ ⊃ ∨ ⊃ ∨) ϕ ⊃ (ϕ ∨ ψ) ψ ⊃ (ϕ ∨ ψ) (MP MP MP) from ϕ and ϕ ⊃ ψ infer ψ (∨ ⊃ ∨ ⊃ ∨ ⊃) (ϕ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ ((ϕ ∨ ψ) ⊃ χ))
Table 1: The proof system LB of bilattice logic [START_REF] Arieli | Reasoning with logical bilattices[END_REF] logic defined by the matrix (FOUR, {t, }) as follows. Starting from a countable set of propositional variables p, one constructs the formula algebra Fm = (F m, ∧, ∨, ⊃, ¬, f, t, ⊥, ) in the usual way. Given formulas Γ, {ϕ} ⊆ F m, we define Γ ϕ iff, for all homomorphisms V : Fm → FOUR, if V (γ) ∈ {t, } for all γ ∈ Γ, then also V (ϕ) ∈ {t, }. Arieli and Avron [START_REF] Arieli | Reasoning with logical bilattices[END_REF] provided an axiomatization for LB, which is given in Table 1. The axioms of LB are the axioms of classical logic in the language (∧, ∨, ⊃, f, t), plus the axioms that characterize the interaction of negation with other operators and constants.

In [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF] it was proposed to expand this logic semantically with modal operators, by considering four-valued Kripke models, i.e., structures (W, R, V ) such that R and V are both four-valued. That is, one defines R : W ×W → FOUR and V (¬♦¬ϕ, w) for all w ∈ W and all valuations V , that is, the two modal operators are inter-definable as in the classical case. In the present paper we take ♦ as primitive, and use as a shorthand for ¬♦¬.

V : Fm × W → FOUR. We call (W,
A modal consequence relation can now be introduced in the usual way. We say that a point w ∈ W of a four-valued model M = (W, R, V ) satisfies a formula This consequence relation inherits from the non-modal fragment the deduction theorem in the following form: Γ ϕ if and only if there is a finite Γ ⊆ Γ such that Γ ⊃ ϕ, where Γ := {γ ∈ Γ }. This will remain true for the dynamic expansion BEAK. It implies that in our axiomatization task we can without loss of generality restrict our attention to valid formulas. This consequence relation is axiomatized in [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF], in the logic that we call here LB . The axiomatization of LB is displayed in Table 2.

ϕ ∈ F m iff V (ϕ, w) ∈ {t
A derivation is a sequences of formulas such that every formula is an instantiation of an axiom or the result of applying a rule to formulas prior in the sequence. If ϕ occurs in a derivation we write ϕ, for 'ϕ is a theorem'. By Γ ϕ we mean that there is a finite subset Γ of Γ such that Γ ⊃ ϕ.

The necessitation rule "from ϕ, infer ϕ" does not hold [28, Section III.A],

and the normality axiom (ϕ ⊃ ψ) ⊃ ( ϕ ⊃ ψ) also does not hold [START_REF] Bou | On the minimum many-valued modal logic over a finite residuated lattice[END_REF]. We give a brief account of completeness results for LB , and of the proof of algebraic 

:= {R(w, w ) ⊃ V (ϕ, w ) | w ∈ W }, then this is equivalent to V ( ϕ, w) := {V (ϕ, w ) | w ∈ W, R(w, w ) ∈ {t, }}.
This alternative is employed in [START_REF] Odintsov | Modal logics with Belnapian truth values[END_REF]. As shown in [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF], it is less expressive than the version with →.

( t t t) t ↔ t ( ∧ ∧ ∧) (ϕ ∧ ψ) ↔ ( ϕ ∧ ψ) ( ⊥ ⊥ ⊥) (⊥ → ϕ) ↔ (⊥ → ϕ) ( -monotonicity) from ϕ → ψ infer ϕ → ψ Table 2:
The proof system for LB consists of all axioms and rules of LB (Table 1) plus these three axioms and rule [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF].

completeness, as we will build on them later on. We begin with completeness with respect to Kripke models (relational completeness).

Theorem 1 (Relational completeness [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]Theorem 19])

For all Γ, {ϕ} ⊆ F m, Γ ϕ iff Γ |= ϕ.
In order to state the algebraic completeness theorem we need to introduce a class of algebras providing an alternative semantics for bilattice modal logic.

A modal bilattice is an algebra B = (B, ∧, ∨, ⊃, ∼, ♦, f, t, ⊥, ) (where we may label the operations and constants with the name of the algebra, as in ♦ B , f B , etc., to distinguish them from those in other algebras) such that the ♦-free reduct of B is an implicative bilattice (i.e., satisfies exactly all identities that are valid in FOUR) and the following identities are satisfied: (i) ♦f = f, (ii)

♦(x ∨ y) = ♦x ∨ ♦y, (iii) (x ⊃ ⊥) = ♦x ⊃ ⊥.
It is easy to show that identities (i)-(iii) correspond, respectively, to axioms (i)-(iii) of our calculus, and that the presentation of modal bilattices given here is equivalent to the one in [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF].

We say that a subset F ⊆ B of a modal bilattice B is a bifilter if F is a lattice filter of the truth lattice such that ∈ F (in which case it follows that F is also a filter of the knowledge lattice). Given a pair (B, F ) and formulas Γ, {ϕ} ⊆ F m, we write Γ (B,F ) ϕ to mean that, for every modal bilattice

homomorphism V : Fm → B, if V (γ) ∈ F for all γ ∈ Γ, then also V (ϕ) ∈ F . A
valid formula ϕ is one satisfying V (ϕ) ≥ t B for every B and V . We can then state algebraic completeness.

Theorem 2 (Algebraic completeness [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]Theorem 10]) For all Γ, {ϕ} ⊆ F m, Γ ϕ iff Γ (B,F ) ϕ for any modal bilattice B and any bifilter F ⊆ B.

Just as with classical modal logic, the relational and the algebraic semantics for bilattice modal logic are related via a Stone-type duality [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]Theorem 18]. In the case of bilattices, another key ingredient that greatly simplifies the picture is the so-called twist structure representation, which works as follows. Let A = (A, ∧, ∨, ∼, ♦ + , ♦ -, 0, 1) be a bimodal Boolean algebra [28, Definition 11], i.e., a structure such that (A, ♦ + ) and (A, ♦ -) are both modal

Boolean algebras [START_REF] Chargov | Modal logic[END_REF], and no relation between ♦ + and ♦ -is assumed. The dual operators + and -are defined in the usual way by setting + x := ∼♦ + ∼x and -x := ∼♦ -∼x. The twist structure over A is defined as the

algebra A = (A × A, ∧, ∨, ⊃, ¬, ♦, f, t, ⊥, ) with operations given, for all (a 1 , a 2 ), (b 1 , b 2 ) ∈ A × A, by: (a 1 , a 2 ) ∧ (b 1 , b 2 ) := (a 1 ∧ b 1 , a 2 ∨ b 2 ) (a 1 , a 2 ) ∨ (b 1 , b 2 ) := (a 1 ∨ b 1 , a 2 ∧ b 2 ) (a 1 , a 2 ) ⊃ (b 1 , b 2 ) := (∼a 1 ∨ b 1 , a 1 ∧ b 2 ) ¬(a 1 , a 2 ) := (a 2 , a 1 ) ♦(a 1 , a 2 ) := (♦ + a 1 , + a 2 ∧ ∼♦ -a 1 )
f := (0, 1)

t := (1, 0) ⊥ := (0, 0) := (1, 1)
Any twist structure is a modal bilattice. Conversely, any modal bilattice is isomorphic to a twist structure [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF]Theorem 12]. This means that instead of working directly with modal bilattices, we will work with twist structures.

The twist structure construction allows us to relate four-valued Kripke frames and modal bilattices via Jónsson-Tarski duality for classical modal logic (see, e.g., [START_REF] Goldblatt | Varieties of complex algebras[END_REF]). Given a modal bilattice B viewed as a twist structure A , we can consider the structure (A • , R + , R -), where (A • , R + ) and (A • , R -) are the classical Kripke frames associated to the modal Boolean algebras (A, ♦ + ) and

(A, ♦ -) according to the Jónsson-Tarski duality. The relations R + and R -can obviously be combined into one four-valued relation R by letting R(w, w

) = t iff (w, w ) ∈ R + ∩ R -, R(w, w ) = iff (w, w ) ∈ R + \R -, R(w, w ) = ⊥ iff (w, w ) ∈ R -\R + , and R(w, w ) = f iff (w, w ) ∈ R + ∪ R -.
In this way we obtain a four-valued Kripke frame (A • , R). Conversely, every four-valued Kripke frame F = (W, R) can be viewed as a pair of frames (W, R + , R -) by defining

(w, w ) ∈ R + iff R(w, w ) ∈ {t, } and (w, w ) ∈ R -iff R(w, w ) ∈ {t, ⊥}.
Thus, according to Jónsson-Tarski duality, we obtain classical frames F + = (W, R + ) and F -= (W, R -), to which one associates modal Boolean algebras

(F + ) + = (P(W ), ∩, ∪, ∼, ♦ + ) and (F -) + = (P(W ), ∩, ∪, ∼, ♦ -) according to
Jónsson-Tarski duality, in which ∼ is the Boolean complementation and the operations ♦ + , ♦ -are defined, for each U ⊆ W , by

♦ + U := (R + ) -1 [U ]
and

♦ -U := (R -) -1 [U ]
. Since (F + ) + and (F -) + share the same carrier set, we actually have a bimodal Boolean algebra F + = (P(W ), ∩, ∪, ∼, ♦ + , ♦ -), from which a modal bilattice (F + ) can be obtained via the twist structure construction.

