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Introduction

Multifractal analysis aims at describing those functions or measures whose pointwise regularity varies rapidly from one point to another. Such behaviors are commonly encountered in various mathematical fields, from harmonic and Fourier analysis (reference) to stochastic processes and dynamical systems [START_REF] Aubry | Random Wavelet Series[END_REF][START_REF] Barral | A pure jump Markov process with a random singularity spectrum[END_REF][START_REF] Barral | Multifractal products of cylindrical pulses[END_REF][START_REF] Jaffard | Exposants de Hölder en des points donnés et coefficients d'ondelettes[END_REF][START_REF] Jaffard | On lacunary wavelet series[END_REF][START_REF] Jaffard | Multifractal analysis of the Brjuno function[END_REF]. Multifractality is actually a typical property in many function spaces [START_REF] Bayart | Multifractal spectra of typical and prevalent measures[END_REF][START_REF] Buczolich | Hölder spectrum of typical monotone continuous functions[END_REF][START_REF] Buczolich | Typical Borel measures on [0,1]d satisfy a multifractal formalism[END_REF][START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF]. Multifractal behaviors are also identified on real-data signals coming from turbulence, image analysis, geophysics for instance [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF][START_REF] Gagne | D Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence pleinement développée[END_REF][START_REF] Abry | Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis[END_REF]. To quantify such an erratic behavior for a function f ∈ L ∞ loc (R), it is classically called for the notion of pointwise Hölder exponent defined in the following way. Definition 1.1. Let f ∈ L ∞ loc (R), x 0 ∈ R and α ≥ 0. A function f belongs to C α (x 0 ) when there exist a polynomial P x0 of degree less than α and K α ∈ R * + such that ∃r ∈ R * + , ∀x ∈ B(x 0 , r), |f (x) -P x0 (x -x 0 )| ≤ K α |x -x 0 | α . The pointwise Hölder exponent of f at a point x 0 is defined by

h f (x 0 ) = sup{α ≥ 0 : f ∈ C α (x 0 )}.
In order to describe globally the pointwise behavior of a given function of a process, let us introduce the following iso-Hölder sets.

Definition 1.2. Let f ∈ L ∞ loc (R) and h ≥ 0. The iso-Hölder set E f (h) is E f (h) = {x ∈ R : h f (x) = h}.
The functions studied later in this paper have fractal, everywhere dense, iso-Hölder sets. It is therefore relevant to call for the Hausdorff dimension, denoted by dim H , to distinguish them, leading to the notion of multifractal spectrum.

Definition 1.3. The multifractal spectrum of f ∈ L ∞ loc (R) on a Borel set A ⊂ R is the mapping defined by

D A f : R + -→ R + ∪ {-∞} h -→ dim H (E h ∩ A).
By convention, dim H (∅) = -∞. The multifractal spectrum of a function or a stochastic process f provides one with a global information on the geometric distribution of the singularities of f .

In this article, we aim at computing the multifractal spectrum of a class of stochastic processes consisting in sums of dilated-translated versions of a function (referred to as a "pulse") that can have an arbitrary form. The translation and dilation parameters are random in our context. The present article hence follows a longstanding research line consisting in studying the regularity properties of (irregular) stochastic processes that can be built by an additive construction, including for instance additive Lévy processes, random sums and wavelet series, random tesselations, see [START_REF] Jaffard | The multifractal nature of Lévy processes[END_REF][START_REF] Khoshnevisan | Measuring the range of an additive Levy process[END_REF][START_REF] Jaffard | On lacunary wavelet series[END_REF][START_REF] Bordenave | The dead leaves model : an example of a general tesselation[END_REF][START_REF] Calka | Fractal random series generated by Poisson-Voronoi tessellations Trans[END_REF] amongst many references.

Our model is particularly connected to other models previously introduced and studied by many authors.

For instance, in [START_REF] Lovejoy | Fractal properties of rain, and a fractal model[END_REF] Lovejoy and Mandelbrot modeled rain fields by a 2-dimensional sum of random pulses constructed as follows. Consider a random Poisson measure N on E = R * + × R * + × R d , as well as a "father pulse" ψ : R d → R, α ∈]0, 2[ and η ∈]0, 1]. Lovejoy and Mandelbrot built and studied the process M : R d → R defined by

(1) M (x) = (λ,w,τ )∈E λ -α ψ(w

1 η (x -τ ))N (dλ, dw, dτ ) = (λ,w,τ )∈S λ -α ψ λ,w,τ (x),
where S is the set of random points induced by the Poisson measure and ψ λ,w,τ (x) := ψ(w 1 η (x -τ )) and η = 1. In [START_REF] Cioczek-Georges | A class of micropulses and antipersistent fractional brownian motion[END_REF], Cioczeck-Georges and Mandelbrot showed that negatively correlated fractional Brownian motions (0 < H < 1/2) can be obtained as a limit (in the sense of distributions) of a sequence of processes defined as in [START_REF] Abry | Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis[END_REF] with ψ a well-chosen jump function, α ∈]0, 2[ and η = 1. Later, in [START_REF] Cioczek-Georges | Alternative micropulses and fractional brownian motion[END_REF], the same authors proved that any fractional Brownian motion with Hurst index H ∈ (0, 1) \ {1/2} is a limit of a sequence of processes {M n (x), x ≥ 0} n∈N defined as in [START_REF] Abry | Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis[END_REF] with ψ a conical or semi-conical function. Other versions with general pulses ψ have been investigated in [START_REF] Mandelbrot | Introduction to fractal sums of pulses[END_REF].

In [START_REF] Demichel | Analyse fractale d'une famille de fonctions aléatoire : les fonctions de bosses[END_REF], Demichel studied a model in which only the position coefficients (X n ) n≥1 are random : the corresponding model is written

(2) G(x) = +∞ n=1 a n ψ(λ -1 n (x -X n )), x ∈ R
where (a n ) n∈N * and (λ n ) n∈N * are two deterministic positive sequences such that n∈N * a n = +∞ and (λ n ) n∈N * is decreasing to 0, and

X n ∼ U ([0, 1]) is an i.i.d.
sequence of random variables. The same example is developed in [START_REF] Demichel | The Hausdorff dimension of pulse-sum graphs[END_REF][START_REF] Demichel | Analysis of the Fractal Sum of Pulses[END_REF] where Demichel, Falconer and Tricot impose that a n = n -α with 0 < α < 1, λ n = n -1 , and ψ : R → R is an even, positive continuous function, decreasing on [0, 1], equal to 0 on [1, +∞[ satisfying ψ(0) = 1.

Calling Γ G the graph of the process G and dim B Γ G its box-dimension, they showed that as soon as there exists an interval I on which ψ ∈ C H (R) (the space of global Hölder real functions of exponent H) and is C 1 -diffeomorphic on some interval, then almost surely See also [START_REF] Amo | A note on the Hausdorff dimension of general sums of pulses graphs[END_REF] for the box dimension of Γ G , or [START_REF] Roueff | Dimension de Hausdorff du graphe d'une fonction continue: une étude analytique et statistique[END_REF][START_REF] Shieh | Xiao Hausdorff and packing dimensions of the images of random fields[END_REF] for a more systematic study of graph dimensions. When α < h, almost surely dim

(3) 2 -α ≤ dim H (Γ G ) ≤ dim B (Γ G ) ≤ 2 -min{α, h}.
H (Γ G ) = dim B (Γ G ) = 2 -α.
In [START_REF] Abid | Existence and Hölder regularity of pulse functions[END_REF], Ben Abid gave alternative conditions for the convergence of such processes G, also determining the uniform regularity of G, i.e. to which global Hölder space C H (R) G may belong to, almost surely.

Our purpose is to study another, somehow richer, model of sums of random pulses.

