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MULTIFRACTAL ANALYSIS OF SUMS OF RANDOM PULSES

GUILLAUME SAES, STEPHANE SEURET

ABSTRACT. In this paper, we determine the almost sure multifractal spectrum
of a class of random functions constructed as sums of pulses with random di-
lations and translations. In addition, the continuity modulii of these functions
is investigated.

1. INTRODUCTION

Multifractal analysis aims at describing those functions or measures whose point-
wise regularity varies rapidly from one point to another. Such behaviors are com-
monly encountered in various mathematical fields, from harmonic and Fourier anal-
ysis (reference) to stochastic processes and dynamical systems [4, 5, 6, 30, 33, 34].
Multifractality is actually a typical property in many function spaces [9, 14, 15, 32].
Multifractal behaviors are also identified on real-data signals coming from turbu-
lence, image analysis, geophysics for instance [24, 25, 1]. To quantify such an erratic
behavior for a function f € L2 .(R), it is classically called for the notion of pointwise

loc
Holder exponent defined in the following way.

Definition 1.1. Let f € LS.(R), 29 € R and o > 0. A function f belongs to

C*(xo) when there exist a polynomial Py, of degree less than o] and K, € R
such that

Ir e R, Vo € B(zo,r), |f(x) = Ppy(z — x0)| < Kolx — 20|”.
The pointwise Holder exponent of f at a point xqy is defined by
hy(xo) =sup{a >0: fe C%xo)}.

In order to describe globally the pointwise behavior of a given function of a
process, let us introduce the following iso-Holder sets.

Definition 1.2. Let f € LS (R) and h > 0. The iso-Hélder set E¢(h) is

loc

Ei(h)={z €R: hy(xz)=h}.

The functions studied later in this paper have fractal, everywhere dense, iso-
Holder sets. It is therefore relevant to call for the Hausdorff dimension, denoted by
dimg, to distinguish them, leading to the notion of multifractal spectrum.

Definition 1.3. The multifractal spectrum of f € LS (R) on a Borel set A C R is
the mapping defined by

i [Re R U{—0)
"1 h I—)dimH(EhﬂA).
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By convention, dimg()) = —oco. The multifractal spectrum of a function or
a stochastic process f provides one with a global information on the geometric
distribution of the singularities of f.

In this article, we aim at computing the multifractal spectrum of a class of
stochastic processes consisting in sums of dilated-translated versions of a function
(referred to as a "pulse”) that can have an arbitrary form. The translation and
dilation parameters are random in our context. The present article hence follows a
longstanding research line consisting in studying the regularity properties of (irreg-
ular) stochastic processes that can be built by an additive construction, including
for instance additive Lévy processes, random sums and wavelet series, random tes-
selations, see [31, 38, 33, 26, 27] amongst many references.

Our model is particularly connected to other models previously introduced and
studied by many authors.

For instance, in [39] Lovejoy and Mandelbrot modeled rain fields by a 2-dimensio-
nal sum of random pulses constructed as follows. Consider a random Poisson mea-
sure N on F = R} x R% X R?, as well as a "father pulse” v : R — R, a €]0,2]
and 7 €]0,1]. Lovejoy and Mandelbrot built and studied the process M : R? — R
defined by

(1) M(z) = /(A )GE)\_"w(w%(x—T))N(d)\,dw,dr): S A (),

(A\w,T)eS

where S is the set of random points induced by the Poisson measure and ¢ 4 - () :=
w(w%(x — 7)) and n = 1.

In [17], Cioczeck-Georges and Mandelbrot showed that negatively correlated frac-
tional Brownian motions (0 < H < 1/2) can be obtained as a limit (in the sense
of distributions) of a sequence of processes defined as in (1) with ¢ a well-chosen
jump function, « €]0,2[ and n = 1. Later, in [18], the same authors proved that
any fractional Brownian motion with Hurst index H € (0,1) \ {1/2} is a limit of
a sequence of processes {M,,(z),z > 0},en defined as in (1) with ¢ a conical or
semi-conical function. Other versions with general pulses ¢ have been investigated
in [40].

In [19], Demichel studied a model in which only the position coefficients (X, )n>1
are random : the corresponding model is written

+oo
(2) Glx) = and(N (= Xp)), z€R

where (a,)nen and (A\,)nen+ are two deterministic positive sequences such that

> an, = 400 and (Ay)pen+ is decreasing to 0, and X,, ~ U([0,1]) is an i.i.d.
neEN*
sequence of random variables. The same example is developed in [21, 20] where

Demichel, Falconer and Tricot impose that a, = n™® with 0 < o < 1, A, = n™ 1,
and ¢ : R — R is an even, positive continuous function, decreasing on [0, 1], equal
to 0 on [1, +oo[ satisfying (0) = 1.

Calling ' the graph of the process G and dimpg I' its box-dimension, they showed
that as soon as there exists an interval I on which ) € C#(R) (the space of global
Hélder real functions of exponent H) and is C!-diffeomorphic on some interval, then
almost surely

(3) 2 —a <dimy(T'g) <dimp(Tq) < 2 —min{a, h}.
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FIGURE 1. Two sample paths obtained with different pulses and
parameters

See also [3] for the box dimension of I'g, or [42, 44] for a more systematic study
of graph dimensions. When « < h, almost surely dimy(T'g) = dimp(T'g) =2 — a.
In [10], Ben Abid gave alternative conditions for the convergence of such processes
G, also determining the uniform regularity of G, i.e. to which global Hélder space
CH(R) G may belong to, almost surely.

Our purpose is to study another, somehow richer, model of sums of random
pulses.

2. A MODEL WITH ADDITIONAL RANDOMNESS

The stochastic processes F' considered in this article are natural extensions of
the previous models, and fit in the general study of pointwise regularity properties
of rough sample paths of stochastic processes. As in the aforementioned works, we
obtain results regarding their existence and regularity properties. We go further by
providing a complete multifractal analysis of F' and by investigating various modulii
of continuity.

Fix a probability space (€2, F,P) on which all random variables and stochastic
processes are defined.