We then define the complex algebra of a Kripke frame F = (W, R + , R -) as the twist structure F • := (P(W ), ∩, ∪, ∼, ♦ + , ♦ -) . The correspondence between four-valued Kripke frames and modal bilattices extends to Kripke models and algebraic models, which implies that the relational and the algebraic semantics for bilattice modal logic are indeed equivalent [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF].

Epistemic updates on bilattices

Language of BEAK and action models

In this section we introduce the bilattice logic of epistemic action and knowledge (BEAK) through an algebraic semantics and through a relational semantics. The algebraic semantics of BEAK draws inspiration from the algebraic analysis of epistemic updates and pseudo-quotients on modal bilattices. We use duality to define a relational semantics based on four-valued Kripke models. We then show that the relational semantics is equivalent to the algebraic semantics.

Definition 3 (Language of BEAK and action models) Let AtProp be a countable set of propositional variables. The set L of formulas ϕ of BEAK is defined over the signature (∧, ∨, ⊃, ¬, ♦, α , f, t, ⊥, ), with new inductive construct α ϕ, where α is a four-valued action model over L, defined as a tuple

α = (K, k, R α , Pre α ) such that K is a finite non-empty set, k ∈ K, R α : K × K → FOUR and Pre α : K → L.
The point of action model α will always be k. If we wish to emphasize the point we may write α(k) or α k instead of α. We overload the use of Pre α : it is not merely the function Pre α , but also stands for the formula Pre α (k) (where the context easily disambiguates use). When shifting points to l ∈ K with l = k we are explicit and always write α(l) (or α l ) and Pre α (l). Derived connectives ∼, , ⊕, ⊗, →, * , ↔ are defined as before. Moreover, we let [α]ϕ := ¬ α ¬ϕ.

We refer the reader to [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF] for further explanations and motivation on action models. Two considerations justify a four-valued relation R α . Firstly, in the EAK setting action models are Kripke frames, and in bilattice modal logic Kripke frames are four-valued [START_REF] Jung | Kripke semantics for modal bilattice logic[END_REF][START_REF] Rivieccio | Four-valued modal logic: Kripke semantics and duality[END_REF]. Secondly, our choice is more general from a mathematical point of view, because by restricting the range of values of R α to t and f we obtain two-valued action models as a special case.

The dynamic formulas have the same meaning as in EAK. The meaning of α ϕ is: there is an execution of action model α after which ϕ is the case.

As mentioned, defining non-classical counterparts of dynamic logics is more easily accomplished with algebraic tools, which provide us with a flexible semantics that can be accommodated with incomplete and contradictory information.

Algebraic semantics for BEAK

Epistemic updates are modeled on the algebraic counterpart of the logic through the pseudo-quotient construction. The definition of pseudo-quotient adopted is that of [START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF]. In the EAK setting, we also need to introduce a suitable notion of intermediate structure. First, we need to define an action model over a modal bilattice.

Definition 4 (Action model over a modal bilattice) An action model over

a modal bilattice B is a tuple a = (K, k, R a , Pre a ) such that K is a finite non- empty set, k ∈ K, R a : K × K → FOUR is a four-valued accessibility relation and Pre a : K → B.
The notation for action models over a logical language (interpreted on relational models) and the notation for action models over a modal bilattice (i.e., defined algebraically) is of course very similar. The reason for that similar notation is that we will later show a correspondence between the relational semantics and the algebraic semantics. We should further point out that action models over a logical language are presented as a somewhat hybrid syntactic/semantic (language/models) object, whereas action models over bilattices are pure semantics.

(An alternative presentation wherein action models frames are semantic, and action models are syntax would also have been possible.)

Note that, as for action models α, by convention the point of an action model a over a modal bilattice is k, unless explicitly indicated otherwise. Given a modal bilattice B and an action model a = (K, k, R a , Pre a ) over B, we can consider the direct power B K having as carrier set the collection of maps B K . Obviously B K is an algebra in the same equational class, but as [START_REF] Kurz | Epistemic updates on algebras[END_REF] points out, in the cases in which B is the complex algebra of some Kripke frame F = (W, R + , R -), it is not a suitable candidate for an intermediate structure, because it only depends on B and K, ignoring the rest of the information carried by the action model.

In order to avoid this, we let all non-modal operations on B K be defined as in a direct power, and we lift the modal operator.

Definition 5 (Intermediate structure) For every Kripke frame

F = (W, R + , R -),
and every action model a = (K, k, R + a , R - a , P re a ) over the complex algebra of F, the intermediate structure is defined as a F = ( K W, R + ×R + a , R -×R - a ) where K W is the |K|-fold coproduct of W (which is isomorphic, as a set, to the Cartesian product W × K), and

(R + × R + a )((w, i), (u, j)) iff R + (w, u) and R + a (i, j); (R -× R - a )((w, i)(u, j)) iff R -(w, u) and R - a (i, j).
Also, the updated frame structure F a is defined as the subframe of a F the domain of which is the subset

W a = {(w, j) ∈ K W | w ∈ P re a (j)}.
Note that the precondition part of the action model is not used in the definition of the intermediate structure, but only plays a role in the subsequently defined updated frame F a .

The following dual characterization of intermediate structures on modal bilattices is based on the ideas used in [START_REF] Kurz | Epistemic updates on algebras[END_REF].

Definition 6 (Intermediate algebra) For every modal bilattice B and every action model a = (K, k, R a , Pre a ) over B, the intermediate algebra a B is the algebra in which all non-modal operations are defined as in the direct power B K , and the modal operator is given, for each f ∈ B K and j ∈ K, by

♦ a B f (j) = {♦ B f (i) | i ∈ K and R a (j, i) ∈ {t, }}
where denotes the join in B (because the set K is finite, it always exists).

Proposition 7 Let a = (K, k, R a , Pre a ) be an action model over a modal bilattice B. Then the intermediate bilattice a B is a modal bilattice in which the dual operator is given, for each f ∈ B K and j ∈ K, by

a B f (j) = { B f (i) | i ∈ K and R a (j, i) ∈ {t, }}.
Taking advantage of the twist-structure representation one can equivalently restate Definition 5 as follows. We view a modal bilattice (B, ♦) as a twist structure over some bimodal Boolean algebra (A, ♦ + , ♦ -). Similarly, we view the four-valued relation R a as a pair of two-valued relations R + a , R - a defined, for all i, j ∈ K, as R + a (i, j) iff R a (i, j) ∈ {t, } and R - a (i, j) iff R a (i, j) ∈ {t, ⊥}. Then the intermediate bilattice is given by the modal twist structure over (A K , ♦ + a A , ♦ - a A ) where, for each g ∈ A K and j ∈ K,

♦ + a A g(j) = {♦ + g(i) | R + a (j, i)}, ♦ - a A g(j) = {♦ -g(i) | R - a (j, i)}.
The following result shows that this notion of complex algebra is consistent with our algebraic definition of intermediate structure (Definition 6).

Theorem 8 Let B be the complex algebra of some frame

F = (W, R + , R -)
and let a = (K, k, R + a , R - a , P re a ) be an action model over B. Then the algebra ( a B, ♦ a B ) is isomorphic to the complex algebra of a F.

Proof. By definition, B = (P(W ), ∩, ∪, ∼, ♦ + , ♦ -) . To simplify notation, let A = (P(W ), ∩, ∪, ∼, ♦ + , ♦ -), and let a + = (K, k, R + a , Pre + a ) and a -= (K, k, R - a , Pre - a ) be two standard action models over A, where Pre + a and Pre - a are first and second components of Pre a according to the twist-structure rep-

resentation of B. Then a B = (A K , ∩, ∪, ∼, ♦ a +A , ♦ a -A )
, where a + A and a -A are the intermediate algebras of A for the action models a + and a - [29, Section 3]. By [29, Proposition 3.1], it follows that (A K , ∩, ∪, ∼, ♦ a + A ) and (A K , ∩, ∪, ∼, ♦ a -A ) are isomorphic to the complex algebras of a + F and a -F, respectively. Then

(P(W × K), ∩, ∪, ∼, ♦ + , ♦ -) ∼ = (A K , ∩, ∪, ∼, ♦ a + A , ♦ a -A ) which means that ( a F) • ∼ = ( a B, ♦ a B ).
At this point we can apply the definition of pseudo-quotient from [START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF] to obtain a suitable notion of quotient of an intermediate structure. Given an action model a = (K, k, R a , Pre a ) over a modal bilattice B, we define the relation ≡ a on a B as follows:

For all f, g ∈ B K : f ≡ a g iff f ∧ ∼∼Pre a = g ∧ ∼∼Pre a .
Because 

(i) [f ∧ ∼∼Pre a ] = [f ] for every f ∈ a B.
Hence, for every f ∈ a B, there exists a unique g ∈ a B such that g ∈ [f ] and g ≤ t Pre a .