A model with additional randomness

The stochastic processes F considered in this article are natural extensions of the previous models, and fit in the general study of pointwise regularity properties of rough sample paths of stochastic processes. As in the aforementioned works, we obtain results regarding their existence and regularity properties. We go further by providing a complete multifractal analysis of F and by investigating various modulii of continuity.

Fix a probability space (Ω, F, P) on which all random variables and stochastic processes are defined.

Let (C n ) n∈N * be a point Poisson process whose intensity is the Lebesgue measure on R + , and let S be another point Poisson process, independent with (C n ) n∈N * , whose intensity is the Lebesgue measure on R * + ×[0, 1]. We write S = (B n , X n ) n∈N * where the sequence (B n ) n∈N * is increasing. By construction, the three sequences of random variables (C n ), (B n ) and (X n ) are mutually independent. α ∈ (0, 1) and η ∈ (0, 1). The (random) sum of pulses F is defined by

(4) F (x) = +∞ n=1 C -α n ψ n (x), where ψ n (x) := ψ(B 1 η n (x -X n ))
The parameter α will be interpreted as a regularity coefficient, and η as a lacunarity coefficient. Observe that the support of ψ n is the ball B(X n , B -1/η n ) (B(t, s) stands for the ball with centre t, radius s).

The stochastic process F possesses interesting properties on the interval [0, 1] only, since X n ∈ [0, 1]. However, this is not a restriction at all, since F can easily be extended to R as follows.

For every integer m, consider F m , an independent copy of F but shifted by m. Then,

F := m∈Z F m
enjoys the same pointwise regularity properties as F . It is interesting to see that this new process F has now stationary increments, and enlarges the quite narrow class of stochastic processes with stationary increments whose multifractal analysis is completely understood.

In [START_REF] Jaffard | On lacunary wavelet series[END_REF], using for ψ a smooth wavelet generating an orthonormal basis, S. Jaffard studied the lacunary random wavelet series

W (x) = j∈N k∈Z C j,k 2 -jα ψ j,k (x), x ∈ R,
where for all (j, k) ∈ N × Z, ψ j,k (x) = ψ(2 j x -k) and the wavelet coefficients C j,k are independent random variables wavelets whose law is a Bernoulli measure with parameter 2 -jη (hence, depending on j only). The main difference between the lacunary wavelet series and our model (motivating our work) is that not only dilations (B n ) n∈N * but also the translations (X n ) n∈N * are random in our case. Hence our interest in F (and in F ) comes from the fact that it is not based on a dyadic grid, hence providing one with a homogeneous model more natural from a probabilistic point of view, the process F having stationary increments. The main results of this article concern the global and pointwise regularity properties of F , which are proved to be similar to those of W .

We start by the multifractal properties of F . Theorem 2.1. Let F be as in Definition 2.1. With probability one, one has

D [0,1] F (H) = H α if H ∈ [αη, α], -∞ else.
The other results concern the almost-sure global regularity of F and its modulii of continuity. Let us recall the notions of modulus of continuity. Definition 2.2. A non-zero increasing mapping θ : R + → R is a modulus of continuity when it satisfies

(1) θ(0) = 0, (2) There exists K > 0 such that for every h ≥ 0, θ(2h) ≤ Kθ(h).

Function spaces are naturally associated with modulii of continuity.

Definition 2.3. A function f ∈ L ∞ loc (R) has θ : R + → R as uniform modulus of continuitywhen there exists K > 0 such that ∀h ∈ R + , w f (h) := sup |x-y|≤h |f (x) -f (y)| ≤ Kθ(h).
A function f ∈ L ∞ loc (R) has θ : R + → R as local modulus of continuity at x 0 ∈ R when there exist η x0 > 0 and K x0 > 0 such that [START_REF] Barral | A pure jump Markov process with a random singularity spectrum[END_REF] ∀x such that |x -

x 0 | ≤ η x0 , |f (x) -f (x 0 )| ≤ K x0 θ(|x -x 0 |).
A function f ∈ L ∞ loc (R) has θ : R + → R as almost-everywhere modulus of continuity when θ is a local modulus of continuity for f at Lebesgue almost every x 0 ∈ R.

When α ∈ (0, 1) and θ(h) = θ α (h) := |h| α , the functions having θ α as uniform modulus of continuity is exactly the set C α (R) of α-Hölder functions (to deal with exponents α ≥ 1, the definition of w f (h) must be modified and use finite differences of higher order).

Our result theorem regarding continuity moduli is the following. Theorem 2.2. Let F be as in Definition 2.1. With probability 1:

(1)

Tthe mapping h → |h| αη | log 2 (h)| 2+α is a uniform modulus of continuity of F . (2) The mapping h → |h| α | log 2 (h)| 2+α is an almost everywhere modulus of continuity of F . (3) At Lebesgue almost every x 0 ∈ [0, 1], the local modulus of continuity of F at x 0 is larger than h → |h| α | log 2 (h)| 2α .
Remark 1. Items (ii) and (iii) above provide us with a tight window for the optimal almost everywhere modulus of continuity θ F of F , i.e.

|h| α | log 2 (h)| 2α ≤ θ F (h) ≤ |h| α | log 2 (h)| 2+α .
The investigation of a sharper estimate for this modulus of continuity is certainly of interest. For instance, S. Jaffard was able to obtain a precise characterization in the case of lacunary wavelet series, see Theorem 2.2 of [START_REF] Jaffard | On lacunary wavelet series[END_REF]. The paper is organized as follows. Preliminary results are given in Sections 3 and 4. A key point will be to estimate for j ∈ N, the maximal number of integers

n ∈ N * satisfying 2 j ≤ B 1 η n < 2 j+1 , such that the support of ψ n contains a given point x ∈ [0, 1] (a bound uniform in x ∈ [0, 1] is obtained).
More specifically, we will focus on the so-called "isolated" pulses ψ n , i.e. those pulses whose support intersect only a few number of supports of other pulses with comparable support size. These random covering questions are dealt with in Section 4. This is key to obtain lower and upper estimates for the pointwise Hölder exponents of F at all points and to get Theorem 2.1. More precisely, in Section 5, item (i) of Theorem 2.2 is proved, and a uniform lower bound for all the pointwise Hölder exponents of F is obtained. In Sections 6 and Section 7, we relate the approximation rate of a point x ∈ [0, 1] by some family of random balls to the pointwise regularity of F . This allows us to derive the almost sure multifractal spectrum of F in Section 8. In Section 9, we explain how to get the almost everywhere modulus of continuity for F (items (ii) and (iii) of Theorem 2.2). Finally, Section 10 proposes some research perspectives.

Preliminary results

Preliminary results are exposed, some of which can be found in standard books [START_REF] Bertoin | Lévy Processes[END_REF][START_REF] Breiman | Probability. SIAM[END_REF].

For j ∈ N, define

A 0 = {n ∈ N * : 0 ≤ B 1 η n ≤ 1}, A j = {n ∈ N * : 2 j-1 < B 1 η n ≤ 2 j } when j > 0, (6) 
N j = Card(A j ).
From its definition, each N j is a Poisson random variable with parameter 2 ηj -2 η(j-1) . Lemma 3.1. Almost surely, there exist for j large enough,

(7) 2 ηj(1-εj ) ≤ N j ≤ 2 ηj(1+εj ) with ε j = log 2 (j) ηj .
Proof. Introduce the counting random function

(M t ) t∈R * + of the point process (B n ) N * as M t = sup{n ∈ N * : B n ≤ t} = n∈N * 1 Bn≤t .
For all 0 ≤ s < t, M t -M s is a Poisson variable with parameter (t -s). Noting that N j = M 2 ηj -M 2 η(j-1) , the random variable N j has a Poisson distribution of parameter a2 η(j-1) where a = 2 η -1. By the Bienaymé-Tchebychev inequality, since E[N j ] = a2 η(j-1) , one has ( 8)

P(|N j -a2 η(j-1) | ≥ j2 η 2 (j-1) ) ≤ a2 η(j-1) j 2 2 η(j-1) ≤ a j 2 .
By the Borel-Cantelli lemma, a.s. for j large enough, |N j -a2 η(j-1) | ≤ j2 η 2 (j-1) . In particular, for every α > 0 and j large enough, j -α 2 jη ≤ N j ≤ j α 2 jη . This implies [START_REF] Barral | Random sparse sampling in a Gibbs weighted tree[END_REF].