Let (C,)nen+ be a point Poisson process whose intensity is the Lebesgue measure
on R, and let S be another point Poisson process, independent with (Cy,)nen+,
whose intensity is the Lebesgue measure on R x [0, 1]. We write S = (B, Xy )nen-
where the sequence (B, )nen+ is increasing. By construction, the three sequences
of random variables (C,,), (By) and (X,,) are mutually independent.
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FIGURE 2. Sample path of F computed with 1000 dilated and
translated pulses

Definition 2.1. Let ¢ : R — R be a Lipschitz function with support equal to [—1,1],
a € (0,1) and n € (0,1). The (random) sum of pulses F' is defined by

00 1
(4) F(o) =Y Cr®ul(a), where t,(x) = (B (x — X,))

The parameter a will be interpreted as a regularity coefficient, and n as a lacu-
narity coefficient. Observe that the support of 1, is the ball B(X,, B;l/") (B(t,s)
stands for the ball with centre ¢, radius s).

The stochastic process F' possesses interesting properties on the interval [0, 1]
only, since X,, € [0,1]. However, this is not a restriction at all, since F' can easily
be extended to R as follows.

For every integer m, consider F,,, an independent copy of F' but shifted by m.

Then,
F .= Z F,
mEZ

enjoys the same pointwise regularity properties as F'. It is interesting to see that
this new process F has now stationary increments, and enlarges the quite narrow
class of stochastic processes with stationary increments whose multifractal analysis
is completely understood.

In [33], using for ¢ a smooth wavelet generating an orthonormal basis, S. Jaffard
studied the lacunary random wavelet series

W(x) = Z Z C; k277 p(z), = €R,

jENkeZ

where for all (j,k) € N x Z, 9;,(z) = ¥(27z — k) and the wavelet coefficients
Cj 1 are independent random variables wavelets whose law is a Bernoulli measure
with parameter 2777 (hence, depending on j only). The main difference between
the lacunary wavelet series and our model (motivating our work) is that not only
dilations (Bp)nen« but also the translations (X, )nen< are random in our case.
Hence our interest in F' (and in F) comes from the fact that it is not based on a
dyadic grid, hence providing one with a homogeneous model more natural from a
probabilistic point of view, the process F' having stationary increments. The main
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results of this article concern the global and pointwise regularity properties of F,
which are proved to be similar to those of W.

We start by the multifractal properties of F'.

Theorem 2.1. Let F' be as in Definition 2.1. With probability one, one has

H .
= H € [an, a]
plotly — if ,al,
r(H) —oo else.
The other results concern the almost-sure global regularity of F' and its modulii
of continuity. Let us recall the notions of modulus of continuity.

Definition 2.2. A non-zero increasing mapping 0 : RT — R is a modulus of
continuity when it satisfies

(1) 0(0) =0,

(2) There exists K > 0 such that for every h >0, 0(2h) < KO(h).

Function spaces are naturally associated with modulii of continuity.

Definition 2.3. A function f € L .(R) has 6 : Rt — R as uniform modulus of

loc

continuitywhen there exists K > 0 such that

Vh € Ry, wy(h):= sup |f(z)— f(y)| < KO(h).
lz—y|<h

A function f € LS. (R) has 6 : RT — R as local modulus of continuity at zo € R
when there exist 1z, > 0 and K, > 0 such that

(5) Va such that |x — xo| < ey, [ f(2) = flzo)| < Kap0(|7 — 20).
A function f € L2 (R) has 6 : RY — R as almost-everywhere modulus of conti-

nuity when 0 is a local modulus of continuity for f at Lebesgue almost every xy € R.

When « € (0,1) and 0(h) = 6,(h) := |h|*, the functions having 6, as uniform
modulus of continuity is exactly the set C*(R) of a-Holder functions (to deal with
exponents o > 1, the definition of wy(h) must be modified and use finite differences
of higher order).

Our result theorem regarding continuity moduli is the following.

Theorem 2.2. Let F' be as in Definition 2.1. With probability 1:
(1) Tthe mapping h — |h|*"|logy(h)[*** is a uniform modulus of continuity of
F.
(2) The mapping h + |h|®|logy(R)|?>T is an almost everywhere modulus of
continuity of F.
(3) At Lebesgue almost every xg € [0,1], the local modulus of continuity of F
at xo is larger than h — |h|%|logy(h)|?*.

Remark 1. Items (ii) and (iii) above provide us with a tight window for the optimal
almost everywhere modulus of continuity Op of F, i.e.
[7]*[logy (R)|** < Or (h) < |h]*[logy(h) [T

The investigation of a sharper estimate for this modulus of continuity is certainly
of interest. For instance, S. Jaffard was able to obtain a precise characterization
in the case of lacunary wavelet series, see Theorem 2.2 of [33].
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FIGURE 3. Multifractal spectrum in the case @ = 0.9 and n = 0.4

Remark 2. The result can certainly be extended to dimension d > 1 with param-
eters o > 1, provided that ¢ € CL*TYRY). This would add technicalities not
developed here.

The paper is organized as follows. Preliminary results are given in Sections 3
and 4. A key point will be to estimate for j € N, the maximal number of integers

1

n € N* satisfying 2/ < B, < 271!, such that the support of 1), contains a given
point = € [0,1] (a bound uniform in x € [0, 1] is obtained). More specifically, we
will focus on the so-called ”isolated” pulses v, i.e. those pulses whose support
intersect only a few number of supports of other pulses with comparable support
size. These random covering questions are dealt with in Section 4. This is key to
obtain lower and upper estimates for the pointwise Holder exponents of F' at all
points and to get Theorem 2.1. More precisely, in Section 5, item (i) of Theorem
2.2 is proved, and a uniform lower bound for all the pointwise Holder exponents of
F is obtained. In Sections 6 and Section 7, we relate the approximation rate of a
point z € [0,1] by some family of random balls to the pointwise regularity of F.
This allows us to derive the almost sure multifractal spectrum of F' in Section 8. In
Section 9, we explain how to get the almost everywhere modulus of continuity for
F (items (ii) and (iii) of Theorem 2.2). Finally, Section 10 proposes some research
perspectives.

3. PRELIMINARY RESULTS
Preliminary results are exposed, some of which can be found in standard books
[12, 13].
For j € N, define
1
Ap={neN": 0< By <1},
(6) Aj={neN: 2771 < B <2/}  when j >0,
N; = Card(4;).