(ii) For all f, g ∈ a B, we have

[f ] ≤ t [g] iff f ∧ ∼∼Pre a ≤ t g ∧ ∼∼Pre a .
Item (i) above implies that each ≡ a -equivalence class has a canonical representative, which is the unique element in the given class which is below the element ∼∼Pre a in the truth order. Hence we can define an (injective)

map i : B a → a B by [f ] → f ∧ ∼∼Pre a for all [f ] ∈ B a .
Denoting by π : a B → B a the canonical projection map, we clearly have that the composition π • i is the identity on B a .

As we will learn in the next section 3.2, the map i : B a → a B plays a key role in the definition of interpretation of BEAK formulas on algebraic models.

In the next theorem we dually characterize i in terms of the inclusion map

i : F a → a F.
Assume a modal bilattice B is the complex algebra of some frame F (i.e., Modal operator(s) on the pseudo-quotient can now be introduced as another application of the definitions in [START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF]. For every action model a = (K, k, R a , Pre a ) over a modal bilattice B and every f ∈ a B, we let

B = F • ) and a = (K, k, R a ,
♦ a [f ] := [♦ a B (f ∧ ∼∼Pre a )].
The dual operator is given by a 

[f ] := ¬♦ a ¬[f ].
[[p]] M := V (p) [[c]] M := c B for c ∈ {f, t, ⊥, } [[•ϕ]] M := • B [[ϕ]] M for • ∈ {¬, ♦} [[ϕ • ψ]] M := [[ϕ]] M • B [[ψ]] M for • ∈ {∧, ∨, ⊃} [[ α ϕ]] M := ∼∼[[Pre α ]] M ∧ B π k • i ([[ϕ]] Mα ) [[[α]ϕ]] M := [[Pre α ]] M ⊃ B π k • i ([[ϕ]] Mα )
where i : B a → a B is defined as above and π k : α B → B is the projection onto the k-th coordinate.

We define Γ |= BEAK ϕ iff, for every algebraic model M = (B, V ) and every bifilter F ⊆ B, we have that

[[γ]] M ∈ F for all γ ∈ Γ implies [[ϕ]] M ∈ F .

Relational semantics for BEAK

We will now use this algebraic semantics and duality theory to introduce a relational semantics for BEAK. We mimic the algebraic update construction using duality. Again, the line of argument is as in [START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF].

Let M = (F, V ) be a Kripke model with underlying frame F = (W, R + , R -), and let α = (K, k, R + α , R - α , Pre α ) be a four-valued action model over L. In exactly the same way as Definition 5, we can define the Kripke frame α F :=

( K W, R + × R + α , R -× R - α ). For any formula ϕ ∈ L, we denote V + (ϕ) := {w ∈ W | V (ϕ, w) ∈ {t, }} and V -(ϕ) := {w ∈ W | V (ϕ, w) ∈ {f, }}. The intermediate model M × α is then defined as the coproduct structure α M = ( α F, V * ) where V * : AtProp × K W → FOUR is given, for every p ∈ AtProp and every (w, k) ∈ K W , by V * (p, (w, k)) = V (p, w).
Finally, we define the updated model M α := (W × , R + × , R - × , V × ) as follows:

W × := {(w, j) ∈ K W | w ∈ V + (Pre α (j))} R + × := (R + × R + α ) ∩ (W × × W × ) R - × := (R -× R - α ) ∩ (W × × W × ) V × (p, (w, j)) := V * (p, (w, j)) AtProp×W×
The intermediate model M × α above is of course very similar to the intermediate structure of Definition 5, and the (frame underlying the) updated model M α is similar to the the update frame structure F a of Definition 5. In particular, note that the relations R + × R + α in the former and R + × R + a in the latter correspond, and also R -× R - α in the former and R -× R - a in the latter. Then, in the former, R + × as the restriction of R + × R + a to the domain W × consisting of the (world, action) pairs satisfying the precondition of that action in that world), corresponds, in the latter, to the (unnamed) restriction of R + × R + a to the domain W a .

We can extend the valuation V × supplied by M α to arbitrary formulas in the usual way. In particular, the notion of satisfaction for dynamic BEAK modalities can now be defined relationally. 

Equivalence of the algebraic and the relational semantics for BEAK

To prove the equivalence of the algebraic and the relational semantics for BEAK we use the method of [START_REF] Kurz | Epistemic updates on algebras[END_REF], also applied in [START_REF] Rivieccio | Bilattice public announcement logic[END_REF].

We first take a closer look at the modal bilattices that arise as complex algebras of Kripke frames, which we call perfect modal bilattices [39, Section

5.2].

A modal Boolean algebra (A, ♦) is called perfect if (i) A is complete, (ii) atomic, i.e. A is completely join-generated by its set of atoms At(A) := {x ∈ A | x = 0 and, for all y ∈ A, y < x implies y = 0}, and ♦ preserves infinitary joins. In a similar way, modal bilattices arising from four-valued Kripke frames correspond to twist structures over complete and atomic bimodal Boolean algebras, have the form (A, ♦ + , ♦ -) where A is a bimodal Boolean algebra that is complete and atomic.

We define a perfect bimodal Boolean algebra as a bimodal Boolean algebra (A, ♦ + , ♦ -) such that (A, ♦ + ) and (A, ♦ -) are both perfect modal Boolean algebras. As [START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF] has pointed out, it follows from the duality for classical logic that the complex algebra of a Kripke frame (W, R), that (P(W ), ∩, ∪, ∼, ♦ + , ♦ -) is a perfect bimodal Boolean algebra.

A bilattice B is called perfect iff B = A , where A is a perfect bimodal Boolean algebra. Now we show by duality that there is a 1-1 correspondence between twist structures over perfect bimodal Boolean algebras and four-valued Kripke frames.

Let B = A , where A = (A, ∧, ∨, ∼, ♦ + , ♦ -, 0, 1) is a bimodal Boolean algebra. We define a Kripke frame B • = (At(A), R + , R -) where the relations R + and R -are given, for all x, y ∈ At(A), by

R + (x, y) iff x ≤ ♦ + y, R -(x, y) iff x ≤ ♦ -y.
The following result summarizes the duality between perfect modal bilattices and four-valued Kripke frames [39, Proposition 5.5].

Proposition 15 For every four-valued Kripke frame F and every perfect modal bilattice B, we have that

F ∼ = (F • ) • and that B ∼ = (B • ) • .
Our next aim is to show that, for every perfect modal bilattice B = A and every action model Proof. Let A = (A, ∧, ∨, ∼, ♦ + , ♦ -). We can assume without loss of gen-

a = (K, k, R + a , R - a , Pre a ) over B, we have (B a ) • ∼ = (B • ) ā, where ā := (K, k, R + a , R - a ,
erality that B = A . Let a = (K, k, R + a , R - a , Pre a ) be an action model over B. It can be easily seen that a B ∼ = ( a A, ♦ + a A , ♦ - a A ) , in which ( a A, ♦ + a A , ♦ - a A
) is a bimodal boolean algebra [28, Definition 11]. Then ( a A, ♦ + a A ) and ( a A, ♦ - a A ) are modal boolean algebras. Fact 4.8 in [29] can be applied to the present setting, because a bimodal boolean algebra is made of two boolean algebras that share the same non-modal boolean structure, and the two diamonds are not related in any non-trivial way. Applied to the present setting it then states that (At( a A), R + ) ∼ = ( a A, ♦ + a A ), and likewise that (At( a A), R -) ∼ = ( a A, ♦ - a A ). These isomorphisms show that indeed ( a B) • ∼ = a (B) • .

For (ii) it is enough to apply [START_REF] Kurz | Epistemic updates on algebras[END_REF]Fact 4.8] to the twist structure corresponding to B a .

As shown above, the identification between the two relational structures implies that the mechanism of epistemic updates remains essentially unchanged when moving from the classical to a bilattice setting.

We are now going to rewrite the definition of satisfaction for formulas of type α ϕ. To this end we introduce the notation

M ι k -→ α M i ← M α
where the map i : M α → α M is the submodel embedding and ι k : M → α M is the embedding of M into its k-colored copy. This is the copy corresponding to the distinguished point k of α. The satisfaction condition for α -formulas (Definition ( 14)) can be equivalently written as follows, where

M α = (W × , R + × , R - × , V × ): w ∈ V + ( α ϕ) iff ∃x ∈ W × such that i(x) = ι k (w) ∈ (V * ) + (Pre α ) and x ∈ V + × (ϕ). Since the map i : M α → α M is injective, we have x ∈ V + × (ϕ) iff ι k (w) = i(x) ∈ i(V + × (ϕ)), iff w ∈ ι -1 k (i(V + × (ϕ))). Hence we have w ∈ V + ( α ϕ) iff w ∈ V + (Pre α ) ∩ ι -1 k [i(V + × (ϕ))], i.e., V + ( α ϕ) = V + (Pre α ) ∩ ι -1 k (i(V + × (ϕ))
). As observed earlier, V + (ϕ) = V + (∼∼ϕ) for any ϕ ∈ F m and any valuation V . Satisfaction of a formula in bilattice modal logic only depends, for each valuation V , on its positive part V + (ϕ). This implies that the result of [39, Prop. 5.1] indeed extends to any BEAK formula:

Theorem 17 For every Kripke model (F, V ), s in the domain of F, and formula ϕ of BEAK:

(i) (F, V ), s |= ϕ iff s ∈ V + (ϕ), and (ii) (F, V ) ϕ iff (F • , V • ) ϕ.
With this statement of the equivalence of the relational semantics and the algebraic semantics of BEAK we close the section.