From [START_REF] Barral | A localized Jarnik-Besicovich theorem[END_REF], for every α > 0, there exists K > 0 such that for every j,

(9) P(N j / ∈ [2 ηj(1-αεj ) , 2 ηj(1+αεj ) ]) ≤ K j 2 .
Observe that (9) indeed holds for every j with a suitable choice for K. This will be used later. Bounds for the random variables B n and C n are deduced from the previous results.

Lemma 3.2. Almost surely, for all j ∈ N large enough and n ∈ A j ,

2 ηj(1-εj ) ≤ B n , C n ≤ 2 ηj(1+εj ) . ( 10 
)
Proof. It is standard (from the law of large numbers for instance) that almost surely, for every n ∈ N * large enough

n 2 ≤ B n ≤ 2n and n 2 ≤ C n ≤ 2n. ( 11 
)
Let J ∈ N be large enough so that (7) holds for j ≥ J. Call A = J j =0 N j . Let j ≥ J + 1, and n ∈ A j . By definition, one has

j-1 j =0 N j ≤ n ≤ j j =0 N j .
We apply by [START_REF] Barral | A localized Jarnik-Besicovich theorem[END_REF] with α = 1/2. On one side,

j-1 j =0 N j ≥ N j-1 ≥ 2 η(j-1)(1-αεj-1) ≥ K 1 2 ηj(1-αεj ) ≥ 2 ηj(1-εj ) .
On the other side, since jε j is increasing with j, when j becomes large one has

j j =0 N j ≤ A + j j =J+1 2 ηj (1+αε j ) ≤ A + 2 ηjεj j j =J+1 2 ηj ≤ K 2 2 ηj(1+αεj ) ,
since A is finite. The last term is less than 2 ηj(1+εj ) , so combining this with [START_REF] Beresnevitch | A Mass Transference Principle and the Duffin-Schaeffer Conjecture for Hausdorff Measures[END_REF] gives [START_REF] Abid | Existence and Hölder regularity of pulse functions[END_REF].

Finally, for all j ∈ N and n ∈ A j , additional information on the number of pulses ψ n for n ∈ A j (see ( 4)) whose support contains a given x ∈ [0, 1] is needed. So, for x ∈ [0, 1], r > 0 and n ∈ N * , set

T n (x, r) = 1 if B(X n , B -1 η n ) B(x, r) = ∅, 0 otherwise.
Next Lemma describes the number of overlaps between the balls B(X n , B

-1 η n ) for n ∈ A j .
It is an improvement of some properties proved in [START_REF] Demichel | Analyse fractale d'une famille de fonctions aléatoire : les fonctions de bosses[END_REF].

Lemma 3.3. Almost surely, there exists K > 0 such that for every x ∈ [0, 1], for every J, j ∈ N,

n∈Aj T n (x, 2 -ηJ ) ≤ Kj 2 max(1, 2 η(j-J) ). ( 12 
)
Proof. We first work on the dyadic grid. Let j ∈ N and j η = ηj . Observe that

[0, 1] = 2 jη -1 k=0 I jη,k , where I jη,k = [k2 -jη , (k + 1)2 -jη ]. For k ∈ {0, 1, ..., 2 jη -1}, and set L j,k = Card n ∈ A j : X n ∈ I jη,k ± 2 -jη+1 . ( 13 
)
Let us estimate p j = P(∃k ∈ {0, 1, ..., 2 jη -1} : L j,k > j 2 ). Using Bayes'formula,

p j = P(∃k ∈ {0, 1, ..., 2 jη -1}, L j,k > j 2 |N j ∈ [2 ηj(1-εj ) , 2 ηj(1+εj ) ]) ×P(N j ∈ [2 ηj(1-εj ) , 2 ηj(1+εj ) ]) + P(∃k ∈ {0, 1, ..., 2 jη -1}, L j,k > j 2 |N j / ∈ [2 ηj(1-εj ) , 2 ηj(1+εj ) ]) ×P(N j / ∈ [2 ηj(1-εj ) , 2 ηj(1+εj ) ]).
Applying [START_REF] Bayart | Multifractal spectra of typical and prevalent measures[END_REF], there exists K > 0 such that for every j,

(14) p j ≤ N ∈{ 2 ηj(1-ε j ) ,..., 2 ηj(1+ε j ) } p j,N P(N j = N ) + K j 2 ,
where for every integer N , p j,N = P(∃k ∈ {0, 1, ..., 2 jη -1} :

L j,k > j 2 |N j = N ).
Obviously, p j,N is increasing with N , hence p j ≤ p j,2 ηj(1+ε j ) + K j 2 . Conditioned on N j = n 0 := 2 ηj(1+εj ) , the law of each L j,k is binomial B(n 0 , p) with parameters n 0 and p = P(X n ∈ I jη,k ± 2 -jη+1 ).

Recall the argument by Demichel and Tricot used in Lemma 2.1 of [Demichel and Tricot(2006)]: For Y ∼ B(n 0 , p), then for every m ≥ 1,

P(Y > m) ≤ (n 0 p) m m! .
In particular, in our case, since p ≤ 3 • 2 -jη ≤ 6 • 2 -ηj , one has

P(L j,k > j 2 |N j = n 0 ) ≤ (n 0 p) j 2 (j 2 )! ≤ (6 • 2 ηj(1+εj )-ηj ) j 2 (j 2 )! = (6 • j) j 2 (j 2 )! Hence, p j, 2 ηj(1+ε j ) ≤ 2 jη -1 k=0 (6 • j) j 2 (j 2 )! ≤ 2 jη (6 • j) j 2 (j 2 )! .
Recallng [START_REF] Buczolich | Hölder spectrum of typical monotone continuous functions[END_REF], one concludes that

p j ≤ 2 jη (6 • j) j 2 (j 2 )! + K j 2
which is the general term of a convergent series.

Borel-Cantelli lemma gives that almost surely, for all j ∈ N large enough and for every k ∈ {0, 1, .., 2 jη -1}, L j,k ≤ j 2 . So, almost surely, there exists K > 0 such that for every j ≥ 1, for every k ∈ {0, 1, ..,

2 jη -1}, L j,k ≤ Kj 2 .
To conclude now, fix an integer J, x ∈ [0, 1] and 2 -J-1 ≤ r ≤ 2 -J . Two cases are distinguished:

• When j ≤ J: calling again j η = jη , the point x belongs to a unique interval I jη,kx (for some unique integer k x ). When n ∈ A j , observe that

T n (x, 2 -ηJ ) = 1 if and only if |X n -x| ≤ 2 -ηJ + B -1/η n ≤ 2 -ηJ + 2 -j
. This may occur only when

X n ∈ I jη,kx ± (2 -ηJ + 2 -j ) ⊂ I jη,kx ± 2 • 2 -jη , since j ≤ J.
From the consideration above, there are at most Kj 2 points X n , n ∈ A j , such that T n (x, 2 -ηJ ) = 1, hence [START_REF] Bertoin | Lévy Processes[END_REF].

• When j > J: As above, when n ∈ A j , T n (x, 2 -ηJ ) = 1 may occur only if |X n -x| ≤ 2 -ηJ + B -1/η n ≤ 2 -ηJ + 2 -j ≤ 2 -ηJ +1 . The interval [x -2 -ηJ +1 , x + 2 -ηJ +1
] is covered by at most 2 η(j-J)+3 intervals I jη ,k , and each of these intervals contain at most Kj 2 points X n . So, T n (x, 2 -ηJ ) = 1 for at most Kj 2 2 η(j-J)+3 2 integers n ∈ A j . Hence the result [START_REF] Bertoin | Lévy Processes[END_REF].