From its definition, each Nj is a Poisson random variable with parameter 27 —
on(G—1)



MULTIFRACTAL ANALYSIS OF SUMS OF RANDOM PULSES 7

Lemma 3.1. Almost surely, there exist for j large enough,

(7) oni(l—e;) < N; < oni(1+e5)  with g = logy(4)
nJj
Proof. Introduce the counting random function (Mt)te]R*+ of the point process (B, )y~
as My =sup{n e N* : B, <t} =3 . 1p, <
For all 0 < s < t, My — M is a Poisson variable with parameter (¢ — s). Noting
that N; = Manj — Moni—1), the random variable N; has a Poisson distribution of

parameter a270U~1) where a = 27 — 1. By the Bienaymé-Tchebychev inequality,
since E[N;] = a2"U~Y one has

G-1)
o onG-D)| s s9lG-Dy < @277 a
(8) P(|N; — a2 | > j22 ) < Ty < a

By the Borel-Cantelli lemma, a.s. for j large enough, |N; — a270=Y| < j230-1),
In particular, for every o > 0 and j large enough, j~*2/7 < N; < j%2M. This
implies (7). O

From (8), for every o > 0, there exists K > 0 such that for every j,

(9) P(Nj ¢ [27}1'(1—&51)’27Ij(1+0¢81)]) < 52
J

Observe that (9) indeed holds for every j with a suitable choice for K. This will

be used later. Bounds for the random variables B,, and C,, are deduced from the

previous results.

Lemma 3.2. Almost surely, for all j € N large enough and n € A;,
(10) onil=e) < B, ¢, < 2m(+e5),

Proof. Tt is standard (from the law of large numbers for instance) that almost surely,
for every n € N* large enough

(11) % <B,<2n and % < C, < 2n.

Let J € N be large enough so that (7) holds for j > J Call A = Z;‘]’:Q Nj.
Let j > J+1, and n € A;. By definition, one has Z;:O Ny <n< Z;,:O Njr.
We apply by (8) with a =1/2. On one side,

j—1

Z Nj; > Nj_; > on(i-D(-agj—1) > g oni(l-asg;) > gni(l=g;)

=0

On the other side, since je; is increasing with j, when j becomes large one has

J J J
SNy <A+ Y awOtes) < g pgme N o’ < eyomilites)
j'=0 j'=J+1 Jj'=J+1

since A is finite. The last term is less than 277(17€)  so combining this with (11)
gives (10). O
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Finally, for all j € N and n € A;, additional information on the number of pulses
¥y, for n € A; (see (4)) whose support contains a given = € [0,1] is needed. So, for
xz €10,1], r > 0 and n € N*, set

Tn(ac,r):{ if B(Xy, Bn )ﬂB(xr);é(Z),

0 otherwise.

1

Next Lemma describes the number of overlaps between the balls B(X,,, B, ")
for n € A;. It is an improvement of some properties proved in [19].

Lemma 3.3. Almost surely, there exists K > 0 such that for every x € [0,1], for
every J,j € N,

(12) > Th(z,27") < Kj? max(1,27077),
neA;
Proof. We first work on the dyadic grid. Let j € N and j, = [n;j]. Observe that
0,1) = U " 1, &, where I, g = [k2797, (k + 1)2771]. For k € {0,1,...,27 — 1},
and set
(13) Lix=Card{ne€A; : X, e€l; +27""}.
Let us estimate p; = P(3k € {0, 1,...,27" — 1} : L; ;. > j2). Using Bayes’formula,
pj = P(3k € {0,1,...,27 — 1}, L;x > j2|N; € [271==0) gni(i+ei))y
xP(N; € (27 (1=3) gni(1+ei)))
+ PGk e{0,1,..,27n —1},Ljj > j2|N; ¢ [27(1=2) gnill+e)))
xP(N; ¢ [2mi(1=€3) gni(l+es)]),
Applying (9), there exists K > 0 such that for every j,

K
(14) pj < > pjNP(N; =N) + 7
NE{LQW(l*E]‘)J)._"L2'r1j(1+5j)J}

where for every integer N, p; v = P(3k € {0,1,...,27n — 1} : L;x > j%|N; = N).
Obviously, pj v is increasing with IV, hence p; < PjolniGrep) + %
Conditioned on N; = ng := 2l1i(14¢5]) " the law of each L; i, is binomial B(ng, p)
with parameters ng and p = P(X,, € [}, » + 27 Jntly,
Recall the argument by Demichel and Tricot used in Lemma 2.1 of [Demichel and Tricot(2006)]:
For Y ~ B(ng, p), then for every m > 1,

(nop)™ .

P(Y >m) < ol

In particular, in our case, since p < 3-2777 < 6-27" one has

(nop)d” _ (6 - 2mi(1+e5)=ni)* _ (6.j)jz
G - (72! VL

IP(LJk>j |N; = mnyp) <

Hence,
2in—1

(6-4)° _ 20(6-5)7
] L2771(1+E )J < Z ) S (]2)'
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Recallng (14), one concludes that
20 (6 - K
! () J?
which is the general term of a convergent series.
Borel-Cantelli lemma gives that almost surely, for all j € N large enough and for

every k € {0,1,..,29n — 1}, L; . < j2. So, almost surely, there exists K > 0 such
that for every j > 1, for every k € {0,1,..,279n — 1}, L;, < Kj2

To conclude now, fix an integer J, x € [0,1] and 277/~1 <r < 277, Two cases
are distinguished:

e When j < J: calling again j, = [jn], the point z belongs to a unique
interval I, 1, (for some unique integer k,). When n € Aj, observe that
To(x,2777) = 1 if and only if | X,, — 2| < 2=nJ 4 B/ < 9-nJ 4 9=3 This
may occur only when X, € I; 4, £ (27" +279) C I p, 227, since
J<J.

From the consideration above, there are at most K j? points X,,, n € Aj,
such that T},(x,27"7) = 1, hence (12).

e When j > J: As above, when n € A;, T, (2,27"’) = 1 may occur only
if | X, —z| <27 + B;l/n < 27/ 4 273 < 2=+l The interval
[z — 271+ g 4 2= nJI+1] is covered by at most [27U~/)F3| intervals
Ijjn) k, and each of these intervals contain at most K342 points X,,. So,
T, (x,27"7) = 1 for at most Kj2270~/)+32 integers n € A;. Hence the
result (12).