( α α α -constants) α f ↔ f α t ↔ ∼∼Pre α α ↔ (Pre α ∧ ) α ⊥ ↔ ¬(Pre α ⊃ ⊥) ( α α α -atoms) α p ↔ (∼∼Pre α ∧ p) ( α ∧ α ∧ α ∧) α (ϕ ∧ ψ) ↔ ( α ϕ ∧ α ψ) ( α ∨ α ∨ α ∨) α (ϕ ∨ ψ) ↔ ( α ϕ ∨ α ψ) ( α ⊃ α ⊃ α ⊃) α (ϕ ⊃ ψ) ↔ (∼∼Pre α ∧ ( α ϕ ⊃ α ψ)) ( α ¬ α ¬ α ¬) α ¬ϕ ↔ (∼∼Pre α ∧ ¬ α ϕ)) ( α ♦ α ♦ α ♦) α ♦ϕ ↔ (∼∼Pre α ∧ {♦ α j ϕ | R α (k, j) ∈ {t, }}) (RE) from ϕ ↔ ψ infer χ[ϕ/p] ↔ χ[ψ/p]
Table 3: The axiomatization BEAK for the logic BEAK consists of all rules and axioms of the axiomatization for LB (see Tables 1 and2) and the above axioms and rule.

Axiomatization

In this section we give a Hilbert-style proof system for BEAK on the class of four-valued frames, and we show that it is sound and complete. The proof system BEAK for the logic BEAK consists of all the rules and axioms given in the Tables 1,2, and 3. Table 1 contains the propositional part, Table 2 contains the (static) modal part, and Table 3 contains the dynamic (modal) part. In the rule RE, called 'replacement of equivalents', χ[ϕ/p] means uniform substitution of all occurrences of p in χ by ϕ (this can be easily defined inductively).

The axioms in Table 3 are the expected reduction rules for any logical structure following a dynamic modality for action model execution. Clearly, as in BEAK we have constants, we have axioms for the reduction of each of those constants. But there is nothing surprising about them. The other axioms may look more familiar to the reader informed about dynamic epistemic logics, except for the occasional need of the ∼∼ binding of preconditions Pre α : this is to ensure the restriction of the possible values of ∼∼Pre α , namely to t and f only.

In the axiom ( α ♦ α ♦ α ♦), note that α = α k with designated action k. This axiom is the typical reduction for modality ♦ after update • in dynamic epistemic logics [START_REF] Hans Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Moss | Dynamic epistemic logic[END_REF]: after an update α (i.e., α k ) the agent considers it possible that ϕ, if and only if α is executable and for some conceivable α j (i.e., for some α j with R α (k, j)) the agent considers it possible that after α j , ϕ. The non-typical part of the reduction is that R α (k, j) ∈ {t, }. This is to be expected in a four-valued relational setting, and of course similar to the restriction of announcements ϕ to values t, in bilattice public announcement logic [START_REF] Rivieccio | Bilattice public announcement logic[END_REF].

We recall mentioning in the introduction that the multi-agent generalization of our work is straightforward. This is a good moment to see why the multiagent generalization of the axiomatization is straightforward. If we were to replace the single axiom ( α ♦ α ♦ α ♦) by, for each agent n, axioms

( α ♦ n α ♦ n α ♦ n ) α ♦ n ϕ ↔ (∼∼Pre α ∧ {♦ n α j ϕ | R n α (k, j) ∈ {t, }})
where R n α denotes the relation in α for agent n, and if we were to similarly replace the LB LB LB axioms of Table 2 by the set of their multi-agent equivalents, then we already have the axiomatization of the multi-agent setting. There are no interaction axioms for different agents.

The derivation rule 'replacement of equivalents' (RE) was erroneously missing in previous axiomatizations of non-classical dynamic epistemic logics [START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF][START_REF] Kurz | Epistemic updates on algebras[END_REF][START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF]. In the absence of (RE), the reduction strategy of BEAK to its static fragment, as sketched in the proof of Theorem 24, later, would not succeed. 2 The axiom α p ↔ (∼∼Pre α ∧ p), called ( α α α -atoms), guarantees that the value of atoms is preserved after update. Such an axiom is often formulated both for positive and for negative atoms (i.e., for literals). The axiom for negative atoms is indeed a theorem of our axiomatization. We show its derivation as an example. 2 The rule RE is needed because we use an inside-out reduction strategy. For the alternative outside-in reduction strategy, RE is not needed, but then one needs a reduction axiom of shape " α β ϕ ↔ . . . " as well as a rule "from ϕ → ψ infer α ϕ → α ψ" (α-monotonicity). For classical dynamic epistemic logics, for the special case of public announcement logics, such variants are discussed in detail in [START_REF] Wang | On axiomatizations of public announcement logic[END_REF].

Example 18 α ¬p ↔ ∼∼Pre α ∧ ¬p is a theorem of BEAK.

α ¬p ↔ ∼∼Pre α ∧ ¬ α p ( α ¬ α ¬ α ¬) α ¬p ↔ ¬(∼∼Pre α ) ∨ ¬p LB, ( α α α -atoms) ¬(∼∼Pre α ) ↔ ∼Pre α (¬ ⊃ ¬ ⊃ ¬ ⊃), p ∧ t ↔ p α ¬p ↔ (∼∼Pre α ∧ (∼Pre α ∨ ¬p)) LB α ¬p ↔ (∼∼Pre α ∧ ∼Pre α ) ∨ (∼∼Pre α ∧ ¬p) LB (∼∼Pre α ∧ ∼Pre α ) ↔ f LB α ¬p ↔ (f ∨ (∼∼Pre α ∧ ¬p)) LB α ¬p ↔ (∼∼Pre α ∧ ¬p) p ↔ p ∨ f
We now proceed by showing soundness and completeness. The following lemmas are needed to establish that BEAK is sound with respect to the algebraic semantics. Most proofs are straightforward adaptations of the lemmas from [START_REF] Rivieccio | Bilattice public announcement logic[END_REF].

Lemma 19 ([39], Lemma 6.1) Let M = (B, V ) be an algebraic model and ϕ

a formula such that [[ϕ]] Mα = π([[ϕ]] α M
) for any four-valued action α over L. Then: ([39], Fact 6.2) Let B be a modal bilattice and a be a four-valued action model over B, and let i : B a → a B be given by [g] → g ∧ ∼∼P re a .

(i) [[ α ϕ]] M = ∼∼[[Pre α ]] M ∧ [[ϕ]] M (ii) [[[α]ϕ]] M = [[Pre α ]] M ⊃ [[ϕ]] M Lemma 20

Then for every

[b], [c] ∈ B a : (i) i ([b] ∧ [c]) = i ([b]) ∧ i ([c]); (ii) i ([b] ∨ [c]) = i ([b]) ∨ i ([c]); (iii) i ([b] ⊃ [c]) = ∼∼Pre a ∧ (i ([b]) ⊃ i ([c])); (iv) i (¬[b]) = ∼∼Pre a ∧ ¬i ([b]); (v) i ( a [b]) = ∼∼Pre a ∧ a B (Pre a ⊃ i ([b])); (vi) i (♦ a [b]) = ∼∼Pre a ∧ ♦ a B (i ([b]) ∧ ∼∼Pre a ).
Lemma 21 ([39, Lemma 6.3]) Let M = (B, V ) be an algebraic model with underlying modal bilattice B = (B, ∧, ∨, ⊃, ¬, ♦, , f, t, ⊥, ). For every fourvalued action model α over L and all formulas ϕ and ψ:

(i) [[ α (ϕ ∨ ψ)]] M = [[ α ϕ]] M ∨ [[ α ψ]] M ; (ii) [[ α (ϕ ∧ ψ)]] M = [[ α ϕ]] M ∧ [[ α ψ]] M ; (iii) [[ α (ϕ ⊃ ψ)]] M = ∼∼[[Pre α ]] M ∧ ¬[[ α ϕ]] M ; (iv) [[ α ¬ϕ]] M = ∼∼[[Pre α ]] M ∧ ¬[[ α ϕ]] M ; (v) [[ α ♦ϕ]] M = ∼∼[[Pre α ]] M ∧ {♦ B ([[ α j ϕ]] M ) | R α (k, j) ∈ {t, }}; (vi) [[ α ϕ]] M = ∼∼[[Pre α ]] M ∧ { B ([[[α j ]ϕ]] M ) | R α (k, j) ∈ {t, }}.
Proof. We only show non-trivial items (v) and (vi). Concerning (v), first observe that:

π k • i ([[♦ϕ]] Mα ) = π k (∼∼Pre α ∧ ♦ α B (∼∼Pre α ∧ i ([[ϕ]] Mα ))) = ∼∼Pre a ∧ ♦ B (∼∼Pre a (j) ∧ i ([[ϕ]] Mα ))(j) | R α (k, j) ∈ {t, } = ∼∼[[Pre α ]] M ∧ ♦ B (∼∼Pre a (j)) ∧ i ([[ϕ]] Mα ))(j) | R α (k, j) ∈ {t, } = ∼∼[[Pre α ]] M ∧ ♦ B (∼∼[[Pre α (j)]] M ∧ π j • i ([[ϕ]] Mα ))(j) | R α (k, j) ∈ {t, } = ∼∼[[Pre α ]] M ∧ ♦ B (∼∼[[Pre α (j)]] M ∧ π j • i ([[ϕ]] Mα j ))(j) | R α (k, j) ∈ {t, } = ∼∼[[Pre α ]] M ∧ ♦ B ([[ α j ϕ]] M ) | R α (k, j) ∈ {t, } .
To justify the equality between lines 4 and 5 above, note that M α is independent from the point of α, i.e., (M α =) M α k = M αj . Then:

[[ α ♦ϕ]] M = ∼∼[[Pre α ]] M ∧ π k • i ([[♦ϕ]] Mα ) = ∼∼[[Pre α ]] M ∧ ∼∼[[Pre α ]] M ∧ ♦ B ([[ α j ϕ]] M ) | R α (k, j) ∈ {t, } = ∼∼[[Pre α ]] M ∧ ♦ B ([[ α j ϕ]] M ) | R α (k, j) ∈ {t, } .
To show item (vi), we preliminarily observe that

π k • i ([[ ϕ]] Mα ) = π k (∼∼Pre a ∧ α B (Pre a ⊃ i ([[ϕ]] Mα ))) = ∼∼Pre a ∧ B (Pre a (j) ⊃ i ([[ϕ]] Mα ))(j) | R α (k, j) ∈ {t, } = [[Pre α ]] M ⊃ ♦ B ([[ α j ϕ]] M ) | R α (k, j) ∈ {t, } ( * )
Equivalence ( * ) holds since in every modal bilattice we have that a ⊃ ∼∼a = t and that (a

⊃ b) ∧ (a ⊃ c) = a ⊃ (b ∧ c). Concerning item (vii): [[[α]♦ϕ]] M = [[Pre α ]] M ⊃ π k • i ([[ ϕ]] Mα ) ( * * ) [[Pre α ]] M ⊃ B ([[[α j ]ϕ]] M ) | R α (k, j) ∈ {t, }
For equivalence ( * * ) we refer to Lemma 21.vii.

Lemma 23 The rule RE is sound: if ϕ ↔ ψ then χ[ϕ/p] ↔ χ[ψ/p].
Proof. Let ϕ, ψ ∈ L be such that ϕ ↔ ψ. We will prove that for all χ ∈ L, and any Kripke model M = (W, R, V ) and state w ∈ W :

V (χ[ϕ/p], w) = V (χ[ψ/p], w)
The proof is by induction on χ.

-The case where χ is a logical constant or an atomic proposition is immediate.

-If χ = γ • δ, where • ∈ {∧, ∨, ⊃}, or χ = ¬γ, use that V is a homomorphism in its first argument with respect to bilattice operators.

-If χ = ♦γ, then

V (♦γ[ϕ/p], w) = {R(w, w ) * V (γ[ϕ/p], w ) | w ∈ W } = {R(w, w ) * V (γ[ψ/p], w ) | w ∈ W } (Inductive hyp.) = V (♦γ[ψ/p], w).
-Finally, let χ = α γ. We show that

V + ( α γ[ϕ/p]) = V + ( α γ[ψ/p]) and that V -( α γ[ϕ/p]) = V -( α γ[ψ/p]). Let M α = (W × , R + × , R - × , V × ). By induc- tive hypothesis, for every (w, k) ∈ W × , V × (γ[ϕ/p], (w, k)) = V × (γ[ψ/p], (w, k)). Therefore, V + × (γ[ϕ/p]) = V + × (γ[ψ/p]) and V - × (γ[ϕ/p]) = V - × (γ[ψ/p]). Also, by inductive hypothesis, Pre α [ϕ/p] = Pre α [ψ/p]. Hence, V + ( α γ[ϕ/p]) = V + (Pre α [ϕ/p]) ∩ ι -1 k (i(V + × (γ[ϕ/p]))) = V + (Pre α [ψ/p]) ∩ ι -1 k (i(V + × (γ[ψ/p]))) = V + ( α γ[ψ/p]).
A similar argument shows that

V -( α γ[ϕ/p]) = V -( α γ[ψ/p]). Therefore, V ( α γ[ϕ/p]) = V ( α γ[ψ/p]).
We now get to the announced completeness result.

Theorem 24 The proof system BEAK is sound and complete with respect to algebraic and relational models.

Proof. The soundness of the preservation of logical constants and propositional variables follows from Lemma 20. The soundness of the remaining axioms is proved in Lemma 21. The soundness of RE is proved in Lemma 23.

The proof of completeness is analogous to that of classical and intuitionistic EAK, and follows from the reducibility of BEAK to bilattice modal logic.

Let ϕ be valid. Let us assume that we only use primitive connectives of L (so, for example, α but not [α]). Consider some innermost occurrence α ψ of a dynamic modality in ϕ, where ψ is in the static language. The axioms of BEAK make it possible to transform α ψ into an equivalent formula without a dynamic modality:

We 'push' the dynamic modality down the generation tree of the formula, through the static connectives, until it binds a proposition letter or a constant symbol. There, the dynamic modality disappears, thanks to an application of the appropriate axiom preserving proposition letters or constants, and, crucially, applying the RE rule (we replace a subformula in a larger expression by an equivalent formula without the dynamic modality).

This process is repeated for all the dynamic modalities of ϕ, so as to obtain a formula ϕ which is provably equivalent to ϕ. Since ϕ is valid by assumption, and since provable equivalence preserves validity, by soundness we can conclude that ϕ is valid. By Theorem 2, we can conclude that ϕ is a theorem in bilattice modal logic and thus in BEAK. Therefore, as ϕ and ϕ are provably equivalent, ϕ is also a theorem. This concludes the proof.

Unlike in two-valued modal logic, this formula may remain true after its announcement. It need not be an unsuccessful update. How come? Again, please read on.

Bilattice modal logic. We model the D1-Acuminata database containing information on that tulip as a world. The proposition that the tulip is red is p.

There are four possible worlds. We use mnemonic names for the worlds: p ⊥ is the world where V (p) = ⊥, p t is the world where V (p) = t, p f is the world where V (p) = f, and p is the world where V (p) = . Uncertainty about the four worlds is represented by the following model M . The box enclosing the worlds means that they are indistinguishable (the accessibility relation R is the universal relation on this domain) for Hendrik Edeling.

M : p ⊥ p f p t p
We can now evaluate, for example, that M, p t |= p, or that M, p |= p (we recall that M, w |= ϕ means that V (ϕ, w) ∈ {t, }). We do not have that M, p t |= p, as both p and ¬p are considered possible. Hendrik is uncertain about p. A public announcement p! restricts the model to the p t and p state.

M : p ⊥ p f p t p p! ⇒ M p : p t p
A public announcement is a singleton action model with reflexive access.

Instead of writing that α is a public announcement of ϕ we write ϕ!; and for the corresponding model update we write M ϕ instead of M α . We can justify the restriction to t and by considering this semantics of announcement to be the response to a query p?. In both cases the answer will be 'yes'. In twovalued public announcement logic, we are used to having [p!] p as a validity for propositional variables. This is no longer the case in our setting. In particular, M, s |= [p!] p. We recall the semantics of , namely

V ( ϕ, w) := {R(w, w ) → V (ϕ, w ) | w ∈ W },
where denotes the infinitary version of ∧ in FOUR and → is the strong implication. So far, our models have two-valued accessibility relations, i.e., (w, w ) ∈ R or (w, w ) ∈ R for all pairs in M . This means that p takes the value {t → V (p, w) : w ∈ {p ⊥ , p t , p f , p }}. As V (p, p ) = , and t → = f (the other three values are t), p is therefore false (in any state of M ) and not true. The intuition behind this is that in bilattice modal logic ϕ is false if ϕ is false in an accessible world. It is therefore not necessarily the case that ϕ is true if ϕ is true in all accessible worlds. In fact, if in one or more of those accessible worlds ϕ has the value (as in our example model M ), then ϕ is also false in an accessible world, and thus we are done for. From M p , s |= p then follows, using that (M, s

|= [α]ϕ iff (M, s |= Pre α implies M α , s |= ϕ)), that M, s |= [p!] p.
Now consider the announcement of p ∧ ¬ p. This formula is known as the Moore sentence [START_REF] Moore | A reply to my critics[END_REF][START_REF] Hans Van Ditmarsch | Everything is knowable -how to get to know whether a proposition is true[END_REF]. In two-valued public announcement logic, as the result of truthfully announcing it, it becomes false; [(p ∧ ¬ p)!]¬(p ∧ ¬ p) is valid in public announcement logic. It is not valid in BEAK. Similarly to above, we have:

M : p ⊥ p f p t p (p∧¬ p)! ⇒ M p∧¬ p : p t p
Thus, because in M p∧¬ p we have that R(p t , p ) = t and that V (p, p ) = , it follows that M p∧¬ p , p t |= p. In fact, we now have that M p∧¬ p , p t |= p ∧ ¬ p and thus the (from a modal logical perspective) surprising result that:

[(p ∧ ¬ p)!](p ∧ ¬ p) is satisfiable in BEAK.
Having seen some simple examples of announcements and of formulas, and modal formulas, let us present some simple announcements on the status quo of a database, with regard to p.