Observe that the degenerate case J = +∞ also holds in this case, i.e. almost surely, there exists K > 0 such that for every x ∈ [0, 1], for every j ∈ N, one has

n∈Aj T n (x) = n∈Aj T n (x, 0) ≤ Kj 2 . (15)

Distribution of isolated pulses

There may be several pulses ψ n with n ∈ A j whose support intersect each other, creating unfortunate irregularity compensation phenomena and making the estimation of local increments of the process F difficult. In order to circumvent this issue, the knowledge on the distribution of the ψ n 's shall be improved.

For this, fix γ ∈ [1, 1/η] and p 0 ∈ N so large that ( 16)

p 0 > 3 + 3α 1 -αη .
Let us introduce for any j ∈ N the sets

A j = γj j = (1-pηεj )j A j and N j = Card( A j ) (17) 
I j = {n ∈ A j : ∀m ∈ A j , n = m, B(X n , B -1 η n ) ∩ B(X m , B -1 η m ) = ∅} (18)
The elements of I j are integers n ∈ A j such that the support of ψ n does not intersect any support of ψ m for m ∈ A j with m = n. The distribution of the isolated points {X n } n∈Ij is further investigated. Indeed, as said above, such information is key to obtain upper and lower bounds for the Hölder exponent of F at any point x (see Sections 6 and 7). To describe the distribution of {X n } n∈Ij , consider the two limsup sets

G δ = lim sup j→+∞ n∈Aj B(X n , B -δ n ) (19) G δ = lim sup j→+∞ n∈Ij B(X n , B -δ(1-εj ) n
), where ε j = log 2 (16j log 2 j)/(ηj). [START_REF] Demichel | Analysis of the Fractal Sum of Pulses[END_REF] Remark 3. Note that as soon as δ > δ , G δ ⊂ G δ and G δ ⊂ G δ .

In the next sections, it is proved that G δ contains points whose pointwise Hölder exponent of F is lower-bounded by α/δ and G δ points whose pointwise Hölder exponent of F is upper-bounded by α/δ. The idea is that on the support of an isolated pulse, the process F has large local oscillations, thus forming points around which F possesses a low regularity.

It is a classical result (see [START_REF] Barral | A pure jump Markov process with a random singularity spectrum[END_REF][START_REF] Jaffard | On lacunary wavelet series[END_REF]) that almost surely,

[0, 1] = lim sup j→+∞ n∈Aj B(X n , B -(1-εj ) n ). (21) 
Hence, almost surely, every x ∈ [0, 1] is infinitely many times at distance less than

B -η(1-εj ) n
from a point X n . A more subtle covering theorem is needed, using only isolated points (X n ) n∈Ij (instead of (X n ) n∈Aj ). Proof. For j ∈ N, define the following set

D j = {[8k2 -ηj , (8k + 1)2 -ηj ] : 0 ≤ 8k < 2 ηj -1}. Obviously, Card(D j ) ∼ 2 ηj /8.
For all V ∈ D j (necessarily, V ⊂ [0, 1]), consider the following event:

A j (V ) (22) =    ∃ n ∈ A j such that X n ∈ V and B(X n , 2B -1-γ n ) m∈ Aj {X m } = {X n }    Lemma 4.2. If A j (V ) is realized, then a point X n given by (22) is isolated in the sense of Definition 4.1. Proof. When A j (V ) is realized, the point X n is such that for every m ∈ A j , X m / ∈ B(X n , 2B -1-γ n ).
Further, recall that 2 (j-1)η ≤ B n ≤ 2 -jη , and that B -1/η n < B -1-γ n by our choice for γ. In addition, observe that when m ∈ A j for j sufficiently large,

B -1/η m ≤ 2 -( (1-pηεj )j -1)/η ≤ j pη 2 -j/η+1/η ≤ B -1-γ n ,
again due to our choice for γ.

What precedes proves that B(X n , B

-1/η n ) ∩ B(X n , B -1/η n ) = ∅, hence X n is isolated.
Our goal is now to prove that these events A j (V ) are realized very frequently. The restrictions of the point Poisson process

{(X n , B n } n∈N on V × [1, +∞], or equivalently of {(X n , B -1 η n )} n∈N on V × [0, 1]
, on the dyadic intervals V ∈ D j , are independent. Moreover, the intervals in D j being pairwise distant from at least 2 1-ηj , and since

B -1-γ n ≤ B -1 n ≤ 2 1-ηj , two balls B(X n , 2B -1-γ n ) with X n ∈ V and B(X m , B -1-γ m
) with X m ∈ V = V (with n, m ∈ A j ) do not intersect. As a conclusion, the events A j (V ) for V ∈ D j are independent.

We introduce the set of (random) intervals

Q j = {V ∈ D j : A j (V ) is true }. Let V ∈ D j with V ⊂ [0, 1]
, and consider the random variable T j (V ) = 1 Aj (V ) .

From the above considerations, the random variables (T j (V )) V ∈Dj are i.i.d. random Bernoulli variables with common parameter p j (1

+ γ) = P(A j (V ) is true). Since Card(Q j ) = V ∈Dj T j (V ), V ∈Dj T j (V ) ∼ B(Card(D j ), p j (1 + γ))
, a binomial law with parameters Card(D j ) and p j (1 + γ).

The parameter is denoted p j (1 + γ) because, the law of the random variables X n and B n being given, it depends only on γ and j. To go further, we call for the following lemma that is proved in [START_REF] Barral | A pure jump Markov process with a random singularity spectrum[END_REF], Lemma 28 (see also [START_REF] Barral | A localized Jarnik-Besicovich theorem[END_REF]).

Lemma 4.3. There exists a continuous function

k : (1, +∞) →]0, 1[ such that for any j ∈ N * , p j (δ) ≥ k(δ) > 0.
Let (j p ) p∈N * be the increasing sequence of integers defined iteratively by j 1 = 1 + pηε 1 and j p+1 = 2(1/η + 1)j p + 1 . By construction, A jp ∩ A jp+1 = ∅.

Two intervals V , V ∈ D j are called successive when writing V = [8k2 -ηj , (8k+ 1)2 -ηj ], then either V = [8(k + 1)2 -ηj , (8(2 + γ) + 1)2 -ηj ] or V = [8(k - 1)2 -ηj , 8k2 -ηj ].
Next lemma shows that it is highly likely that amongst any set of j p log j p successive intervals in D j , at least one of them, say V , satisfies A j (V ). Lemma 4.4. For all p ∈ N, define the events E p by

E p = {for all (V 1 , ..., V jp log jp ) successive intervals of D jp ∃k ∈ {1, ..., j p log j p } such that A jp (V k ) is true}, Then P(lim sup p→+∞ E p ) = 1.
Proof. It is easily checked that the {E p } p∈N are mutually independent by our choice for (j p ) p≥1 . There is a constant K > 0 such that

P(E c p ) ≤ Card(Dj n ) i=1 jn log jn k=1 P(A jn (V k ) is false) ≤ K2 ηjp (1 -p j (1 + γ)) jp log jp ≤ K2 ηjp (1 -k(1 + γ)) jp log jp .
By construction, j p > > p and 0 < 1 -k(1 + γ) < 1. This implies that for p large enough, there exists K > 0 such that P(E c p ) ≤ K e -p , and so P(E p ) ≥ 1 -K e -p . In particular, p∈N P(E p ) = +∞, and Borel-Cantelli's lemma yields the result.

Let p be such that E p is realized (this happens for an infinite number of p's). Soit V ∈ D jp such that A j (V ) holds true. Hence V contains an isolated point, by Lemma 4.2.