(Il

Observe that the degenerate case J = +o00 also holds in this case, i.e. almost
surely, there exists K > 0 such that for every = € [0, 1], for every j € N, one has

(15) > Ta(x) =Y Tu(z,0) < Kj°.

neEA; neA;
4. DISTRIBUTION OF ISOLATED PULSES

There may be several pulses 1,, with n € A; whose support intersect each other,
creating unfortunate irregularity compensation phenomena and making the estima-
tion of local increments of the process F' difficult. In order to circumvent this issue,
the knowledge on the distribution of the ,’s shall be improved.

For this, fix v € [1,1/n] and pg € N so large that

3+ 3«

16 > .
(16) bo 1—an

Let us introduce for any j € N the sets
(17) Avj = UL"UJ Aj/ and j\?j = Card(gj)

3'=(1—pne;)3]
~ _1 1
(18) Zj={ne€A; : Yme A;, n#m, B(X,,B,")NB(X,,Bn") =2}
The elements of Z; are integers n € A; such that the support of v, does not
intersect any support of ¥, for m € A; with m # n.

Definition 4.1. A point X,, with n € Z; is called an isolated point.
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FIGURE 4. Representation of pulses supports in Z;.

The distribution of the isolated points {Xn}nezj is further investigated. Indeed,
as said above, such information is key to obtain upper and lower bounds for the
Hélder exponent of F' at any point = (see Sections 6 and 7). To describe the
distribution of {X,, },ez,, consider the two limsup sets

(19) Gs=limsup U B(X,,B;°%)

Jmee neA;

(20) G =limsup U B(X,,, B;°175)) where &; = log, (165 log, 5)/ (1)

Jj—+oo nel;

Remark 3. Note that as soon as 6 > ', Gs C G5 and G C GY,.

In the next sections, it is proved that G contains points whose pointwise Holder
exponent of F' is lower-bounded by a/§ and G points whose pointwise Holder
exponent of F' is upper-bounded by «/d. The idea is that on the support of an
isolated pulse, the process F' has large local oscillations, thus forming points around
which F' possesses a low regularity.

It is a classical result (see [5, 33]) that almost surely,

(21) 0,1] =limsup | J B(X,, B, '"%)).

J=roee neA;

Hence, almost surely, every x € [0, 1] is infinitely many times at distance less than
Bx" %) from a point X,.

A more subtle covering theorem is needed, using only isolated points (X, )nez;
(instead of (X,,)nea,)-

Theorem 4.1. With probability one, G} = [0, 1].
Proof. For j € N, define the following set
Dj = {[8k2=") (8k 4+ 1)27 ")} . 0 < 8k < 2] — 1},
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Obviously, Card(D;) ~ 2771 /8.
For all V € D; (necessarily, V' C [0, 1]), consider the following event:

(22) A;(V)

=<{3ne€A; suchthat X, € V and B(X,,, 2B, 7)) |J {Xm} = {Xn}

meﬁj

Lemma 4.2. If A;(V) is realized, then a point X,, given by (22) is isolated in the
sense of Definition 4.1.

Proof. When A;(V) is realized, the point X, is such that for every m € Al X, ¢
B(X,,2B:1).

Further, recall that 20-D7 < B, < 279 and that B, /" < B, 177 by our
choice for «. In addition, observe that when m € gj for j sufficiently large,

B/ < o= (l0=pne)il=1/n < jpnog=i/nt1/n < p=1=7

again due to our choice for 7.
What precedes proves that B(Xn,Bﬁl/") N B(Xn,BEI/") = (), hence X,, is
isolated. O

Our goal is now to prove that these events A;(V') are realized very frequently.
The restrictions of the point Poisson process {(X,, Bn}neny on V X [1,+00], or
1

equivalently of {(X,, Bn ")}nen on V x [0,1], on the dyadic intervals V € D;, are
independent. Moreover, the intervals in D; being pairwise distant from at least
21717 and since B, '77 < Bt < 2177 two balls B(X,,2B,;'77) with X,, € V
and B(X,,, B;;,}7™7) with X,, € V' # V (with n,m € A;) do not intersect. As a
conclusion, the events A;(V) for V € D, are independent.

We introduce the set of (random) intervals

Q;={VeD; : AjV)is true }.

Let V € D; with V' C [0,1], and consider the random variable T}(V) = 1 4, (v)-
From the above considerations, the random variables (T;(V'))vep, areii.d. random
Bernoulli variables with common parameter p;(1 + ) = P(A;(V) is true). Since
Card(Q;) = Yovep, Ti(V), Xvep, T;(V) ~ B(Card(D;),p;(1 + 7)), a binomial
law with parameters Card(D;) and p;(1 + 7).

The parameter is denoted p;(1 + ) because, the law of the random variables
X, and B,, being given, it depends only on v and j. To go further, we call for the
following lemma that is proved in [5], Lemma 28 (see also [8]).

Lemma 4.3. There exists a continuous function k : (1,400) —]0, 1 such that for
any j € N*, p;(6) > k(6) > 0.

Let (jp)pen- be the increasing sequence of integers defined iteratively by j1 =
1+ |pne1] and jpy1 = [2(1/n + 1)jp, + 1]. By construction, 4;, NA4; ., = 2.

Jp+1

Two intervals V., V' € D, are called successive when writing V' = [8k2~ ) (8k+
1)271]) then either V' = [8(k + 1)27"1 (8(2 +~) + 1)27"] or V' = [8(k —
1)2- il 8k2~Lmil],

Next lemma shows that it is highly likely that amongst any set of j, log j, suc-
cessive intervals in D;, at least one of them, say V, satisfies A;(V).
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Lemma 4.4. For all p € N, define the events &, by

Ep={for all (V1, ...,V |}, 10g5,]) successive intervals of Dj,
3k e {1,..., [jplogjp|} such that A; (Vi) is true},
Then P(limsup &,) = 1.

p——+oo
Proof. It is easily checked that the {&€,}pen are mutually independent by our choice
for (jp)p>1. There is a constant K > 0 such that

Card(p;,,) Ljn logjn)

PEH< > IT P(A;, (Vi) is false)
=1 k=1

< K2Wr (1 — pj(1+ 7))’ 87
< K2Mp (1 — k(1 4 ~))drloeds,

By construction, j, > p and 0 < 1 — k(1 ++) < 1. This implies that for p large
enough, there exists K’ > 0 such that P(£;) < K'e™?, and so P(§,) > 1 — K'e™P.

