

High and low theory-of-mind scores of child-teachers: Which teaching strategies are efficient?

Leïla Bensalah, Stéphanie Caillies

► To cite this version:

Leïla Bensalah, Stéphanie Caillies. High and low theory-of-mind scores of child-teachers: Which teaching strategies are efficient?. Cognitive Development, 2020, 55, pp.100920. 10.1016/j.cogdev.2020.100920. hal-03014048

HAL Id: hal-03014048 https://hal.science/hal-03014048

Submitted on 18 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0885201420300745 Manuscript_4e504ed134f70696cfa21bc3aa288fbb

High and low theory-of-mind scores of child-teachers:

Which teaching strategies are efficient?

Leïla Bensalah, Stéphanie Caillies

University of Reims Champagne-Ardenne, C2S, EA 6291, 57 rue Pierre Taittinger,

51096 Reims, France

Wordcount: 7 492

Display items: 1 figure, 3 tables

Address correspondence to:

Leila Bensalah

C2S (EA 6291) – Université de Reims Champagne-Ardenne

57 rue Pierre Taittinger

51096 Reims, France

Phone: +33 3 26 91 37 02

Fax: +33 3 26 91 37 19

E-mail: leila.bensalah@univ-reims.fr

Stéphanie Caillies

E-mail: stephanie.caillies@univ-reims.fr

1

2

High and low theory-of-mind scores of child-teachers:

Which teaching strategies are efficient?

3 Abstract

4 While some authors investigating teaching in children suggest that teaching strategies are 5 more efficient in terms of learners' performances when child-teachers have achieved false-6 belief understanding, others argue that even before they reach this point, children already use 7 efficient teaching strategies. To test these two hypotheses, we investigated the efficiency of 8 teaching strategies adopted by child-teachers who had either succeeded or failed on false-9 belief (FB) tasks. A total of 26 5-year-old child-teachers were divided into two groups 10 according to their FB score (FB+ vs. FB-) and paired with 3-year-old learners who had not yet 11 acquired FB understanding. The learners were asked to perform a jigsaw task. Teaching 12 strategies displayed by the child-teachers included conveying information, giving verbal 13 explanations coupled with demonstrations, and engaging in nonverbal 14 demonstration/modelling. FB understanding was measured with classic FB tasks, and a 15 composite verbal score was calculated as a control measure. Results showed that child-16 teachers who successfully performed the FB tasks above all used conveying information and 17 verbal explanation coupled with demonstrations strategies. However, correlations revealed 18 that conveying information, which was more frequently used in the FB+ group, was 19 significantly and positively correlated with learners' performances in both groups. This 20 finding lessens the impact of child-teachers' FB understanding in the tutoring situation. 21 **Keywords**: Teaching; Tutoring; Theory of mind; False belief; Preschoolers 22

23 **1. Introduction**

Teaching is consensually viewed as a critical condition for promoting learning (e.g.,
Bidell, 1988; Bruner, 1966; Csibra & Gergely, 2009; LeBlanc & Bearison, 2004; Strauss,

1 Calero, & Sigman, 2014; Tudge & Scrimsher, 2003; Vygotsky, 1978). It requires learners' 2 mental states (e.g., ignorance and false belief) to be continually taken into account (Kruger & 3 Tomasello, 1996; Strauss & Ziv, 2012), so that teaching strategies can be adapted to the 4 learners' needs (Bensalah & Stefaniak, 2014). The ability to take learners' mental states such 5 as ignorance or false belief into account refers to theory of mind (ToM), which is defined as 6 the ability to explicitly attribute mental states to self and others (Premack & Woodruff, 1978). 7 This ability is usually assessed via the well-known false-belief (FB) tasks (e.g., Bartsch & 8 Wellman, 1989; Perner, Leekam, & Wimmer, 1987; Wimmer & Perner, 1983) that probe 9 one's own or others' false-belief understanding and, for some of them, ignorance 10 understanding (Bartsch & Wellman, 1989). Accordingly, when children successfully perform 11 a battery of FB tasks, we can assume that they understand both ignorance and FB, and would 12 thus be able to identify the mental states of learners in a tutoring situation and adjust their 13 teaching strategies accordingly, thereby improving the learners' performances. However, 14 studies in young children (e.g., Scott & Baillargeon, 2014; Warneken & Tomasello, 2013) 15 have suggested that even before they are able to successfully complete these tasks, child-16 teachers already use efficient teaching strategies, in terms of learners' performances, thus 17 generating controversy regarding the impact of ToM on teaching by children. 18 Our goal was to investigate how FB understanding influences child-teachers' use of

teaching strategies and child-learners' performances. To the best of our knowledge, no study had previously probed the efficiency of the teaching strategies exhibited by child-teachers who can successfully perform FB tasks, and none had examined the efficiency of these strategies when child-teachers are unable to perform such tasks. This research is important for several reasons. First, it could shed light on the impact of FB understanding, defined as a high level of understanding of mental states, including ignorance, on children's teaching abilities, and more generally it could contribute to our understanding of teaching strategy development in children. Second, it could be informative for teachers. Teachers can use tutoring between
pupils to efficiently complement their teaching in the classroom, and train pupils to adopt
more efficient teaching strategies to help learners succeed. If teachers do not realize that their
pupils are using inefficient teaching strategies, they may eventually abandon tutoring practice
in the classroom. Finally, knowing which teaching strategies are efficient could inform adultteachers' practices.

In tutoring between children, the issue of teaching strategy efficiency raises the
question of how these strategies vary according to whether child-teachers can successfully
perform FB tasks. Currently, what little findings available are mixed. We therefore set out to
document the teaching strategies employed by child-teachers and their impact on learners'
performances during the acquisition of FB understanding.

12 1.1. How do child-teachers' teaching strategies change with FB understanding?