From the E p 's and Lemma 4.4, it follows that amongst any j p log j p consecutive intervals in D jp there is at least one interval that contains an isolated point. Consequently, n∈Ij p B(X n , 8j p log j p 2 -ηjp ) forms a covering of [0, 1]. Since this occurs for an infinite number of integers j p , and recalling [START_REF] Demichel | Analysis of the Fractal Sum of Pulses[END_REF] and the definition of ε j , we conclude that almost surely,

[0, 1] = lim sup j→+∞ n∈Ij B(X n , 8j log j2 -ηj ) ⊂ lim sup j→+∞ n∈Ij B(X n , B -(1-εj ) n ) = G 1 ,
since B n ≥ 2 (jp-1)/η when n ∈ I jp . Hence the result.

Uniform regularity

In this section, the uniform Hölder regularity of F is investigated. Recall that α ∈]0, 1[ and ψ is Lipschitz. An important tool for the following proofs is the wavelet transform. It is known since Jaffard's works that wavelets provide a convenient method to analyse pointwise regularity of functions. The continuous wavelet transform associated with φ of a function f ∈ L 2 (R) is defined for every couple (s, t) ∈ R * + × R by

(23) W f (s, t) = 1 √ s R f (x)φ s,t (x)dx where φ s,t (x) = φ x -t s .
Recall here the theorem of Jaffard [START_REF] Jaffard | Exposants de Hölder en des points donnés et coefficients d'ondelettes[END_REF] and Jaffard-Meyer [START_REF] Jaffard | Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions[END_REF] relating the decay rate of continuous wavelets and uniform regularity for a function f .

Theorem 5.1. Let H ∈ R * + , f ∈ L ∞ loc (R)
, and ψ be sufficiently regular (if α ∈]0, 1[ then ψ is a Lipschitz function, otherwise ψ ∈ C α +1 (R)). Then, the mapping x → |x| H | log |x|| β is a uniform modulus of continuity for f if and only if there exists a constant K > 0 such that

∀(s, t) ∈ R * + × R, |W f (s, t)| ≤ Ks H+ 1 2 | log |s|| β .
Next proposition deals with the uniform regularity of F .

Proposition 5.2. Almost surely, for α ∈ R * + \N, η ∈ R * + , αη < 1 and ψ sufficiently regular as in Theorem 5.1. Almost surely, there exists K > 0 such that for any

(s, t) ∈ [0, 1] * × R |W F (s, t)| ≤ Ks αη+ 1 2 | log 2 (s)| 2+α .
Therefore, item (i) of Theorem 2.2 holds true.

Proof. Let (s, t) ∈ R * + × R. Note that the wavelet transform W F of F can be expanded in

W F (s, t) = 1 √ s R F (x)φ s,t (x)dx = +∞ n=1 C -α n d n (s, t) with (24) d n (s, t) = 1 √ s R ψ n (x)φ s,t (x)dx.
A quick computation allows to bound by above |d n | (see Proposition 2.2.1 [START_REF] Demichel | Analyse fractale d'une famille de fonctions aléatoire : les fonctions de bosses[END_REF]).

Lemma 5.3. There exists K > 0 such that

(25) ∀(s, t) ∈ [0, 1] × R, |d n (s, t)| ≤ Ks 1 2 min{sB 1 η n , s -1 B -1 η n }T n (t, s).
Fix t ∈ R and 0 < s < 1. there exists a unique J ∈ N such that 2 -ηJ+1 ≤ s < 2 -ηJ .

When j ≤ ηJ and n ∈ A j , one has min{sB

1 η n , s -1 B -1 η n } = sB 1 η
n ≤ s2 j . Also, by Lemma 3.3, n∈Aj T n (t, 2 -ηJ ) ≤ Kj 2 . So, by Lemma 5.3 and ( 10), there exists a constant K 1 > 0 (whose value can change from line to line, but does not depend on s, t, j or J) such that ηJ j=0 n∈Aj

C -α n |d n (s, t)| ≤ K 1 s 1 2 ηJ j=0 2 -αη(1-εj )j s2 j n∈Aj T n (t, s) ≤ K 1 s 1 2 ηJ j=0 2 -αη(1-εj )j s2 j n∈Aj T n (t, 2 -ηJ ) ≤ K 1 s 3 2 ηJ j=0 j 2+α 2 (1-αη)j ≤ K s 3 2 (ηJ) 2+α 2 (1-αη)ηJ ≤ K 1 s αη+ 1 2 | log 2 (s)| 2+α . When ηJ + 1 ≤ j ≤ J, if n ∈ A j then min{sB 1 η n , s -1 B -1 η n } = s -1 B -1 η n
≤ s -1 2 -j and Lemma 3.3 still gives n∈Aj T n (t, 2 -ηJ ) ≤ Kj 2 . Hence, there exists K 2 > 0 such that

J j= ηJ +1 n∈Aj C -α n |d n (s, t)| ≤ K 2 s 1 2 J j=ηJ+1 2 -αη(1-εj )j s -1 2 -j n∈Aj T n (t, 2 -ηJ ) ≤ K 2 s -1 2 J j=ηJ+1 j 2+α 2 -(1+αη)j ≤ K 2 s -1 2 J 2+α 2 -(1+αη)ηJ ≤ K 2 s αη+ 1 2 | log 2 (s)| 2+α .
Finally, when j ≥ J, min{sB

1 η n , s -1 B -1
η n } ≤ s -1 2 -j and Lemma 3.3 yields this time n∈Aj T n (t, 2 -ηJ ) ≤ Kj 2 2 η(j-J) . Hence, there exists

K 3 > 0 such that +∞ j=J n∈Aj C -α n |d n (s, t)| ≤ K 3 s 1 2 +∞ j=J 2 -αη(1-εj )j s -1 2 -j n∈Aj T n (t, 2 -ηJ ) ≤ K 3 s -1 2 +∞ j=J j 2+α 2 -(1+αη)j 2 η(j-J) ≤ K 3 s -1 2 J 2+α 2 -(1+αη)J ≤ K 3 s αη+ 1 2 | log 2 (s)| 2+α .
The combination of the previous inequalities yields that for some constant K > 0,

|W F (s, t)| ≤ Ks αη+ 1 2 | log 2 (s)| 2+α .
Theorem 5.1 allows to conclude the proof of Proposition 5.2.

Lower-bound for the Hölder exponent of F via the study of G δ

When δ ∈ [1, 1 η ], next proposition yields a lower bound for the pointwise Hölder exponent of F at x 0 when x 0 / ∈ G δ .

Proposition 6.1. Almost surely, for every δ ∈ (1, 1 η ), for every x 0 / ∈ G δ , there exists K x0 > 0 such that for any x close to x 0 ,

|F (x) -F (x 0 )| ≤ K x0 | log 2 |x -x 0 | | 2+α |x -x 0 | α δ . Therefore, h F (x 0 ) ≥ α δ . Proof. Let x 0 / ∈ G δ . For x with |x -x 0 | ≤ 1, there exists a unique j 0 ∈ N such that 2 -η(j0+1) ≤ |x -x 0 | < 2 -ηj0
and call j 1 the largest positive integer so that |x -

x 0 | + 2 -j1 ≤ 2 -δηj1
. The integer j 1 exists since 2 -jηδj1 tends to 0 when j 1 → +∞.

Observe that when j 0 becomes large, |j 1 -j 0 /δ| → 0. So it is assumed that j 0 is so large that j 0 /δ ≤ j 1 ≤ j 0 /δ + 2, so that 2 -j0η ∼ 2 -j1δη ∼ |x -x 0 |. Observe also that this explains the fact that δ must be less or equal than 1/η.