In particular, > P(£,) = 400, and Borel-Cantelli’s lemma yields the result. O
peN

Let p be such that &, is realized (this happens for an infinite number of p’s).

Soit V' € D;, such that A;(V) holds true. Hence V' contains an isolated point,
by Lemma 4.2.

From the &,’s and Lemma 4.4, it follows that amongst any |j, logj,| consecu-
tive intervals in D;, there is at least one interval that contains an isolated point.
Consequently,

| B(Xa.8j,log 5,27 "7)
’I’LEIjP
forms a covering of [0,1]. Since this occurs for an infinite number of integers jp,
and recalling (20) and the definition of €}, we conclude that almost surely,
[0,1] =limsup | J B(X,,8jlogj2~") C limsup | | B(X,,B,"~%)) =G},

I+ heT, It e,
since B,, > 2Ur=1/7 when n € T;,. Hence the result. O

5. UNIFORM REGULARITY

In this section, the uniform Holder regularity of F' is investigated.

Recall that « €]0, 1] and v is Lipschitz.

An important tool for the following proofs is the wavelet transform. It is known
since Jaffard’s works that wavelets provide a convenient method to analyse point-
wise regularity of functions.

Definition 5.1. Let ¢ : R — R be a compactly supported, non-zero function, with
a vanishing integral: / o(u)du = 0.
R

The continuous wavelet transform associated with ¢ of a function f € L*(R) is
defined for every couple (s,t) € R% x R by

S

(23) Wf(s,t):% /}R F(@)dse(x)dz  where qbs,t(z)qS(xt).
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Recall here the theorem of Jaffard [30] and Jaffard-Meyer [36] relating the decay
rate of continuous wavelets and uniform regularity for a function f.

Theorem 5.1. Let H € RY, f € LS (R), and ¢ be sufficiently regular (if o €]0, 1]
then 1 is a Lipschitz function, otherwise 1 € CL®*Y(R)). Then, the mapping
x> |z|T|log|x||® is a uniform modulus of continuity for f if and only if there
exists a constant K > 0 such that

V(s t) R} xR, [Wy(s,t)| < Ks 2 [log]s||”.
Next proposition deals with the uniform regularity of F.

Proposition 5.2. Almost surely, for o € R1I\N, n € R, an < 1 and v sufficiently
reqular as in Theorem 5.1. Almost surely, there exists K > 0 such that for any

(s,t) € [0,1]* xR
(W (s, t)| < Ks®2 [log,(s)2+.
Therefore, item (i) of Theorem 2.2 holds true.

Proof. Let (s,t) € R} x R. Note that the wavelet transform Wg of F' can be
expanded in

“+o0
(s,t) \[/ z)ps ()de = ZC’;O‘dn(s,t)

n=1

with
1
(24) dn(s,t) = %/Rl/}n(:v)qﬁs’t(ac)dm

A quick computation allows to bound by above |d,,| (see Proposition 2.2.1 [19]).

Lemma 5.3. There exists K > 0 such that
\ 1 _1

(25) V(s,t) € [0,1] x R, |dn(s,t)] < Ks2 min{sB)},s "B, " }T,(t,s).

Fix t € R and 0 < s < 1. there exists a unique J € N such that 2777+ < s <
27,

1 _1 1 ,

When j < nJ and n € A;, one has min{sBy ,s !B, "} = sB; < s27. Also, by

Lemma 3.3, 3, 4 Tn(t,27 17y < Kj2. So, by Lemma 5.3 and (10), there exists a

constant K; > 0 (Whose value can change from line to line, but does not depend
on s, t, j or J) such that

[nJ]
Z Z C a|d St |<K15222 an(l— EJ)JSQJ Z T, t 5
j=0 n€A; neA;
nJ
< Kps? Yy 2men(=eigol N (t,271Y)
j=0 neA;
nJ
< Kls% Zj2+a2(17(xn)j < K/s%(nj)2+a2(lfan)m]
7=0

< K153 [log, (s)[*F.



14 GUILLAUME SAES, STEPHANE SEURET

1 1 1 ,
When nJ +1<j < J,if n € Aj then min{sB;],s 'B, "} =s !B, " <s 1277
and Lemma 3.3 still gives > Tn(t,27"7) < Kj2. Hence, there exists Ky > 0

neA;
such that
J J
ST Croda(s ) < Kas? Y 27en0meisTlomd N (¢,271Y)
j=|nJ]+1neA; j=nJ+1 neEA;

IN

Kss -3 Z ]2+o¢2 (1+amn)j < Kos™ 2 J2+a2 (1+am)nJ
Jj=nJ+1

< K525 log, (s)] 7.

1 _1 4
Finally, when j > J, min{sB,/,s !B, "} < 571277 and Lemma 3.3 yields this
time ZneA~ T, (t,2777) < K52270=7) Hence, there exists K3 > 0 such that

ZZO O‘\dnst|<K35222 an=e)ig=lo= N " T, (t,27")

j=JneA; neEA;

< K352 Zj2+a2—(1+an)j2n(j—1) < Kys— 3 J2tag=(tan]
j=J
< K523 [logy ()| >
The combination of the previous inequalities yields that for some constant K > 0,
[We(s,0)] < K73 logy (s)+

Theorem 5.1 allows to conclude the proof of Proposition 5.2. O

6. LOWER-BOUND FOR THE HOLDER EXPONENT OF F' VIA THE STUDY OF Gj

When § € [1, n] next proposition yields a lower bound for the pointwise Holder
exponent of F at xo when z¢ ¢ Gs.

Proposition 6.1. Almost surely, for every d € (1,%), for every xo ¢ Gs, there
exists Kz, > 0 such that for any x close to xo,
|F(2) = F(@0)| < Kgy|logy |2 — o] P71z — x| %
Therefore, hp(x0) > 5.
Proof. Let xg ¢ Gs. For x with |x — x| < 1, there exists a unique jy € N such that
9—n(jo+1) < |$ _ .T()| < 9~ "njo

and call j; the largest positive integer so that |z — x| 4277t < 27971, The integer
j1 exists since 2771971 tends to 0 when j; — +o0.