13 Despite substantial literature on tutoring between children (e.g., Bensalah & Berzin, 14 2009; Cohen, Kulik, & Kulik, 1982; Hartup, 1983) and ToM in preschoolers (e.g., Astington, 15 2003; Miller, 2000; Wellman et al., 2011), and a growing interest in the impact of ToM on 16 how children approach teaching (e.g., Bensalah, Olivier, & Stefaniak, 2012; Ziv & Frye, 17 2004; Ziv, Solomon, Strauss, & Frye, 2016), few studies have probed how child-teachers' 18 strategy use changes as a result of acquiring FB. Moreover, while a qualitative analysis by 19 Bensalah (2011) showed that child-teachers gradually become more interested in learners' 20 needs, other studies (Davis-Unger & Carlson, 2008; Strauss et al., 2002; Wood, Wood, 21 Ainsworth, & O'Malley, 1995; Ziv et al., 2016) have reported mixed findings concerning the 22 three main types of teaching strategies probed, namely conveying information (e.g., verbal 23 explanations, repetitions, rule explanations, instructions), giving verbal explanations coupled 24 with demonstrations (e.g., showing learners how to perform the task based on verbal 25 explanations), and engaging in nonverbal demonstration/modelling (e.g., simply showing

1 learners how to perform the task). Several studies have demonstrated that once children have 2 understood FB at around 4-5 years and are enrolled in a teacher role, they display more 3 conveying information strategies than 3-year-olds who cannot yet successfully perform FB 4 tasks, providing more verbal explanations and repetitions (i.e., reminding learners of tools and 5 instructions; Davis-Unger & Carlson, 2008; Strauss et al., 2002), and more rule explanations 6 (Ziv, et al., 2016). Conversely, Ziv et al. (2016)'s study showed that 3- to 4-year-olds provide 7 instructions more often than 5-year-olds do, and another study found no significant difference 8 between these two age groups on verbal instruction use (e.g., "Get a bigger one"; Wood et al., 9 1995). Mixed results regarding verbal explanations coupled with demonstrations (i.e., 10 explicitly showing learners how to perform the task, and doing it instead of them) have also 11 been reported. Davis-Unger et al. (2008) found that 3-year-olds who failed on FB tasks 12 displayed less verbal explanations coupled with demonstrations strategies than 5-year-olds 13 who succeeded on FB tasks, whereas Ziv et al. (2016) reported that 5-year-olds made less use 14 of demonstrations with verbalizations than 3-year-olds. Here again, two other studies showed 15 that this strategy use remained stable during this period (Strauss et al., 2002; Wood et al., 16 1995). Regarding nonverbal demonstration, Strauss et al. (2002) and Ziv et al. (2016) also 17 found that 5-year-olds with FB understanding made less use of nonverbal 18 demonstration/modelling (i.e., when a teacher actively shows a learner what to do, carrying 19 out the task without any verbalizations) than 3-year-olds. Once again, however, Wood et al. 20 found no such significant difference between these two age groups (Wood et al., 1995). The mixed findings of these scant studies in this area are probably due to the fact that in every 21 22 case, the child-teachers were each associated with a same-age peer (3- vs. 5-year-old dyads), 23 hence a high variability in the teaching strategies collected. At least two other methodological 24 flaws limited these studies' scope: either the effects of the child-teachers' FB understanding 25 and age were probed concurrently (Davis-Unger & Carlson, 2008; Strauss et al., 2002; Ziv et

al., 2016), or only the age effect was examined, but it was interpreted in terms of ToM ability
 (Wood et al., 1995). It was therefore impossible to disentangle the specific effect of

FB/ignorance understanding on the development of teaching strategies.

3

4 To shed light on these mixed results concerning possible changes in teaching strategies 5 as a result of improvements in FB understanding, we investigated the three above-mentioned 6 strategies: conveying information, giving verbal explanations coupled with demonstrations, 7 and engaging in nonverbal demonstration/modelling. To address the three methodological 8 flaws, we studied child-teachers at 5 years, as this is the age when children start to 9 successfully perform FB tasks, but it is still possible to find some with low FB task scores. To 10 reduce dyadic variability, we paired these 5-year-old teachers with 3-year-old learners who 11 failed on FB tasks.

1.2. Efficiency of teaching strategies adopted by child-teachers with or without FB understanding

13 While authors have assessed gains resulting from tutoring among children (e.g., 14 Bensalah & Berzin, 2009), they have so far neglected the issue of teaching strategy efficiency 15 in terms of learners' performances, depending on whether the child-teacher has understood 16 FB. Several findings suggest that more efficient teaching strategies are adopted after FB 17 acquisition, but the question of strategy efficiency in child-teachers who cannot yet 18 successfully perform FB tasks has so far been tackled separately. Studies investigating 19 teaching strategies after FB acquisition have highlighted correlations between the FB scores 20 of 5-year-old child-teachers and both verbal explanation strategies (Strauss et al., 2002) and 21 the number of different teaching strategies used (Davis-Unger & Carlson, 2008). Given the 22 methodological limitations mentioned earlier, these sparse findings need to be further 23 documented, focusing on learners' performance.

Researchers have yet to explore the question of teaching strategy efficiency before
children have acquired mental states related to teaching, as measured with the usual FB tasks,

1 including ignorance questions. Although the findings described above suggest that children 2 without FB understanding do not adopt efficient teaching strategies, there is growing evidence 3 that this is not the case. Studies have shown that, from an early age, children experiment with 4 strategies, especially conveying information to unknowledgeable persons, and are also able to 5 attribute false belief to others in nonverbal implicit FB tasks, suggesting that their strategies 6 can be efficient. In line with authors arguing in favor of the early emergence of teaching 7 (Koster & Kartner, 2019; Strauss et al., 2002), studies examining the teaching strategies of 8 young children who are able to attribute FB to others in implicit FB tasks have shown that 9 children as young as 12 months are able to convey information to an unknowledgeable 10 person, pointing to the location of an object in order to inform an unknowing adult 11 (Liszkowski, Carpenter, Striano, & Tomasello, 2006). At 2 years, toddlers more often supply 12 information to a parent who does not know where a toy is than to a parent who does know 13 (O'Neill, 1996), and can spontaneously hand over an out-of-reach object to an adult 14 (Warneken & Tomasello, 2013). These findings are consistent with those yielded by an 15 ecological design (Verba, 1994), which showed that toddlers aged 18-24 months who have 16 mastered a specific activity spontaneously facilitate the activity of a child who has not yet 17 done so (e.g., handing the correct object to the partner, taking away an object that is hindering 18 the partner's activity). This early ability to convey information to an unknowledgeable person 19 continues to develop in preschoolers, who also start to display demonstration strategies. 20 Children aged 3; 6 years have been found to convey more explicit information about what 21 should or should not be done in a task than their younger counterparts aged 2;6 or 3 years do 22 (Ashley & Tomasello, 1998). They also more actively show learners how to perform the task. 23 These findings are supported in the recent literature on infants. For although the issue is still 24 subject to some debate (e.g., Allen, 2015), there is growing evidence that infants are able to 25 implicitly attribute FBs to others, as assessed with nonverbal FB tasks, before they can