By definition of G δ , since x 0 / ∈ G δ , there exists at most a finite number, say N x0 , of balls {B(X n k , B -δ n k )} 1≤k≤Nx 0 that contain x 0 . Write j 0 for the smallest integer j such that Nx 0 k=1 {n k } ∈ j0 j=1 A j . So it may be assumed that x is so close to x 0 that for every j ≥ j 1 /2δ, jε j ≥ j 0 +1 and for every n ∈ A j with j

≥ j 1 , |x 0 -X n | > B -δ n .
Recalling that the support of ψ n is the ball B(X n , B -1/η n

) and that δ ≤ 1/η, this implies that x 0 belongs to the support of at most N pulses ψ n with n ∈ A j and j < j 1 , and does not belong to any support of ψ n , for n ∈ A j and j ≥ j 1 .

Also, when j ≤ j 1 and n ∈ A j , by definition of j 1 , one has |x-

x 0 |+B -1/η n ≤ B -δ n . Hence x ∈ B(X n , B -1/η n ) would imply that x 0 ∈ B(X n , B -δ n )
, which is possible for only N balls. Consequently, x and x 0 both belong to at most N supports of pulses ψ n with n ∈ A j and j ≤ j 1 .

Let us write

|F (x) -F (x 0 )| ≤ S 1 + S 2 + S 3 with F j (x) = n∈Aj C -α n ψ n (x)
and

S 1 = j1-1 j=0 F j (x) -F j (x 0 ) , S 2 = +∞ j=j1 |F j (x 0 )| and S 3 = +∞ j=j1 |F j (x)|.
We first give an upper-bound for S 1 . By the remarks above, S 1 contains at most N x0 non-zero terms of the form C -α ni (ψ ni (x) -ψ ni (x 0 )) (for integers n 1 , ..., n Nx 0 ), and for each of them, since ψ is Lipschitz with some constant K > 0, one has

C -α ni ψ B 1 η ni (x -X ni ) -ψ B 1 η ni (x 0 -X ni ) ≤ C -α ni B 1 η ni K|x -x 0 |.
By ( 6), [START_REF] Abid | Existence and Hölder regularity of pulse functions[END_REF] and the definition of j 0 , if n i ∈ A j , then one has for some other constant K > 0 that

C -α ni B 1 η ni ≤ K2 -αηj(1-εj ) 2 j ≤ K j α 0 2 j0(1-αη) ≤ Kj α 1 2 εj 1 j1 = Kj α+1/η 1 . Using that j 1 ∼ δj 0 ∼ δ η | log 2 |x -x 0 ||, this finally gives for some constant K x0 depending on x 0 S 1 ≤ KN x0 |x -x 0 |j α+1/η 1 ≤ K x0 |x -x 0 | • | log 2 |x -x 0 | | α+1/η ≤ |x -x 0 | α | log 2 |x -x 0 | | 3+α . ( 26 
)
Observe that the last inequality holds when j 1 tends to +∞, and is quite crude.

By construction, ψ n (x 0 ) = 0 for every n ∈ A j with j ≥ j 1 , so S 2 = 0. Finally, for S 3 , one writes that |ψ n (x)| ≤ ||ψ|| ∞ , and then

S 3 = +∞ j=j1 |F j (x)| ≤ K||ψ|| ∞ +∞ j=j1 n∈Aj C -α n 1 1 ψn(x) =0 (27) ≤ K||ψ|| ∞ +∞ j=j1 j α 2 -αηj n∈Aj T n (x, 0) ≤ K||ψ|| ∞ +∞ j=j1 j α 2 -αηj j 2 ≤ Kj 2+α 1 2 -αηj1 ≤ Kj 2+α 0 2 -j0 αη δ ≤ K| log 2 |x -x 0 | | 2+α |x -y| α δ . ( 28 
)
The result follows from ( 26) and [START_REF] Heurteaux | Weierstrass functions with random phases Trans[END_REF], and by letting ε tend to zero.

Upper-bound for the Hölder exponent of F via the sets G δ

We now find an upper bound for the pointwise Hölder exponent of F at every x 0 ∈ G δ , using a wavelet method. Let us recall the theorem of Jaffard [START_REF] Jaffard | Exposants de Hölder en des points donnés et coefficients d'ondelettes[END_REF] relating continuous wavelet transforms and pointwise regularity.

Theorem 7.1. Let f ∈ L ∞ loc (R), x 0 ∈ R and H > 0. If f ∈ C H (x 0 )
, then there exists K > 0 and a neighborhood U of (0 + , x 0 ) such that

∀(s, t) ∈ U , |W f (s, t)| ≤ Ks 1 2 (s + |x 0 -t|) H .
This theorem is key to prove next proposition. Proposition 7.2. Almost surely, for all δ ∈ 1, 1 η and

x 0 ∈ G δ , h F (x 0 ) ≤ α δ .
Proof. First, without loss of generality, assume in addition that the function φ used to compute the wavelet transform belongs to C 1 (R), is exactly supported by the interval [-1, 1], and that (29)

1 -1 φ(u)ψ(u)du = 0.
The existence of such a φ is a trivial exercise.

Fix x 0 ∈ G δ . There exist two increasing sequences of integers (n k ) k∈N and

(j k ) k∈N such that n k ∈ I j k and x 0 ∈ B(X n k , B -δ(1-εj k ) n k ). Let k ∈ N * with n k ∈ I j k . The values of continuous wavelet transforms W F (B -1 η n k , X n k ), are now estimated. Setting J k = (1 -p 0 ηε j k )j k and J k = (1 + γ)j k , one writes W F (B -1 η n k , X n k ) = S 1 + S 2 + S 3 with S 1 = J k -1 j=0 n∈Aj C -α n d n (B -1 η n k , X n k ), S 2 = J k j=J k n∈Aj C -α n d n (B -1 η n k , X n k )
and

S 3 = +∞ j= J k +1 n∈Aj C -α n d n (B -1 η n k , X n k ).
Let us first find a lower bound for S 2 . Recalling the definition [START_REF] Cioczek-Georges | Alternative micropulses and fractional brownian motion[END_REF] of

I j k , n k is the unique integer in A j k such that x 0 ∈ B(X n k , B -1 η n k ). Hence, recalling (24), d n (B -1 η n k , X n k ) = 0 when n = n k (
since the support of ψ n and φ n k do not intersect) and

S 2 = C -α n k d n k (B -1 η n k , X n k ).
An integration by part and a change of variables give

d n k (B -1 η n k , X n k ) = B -1/(2η) n k 1 -1 ψ(u)φ(u)du.
Condition [START_REF] Hunt | The Hausdorff dimension of graphs of Weierstrass functions[END_REF] implies that for some fixed constant K 2 > 0 (depending on ψ and φ only), for every integer k,

(30) |S 2 | ≥ K 2 C -α n k B -1 2η n k ≥ K 2 B -1 2η n k 2 -αη(1+εj k )j k ≥ K 2 B -1 2η -α(1+εj k ) n k .
where [START_REF] Cioczek-Georges | Alternative micropulses and fractional brownian motion[END_REF] and [START_REF] Abid | Existence and Hölder regularity of pulse functions[END_REF] have been used.