Observe that when jy becomes large, |j1 — jo/d| — 0. So it is assumed that jj is
so large that jo/0 < 71 < jo/6 + 2, so that 27707 ~ 27719 ~ |2 — z0|. Observe also
that this explains the fact that § must be less or equal than 1/7.

By definition of Gy, since zg ¢ Gs, there exists at most a finite number, say N,
of balls {B(Xnk,B,jk‘s)}l<k<]\zm0 that contain . Write jo for the smallest integer j

such that Uk Y {ni} € U 1 A;. So it may be assumed that z is so close to zo that
for every j > j1/20, je; > Jo+1 and for every n € Aj with § > j1, |zo—Xn| > B;°.



MULTIFRACTAL ANALYSIS OF SUMS OF RANDOM PULSES 15

Recalling that the support of 1, is the ball B(X,,, B;l/”) and that § < 1/7, this
implies that z¢ belongs to the support of at most N pulses v, with n € A; and
j < ji1, and does not belong to any support of ¥, for n € A; and j > j;.

Also, when j < j; and n € Aj, by definition of j;, one has |a:fz0|+B;1/77 < B;°.
Hence z € B(X,, B;l/n) would imply that x¢ € B(X,,, B;,®), which is possible for
only N balls. Consequently, = and xy both belong to at most IV supports of pulses
Yy with n € A; and j < j;.

Let us write |F'(z) — F(zo)| < S1+ S22+ 53 with Fj(z) = ZneAj C %y (x) and

ji—1 400 400
S1=|>_ Fj(x) = Fj(x)|, S2=Y_ |Fj(x)| and Sy= Y [Fj(z)|.
j=0 J=J1 J=J1

We first give an upper-bound for S;. By the remarks above, S contains at most
Ny, non-zero terms of the form C, *(¢y, (x) — ¥y, (w0)) (for integers n1, ..., nn, ),
and for each of them, since v is Lipschitz with some constant K > 0, one has

1 1
1/) <B77L ((E - Xm)) - 1/] (BTyz (iL’() - Xﬂ))

1
C;a S C,;OCB;ZLKkC — {IT(]l.

By (6), (10) and the definition of Jo, ifn; € A;, then one has for some other constant
K > 0 that

C;O‘Bi < Ko—ani(l—¢;)9j < K’jgﬁo(l—an) < Kjtllgfnjl _ Kjf+1/n.

Using that j; ~ djg ~ %| log, |z — xo||, this finally gives for some constant K,
depending on xg

S1 < KNy |z — x0|jf‘+1/" < Ky lz — x| - |logy |2 — a0 [*F1/7
(26) <& — xo|*[log |z — xo| [*F*.
Observe that the last inequality holds when j; tends to +o00, and is quite crude.
By construction, ¢, (zo) = 0 for every n € A; with j > ji, so Sy = 0.
Finally, for S5, one writes that [¢,,(z)| < [|¥]|c0, and then

+00 too
27 Ss=) @ <Kl ), D Caly, @z

J=i1 Jj=j1 n€A;
+oo
SK|[¢llse Y 5727 Y T(x,0)
J=j1 neA;

~+00
SKHwHoo( Z ja2_a"jj2> < Kj2tegmenin < g jFteg=ios

J=i1
(28) < K|log, o — zol [*** |z —y|%.
The result follows from (26) and (28), and by letting € tend to zero. O

7. UPPER-BOUND FOR THE HOLDER EXPONENT OF F' VIA THE SETS Gg

We now find an upper bound for the pointwise Holder exponent of F' at every
zo € GY, using a wavelet method. Let us recall the theorem of Jaffard [30] relating
continuous wavelet transforms and pointwise regularity.
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Theorem 7.1. Let f € L°(R), 2o € R and H > 0. If f € CH(xy), then there
exists K > 0 and a neighborhood U of (0%, x¢) such that

W(s,t) €U , [Wils,t)] < Ks?(s+ |z — )"
This theorem is key to prove next proposition.
Proposition 7.2. Almost surely, for all 6 € [1, ﬂ and o € G, hr(zo) < §.

Proof. First, without loss of generality, assume in addition that the function ¢ used
to compute the wavelet transform belongs to C*(R), is exactly supported by the
interval [—1, 1], and that

(29) / d(u)ih(u)du # 0.

The existence of such a ¢ is a trivial exercise.

Fix g € G5. There exist two increasing sequences of integers (ng)ren and

. -5
(Jk)ken such that ng € Z;, and =g € B(X,, , Bn, a-= 8““))
Let k: € N* with ny € Z;. The values of continuous wavelet transforms

Wg(Bn, ,Xnk) are now estimated Setting J, = [(1 — pomej,)jx| and Je =
(14 ~)ji], one writes Wg(Bp, ,X o) =51+ 52 + S3 with

Jp—1
Z Z C ad ’ﬂk ] nk)a Z Z C ad B’ﬂkna )
j=0 neA; j=Jkn€EA;
and 53 = Z Z C ad Bnkn ) nk)
j=Jr+1n€A;

Let us first find a lower bound for S;. Recalling the deﬁmtlon (18) of Zj,, n
is the unique integer in Ajk such that zo € B(X7,, B~ ) Hence, recalling (24),
1
dn(Bn,", Xn,) = 0 when n # ny, (since the support of v, and ¢, do not intersect)
and

Sy = Cp % dn,, (B, , Xny)-
An integration by part and a change of variables give
1 1
oy (B %) = B2 [ dwpotu)du
-1
Condition (29) implies that for some fixed constant K > 0 (depending on ¢ and
¢ only), for every integer k,

(80) 18] = KaCyp® Bl > Ky By 212~ 1040k > f g, 71 o),

where (18) and (10) have been used.
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Next, let us estimate S;. By (25), (10) and (6), one has

Jp—1
S11< >0 > Cr®ldn(Bu) s Xy )|

j=0 n€A;
Jp—1

<> > c C’B,L,f" mln{Bnk Bg,Bnan }T (Xnk,B,Lk )
j=0 neA;
Je—1

< Z g-anil=)) g 3 min{B,,729, B, 2771} > Th(Xn,,277).