1 successfully perform the usual explicit FB tasks (Baillargeon, Buttelmann, & Southgate, 2 2018; Scott & Baillargeon, 2014). As early as 15 months, infants can predict the action of an 3 actor on the basis of the latter's FB (Onishi & Baillargeon, 2005), and at 18 months, they 4 understand that an actor's FB can serve as the basis for their own helping behavior 5 (Buttelmann, Carpenter, & Tomasello, 2009) or can be corrected by appropriate 6 communication involving words and gestures (Song, Onishi, Baillargeon, & Fisher, 2008). 7 Toddlers aged 18-24 months can spontaneously inform an adult who falsely believes that a 8 toy is in a particular place (Knudsen & Liszkowski, 2012). During their third year of life, 9 children seem able to understand others' FBs, as measured both with implicit FB tasks (He, 10 Bolz, & Baillargeon, 2011) and with an adapted version of a classic verbal FB task (Rubio-11 Fernandez & Geurts, 2013). Taken together, these findings show that before 3 years, children 12 can already convey tuned information to an unknowledgeable person and exhibit an implicit 13 FB understanding. This suggests that after 3 years, both abilities continue to improve, 14 becoming more explicit, and therefore making the children's teaching strategies more 15 efficient.

16 To further document previous findings (Davis-Unger & Carlson, 2008; Strauss et al., 17 2002), we examined the effect of child-teachers' FB task success (including on ignorance 18 questions) on learners' performances. More specifically, to address the question of the 19 efficiency of teaching strategies implemented by child-teachers with or without successful FB 20 task performances, we explored whether teaching strategies can be identified as efficient in 21 terms of learners' performances. More specifically, we used learners' performances during the 22 tutoring session to gauge the immediate effect of teaching strategies, and scrutinized their 23 performances on a posttest in which they were asked to perform the task on their own. 24 First, to further extend the scant literature on the implications of FB and ignorance 25 understanding in a tutoring situation, we set out to shed light on previous mixed findings by

1 examining two groups of dyads in which 5-year-old child-teachers with either a low (FB-) or 2 a high (FB+) score on FB/ignorance tasks were each paired with a 3-year-old learner-child 3 without FB/ignorance understanding. We then looked at differences in teaching strategies 4 (conveying information, nonverbal demonstration/modelling, and verbal explanations coupled 5 with demonstrations) between the FB- and FB+ dyad groups. Second, we examined whether 6 learners performed better when they were associated with a child-teacher who had acquired 7 FB/ignorance understanding, rather than a child-teacher who had not. Third, we looked at 8 whether some teaching strategies were more closely linked to learners' performances in the 9 FB+ group that in the FB- group. Fourth and last, we controlled for the effect of the child-10 teachers' verbal abilities.

11 **2. Method**

12 2.1. Participants

We recruited 58 French preschoolers from a middle-class district of Reims (France). The majority of the children came from middle-class families. All their parents provided their written informed consent, in accordance with the Declaration of Helsinki. Six children were excluded, as they did not meet the matching criteria. The final sample therefore comprised 26 3-year-olds (12 girls, 14 boys; $M_{age} = 39$ months, range = 36-42 months) and 26 5-year-olds (12 girls, 14 boys; $M_{age} = 60$ months, range = 57-63 months).

19 *2.2. Materials*

Jigsaw task. We chose a jigsaw that would elicit both information-telling and
demonstrations, in order to elicit a range of instructional strategies among the preschoolers
(Bensalah, 2011). The jigsaw, representing a clown, was made up of 12 blocks that fitted
together and were painted on one side.

FB tasks. We administered three FB tasks to participants: two unexpected-content
tasks (Band-Aid box task including an ignorance test question; Bartsch & Wellman, 1989; and

Candies task; Perner et al., 1987) and a change-of-location task (Wimmer & Perner, 1983).
 French versions of all three had previously been used by Caillies and Le Sourn-Bissaoui
 (2008). The maximum overall score was 9.

4 Verbal tasks. We administered three subtests drawn from the Wechsler Preschool and 5 Primary Scale of Intelligence (WPPSI-III; Wechsler, 2004) to establish a composite verbal 6 score (CVS). The Receptive Vocabulary subtest assessed participants' knowledge of the 7 names of objects that might be involved in the task, such as the parts of the jigsaw or its 8 colors. The Verbal Reasoning subtest assessed their ability to infer words from verbal cues 9 and thence their ability to reason from verbal information, such as that provided by learners 10 about performing a task. The Information subtest appraised academic and cultural acquisition, 11 and included questions about everyday life, such as the bodily characteristics featured in our 12 clown jigsaw task (e.g., "How many ears do you have?").

13 2.3. Procedure

14 First, all the participants were individually pretested by an experimenter to see 15 whether they could complete the jigsaw. Second, we randomly administered the three FB 16 tasks to all the children, in order to form two groups of teachers and make sure that none of 17 the 3-year-olds understood FB. Third, we administered the verbal tasks to the 5-year-olds. 18 Fourth, we randomly paired the 5-year-old child-teachers with same-sex 3-year-old child-19 learners to obtain 12 dyads (i.e., seven girl dyads and five boy dyads) for the FBU+ group, 20 and 14 dyads (i.e., five girl dyads and nine boy dyads) for the FB- group, in order to 21 videotape a dyadic tutoring session.

22 Pretesting the jigsaw task. All the children were pretested with the jigsaw task. They
23 were shown the completed clown jigsaw by the experimenter, who turned it over so that they
24 could see it was only painted on one side. The experimenter then took the blocks apart and
25 jumbled them up. The children were given up to 5 minutes to put the jigsaw back together.

1 This period could be curtailed if the older children completed the jigsaw particularly quickly, 2 or if the younger children displayed a lack of interest in the task or showed signs of distress. All the 5-year-old children successfully completed the jigsaw, correctly positioning all 12 3 4 blocks before the 5 minutes were up. In order to verify the stability of their performances (see 5 Verba, 1998), we asked them to do the jigsaw three more times. All the 5-year-olds 6 successfully performed these three trials and were therefore considered sufficiently expert to 7 take on the teacher's role, while the 3-year-old children, none of whom correctly positioned 8 more than six blocks, were deemed to be learners.