• the database is consistent: announcement of ∼(p ∧ ¬p)

• the database is inconsistent: announcement of p ∧ ¬p

• the database is complete: announcement of p ∨ ¬p

• the database is incomplete: announcement of ∼(p ∨ ¬p)

The four-valued truth tables of these formulas are illustrative. It is illustrative to see announcements as answers of queries to the database.

∼ (p ∧ ¬ p) t ⊥ ⊥ ⊥ ⊥ t f f t f t t f f t f ⇑ p ∧ ¬ p ⊥ ⊥ ⊥ ⊥ f f t f t f f t ⇑ p ∨ ¬ p ⊥ ⊥ ⊥ ⊥ f t t f t t f t ⇑ ∼ (p ∨ ¬ p) t ⊥ ⊥ ⊥ ⊥ f f t t f f t t f t f ⇑ Again,
When Hendrik queries the database with p? then the answer he gets will be 'yes' if the state of the database is t or , when he queries the database with ¬p? then the answer he gets will be 'yes' if the state of the database is f or . This is like Fitting's Rosencrantz and Guildenstern (R and G) setting in [START_REF] Fitting | Many-valued modal logics[END_REF]. In question-answer analysis in two-valued logic [START_REF] Groenendijk | Questions[END_REF], a question induces a partition on the domain, and a yes/no question, such as a question ϕ? on the truth of ϕ, a dichotomy. Fitting's Rosencrantz and Guildenstern other answer is 'no'. That is, for either of them, a classical dichotomy. However, it is tempting to see a question in four-valued logic differently, namely as inducing (a set of subsets that is) a partial cover of the domain. It is a cover, as two subsets may have non-empty intersection (namely when they contain worlds where ϕ has the value ). It is partial, as some worlds may not be in any subset, namely when ϕ has the value ⊥. If the world has no information on ϕ (value ⊥), then 'there is no answer' or, differently said, the answer is: "I don't know." This becomes like the introductory example where you were trying to find your way to the railway station in Nancy. That example also serves to illustrate another, we think, interesting feature of four-valued question-answer analysis: if the value of ϕ is

, then the answer to the question ?ϕ is 'yes' (so not 'yes and no'); whereas the answer to the question ¬ϕ? is also 'yes'. Knowledge of inconsistency is a higher order feature for a database: whereas consulting memory directly is more straightforward: if you already have the answer 'yes', why trying to rule out the answer 'no' ? In other words, questions become leading questions. We do not know if this analysis of questions in four-valued logics is common in inquisitive semantics [START_REF] Groenendijk | Questions[END_REF].

Roles in dynamic epistemics To understand dynamic epistemics, also on bilattices, it is important to distinguish different roles: (i) the agent/object/process identified with a propositional variable (the holder of the information), (ii) the agent being uncertain about the proposition, and (iii) the provider of reliable new information (on the proposition), the dynamic part. In our tulip example we have distinguished (i) (the database) from (ii) (Hendrik Edeling), but not (i) from (iii) (the database is queried and provides the answers). In the railway station example (i) and (iii) are separate: accidental pedestrians perform the role of (iii). It is common to view the source of new information, the 'announcing agent', as an anonymous oracle or trusted authority (Hendrik Edeling's system manager, so to speak). In the tulip example we can even think of the different roles as different components of 'the database' as hardware: (i) is RAM, (ii) is the CPU, and (iii) is the interface. In multi-agent examples (where each agent a has her own i in the logical language) it is also easier to separate roles. • Sara knows that the tulip is red.

p t p t |= s p
• Sara knows whether the tulip is red. Hendrik is uncertain whether she knows that. (And we should now add; "and they are both aware of this scenario." We will refrain from doing so from now on.) Sara says to Hendrik: "I know that the tulip is red."

p t p f p ⊥ p s p! ⇒ p t p t |= ¬ h ( s p ∨ s ¬p) ∧ [ s p!] h p
• Sara knows whether the tulip is red. Hendrik is uncertain whether she knows that. Sara says to Hendrik: "I know whether the tulip is red."

p t p f p ⊥ p ( s p∨ s ¬p)! ⇒ p t p f (p f or) p t |= ¬ h ( s p ∨ s ¬p) ∧ [( s p ∨ s ¬p)!](¬ h p ∧ h ( s p ∨ s ¬p))
• Sara knows that the database is consistent, but she doesn't know that it is incomplete.

p ⊥ p f p t p ⊥ |= s ∼(p ∧ ¬p) ∧ ¬ s ∼(p ∨ ¬p)
• Sara knows whether the database is consistent.

p ⊥ p f p t p p ⊥ |= s ∼(p ∧ ¬p) ∨ s ∼∼(p ∧ ¬p)
is valid on this model.

• Sara knows whether the database is consistent. Hendrik does not. Sara says to Hendrik: "The system manager just informed me that the database is consistent."

p ⊥ p f p t p i ∼(p∧¬p)! ⇒ p ⊥ p f p t
• Sara and Hendrik are both uncertain about the status of the database.

The system manager says: "I will now inform Sara whether the database is consistent." He proceeds to do so, but by whispering into her ear, so that Hendrik cannot hear what he says to Sara.

p ⊥ p f p t p α ⇒ p ⊥ p f p t p
Here, α represent the whisper action. This is non-deterministic choice between action models α k and α l (and where for α k ∪ α l we write α), but if (w, w ) ∈ R and (w , w ) ∈ R then we need not have that (w, w ) ∈ R (for example, suppose w = w). Transitivity plays a role in the four-valued logic BS4 of [START_REF] Odintsov | Modal logics with Belnapian truth values[END_REF] (employing two-valued relations), and transitivity of four-valued relations is summarily discussed in [START_REF] Fitting | Many-valued modal logics II[END_REF] in the context of combining knowledge of different experts. The answer to our questions is in the logic, not in the structures: for transitivity we need the properties enforcing the validity of ϕ → ϕ. We can achieve this with simple means. First, an example.

where α k = (K, k, R α , Pre α ) such that K = {k, l}, Pre α (k) = ∼(p ∧ ¬p); Pre α (l) = ∼∼(p ∧ ¬p); R s α (k, k) = t, R s α (l, l) = t, R s α (k, l) = f,
(In M , V ( p, p t ) = R(p t , p t ) → V (p, p t ) = → t = t; whereas in M , V ( p, p ) = R(p , p ) → V (p, p ) = t → = f.)
Hendrik Edeling knows the colour of the tulips in the Acuminata database. The structural requirements to enforce the validity of the properties of knowledge are as follows.

• If R(w, x) = t and R(x, y) = t, then R(w, y) = t.

• If R(w, x) = and R(x, y) = , then R(w, y) = .

• If R(w, x) = t and R(x, y) = , then R(w, y) = .

• If R(w, x) = and R(x, y) = t, then R(w, y) = t.

• R(w, w) ∈ {t, }.

• If R(w, x) ∈ {t, } and R(w, y) = i, then R(x, y) = i (where i = ⊥, t, f, ).

These cannot be properly called 'frame properties', as the manipulation of the pairs in the relation depends on their values in a given model. If these properties are fulfilled, then the schemata ϕ → ϕ, ϕ → ϕ, and ♦ϕ → ♦ϕ are all valid (this is easy to see). Similarly, we get i ϕ → i i ϕ, etc., for multi-agent bilattice epistemic logic.

Four-valued action models. In our logical framework not only the accessibility relations of Kripke models are four-valued but also the accessibility relations of action models. Let us see some variations on the announcement of p. We have replaced the names of action models by their preconditions. (The boxes only serve to separate models and have no meaning.)

α i α ii α iii α iv α v α vi α vii p t p t t t p ∧ ¬p t p ∨ ¬p t ¬p p t t t
Action α i is the public announcement of p (and also its correspondent in bilattice logic [START_REF] Rivieccio | Bilattice public announcement logic[END_REF]). The difference between α i and α ii is that, when executed on a two- And what would it mean that a direct observation is absent (⊥)?

Whereas the contents of a letter can easily be contradictory or absent.

You open it. It contains a leaf, with p written on it. Or the leaf contains ¬p. Or there was no leaf enclosed. Or two, one with p and the other with ¬p.

Conclusions and future research

We proposed a four-valued bilattice-based modal logic including dynamic modalities for the consequences of actions. Our logic is suitable for reasoning about inconsistent and incomplete information, and about change of information in such settings. We have presented an axiomatization of the logic and shown completeness using algebraic logic and duality theory. We hope that our logic may be useful in computer science applications.