neA;

_1 . -1
When j < (1 —nej, )ik, Bn) < 27771 so the minimum above is less than 2B,," 27.
In addition, by (7) one has 3, Tn(Xn,,277%) < Kj* (this holds as long as
Jj < jr/n). Hence by (12), for some constant K; > 0 (that may change from one
inequality to the next one),

Jk 1 3 Jk 1
|Sl| <K, Z ]2+a2 0“7JB 277 Bnkn 23 < Kank’zn Z ]2+a2(1 an)j
Jj=0 j=0

<KlB 2,, 2+a2(1 an)(1— ponsjk)jk

1
Since jj = 27°9%7% and ny, € Z;,, 2% < By, so

—a—(po—3—a-— anpo)ejk

51| < K1 By 27 e plamedmronen) g pag
Our choice (16) for pg ensures that pg — 3 — a — anpy > 2a, hence

(31) |S1| < K; nkzn (1+2€]k)

Finally, for Ss, one writes by (25), (10) and (6), and the same lines of computa-
tions as above, that for some K3 > 0,

|S5] < Z > Crtldn(Bu, X))

j=Jr+11EA;
+oo
<Kz Y o2 ewl==)p, 2" mln{Bnk”2 B" SO N T (X, 270k).
j=Je+1 nEA;

~ 1 .
When j > Ji = [ (1 + 7)jk|, the above minimum is now reached at By, 2771,
Then, still by and (7), the sum >, ., T, (X, ,277%) is bounded above by Kj2

when j < ji/n, and by Kj2270=7%/" when j > ji/n. Hence by (12), for some
constant K3 that may change from line to line but does not depend on & or any of
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the moving parameters,

Ldx/n] .
(32)S5| <Ks  » 227 WB, B, 27
J=1+7)jk
= N T R
+Ky > jFteemem B, 2By 0 mak/m)
Jj=Ljk/n]+1
. Lix/n] +00
< K3B2! Z jrrag=(+ami 4 9=i Z jrragn—1—an);
7=(1+7)jx J=lik/nl+1

The first sum above is bounded above by

Lix/n] _ _
Z j2+02*(1+m7)J < K3jz+0‘2*(1+0”1)(1+7)%

J=L04+7)dx]
and the second one by

+00 ;
9—Jk Z j2+042(71—1—m7)j < K32_jkji+a2(n_1_an)jk/77 — K3j£+a2*]7’f(1+an).

J=Ljk/nl+1
1 , , ;
Since By, ~ 2% and ji = 27*"ik ~ Bffk’“ and 1+ v < 1/n, we get that

|S5] < K3ji+°‘2*(1+om)(l+7)jk + K3j£+a2—j7k(l+m7)
< KSBZMLU)“M"—(%'O‘)EM
> n .
Observe that S280E) — (2 4 a)e;, > L +a(1 4 2¢5,). So,

(33) |S3‘ < Kankmy 0((1-1-25:‘Jk)7

this last inequality being very generous (S3 is much smaller than the term on the
right hand-side).

Combining (30), (31) and (33), and the fact that B,,’* — 0 when k tends to
infinity, one concludes that for every sufficiently large integers k,

1
(34) |WF( nk , nk)l >KBnk2" a(1+a;k)

Assuming that f € C5%%(xg), we would have by Theorem 7.1 that for some
K' >0,
-3 (o 34
(Wi (Bu X )| < K'Bu (B + a0 = X, )

g §te
<K'B2 (Bt 4 B))

<KBnk2nB 6(1 Ejk)( +5)

. -0 . . .
since |9 — Xp, | < Bn, (%) This contradicts (34) since the sequences (¢g;) and

(€j) converge to 0 as j % +00. Consequently, f ¢ C57¢(zg) for every e > 0, hence
the result. g
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To conclude this part, we would like to emphasize that this analysis is quite
sharp since the bounds obtained for S, Sy and S3 are very tight (and the choice
for pg is key). Only the fine study of isolated points made it possible to obtain this
result.

Also, observe that the proof does not work any more When d > 1/n, since in the

5(1 Eix)

last series of inequalities |Wgp(B n,j, Xn,)|, the term Bnk + B, can not be

bounded by above by Bjro ™).

8. MULTIFRACTAL SPECTRUM OF F'

Recall that the study of the regularity of F is restricted to the interval [0,1]. We
start by the range of possible exponents for F'.

Lemma 8.1. Almost surely, for every x € [0,1], an < hp(x) < a.

Proof. First, Proposition 5.2 yields that almost surely, for every = € [0,1], hp(z) >
an.

Then, Theorem 4.1 gives [0,1] = G}, and Proposition 7.2 ensures that every
x € G satisfies hr(z) < a. O

Gathering the results proved in the previous sections (Propositions 6.1 and 7.2,
and Remark 3), one also sees that almost surely:

e for all H € [an, ),

(35) G\ U Gs € Ep(H).
5> 8
Indeed, when z € G’%, hp(z) < % = H and when § > & and = ¢ Gb,
o for all H € [an, al,
(36) Ep(H)C () Gs.

s<

In order to obtain the multifractal spectrum of F', a preliminary step consists in
estimating the Hausdorff dimension and measures of the sets G5 and G5.

For h > 0, H", ’Hg‘ stand respectively for the h-Hausdorff measure in R and
the a-Hausdorff pre-measure computed with coverings of sets of diameter less than
£E>0.

Proposition 8.2. With probability one, for every é§ € [1,1/n], one has dimpy Gs <
1/6 and HY?(G%) = +o0.

Proof. The upper bound dimy G5 < 1/6 follows by using as coverings of Gs the
family {B(X,, B;;°)};j>snea,, for J > 1. For e > 0,

s
;/:;e Gs) <Z Z B 5‘1/5+5
j>JneA;

By (7), and using that B,, < 277 when n € A;, one gets
7‘[1/6+8(G5) < Z oni(1+e;)g—in(1+e/9)

2—nJ
jzJ
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which is the rest of a convergent series. Hence H'/+¢(Gs) = 0 and dimpy G5 <
1/6+e.