9 FB tasks. The three FB tasks were administered to all the children in random order. In 10 the change-of-location story, the lion figurine of the original test (Caillies & Le Sourn-11 Bissaoui, 2008) was replaced with a dog figurine, but the rest of the task was the same. The 12 experimenter explained that Pierre has a plastic dog that he puts away in a box with a blue top 13 before going out. While he is out, his sister enters the room, takes the dog out and places it in 14 a box with a green top. Pierre comes back into the room and wants to play with his plastic 15 dog. We asked the children two test questions, followed by two control questions. The test 16 questions were: "Where will Pierre look for his plastic dog?" (Q1) and "Why will Pierre look 17 for his dog in (child's answer)?" (Q2). The control questions were: "Where did Pierre put his dog before going out?" and "Where is the dog really?" Each test question was scored 1 point, 18 19 with a maximum score of 2, providing the control questions were also answered correctly. 20 In the Band-Aid box task, the experimenter showed the children two boxes, one plain, 21 the other with a picture of Band-Aids on it. She asked the children to indicate the box 22 containing Band-Aids, and most of the children pointed to the labeled box. She then offered 23 to open both boxes, and they established that the labeled box was empty, whereas the plain

box contained Band-Aids. She closed the two boxes. The experimenter then produced two

dolls, named Camille and Hugo, that both needed Band-Aids because they had cut
 themselves, but did not know what was in the boxes.

3 Next, she asked four test questions. A prediction question (Q1: "Where will Camille 4 look for the Band-Aids first?") was followed by a control question ("Will she find the Band-5 Aids?"). The prediction question was scored 1 point, providing the control question was 6 answered correctly. Then came an explanatory test question (Q2: "Why should Hugo look in 7 this box [the box containing Band-Aids]?"), an ignorance test question (Q3: "Does Hugo 8 know where the Band-Aids are?"), and an explanatory test question (Q4: "What does Hugo 9 believe?"). These three questions were followed by a control question about the objects' 10 location: "Where are the Band-Aids?" Each correct answer to a test question was scored 1, 11 providing the children had correctly answered the control questions, with a maximum score of 12 4.

13 In the Candies task, the children were shown the contents of two boxes. One had a 14 picture of sweets on it but contained a pencil, while the other one was plain but contained 15 sweets. We asked the children a prediction test question about the time when they did not yet 16 know what the boxes contained (Q1: "What did you think the box contained before you saw 17 inside it?"). We then asked a prediction test question about a classmate who did not know about the boxes' contents (Q2: "What would a classmate expect to find in the boxes?"). This 18 19 was followed by an explanation test question (Q3: "Why would s/he think that there was 20 (previous response to Q2) in the box?"). The final question was a control question ("What is 21 in the box?"). Correct answers to the three test questions were each scored 1, providing the 22 control question was correctly answered, with a maximum score of 3.

Twenty-six 5-year-olds were allocated to one or other of the groups according to their FB scores. Those who scored 6-9 points on the three FB tests were included in the FB+ group (12 dyads), and those who scored 0-3 joined the FB- group (14 dyads). None of the 3-year-

1 olds scored more than 2 and were all randomly assigned to one or other of the dyad groups.

2 Six 5-year-olds scored 4 or 5 points and were excluded from the sample.

Verbal tasks. We administered the three different subtests, always in the same order, to
the 5-year-old children. The Information standard subscore ranged from 0 to 15, the
Receptive Vocabulary standard subscore from 0 to 15, and the Verbal Reasoning standard
subscore from 0 to 15. The maximum CVS ranged from 0 to 45.

Tutoring session. For each dyad, the 5-year-old child-teacher and 3-year-old learner
were placed side by side in front of the completed clown jigsaw so that the learner could see
the goal to be attained. The experimenter then said that one of them (name of the older child)
knew how to put the clown together and could teach the other one (name of the younger
child). The adult took the blocks apart and jumbled them up. The session was videotaped and
lasted as long as it took to complete the jigsaw. The duration of the sessions ranged from 80 to
364 seconds. The learner was then asked to do the jigsaw unaided in an immediate posttest.

14 *2.4. Measures*

15 2.4.1. Analysis of teaching strategies

16 The teaching strategies displayed by the child-teachers were divided into the three 17 categories identified in the Introduction: conveying information, engaging in nonverbal 18 demonstration/modelling, and giving verbal explanations coupled with demonstrations. These 19 three categories were intended to correspond to three forms of teaching displayed by child-20 teachers. The *conveying information* strategy was identified when the learner states were consistently monitored from a distance, and included both verbal and nonverbal modes. The 21 22 nonverbal demonstration/modelling strategy involved showing the learner how to do the 23 jigsaw by actually putting the blocks together. The intermediary category (verbal explanations 24 *coupled with demonstrations*) was a combination of the two preceding ones. These strategies, 25 which took the form of actions and verbalizations, were only taken into account if the learner

1 was watching the child-teacher at the time. Conveying information strategies were defined as 2 teaching behaviors that allowed the learner's activity to be monitored or followed from a 3 distance by the child-teacher (i.e., the latter did not actually do the jigsaw). This strategy 4 included monitoring the learner by *enrolment*, where the teacher attempted to direct the learner's attention to the task (e.g., "Can we begin?"), responses to the learner's questions 5 6 about performing the task (e.g., "Where do I put this block?" "It's the hand"), evaluation of 7 the learner's performance (e.g., "This block isn't in the right place"), offers of help to the 8 learner (e.g., "Do you want me to help you?"), verbal guidance (e.g., "You have to turn the 9 block round first"), nonverbal guidance of the learner's activity (e.g., pointing to the place 10 where a block picked up by the learner should go), and following the learner by *observing his* 11 or her activity (e.g., observing the learner's handling of the blocks). Nonverbal 12 *demonstration/modelling* strategies exclusively comprised the child-teacher's actions (e.g., 13 picking up and positioning the blocks to construct the jigsaw). Verbal explanations coupled 14 with demonstrations also included the child-teacher's actions, but this time combined with 15 verbalizations (e.g., "Look at this block, it belongs here", or "Not this block, I'll show you"). 16 As task duration and the number of behaviors varied across the dyads, we calculated the 17 amount of time taken up by each behavior in relation to the total duration of each dyad's 18 tutoring session. As in Ziv et al. (2016), in order to check that the behaviors had been 19 accurately identified in terms of teaching strategies, two judges coded five dyads' behaviors 20 (20% of videotapes): one Master's student who was trained to code behaviors according to the 21 categories, and one of the authors, who had not participated in the data collection. The coding 22 was based on transcripts of the videotapes. In the cases where a doubt persisted, the coders 23 consulted the video, and when two coders disagreed, a discussion generally led to agreement. 24 2.4.2. Learners' performances

Learners' performances were measured in terms of the number (0-12) of blocks that were correctly positioned during the tutoring session, in which learners were assisted by their child-teacher, and then in a posttest administered after the tutoring session, in which learners were given 5 minutes to do the clown jigsaw unaided, unless they displayed a lack of interest in the task or showed signs of distress before this time had elapsed.