Next, let us estimate S 1 . By ( 25), ( 10) and ( 6), one has

|S 1 | ≤ J k -1 j=0 n∈Aj C -α n |d n (B -1 η n k , X n k )| ≤ J k -1 j=0 n∈Aj C -α n B -1 2η n k min{B -1 η n k B 1 η n , B 1 η n k B -1 η n }T n (X n k , B -1 η n k ) ≤ J k -1 j=0 2 -αηj(1-εj ) B -1 2η n k min{B -1 η n k 2 j , B 1 η n k 2 -j-1 } n∈Aj T n (X n k , 2 -j k ). When j < (1 -ηε j k )j k , B -1 η n k ≤ 2 -j-1
, so the minimum above is less than 2B

-1 η n k 2 j . In addition, by [START_REF] Barral | Random sparse sampling in a Gibbs weighted tree[END_REF] one has n∈Aj T n (X n k , 2 -j k ) ≤ Kj 2 (this holds as long as j ≤ j k /η). Hence by [START_REF] Bertoin | Lévy Processes[END_REF], for some constant K 1 > 0 (that may change from one inequality to the next one),

|S 1 | ≤ K 1 J k -1 j=0 j 2+α 2 -αηj B -1 2η n k B -1 η n k 2 j ≤ K 1 B -3 2η n k J k -1 j=0 j 2+α 2 (1-αη)j ≤ K 1 B -3 2η n k j 2+α k 2 (1-αη)(1-p0ηεj k )j k . Since j k = 2 ηεj k j k and n k ∈ I j k , 2 j k ≤ B 1 η n k , so |S 1 | ≤ K 1 B -3 2η n k B (3+α)εj k n k B ( 1 η -α)(1-p0ηεj k ) n k ≤ K 1 B -1 2η -α-(p0-3-α-αηp0)εj k n k .
Our choice [START_REF] Cioczek-Georges | Stable fractal sums of pulses : the cylindrical case[END_REF] for p 0 ensures that p 0 -3 -α -αηp 0 > 2α, hence

|S 1 | ≤ K 1 B -1 2η -α(1+2εj k ) n k . (31) 
Finally, for S 3 , one writes by [START_REF] Gagne | D Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence pleinement développée[END_REF], [START_REF] Abid | Existence and Hölder regularity of pulse functions[END_REF] and [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF], and the same lines of computations as above, that for some K 3 > 0,

|S 3 | ≤ +∞ j= J k +1 n∈Aj C -α n |d n (B -1 η n k , X n k )| ≤ K 3 +∞ j= J k +1 2 -αηj(1-εj ) B -1 2η n k min{B -1 η n k 2 j , B 1 η n k 2 -(j+1) } n∈Aj T n (X n k , 2 -j k ).
When j ≥ J k = (1 + γ)j k , the above minimum is now reached at B 1 η n k 2 -j-1 . Then, still by and ( 7), the sum n∈Aj T n (X n k , 2 -j k ) is bounded above by Kj 2 when j ≤ j k /η, and by Kj 2 2 η(j-j k /η) when j > j k /η. Hence by [START_REF] Bertoin | Lévy Processes[END_REF], for some constant K 3 that may change from line to line but does not depend on k or any of the moving parameters,

|S 3 | ≤ K 3 j k /η j=(1+γ)j k j 2+α 2 -αηj B -1 2η n k B 1 η n k 2 -j (32) +K 3 +∞ j= j k /η +1 j 2+α 2 -αηj B -1 2η n k B 1 η n k 2 -j 2 η(j-j k /η) ≤ K 3 B 1 2η n k   j k /η j=(1+γ)j k j 2+α 2 -(1+αη)j + 2 -j k +∞ j= j k /η +1 j 2+α 2 (η-1-αη)j   .
The first sum above is bounded above by

j k /η j= (1+γ)j k j 2+α 2 -(1+αη)j ≤ K 3 j 2+α k 2 -(1+αη)(1+γ)j k
and the second one by

2 -j k +∞ j= j k /η +1 j 2+α 2 (η-1-αη)j ≤ K 3 2 -j k j 2+α k 2 (η-1-αη)j k /η = K 3 j 2+α k 2 -j k η (1+αη) . Since B 1 η n k ∼ 2 j k and j k = 2 j k ηεj k ∼ B εj k
n k and 1 + γ < 1/η, we get that

|S 3 | ≤ K 3 j 2+α k 2 -(1+αη)(1+γ)j k + K 3 j 2+α k 2 -j k η (1+αη) ≤ K 3 B - (1+αη)(1+γ) η +(2+α)εj k n k . Observe that (1+αη)(1+γ) η -(2 + α)ε j k > 1 2η + α(1 + 2ε j k ). So, ( 33 
) |S 3 | ≤ K 3 B -1 2η -α(1+2εj k ) n k
, this last inequality being very generous (S 3 is much smaller than the term on the right hand-side).

Combining [START_REF] Jaffard | Exposants de Hölder en des points donnés et coefficients d'ondelettes[END_REF], ( 31) and [START_REF] Jaffard | On lacunary wavelet series[END_REF], and the fact that B -εj k n k → 0 when k tends to infinity, one concludes that for every sufficiently large integers k,

(34) |W F (B -1 η n k , X n k )| ≥ KB -1 2η -α(1+εj k ) n k .
Assuming that f ∈ C α δ +ε (x 0 ), we would have by Theorem 7.1 that for some K > 0,

|W F (B -1 η n k , X n k )| ≤ K B -1 2η n k B -1 η n k + |x 0 -X n k | α δ +ε ≤ K B -1 2η n k B -1 η n k + B -δ(1-εj k ) n k α δ +ε ≤ K B -1 2η n k B -δ(1-εj k )( α δ +ε) n k since |x 0 -X n k | ≤ B -δ(1-εj k ) n k
. This contradicts [START_REF] Jaffard | Multifractal analysis of the Brjuno function[END_REF] since the sequences (ε j ) and ( ε j ) converge to 0 as j → +∞. Consequently, f / ∈ C α δ +ε (x 0 ) for every ε > 0, hence the result.

To conclude this part, we would like to emphasize that this analysis is quite sharp since the bounds obtained for S 1 , S 2 and S 3 are very tight (and the choice for p 0 is key). Only the fine study of isolated points made it possible to obtain this result.

Also, observe that the proof does not work any more when δ > 1/η, since in the last series of inequalities |W F (B

-1 η n k , X n k )|, the term B -1 η n k + B -δ(1-εj k ) n k
can not be bounded by above by

B -δ(1-εj k ) n k . 8. Multifractal spectrum of F
Recall that the study of the regularity of F is restricted to the interval [0, 1]. We start by the range of possible exponents for F . Lemma 8.1. Almost surely, for every x ∈ [0, 1], αη ≤ h F (x) ≤ α.

Proof. First, Proposition 5.2 yields that almost surely, for every x ∈ [0, 1], h F (x) ≥ αη.

Then, Theorem 4.1 gives [0, 1] = G 1 , and Proposition 7.2 ensures that every x ∈ G 1 satisfies h F (x) ≤ α.

Gathering the results proved in the previous sections (Propositions 6.1 and 7.2, and Remark 3), one also sees that almost surely:

• for all H ∈ [αη, α), (35) 
G α/H \ δ> α H G δ ⊂ E F (H). Indeed, when x ∈ G α H , h F (x) ≤ α α H = H and when δ > α H and x / ∈ G δ , h F (x) ≥ α δ . • for all H ∈ [αη, α], (36) 
E F (H) ⊂ δ< α H G δ .
In order to obtain the multifractal spectrum of F , a preliminary step consists in estimating the Hausdorff dimension and measures of the sets G δ and G δ .

For h > 0, H h , H h ξ stand respectively for the h-Hausdorff measure in R and the α-Hausdorff pre-measure computed with coverings of sets of diameter less than ξ > 0.

Proposition 8.2. With probability one, for every

δ ∈ [1, 1/η], one has dim H G δ ≤ 1/δ and H 1/δ (G δ ) = +∞.
Proof. The upper bound dim H G δ ≤ 1/δ follows by using as coverings of G δ the family {B(X n , B -δ n )} j≥J,n∈Aj , for J ≥ 1. For ε > 0,

H 1/δ+ε 2 -ηJ (G δ ) ≤ j≥J n∈Aj |B -δ n | 1/δ+ε .
By [START_REF] Barral | Random sparse sampling in a Gibbs weighted tree[END_REF], and using that B n ≤ 2 jη when n ∈ A j , one gets

H 1/δ+ε 2 -ηJ (G δ ) ≤ j≥J 2 ηj(1+εj ) 2 -jη(1+ε/δ) ,
which is the rest of a convergent series. Hence H 1/δ+ε (G δ ) = 0 and dim H G δ ≤ 1/δ + ε.