The fact that #'/?(G%) = 400 (giving the lower bound dimy G% > 1/4) is more
delicate. The following mass transference principle [11, 22] is useful.

Theorem 8.3. Let (1,)nen- be a real sequence in [0,1]% (d > 1) and (A\p)nen- a
decreasing sequence of positive real numbers. For all § > 1, set

Ls —hmsupB Ty Ay) m U B(zp, A
—too N>1n>N

If the d-dimensional Lebesque measure L(L1) of L1 equals 1, then for all § > 1
H3 (Ls) = +oo and dimy(Ls) > <.

Theorem 4.1 gives that G} = [0,1], almost surely. In particular, £L(G]) =
Applying the previous theorem to the (random) sequences z, = X, and A,

B;(l_gj) when n € A; yields the claim of Proposition 8.2.

on =

We are now in position to conclude the proof of Theorem 2.1.

Proof. First, by Lemma 8.1, only H € [an, a] need to be considered.

Then, (36) yields that almost surely, d[ 1](H) < dimy Gs, for every § > o/H.
Proposition 8.2 yields dimy G5 < 1/6, hence d[O 1]( H) < H/a.

Finally, Proposition 8.2 gives simultaneously that H/ “(@, / y) = +oo and
HH/*(G5) = 0 for every § < a/H. So, H/*(G!, ,,; \ Us> g Gs) = +oc, and by
(35), HA/*(Ep(H)) = +o00. This gives dimg Ep(H) > H/a, and by the remarks
above d[0 1]( H)=H/a.

When H = «, the same argument gives that L(Er(a)N[0,1]) =1, i.e. Ep(a)is
of full Lebesgue measure in [0, 1]. O

9. ALMOST-EVERYWHERE MODULUS OF CONTINUITY

Le us explain how to obtain from what precedes the almost-everywhere modulus
of continuity for F', almost surely.

By a Theorem by Jaffard-Meyer (Proposition 1.2 in [36]), the following (almost)
equivalence holds true.

Theorem 9.1. Let f € LiS.(R), zo € R and H > 0.
If the function f has a local continuity of continuityd at xq, then for some con-
stant C > 0

(37) V(s,t) €U, [Wy(s,t)] < Ks?(6(s) +6(|zo —t]).

Conversely, if f € C*(R) for some € > 0, and if (37) holds, then there exist

constants n,C > 0 and a polynomial P such that setting jo = ||logy |z — xo|], one

has

(38)

Vo such that |~ zol <, 17(e) ~ Pz —w0)] < C juf (G )8z — o) +275),
=Jo

Observe that if 8(h) = |h|?|log |h||” with ¢ < 8 < 1, then the infimum at the
right hand side of (38) is (roughly) reached at j = jo3/e, and (38) reduces to

|f () = P(z — 20)| < Cla — x0|”|log|a — ol |7
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Coming back to Proposition 7.2, let g € G|. At the end of the proof recall the

lower bound (34) for the wavelet coefficient |Wp(By,”, Xn, )| > KBy,>" molten)
Remembering that B, ~ 277+ the formulas for €;, and the fact that &, and

|zo — X, | < Bn (1 =) , one successively has (for large integers k)

Bp* ~ |log ji| 7' = C|log |zg — Xu, |,
B, ~ |log ji| ™' > C|log|zo — X, |,
B > C|l‘0 nk”lOg'xO_XnkHv

for some constant C' > 0 that depends on 7 only. Hence,

—a(l +Eﬂk)

1
‘WF( ’ﬂk ) nk)‘ >KBnk >KB7lk2nB |10g\x0 Xnk”a

> KCBy |10 — Xy |*|log 20 — X |2
KC -4

> =57 B (010 — X, ) + 0(Bu")),

_1
where 6(h) = |h|%|log|h||?* and where we used that B,,” < |r¢g — Xy, |-

This shows that almost surely, for every z € G, the modulus of continuity is
larger than |h|%|log |h||>*.

Let us now introduce the set

G = limsup U B(X,, B;(1+3)),

Jee neEA;
Recalling (7), almost surely,

Z |B(Xn,B;(1+2€j))| < gni(lte;)g—ni(1+3e;) 2
HEA]‘

Consequently, CA?; has zero Lebesgue measure.
Then, a slight adaptation of the proof of Proposition 6.1 shows that almost
surely, for every zg ¢ G1, there exists K,, > 0 such that for any z close to zo,

|F(z) — F(x0)] < Kqolz — 20| |1ogy |z — x| [2T.

The modification consists in replacing 0 by 1 + 3¢;, and adapting accordingly the
computations.

The conclusion follows by considering the set G = G \ G;. Indeed, since G}
and é'vl respectively have full and zero Lebesgue measure, G has full Lebesgue
measure. And the two arguments above show that almost surely, for every xy € G,
the modulus of continuity 6,, of F' at z( satisfies

|h|*[log [l [** < 0s,(h) < [h|*[log, |h] [**,

hence items (ii) and (iii) of Theorem 2.2.
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10. PERPECTIVES

The case where o > 1 is a possible extension of our article.

It is also a natural question for applications to ask whether the sample paths of
F satisfy a multifractal formalism.

It would be interesting to determine whether F' possess chirps or oscillating
singularities, i.e. locally behaves like

|z — z0|*|log |z — o] |?

around some points . Chirps are a key notion in many domains - for instance, the
existence of gravitational waves has been experimentally proved thanks to wavelet
based-algorithms able to detect chirps (that are the signature of coalescent binary
black holes) in signals extracted from the LIGO and VIRGO interferometers.

Finally, it is worth investigating the case where the series defining F' does not
converge uniformly, this may occur for some choices of the parameters a and 7
(recall that in the present paper, the uniform convergence follows from the sparse
distribution of the pulses). In this situation, the relevant quantities to analyze are
the p-exponents of F' as defined in [35]: A function f belongs to T?(zo) (which
generalizes the spaces C*(zg)) when there exist a polynomial P and a constant
C > 0 such that

1 1/p
for every sufficiently small h > 0, ﬁ/ |f(z) — P(x)|P < C|h|™.
B(0,h)

Then the p-exponent is h(z9) = sup{ar > 0 : f € TZ(20)}, and the multifractal
analysis of the p-exponents of F' is a challenging issue.
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