6 **3. Results**

7 *3.1. Group differences and reliability*

8 Preliminary analyses did not reveal any significant difference between the two FB 9 groups on any of the following variables: teacher age ($M_{\text{FB-}} = 58.71 \text{ months}, M_{\text{FB+}} = 60$ 10 months), t(24) = 1.19, ns, learner age ($M_{FB-} = 38.93$ months, $M_{FB+} = 38.83$ months), t(24) = -1.1911 .12, ns, jigsaw pretest performances of the learners (all FB-), who were paired with either FB-12 or FB+ teachers (M_{FB} = 1.93, M_{FB} = 2.17), t(24) = .33, ns, jigsaw completion times (in 13 seconds) $(M_{\text{FB-}} = 200.29, M_{\text{FB+}} = 185.17), t(24) = -0.71, ns$, or length (in seconds) of the three 14 jigsaw completion trials (M_{FB} = 381.71, M_{FB} = 349.92), t(24) = -.93, ns. Furthermore, there 15 was no significant difference between the dyads on either mean videotape duration (172.79 s 16 for the FB- group vs. 215.83 s for the FB+ group), t(24) = 1.53, ns or teacher CVS ($M_{FB-} =$ 17 31.57, $M_{\text{FB+}} = 34.17$), t(24) = 1.34, p = .19, 95% CI [-2.12, -9.95]. To check that the behaviors 18 had been accurately identified in terms of teaching strategies, we used Cohen's kappa to 19 measure interrater reliability. For teaching strategies, overall agreement was 98.09% (range: 20 94.59-100%), yielding a kappa of .97.

21 3.2. Effects of FB success on teaching strategies

To explore how teaching strategies differed between the FB- and FB+ dyad groups, we conducted three analyses of covariance (ANCOVAs) on the proportion of time taken up by each type of teaching strategy used by the child-teachers (i.e., conveying information, 1 nonverbal demonstration/modelling, and verbal explanations coupled with demonstrations) as 2 a function of FB group, with CVS as the covariate. Results (see Fig. 1) revealed significantly 3 greater use of conveying information, $M_{\text{FB}-} = 33.89$, $M_{\text{FB}+} = 62.96$, F(1, 23) = 6.80, p < .02, 4 and verbal strategy coupled with demonstrations and $M_{\text{FB}-} = 1.17$, $M_{\text{FB}+} = 13.59$, F(1, 23) =5 11.99, p < .001, with FB task success.

6

Insert Figure 1 about here

7 3.3. Effects of child-teachers' FB success on learners' performances

8 To further document previous findings (Strauss et al., 2002) and examine the effect of 9 child-teachers' FB on learners' performances, we conducted an ANOVA on the mean numbers 10 of blocks correctly positioned by the learners during the tutoring session and at the posttest, 11 and an ANCOVA with CVS as the covariate. As illustrated in Table 1, results revealed 12 significant main effects of both FB group, F(1, 24) = 8.31, p = .01, and session (i.e., tutoring 13 session or posttest), F(1, 24) = 7.60, p < .01, but no significant interaction, F(1, 24) = 0.91, 14 ns. However, when CVS was introduced as a covariate, only the FB group effect remained significant, F(1, 23) = 5.97, p < .02. These results supported previous findings. 15 16 Insert Table 1 about here 17 3.4. Relationship between teaching strategies and learners' performances as a function of FB 18 group 19 To test the prediction that teaching strategies would be more efficient in the FB+ dyad group 20 than in the FB- dyad group, we calculated Pearson's correlation coefficients between each 21 type of teaching strategy and learners' performances as a function of FB dyad group. Results 22 (set out in Table 2) showed that when teachers scored highly on the FB tasks, their use of 23 conveying information strategies was positively and significantly correlated with learners' 24 tutoring session performances, while their use of verbal explanations coupled with 25 demonstrations strategies was negatively and significantly correlated with learners' tutoring

1	session performances. These results remained significant when language (CVS) was kept
2	constant (Table 3). When teachers scored poorly on the FB tasks, their use of conveying
3	information strategies was positively and significantly correlated with learners' performances,
4	not only during the tutoring session like the FB+ teachers, but also at the posttest. These
5	results remained significant when language (CVS) was kept constant. Moreover, results
6	revealed that for FB- teachers, verbal explanations coupled with demonstrations strategies
7	were not significantly linked to learners' performances, but when CVS was kept constant, this
8	link was positively and significantly correlated with learners' tutoring session performances.
9	These results suggest that whatever the child-teachers' FB level, their teaching strategies were
10	efficient enough for learners to perform well.
11	
12	Insert Table 2 about here
13	Insert Table 3 about here
14	
14 15	4. Discussion
	4. Discussion We conducted a novel investigation into the impact of FB/ignorance understanding, as
15	
15 16	We conducted a novel investigation into the impact of FB/ignorance understanding, as
15 16 17	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their
15 16 17 18	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to
15 16 17 18 19	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to clarify previous sparse but mixed literature findings and address methodological limitations of
15 16 17 18 19 20	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to clarify previous sparse but mixed literature findings and address methodological limitations of previous studies.
15 16 17 18 19 20 21	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to clarify previous sparse but mixed literature findings and address methodological limitations of previous studies. First, in order to probe how teaching strategies differed according to FB task success,
15 16 17 18 19 20 21 22	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to clarify previous sparse but mixed literature findings and address methodological limitations of previous studies. First, in order to probe how teaching strategies differed according to FB task success, we compared FB- and FB+ dyad groups on the use of three types of strategies. In line with
 15 16 17 18 19 20 21 22 23 	We conducted a novel investigation into the impact of FB/ignorance understanding, as measured by the usual tasks, on child-teachers in a tutoring situation, and specifically on their use of efficient teaching strategies. Before tackling this issue, we documented two points to clarify previous sparse but mixed literature findings and address methodological limitations of previous studies. First, in order to probe how teaching strategies differed according to FB task success, we compared FB- and FB+ dyad groups on the use of three types of strategies. In line with Davis-Unger and Carlson (2008)'s, Strauss et al. (2002)'s and Ziv et al. (2016)'s findings, our