The present paper is part of an ongoing enterprise that aims, on the applied logic side, at extending dynamic epistemic logics beyond classical reasoning and, on the theoretical side, at achieving a better understanding of the very mechanism of epistemic updates. 3 From the latter point of view, an intriguing direction for future research is the investigation of the most general conditions for the algebraic/duality theoretic machinery to be applicable to epistemic updates.

The papers [START_REF] Ma | Algebraic semantics and model completeness for intuitionistic public announcement logic[END_REF][START_REF] Kurz | Epistemic updates on algebras[END_REF][START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF][START_REF] Rivieccio | Bilattice public announcement logic[END_REF][START_REF] Cabrer | Lukasiewicz public announcement logic[END_REF] have shown that a uniform methodology, with few ad hoc adjustments, can be extended from the classical setting to those of intuitionistic, bilattice and finite-valued Lukasiewicz modal logics. Other logics are likely to be easily dealt with, for example positive (i.e. negation-free) modal logic and semilattice-based modal systems. The question then arises what could be minimal requirements of algebraic/relational semantics that would allow for a uniform definition of epistemic updates, perhaps one that does not heavily rely (as is so far the case) on the particular algebraic language involved. For example, since the pseudo-quotient construction involves the definition of a (partial) congruence by certain algebraic terms, we may wonder what kind of terms we should postulate in an abstract setting. Algebraic logic may turn out to be helpful here, and in particular the results from the general theory of the algebraization of logics that establish a link between logical filters (theories of a logic) and congruences of the associated algebraic semantics.

The Hilbert-style axiomatization BEAK, although complete, may not be very suitable for proof search. We do not know its complexity, but similar calculi for dynamic epistemic logics tend to be NP or (in the multi-agent case) PSPACE. Also, maybe more importantly, it is not very constructive, as common for such calculi. Recent advances in proof calculi for dynamic epistemic logics, typically from an algebraic perspective [START_REF] Frittella | A proof-theoretic semantic analysis of dynamic epistemic logic[END_REF][START_REF] Frittella | A proof-theoretic semantic analysis of dynamic epistemic logic[END_REF][START_REF] Frittella | Multi-type display calculus for dynamic epistemic logic[END_REF][START_REF] Greco | Lattice logic properly displayed[END_REF][START_REF] Balco | Software tool support for modular reasoning in modal logics of actions[END_REF], may be applicable to the bilattice dynamic epistemic logic presented in this work.
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 1 Figure 1: The four-element Belnap lattice in its two orders, the bilattice FOUR

  Epistemic actions are events by which agents receive new information about the world, whilst leaving the facts of the world itself unchanged. An action model is a relational structure similar to a Kripke model, where the accessibility relation between two actions (points in the action model domain) represent an agent's uncertainty as to which action actually occurred. The structure of action models should of course fit that of Kripke models, with four-valued accessibility relations. How to give intuitive interpretations to such four-valued action models is non-trivial, and we will give this ample attention.

  R) a four-valued Kripke frame. Valuations are required to be homomorphisms in their first argument, so they preserve all non-modal connectives (including the four constants). The modal operator ♦ is defined as follows: for every w ∈ W and every ϕ ∈ F m, V (♦ϕ, w) := {R(w, w ) * V (ϕ, w ) | w ∈ W } where denotes the infinitary version of ∨ in FOUR and * is the strong conjunction introduced above. The dual operator is defined as V ( ϕ, w) := {R(w, w ) → V (ϕ, w ) | w ∈ W }, where denotes the infinitary version of ∧ in FOUR, and → is the strong implication. 1 It holds that V ( ϕ, w) =

  Pre a ) is an action model over B. Then we know from [39, Section 5.2] that there is a modal bilattice isomorphism ν : (F a ) • → B a . Letting µ := ν -1 , we have the following characterization. Theorem 10 Let B = F • for some frame F, and let a = (K, k, R a , Pre a ) be an action model over B. Then i (b) = i[µ(b)] for every b ∈ B a . It follows that i[c] = i (ν(c)) for every c ∈ (F a ) • . Proof. Apply [29, Proposition 3.6] to the twist structure over B a .

Proposition 11 ([ 38 ,

 1138 Fact 2.4]) For every action model a = (K, k, R a , Pre a ) over a modal bilattice B, the algebra (B a , ♦ a ) is a modal bilattice. Definition 12 (Algebraic model) An algebraic model of BEAK is a tuple M = (B, V ) such that B is bilattice and V : AtProp → B. For every algebraic model M and every action model α over L, we let α M = ( α B, α V ), where α B = a B and a = (K, k, R a , Pre a ) is the action model over B induced by α via V with Pre a = V • Pre α . Moreover, we let ( α V )(p) := a V (p) for every p ∈ AtProp. Likewise, we define M a := (B a , π • α V ). Definition 13 (Algebraic semantics for BEAK) Given an algebraic model M = (B, V ), the extension map [[.]] : L → B is defined as follows:

Definition 14 (

 14 Relational semantics for BEAK) M, w |= α ϕ iff M, w |= Pre α and M α , (w, k) |= ϕ Since M, w |= ϕ iff M, w |= ∼∼ϕ, the above definition is in keeping with the algebraic semantics of Definition 13.

  Pre a ) is the action model over the complex algebra of B • and Pre a :K → (B • ) • is defined as Pre a : j → ({y ∈ At(A) | y ≤ Pre + a (j)}, {y ∈ At(A) | y ≤ Pre - a (j)})where Pre + a and Pre - a are the components of Pre a according to the twist structure presentation of a B. We then have the following. Proposition 16 (Cf. [29, Fact 4.8]) For every perfect modal bilattice B and every action model a = (K, k, R + a , R - a , Pre a ) over B, we have : (i) ( a B) • ∼ = a (B • ), and (ii) (B a ) • ∼ = (B • ) ā.

  we do not necessarily have that after these announcements, the formulas of the announcement are known: [∼(p∨¬p)!] ∼(p∨¬p) and [∼(p∧¬p)!] ∼(p∨ ¬p) are valid, but [(p ∨ ¬p)!] (p ∨ ¬p) and [(p ∧ ¬p)!] (p ∧ ¬p) are invalid. (Although [∼∼(p ∨ ¬p)!] ∼∼(p ∨ ¬p) and [∼∼(p ∧ ¬p)!] ∼∼(p ∨ ¬p) are valid.)

  They are red, or white, or blue. His model of uncertainty is There are three equivalence classes, and all pairs are either in or out (for (x, y) ∈ R read R(x, y) = t and for (x, y) ∈ R read R(x, y) = f). We have that:R(r, w) = f and R(w, r ) = f but R(r, r ) = t; R(r, w) = f and R(w, b) = f and R(r, b) = f; R(r, w) = f and R(w, w ) = t and R(r, w ) = f. However, R(x, y) = t and R(y, z) = t imply R(x, z) = t.That is only what matters: t or related worlds should relate the same to all other worlds.

  Again, α a (= α i ) is the standard. Action model α b is known as the Gerbrandystyle conscious update[START_REF] Jelle | Reasoning about information change[END_REF]. Instead of eliminating worlds that do not satisfy the announcement formula, it eliminates arrows (pairs in the accessibility relation) that do not point to worlds satisfying the announcement. An obvious 'four-valued completion' of this action model is α c . A less obvious four-valued completion of α a is α d . Clearly the update effect of α a and α d is the same, and also the update effect of α b and α c . Actions α a and α b have also the same update effect (where it is important that the ϕ-world is the point of α b ; the correspondence only holds when the announcement is true). This does not change for bilattice modal logic (it is about accessibility). Thus, all four describe essentially the same action! Similarly to above we could add a third point to α d with preconditions ∼(¬ϕ∨ϕ), however in this case equally f-accessible from and to the other points, and while keeping the ϕ point as the designated one. Let this be α e . Again, α e has the same update effect as all the others. But executing α e does not restrict the domain of the model. On any model, we get the same result (logically indistinguishable results) by arrow elimination when executing α e as by world elimination when executing α a . This can be applied to any action model: given any Kripke model M with domain W and action model α with domain K, once having computed the |K|-fold coproduct of W (cartesian product W × K), we need not restrict the domain as when computing M α , but it suffices to restrict the accessibility relation, i.e., we need to make enough R(v, w) swap their value from t to f.What is an announcement in four-valued logic?As well known, public announcement logic is a misnomer, it is rather a logic of public, information changing, events. Various communicative phenomena including (informative) announcements count as (information changing) events: (a) if you say something that is heard by all (that is, an oral observation of a public announcement); (b) a visual observation (by all) of a property of surrounding objects, for example, when you see a red tulip blossoming in the fields; (c) written information observed by all, such as a teacher writing 1 + 1 = 2 on a blackboard, or an envelope containing information on p, opened in public. (Some events called 'public announcements' are not information changing events at all, but factual changing events, as in "I hereby declare Donald Trump to be the president of the USA."We exclude those from consideration.) Not all of these make sense in a setting where inconsistency or incompleteness plays a role. Direct observations are hardly ever inconsistent. A tulip is red. Or it is not red. Now it may be red or orange, or something indefinable in between. But then we would say that the proposition 'the tulip is red' is in between true and false; we would not say that it is simultaneously true and false. A visual illusion might count as a contradictory observation ( ): is the image below that of a young or of an old woman?