The fact that H 1/δ (G δ ) = +∞ (giving the lower bound dim H G δ ≥ 1/δ) is more delicate. The following mass transference principle [START_REF] Beresnevitch | A Mass Transference Principle and the Duffin-Schaeffer Conjecture for Hausdorff Measures[END_REF][START_REF] Dodson | Patterson measure and Ubiquity[END_REF] is useful. Theorem 8.3. Let (x n ) n∈N * be a real sequence in [0, 1] d (d ≥ 1) and (λ n ) n∈N * a decreasing sequence of positive real numbers. For all δ ≥ 1, set

L δ = lim sup n→+∞ B(x n , λ δ n ) = N ≥1 n≥N B(x n , λ δ n ) If the d-dimensional Lebesgue measure L(L 1 ) of L 1 equals 1, then for all δ > 1, H d δ (L δ ) = +∞ and dim H (L δ ) ≥ d δ . Theorem 4.1 gives that G 1 = [0, 1], almost In particular, L(G 1 ) = 1.
Applying the previous theorem to the (random) sequences x n = X n and λ n = B -(1-εj ) n when n ∈ A j yields the claim of Proposition 8.2.

We are now in position to conclude the proof of Theorem 2.1.

Proof. First, by Lemma 8.1, only H ∈ [αη, α] need to be considered.

Then, [START_REF] Jaffard | Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions[END_REF] yields that almost surely, d Remembering that B n k ∼ 2 ηj k , the formulas for ε j k and the fact that ε j k , and

|x 0 -X n k | ≤ B -(1-εj k ) n k
, one successively has (for large integers k)

B -εj k n k ∼ | log j k | -1 ≥ C| log |x 0 -X n k ||, B -εj k n k ∼ | log j k | -1 ≥ C| log |x 0 -X n k ||, B -1 n k ≥ C|x 0 -X n k || log |x 0 -X n k ||,
for some constant C > 0 that depends on η only. Hence,

|W F (B -1 η n k , X n k )| ≥ KB -1 2η -α(1+εj k ) n k ≥ KB -1 2η n k B -α n k | log |x 0 -X n k || α ≥ KCB -1 2η n k |x 0 -X n k | α | log |x 0 -X n k || 2α ≥ KC 2 B -1 2η n k (θ(|x 0 -X n k |) + θ(B -1 η n k )),
where θ(h) = |h| α | log |h|| 2α and where we used that B Consequently, G 1 has zero Lebesgue measure.

Then, a slight adaptation of the proof of Proposition 6.1 shows that almost surely, for every x 0 / ∈ G 1 , there exists K x0 > 0 such that for any x close to x 0 ,

|F (x) -F (x 0 )| ≤ K x0 |x -x 0 | α | log 2 |x -x 0 | | 3+α .
The modification consists in replacing δ by 1 + 3ε j , and adapting accordingly the computations.

The conclusion follows by considering the set G = G 1 \ G 1 . Indeed, since G 1 and G 1 respectively have full and zero Lebesgue measure, G has full Lebesgue measure. And the two arguments above show that almost surely, for every x 0 ∈ G, the modulus of continuity θ x0 of F at x 0 satisfies

|h| α | log |h|| 2α ≤ θ x0 (h) ≤ |h| α | log 2 |h| | 3+α ,
hence items (ii) and (iii) of Theorem 2.2.
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 342 Figure 3. Multifractal spectrum in the case α = 0.9 and η = 0.4

Definition 4 . 1 .
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[0, 1 ]FTheorem 9 . 1 .

 191 (H) ≤ dim H G δ , for every δ > α/H. Proposition 8.2 yields dim H G δ ≤ 1/δ, hence d [0,1] F (H) ≤ H/α. Finally, Proposition 8.2 gives simultaneously that H H/α (G α/H ) = +∞ and H H/α (G δ ) = 0 for every δ < α/H. So, H H/α (G α/H \ δ> α H G δ ) = +∞,and by (35), H H/α (E F (H)) = +∞. This gives dim H E F (H) ≥ H/α, and by the remarks above d [0,1] F (H) = H/α. When H = α, the same argument gives that L(E F (α) ∩ [0, 1]) = 1, i.e. E F (α) is of full Lebesgue measure in [0, 1]. 9. Almost-everywhere modulus of continuity Le us explain how to obtain from what precedes the almost-everywhere modulus of continuity for F , almost surely. By a Theorem by Jaffard-Meyer (Proposition 1.2 in [36]), the following (almost) equivalence holds true. Let f ∈ L ∞ loc (R), x 0 ∈ R and H > 0. If the function f has a local continuity of continuityθ at x 0 , then for some constant C > 0 (37) ∀(s, t) ∈ U , |W f (s, t)| ≤ Ks

1 2 1 η

 11 (θ(s) + θ(|x 0 -t|)). Conversely, if f ∈ C ε (R) for some ε > 0, and if (37) holds, then there exist constants η, C > 0 and a polynomial P such that settingj 0 = | log 2 |x -x 0 | , one has (38) ∀x such that |x -x 0 | ≤ η, |f (x) -P (x -x 0 )| ≤ C inf j≥j0 ((j -j 0 )θ(|x -x 0 |) + 2 -jε ).Observe that if θ(h) = |h| β | log |h|| γ with ε < β < 1, then the infimum at the right hand side of (38) is (roughly) reached at j = j 0 β/ε, and (38) reduces to|f (x) -P (x -x 0 )| ≤ C|x -x 0 | β | log |x -x 0 || 1+γ .Coming back to Proposition 7.2, let x 0 ∈ G 1 . At the end of the proof, recall the lower bound[START_REF] Jaffard | Multifractal analysis of the Brjuno function[END_REF] for the wavelet coefficient|W F (B n k , X n k )| ≥ KB -1 2η -α(1+εj k ) n k .

- 1 η

 1 n k < < |x 0 -X n k |.This shows that almost surely, for every x ∈ G 1 , the modulus of continuity is larger than|h| α | log |h|| 2α .Let us now introduce the setG 1 = lim sup j→+∞ n∈Aj B(X n , B -(1+3εj ) n ).Recalling[START_REF] Barral | Random sparse sampling in a Gibbs weighted tree[END_REF], almost surely,n∈Aj |B(X n , B -(1+2εj ) n )| ≤ 2 ηj(1+εj ) 2 -ηj(1+3εj ) = j -2 .

Perpectives

The case where α > 1 is a possible extension of our article.

It is also a natural question for applications to ask whether the sample paths of F satisfy a multifractal formalism.

It would be interesting to determine whether F possess chirps or oscillating singularities, i.e. locally behaves like

around some points x 0 . Chirps are a key notion in many domains -for instance, the existence of gravitational waves has been experimentally proved thanks to wavelet based-algorithms able to detect chirps (that are the signature of coalescent binary black holes) in signals extracted from the LIGO and VIRGO interferometers.

Finally, it is worth investigating the case where the series defining F does not converge uniformly, this may occur for some choices of the parameters α and η (recall that in the present paper, the uniform convergence follows from the sparse distribution of the pulses). In this situation, the relevant quantities to analyze are the p-exponents of F as defined in [START_REF] Jaffard | Torres p-exponent and p-leaders, Part I: Negative pointwise regularity[END_REF]: A function f belongs to T p α (x 0 ) (which generalizes the spaces C α (x 0 )) when there exist a polynomial P and a constant C > 0 such that for every sufficiently small h > 0, 1

Then the p-exponent is h p f (x 0 ) = sup{α ≥ 0 : f ∈ T p α (x 0 )}, and the multifractal analysis of the p-exponents of F is a challenging issue.
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