1 al. (1995)'s study, however, the two FB groups did not differ significantly on 2 demonstration/modelling strategy use. Our results showed that child-teachers with FB or 3 ignorance understanding spend more time applying teaching strategies than FB- child-4 teachers did, and each strategy was adapted to specific teaching sequences (Davis-Unger & 5 Carlson, 2008). For instance, conveying information allowed the FB+ child-teachers in our 6 study to guide the learners from a distance and facilitate their handling of the blocks to 7 construct the jigsaw. Giving verbal explanations coupled with demonstrations provided an 8 alternative to the other types of strategies when, for instance, conveying information proved 9 to be inadequate. Once the learners had begun to grasp how to construct the jigsaw, the child-10 teachers could go back to using the conveying information strategies, as they were now better 11 adapted to the learners' needs. Moreover, while we cannot exclude the possibility that 12 demonstration/modelling was adapted to learners' needs, the fact that the two groups did not 13 differ significantly on this strategy, probably because of the low number of dyads in each 14 group, leads us to suggest that further studies would yield similar findings. 15 Second, to further document sparse findings (Davis-Unger & Carlson, 2008; Strauss et 16 al., 2002), we examined the effect of child-teachers' FB success on learners' performances 17 during the tutoring session and at the posttest. We found that the learners' performances 18 during the tutoring session and at posttest were better when their child-teachers had FB or 19 ignorance understanding, even when we controlled for CVS. This means that the impact of 20 child-teachers' FB or ignorance understanding can be both immediate and deferred, thus 21 doubly benefiting learners. The effect of child-teachers' FB task success on learners' 22 performances appeared to be substantial and instantaneous. Despite the small size of our 23 sample, we can cautiously suggest that these results generally confirm the impact of child-24 teachers' FB or ignorance understanding both on their strategy use and on learners' 25 performances.

1 However, our main goal was to test alternative hypotheses in terms of teaching 2 strategies and learners' performances. First, we hypothesized that teaching strategies are more 3 efficient in terms of learners' performances when child-teachers have achieved FB 4 understanding. However, we also assumed that before they reach this point, children's 5 teaching strategies are already efficient in terms of learners' performances, as a result of their 6 prior experience of teaching strategies and their early implicit FB understanding. 7 Furthermore, our study was designed to establish which teaching strategies (conveying 8 information, verbal explanations coupled with demonstrations, or demonstration/modelling) 9 are most efficient, depending on the child-teachers' FB or ignorance understanding. Results 10 showed that FB+ child-teachers' use of conveying information was positively linked to 11 learners' performances during the tutoring session, while their use of verbal explanations 12 coupled with demonstrations strategies was negatively linked to learners' performances 13 during the tutoring session when CVS was kept constant. This result suggests that the use of 14 conveying information strategies by child-teachers with FB or ignorance understanding 15 allows learners both to benefit from the teachers' information or guidance, and to gain direct 16 experience of performing the task. The fact that the child-teachers' use of verbal explanations 17 coupled with demonstrations strategies was negatively linked to learners' performances 18 during the tutoring session is not surprising, given that when they used these strategies, they 19 placed the blocks instead of the learner, thereby reducing the learners' performance during the 20 tutoring session. Although this may be an interesting alternative strategy for child-teachers, 21 particularly when learners have obvious difficulty placing the blocks, overuse of this strategy 22 may be counterproductive. Bearing in mind our small sample size, we cautiously suggest that 23 conveying information strategies allow learners to quickly gain in efficiency, even during the 24 tutoring session. These results also complement a previous study (Bensalah, 2011) showing 25 that child-teachers with FB understanding are more interested in learners' needs, by

1 suggesting that the use of these distant teaching strategies (Davis-Unger & Carlson, 2008; 2 Strauss et al., 2002) indicates that child-teachers who have acquired FB and ignorance 3 understanding are able to continually detect them in learners. It would be interesting for future 4 studies to dissociate the FB and ignorance measures, in order to confirm this interpretation. Nevertheless, our results showed that when the child-teachers had low FB scores, their 5 6 conveying information strategies were also positively correlated with learners' performances, 7 both during the tutoring session and at posttest, and that verbal explanations coupled with 8 demonstrations strategies were positively linked to learners' performances, but only during 9 the tutoring session, even when CVS was kept constant. This suggests that even when the 10 child-teachers failed on the FB tasks, the learners benefited from both types of strategies 11 during the tutoring session, and continued to benefit from conveying information strategies at 12 posttest. These results are consistent with the hypothesis whereby children acquire experience 13 of both conveying information (Ashley & Tomasello, 1998; Liszkowski et al., 2006; O'Neill, 14 1996; Verba, 1994; Warneken & Tomasello, 2013) and reading other people's minds before 15 the age of 4-5 years (Baillargeon et al., 2018; Buttelmann et al., 2009; He et al., 2011; 16 Knudsen & Liszkowski, 2012; Onishi & Baillargeon, 2005; Rubio-Fernandez & Geurts, 2013; 17 Scott & Baillargeon, 2014; Song et al., 2008). Nevertheless, the fact that verbal explanations 18 coupled with demonstrations strategies were positively linked to learners' performances in the 19 tutoring session when child-teachers had low FB scores, but negatively linked when child-20 teachers had high FB scores, suggests that beyond a certain threshold, this type of strategy is 21 counterproductive. Further studies may support this view. These results therefore indicated 22 that whatever the child-teachers' FB scores, all the learners seemed to make maximum use of 23 the conveying information strategies to perform the task in hand, whether or not they were 24 accompanied by verbal explanations coupled with demonstrations strategies. This suggests 25 that this type of strategy is efficient at a particularly early age, presumably as a result of

children's observation and/or experience of conveying information strategies displayed by
parents, siblings, and relatives in everyday life. Above all, however, the fact that more
teaching strategies were positively linked to learners' performances, and that one type
influenced performances both during and after the tutoring session, even when the childteachers had a low FB score, lessens the importance of child-teachers' FB or ignorance
understanding. Here again, however, these explanations will have to be further documented,
owing to the small size of our sample.