  We will denote the equivalence class of f ∈ B K by [f ] a (or simply by [f ] when there is no risk of confusion) and the quotient set B K / ≡ a by B a . Note that, as mentioned in[START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF] in the similar context of public announcements, the double negations appearing in the definition of the congruence ≡ a ensure that elements that interpret equivalent propositions in a B are indeed identified. Let a = (K, k, R a , Pre a ) be an action model over a modal bilattice B. Then:

	Proposition 9 ([38, Fact 2.3])

Pre a ∈ a B and ∧, ∼ are algebraic operations of a B, it follows from

[START_REF] Rivieccio | Algebraic semantics for bilattice public announcement logic[END_REF] Fact 2.2

] that ≡ a is a congruence of the non-modal reduct of a B.

  Truth values or possible worlds? If we see Hendrik Edeling as the database, we can consider the value of p his uncertainty. Initially the value of p is ⊥. It then changes into t once Hendrik gathers positive information on p, and may fur-ther change into if he additionally receives negative information on p. These are so-called factual (ontic) changes. But if we see Hendrik as different from the database, then his uncertainty is between four worlds of a Kripke model, where a world represents the fixed value of p in the database. Receiving information now means restricting this model in order to finally find out the true value of p. This is informational (epistemic) change. The former is quite different from the latter. Factual change can also be modelled in dynamic epistemics, but is outside our scope.

	Multi-agent knowledge and actions. As mentioned, our framework generalizes
	to a multi-agent modal setting, wherein instead of the modality	we have
	modalities i , for each agent i. Knowledge modalities come with an accessi-
	bility relation that is an equivalence relation (and that, so far, is two-valued;
	four-valued accessibility relations will be considered next). Other scenarios are
	conceivable, for example for belief, intentions or obligations, or time (with tem-
	poral modalities).	
	Hendrik Edeling has a colleague Sara Burgerhart who is another expert on
	Acuminata tulips and who may also have access to the same database. We model
	some scenarios and give typical formulas. Elementary checks on their adequacy
	are left to the reader. The equivalence classes of the accessibility relation for
	Hendrik are depicted as solid boxes and for Sara they are depicted as dashed
	boxes. Modality h represents Hendrik's knowledge and s represents Sarah's
	knowledge.	

  and have that R (w, w ) * V (ϕ, w ) = f. Thus, this conjunct does not affect the value of the join. Similarly, R (w, w ) → V (ϕ, w ) = t does not affect the value of the meet defining V ( ϕ, w). surprisingly, with values ⊥ or for pairs in the accessibility relation it becomes harder to appeal to our modelling intuitions. For example, what does it mean that 'Hendrik Edeling considers world w possible' has value ? Does he then consider it possible and impossible at the same time? Our previous visualization with boxes is no longer suitable, and from now on we depict all pairs in the accessibility relation explicitly as arrows, labelled with the value of that pair in R (so, for example, below we have that R(p f , p t ) = ).We could interpret this by saying that Hendrik's beliefs are more inclined towards p being false than towards p being true, as is lower in the ≤ t hierarchy than t (worlds considered t are more plausible than worlds considered ). Still, access is good enough to get to know p. Compare the following three (distinct)

	Not p f t	p t				
		t				
	models:					
		t				
	M :	p t	M :	p t	M :	p

t

In M and M , p is true, whereas in M , p is false.

  The latter is easily explained: p is false if there is an accessible world where p is false. And value means that p is (also) false. To understand that p is true in M , it is sufficient to observe that the p t world is considered. It is in. That it is simultaneously out does not hurt. So Hendrik still knows that tulips are red.

	What properties are satisfied by Kripke models with four-valued relations
	that are used to interpret knowledge modalities? Are they still equivalence

relations? Take transitivity: if (w, w ) ∈ R and (w , w ) ∈ R then (w, w ) ∈ R;

  These actions are 'clock ticks': executed on any model, the result will be isomorphic to it. Actions α v and α vi we have already discussed: these are the announcements that p is inconsistent, respectively, that there is complete information about p. Action α vii has the same update effect as α vi . Actions α vi and α vii are different from α iii and α iv : the latter two preserve ⊥ worlds at their execution, the former two not. Given that, an interesting eighth version, with the same update effect as α iii and α iv , is: Now consider the following four alternative depictions as action models of a public announcement of ϕ. The rightmost of the two points (in case there are two) is the designated point.

	t		t		t
	¬p	t	p	t	∼(p ∨ ¬p)
			t		

valued Kripke model, all links between worlds get value instead of t; and in both cases the domain is restricted to the p-worlds (i.e., the V (p) ∈ {t, } worlds). For example, in a Kripke model M with two indistinguishable, twovalued, p and ¬p worlds, both [α i ] p and [α ii ] p are true. The difference between i and ii only appears when evaluating knowledge of inconsistencies:

[α i ] (p ∧ ¬p) is false whereas [α ii ] (p ∧ ¬p) is true, as t → = f whereas → = .

Action models α iii and α iv result (when executed on a given model) in isomorphic models: they have the same update effect (namely, none at all); the worlds preserved by precondition t are the same as those preserved by precondition (a public announcement of ϕ restricts the domain to worlds where ϕ ∈ {t, }; trivially, t ∈ {t, } and ∈ {t, }).

Added in proofs: a valuable recent addition is the four-valued public announcement logic of[START_REF] David | A dynamic informational-epistemic logic[END_REF].
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Hence:

The next lemma is also helpful for the intuition linking the relational and algebraic setting, but is not strictly necessary in the completeness proof, wherein we use that α ϕ is a primitive language construct and [α]ϕ a derived one. Item (v) of this lemma justifies our usage of [α]ϕ as an abbreviation for ¬ α ¬ϕ.

Lemma 22 ([39, Fact 6.4]) Let M = (B, V ) be an algebraic model with underlying modal bilattice B = (B, ∧, ∨, ⊃, ¬, ♦, , f, t, ⊥, ). For every action model α over L and all formulas ϕ and ψ in L:

Proof. The items of interest are (vi) and (vii). Item (vi):

Case study: Knowledge of inconsistency and incompleteness

A good image for a recipient of possibly inconsistent information is the database. You are Hendrik Edeling, a breeder of tulips. Consider the database D1-Acuminata containing information on the colour of a particular tulip that is a candidate for selective breeding. It may contain the information that the tulip is red, or that it is not red, or it may lack this information, or it may, inconsistently so, contain the information that it is both red and not red. In other words, the proposition p for 'the tulip is red' can have one of the four values t, f, , ⊥.

Let us now consider the perspective of Edeling wishing to consult the database.

And let us assume that Edeling is uncertain which of the four states t, f, , ⊥ the database is in, with respect to the proposition p. That makes four possible worlds that he is unable to distinguish. If he now queries the database and get 'yes' as an answer to the query 'p?', he can rule out two of these four possibilities and keep the worlds wherein p has the value t and the value . So this is a way to process a public announcement of the proposition p. Now a further query to narrow down the options would be querying the database on the value of ¬p, or, more properly said, querying it on the falsity of p. A confirmation that p is false reduces Hendrik Edeling's uncertainty because the only remaining world satisfying it, is the one where the value of p it . In another sense, Hendrik has become more uncertain again, because he has confirmation that the database is inconsistent. We could also have communicated directly (in one formula) to

Edeling that the database is inconsistent. Or that it is consistent, or that it is incomplete (value ⊥). How? Please read on.

Given initial uncertainty about p, Edeling may also have to interact with his colleague Saartje Burgerhart, another renowned tulip expert. Maybe even a competitor! Consider the action of Burgerhart being informed that the database is lacking information on p (the datebase is incomplete), while Edeling remains uncertain whether she gets this information.

The information that the agents receive may also be modal. Suppose that Hendrik is being told that p ∧ ¬ p: "The tulip is red but you don't know this!" R s α (l, k) = f; R h α (i, j) = t for all i, j ∈ {k, l}. Action model α l is the same as α k but with the other designated point. In all the above, we only considered a single propositional variable, p. However, we can also consider situations wherein Hendrik Edeling is the expert on p, and controls that database, whereas Sara Burgerhart (possibly) has information on the tulip's petals. Are they round and wide, or are they narrow and sleek?

Let that be a proposition q. (In fact Acuminata tulips have sleek petals -they approach more the Turkish ideal tulip than the Dutch ideal tulip.) We could think of her as controlling another database. And both databases could contain thousands of items of possibly inconsistent information. The scenarios merely represent the most elementary setting to reason about database consistency and completeness by interacting agents.

Four-valued accessibility relations. Our framework does not only permit fourvalued propositions but also four-valued relations. Using Fitting's [START_REF] Fitting | Many-valued modal logics[END_REF] fitting words:

Now, two kinds of judgements are possible. 1) A is true in situation w; and 2) w is a situation that should be considered.

Where A is any proposition, for which we tend to write ϕ, and where we call w a world. Fitting considered many-valued logics in general, whereas we are in bilattice with judgements on truth and falsity. In other words, if R(w, u) = t then u is in, and if R(w, u) = f then u is out.