8 To conclude, in addition to supporting and extending previous findings (Bensalah, 9 2011; Davis-Unger & Carlson, 2008; Strauss et al., 2002; Wood et al., 1995), the main 10 contribution of our study is to highlight specific links between teaching strategies and 11 learners' performances in a tutoring situation, depending on whether the child-teachers have 12 acquired FB and ignorance understanding. Consistent with a growing number of findings in 13 young children (e.g., Warneken & Tomasello, 2013) and infants (e.g., Baillargeon et al., 14 2018), our study revealed an early, pre-FB/ignorance understanding ability to teach 15 efficiently, through the use of conveying information strategies and, to a less extent, verbal 16 explanations coupled with demonstrations. We also assessed the actual impact of acquiring 17 this ToM ability, highlighting a rapid but also limited gain in efficiency among learners as a 18 result of child-teachers using distant teaching strategies. These findings now need to be 19 confirmed by further studies with larger samples. Moreover, several other control measures 20 will have to be added in future studies, such as executive function assessments. In the 21 education field, our findings indicate that adult teachers should encourage pupils to engage in 22 tutoring situations, as these could be a good way of enabling learners to continue learning, at 23 least in this type of task, whatever the child-teachers' level of FB understanding. They 24 probably also tell us something about how child-teachers understand adult teachers in an

2	advocated by Strauss et al. (2012).
3	References
4	Allen, J. W. P. (2015). How to help: Can more active behavioral measures help transcend the
5	infant false-belief debate? New Ideas in Psychology, 39, 63-72.
6	http://dx.doi.org/10.1016/j.newideapsych.2015.07.008
7	Ashley, J., & Tomasello, M. (1998). Cooperative problem-solving and teaching in
8	preschoolers. Social Development, 7(2), 143-163. http://dx.doi.org/10.1111/1467-
9	9507.00059
10	Astington, J. (2003). Sometimes necessary, never sufficient: False belief understanding and
11	social competence. In B. Repacholi & V. Slaughter (Eds.), Individual differences in
12	theory of mind (pp. 13-38). New York: Psychology Press.
13	Baillargeon, R., Buttelmann, D., & Southgate, V. (2018). Invited commentary: Interpreting
14	failed replications of early false-belief findings: Methodological and theoretical
15	considerations. Cognitive Development, 46, 112-124.
16	https://doi.org/10.1016/j.cogdev.2018.06.001
17	Bartsch, K., & Wellman, H., M. (1989). Young children's attribution of action to beliefs and
18	desires. Child Development, 60, 946-964. https://doi.org/10.2307/1131035
19	Bensalah, L. (2011). The emergence of the teaching/learning process in preschoolers: Theory
20	of mind and age effect. Early Child Development and Care, 181, 505-516.
21	https://doi.org/10.1080/03004430903507191
22	Bensalah, L. & Berzin, C. (2009). Les bénéfices du tutorat entre enfants [The benefits of
23	tutoring between children]. L'Orientation Scolaire et Professionnelle, 38(3), 325-351.
24	https://doi.org/10.4000/osp.1959

educational setting, and how adults can adapt their teaching practices to preschoolers, as

1	Bensalah, L., Olivier, M., & Stefaniak, N. (2012). Acquisition of the concept of teaching and
2	its relationship with theory of mind in French 3- to 6-year olds. Teaching and Teacher
3	Education, 28, 303-311. https://doi.org/10.1016/j.tate.2011.10.008
4	Bensalah, L., & Stefaniak, N. (2014). Theory of mind, tutoring, and children teaching. In O.
5	N. Saracho (Ed.), Contemporary perspectives on research in theory of mind in early
6	childhood education (pp. 321–340). Charlotte, NC: Information Age Publishing.
7	Bidell, T. (1988). Vygotsky, Piaget and the dialectic of development. Human Development,
8	31, 329-345. https://doi.org/10.1159/000276332
9	Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University
10	Press.
11	Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show
12	false belief understanding in an active helping paradigm. Cognition, 112, 337–342.
13	http://dx.doi.org/10.1016/j.cognition.2009.05.006
14	Caillies, S., & Le Sourn-Bissaoui, S. (2008). Children's understanding of idioms and theory
15	of mind development. Developmental Science, 11, 703-711.
16	https://doi.org/10.1111/j.1467-7687.2008.00720.x
17	Cohen, P., A., Kulik, J., A., & Kulik, CL., C. (1982). Educational outcomes of tutoring: A
18	meta-analysis of findings. American Educational Research Journal, 19(2), 237-248.
19	https://doi.org/10.2307/1162567
20	Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13(4),
21	148-153. https://doi.org/10.1016/j.tics.2009.01.005
22	Davis-Unger, A., & Carlson, S. M. (2008). Development of teaching skills and relations to
23	theory of mind in preschoolers. Journal of Cognition and Development, 9, 26-45.
24	https://doi.org/10.1080/15248370701836584

1	Hartup, W. W. (1983). Peer relations. In E. M. Hetherington & P. H. Mussen (Eds.),
2	Handbook of child psychology: Socialization, personality and social development (pp.
3	103–196). New York: Wiley.
4	He, Z., Bolz, M., & Baillargeon, R. (2011). False-belief understanding in 2.5-year-olds:
5	Evidence from violation-of-expectation change-of-location and unexpected-contents
6	tasks. Developmental Science, 14(2), 292-305. http://dx.doi.org/10.1111/j.1467-
7	7687.2010.00980.x
8	Knudsen, B., & Liszkowski, U. (2012). 18-month-olds predict specific action mistakes
9	through attribution of false belief, not ignorance, and intervene accordingly. Infancy,
10	17(6), 672-691. http://dx.doi.org/10.1111/j.1532-7078.2011.00105.x
11	Koster, M., & Kartner, J. (2019). Why do infants help? A simple action reveals a complex
12	phenomenon. Developmental Review, 51, 175-187.
13	https://doi.org/10.1016/j.dr.2018.11.004
14	Kruger, A. C., & Tomasello, M. (1996). Cultural learning and learning culture. In D. Olson &
15	N. Torrance (Eds.), The handbook of human development and education (pp. 369-387).
16	Oxford: Blackwell.
17	LeBlanc, G., & Bearison, D. J. (2004). Teaching and learning as a bi-directional activity:
18	Investigating dyadic interactions between child teachers and child learners. Cognitive
19	Development, 19, 499-515. https://doi.org/10.1016/j.cogdev.2004.09.004
20	Liszkowski, U., Carpenter, M., Striano, T., & Tomasello, M. (2006). 12- and 18-month-olds
21	point to provide information for others. Journal of Cognition and Development, 7(2),
22	173-187. https://doi.org/10.1207/s15327647jcd0702_2
23	Miller, S., A. (2000). Children's understanding of preexisting differences in knowledge and
24	belief. Developmental Review, 20, 227-282. http://dx.doi.org/10.1006/drev.1999.0501

1	O'Neill, D. K. (1996). Two-year-old children's sensitivity to a parent's knowledge state when				
2	making requests. Child Development, 67, 659-677. https://doi.org/10.2307/1131839				
3	Onishi, K., H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs?				
4	Science, 308, 255-258. https://doi.org/10.1126/science.1107621				
5	Perner, J., Leekam, S. R., & Wimmer, H. (1987). Three-year-olds' difficulty with false belief:				
6	The case for a conceptual deficit. British Journal of Developmental Psychology, 5,				
7	125-137. https://doi.org/10.1111/j.2044-835X.1987.tb01048.x				
8	Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind?				
9	Behavioral and Brain Sciences, 4(4), 515-629.				
10	https://doi.org/10.1017/S0140525X00076512				
11	Rubio-Fernandez, P., & Geurts, B. (2013). How to pass the false-belief task before your				
12	fourth birthday. Psychological Science, 24(1), 27-33.				
13	http://dx.doi.org/10.1177/0956797612447819				
14	Scott, R., M., & Baillargeon, R. (2014). How fresh a look? A reply to Heyes. Developmental				
15	Science, 17(5), 660-664. http://dx.doi.org/10.1111/desc.12173				
16	Song, HJ., Onishi, K., H., Baillargeon, R., & Fisher, C. (2008). Can an agent's false belief				
17	be corrected by an appropriate communication? Psychological reasoning in 18-month-				
18	old infants. Cognition, 109, 295-315. http://dx.doi.org/10.1016/j.cognition.2008.08.008				
19	Strauss, S., Calero, C. I., & Sigman, M. (2014). Teaching, naturally. Trends in Neuroscience				
20	and Education, 3, 38-43. https://doi.org/10.1016/j.tine.2014.05.001				
21	Strauss, S., & Ziv, M. (2012). Teaching is a natural cognitive ability for humans. Mind, Brain,				
22	and Education, 6, 186-196. https://doi.org/10.1111/j.1751-228X.2012.01156.x				
23	Strauss, S., Ziv, M., & Stein, A. (2002). Teaching as a natural cognition and its relations to				
24	preschoolers' developing theory of mind. Cognitive Development, 17, 1473-1487.				
25	https://doi.org/10.1016/S0885-2014(02)00128-4				

1	Tudge, J., & Scrimsher, S. (2003). Lev S. Vygotsky on education: A cultural-historical,					
2	interpersonal, and individual approach to development. In B. J. Zimmerman & D. H.					
3	Schunk (Eds.), Educational psychology: A century of contributions (pp. 207–228).					
4	Mahwah, NJ: Lawrence Erlbaum Associates.					
5	Verba, M. (1994). Beginnings of collaboration in peer interaction. Human Development, 37,					
6	125-139. https://doi.org/10.1159/000278249					
7	Verba, M. (1998). Tutoring interactions between young children: How symmetry can modify					
8	asymmetrical interactions. International Journal of Behavioral Development, 22,					
9	195-216. https://doi.org/10.1080/016502598384577					
10	Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes.					
11	Cambridge, MA: Harvard University Press.					
12	Warneken, F., & Tomasello, M. (2013). The emergence of contingent reciprocity in young					
13	children. Journal of Experimental Child Psychology, 116, 338-350.					
14	http://dx.doi.org/10.1016/j.jecp.2013.06.002					
15	Wechlsler, D. (2004). Wechsler Preschool and Primary Scale of Intelligence: WPPSI III Paris:					
16	ECPA.					
17	Wellman, H. M., Fang, F., & Peterson, C. C. (2011). Sequential progressions in a theory-of-					
18	mind scale: Longitudinal perspectives. Child Development, 82, 780-792.					
19	https://doi.org/10.1111/j.1467-8624.2011.01583.x					
20	Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representations and constraining					
21	function of wrong beliefs in young children's understanding of deception. Cognition,					
22	13, 103-128. https://doi.org/10.1016/0010-0277(83)90004-5					
23	Wood, D., Wood, H., Ainsworth, S., & O'Malley, C. (1995). On becoming a tutor: Toward an					
24	ontogenetic model. Cognition and Instruction, 13, 565-581.					
25	https://doi.org/10.1207/s1532690xci1304_7					

- 1 Ziv, M., & Frye, D. (2004). Children's understanding of teaching: The role of knowledge and
- 2 belief. *Cognitive Development*, *19*, 457–477.
- 3 https://doi.org/10.1016/j.cogdev.2004.09.002
- 4 Ziv, M., Solomon, A., Strauss, S., & Frye, D. (2016). Relations between the development of
- 5 teaching and theory of mind in early childhood. Journal of Cognition and Development,
- 6 17(2), 264-284. https://doi.org/10.1080/15248372.2015.1048862

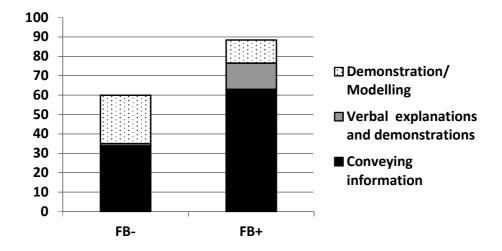


Figure 1 Time taken up by each type of teaching strategy in each type of dyad as a mean proportion of total time.

Table 1 Mean numbers (standard deviation) of blocks* correctly placed by the learners according to type of dyad and session

	FB-	FB+
Learners' performance	3.36 (3.54)	6.92 (3.20)
during tutoring session		
Learners' performance at	5.07 (3.20)	7.75 (1.36)
posttest		

* The jigsaw comprised 12 blocks.

Table 2 Pearson's correlation coefficients between each type of teaching strategy (mean proportion of total time) and the two measures of learner performance, according to the type of dyad group

	FB- group		FB+ group	
	Learners'	Learners'	Learners'	Learners'
	performance	performance at	performance	performance at
	during	posttest	during	posttest
	tutoring		tutoring	
	session		session	
Conveying Information	.79***	.73**	.75**	.34
Verbal Explanations and				
Demonstrations	.49	.35	64*	.06
Demonstration/Modelling	43	36	45	58

p < .05. ** p < .01. *** p < .001.

Table 3 Partial Pearson's correlation coefficients between each type of teaching strategy (mean proportion of total time) and the two measures of learner performance, according to the type of dyad group, keeping language (CVS) constant

	FB- group		FB+ group	
-	Learners'	Learners'	Learners'	Learners'
	performance	performance at	performance	performance at
	during	posttest	during	posttest
	tutoring		tutoring	
	session		session	
Conveying Information	.75**	.67*	.76**	.29
Verbal Explanations and				
Demonstrations	.69**	.55	72*	02
Demonstration/Modelling	35	27	45	54

 $*p \le .05. **p \le .01. ***p \le .001.$