INVARIANCE PRINCIPLES FOR CLOCKS

MARIA-EMILIA CABALLERO 1 AND ALAIN ROUAULT 2

ABSTRACT. We show an invariance principle for rescaled clocks of positive semi-stable Markov processes, proving a conjecture presented in Remark 4 in Demni, Rouault, Zani [11], 2015.

1. Introduction - PSSMP and OU

For $\alpha > 0$, a positive self-similar Markov process (pssMp) of index α , is a $[0, \infty)$ -valued strong Markov process (X, \mathbb{Q}_a) , a > 0 with càdlàg paths, fulfilling the scaling property

$$(\{bX_{b^{-\alpha_t}}, t \ge 0\}, \mathbb{Q}_a) \stackrel{(d)}{=} (\{X_t, t \ge 0\}, \mathbb{Q}_{ba})$$
(1.1)

for every a, b > 0.

The Lamperti transformation (see [17]) connects these processes to Lévy processes. Let us summarize this connection. We will follow the notations of [11].

Any pssMp X which never reaches the boundary state 0 may be expressed as the exponential of a Lévy process not drifting to $-\infty$, time changed by the inverse of its exponential functional. More formally, if $(X,(\mathbb{Q}_a)_{a>0})$ is a pssMp of index α which never reaches 0, set

$$T^{(X)}(t) = \int_0^t \frac{ds}{X_s^{\alpha}} , \ (t \ge 0)$$
 (1.2)

and let $A^{(X)}$ be its inverse, defined by

$$A^{(X)}(t) = \inf\{u \ge 0 : T^{(X)}(u) \ge t\}, \ (t \ge 0),$$
(1.3)

and let ξ be the process defined by

$$\xi_t = \log X_{A(X)(t)} - \log X_0 , \ (t \ge 0).$$
 (1.4)

Then, for every a > 0, the distribution of $(\xi_t, t \ge 0)$ under \mathbb{Q}_a does not depend on a and is the distribution of a Lévy process starting from 0.

Conversely, let $(\xi_t, t \geq 0)$ be a Lévy process starting from 0 and let \mathbb{P} and \mathbb{E} denote the underlying probability and expectation, respectively.

Fix $\alpha > 0$. Set

$$\mathcal{A}^{(\xi)}(t) = \int_0^t e^{\alpha \xi_s} ds. \tag{1.5}$$

Date: November 19, 2020.

 $^{^{1}}$ Instituto de Matemáticas, UNAM, Coyacáca
n04510, México DF, Mexique, email: marie@matem.unam.mx.

 $^{^2}$ Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035-Versailles Cedex France, e-mail: alain.rouault@uvsq.fr.

Here, we assume that ξ does not drift to $-\infty$ i.e. satisfies, $\limsup_{t\uparrow\infty} \xi_t = \infty$. The inverse process $\tau^{(\xi)}$ of $\mathcal{A}^{(\xi)}$ is

$$\tau^{(\xi)}(t) = \inf\{u \ge 0 : \mathcal{A}^{(\xi)}(u) \ge t\} , \ (t \ge 0) . \tag{1.6}$$

For every a > 0, let \mathbb{Q}_a be the law under \mathbb{P} of the time-changed process

$$X_t = a \exp \xi_{\tau^{(\xi)}(ta^{-\alpha})}, \ (t \ge 0),$$
 (1.7)

then $(X,(\mathbb{Q}_a)_{a>0})$ is a pssMp of index α which never reaches 0 and we have the fundamental relation

$$\tau^{(\xi)}(t) = T^{(X)}(tX_0^{\alpha}). \tag{1.8}$$

The process $(T^{(X)}(t), t \ge 0)$ is called the <u>clock</u> associated with the pssMp X. Some years ago, a particular interest was dedicated to the asymptotic behaviour of this process in long time ([24], [11]). To recall the Law of Large Numbers we need some notations.

Let ψ be the Laplace exponent of ξ , defined by

$$\mathbb{E}\exp(m\xi_t) = \exp(t\psi(m)), \qquad (1.9)$$

and set dom $\psi = \{m : \psi(m) < \infty\}$. We assume

$$0 \in \text{int dom } \psi \text{ and } p := \mathbb{E}\xi_1 = \psi'(0) > 0.$$
 (1.10)

Starting from a > 0 such a process X_t never hits 0. Nevertheless, a probability measure \mathbb{Q}_0 can be obtained as the weak limit of \mathbb{Q}_a when $a \downarrow 0$ and under \mathbb{Q}_0 the canonical process has the same transition semigroup as the one associated with $(X; (\mathbb{Q}_a)_{a>0})$. (see [3], [2], [7], [10], [20]). A sufficient condition is (1.10) plus

the support of
$$\xi$$
 is not arithmetic. (1.11)

This latter measure is an entrance law for the semigroup $p_t f(x) = \mathbb{E}_x f(X_t)$ and satisfies

$$\mathbb{Q}_0(f(X_t)) = \frac{1}{\alpha \mathbb{E}\xi_1} \mathbb{E}\left[I_{\infty}^{-1} f\left((t/I_{\infty})^{1/\alpha}\right)\right]$$
(1.12)

where

$$I_{\infty} = \int_{0}^{\infty} e^{-\alpha \xi_{s}} ds.$$

The Law of Large Numbers is the following.

Theorem 1.1 ([11] Th.1). Assume (1.10) and (1.11). As $t \to \infty$,

(1) For every a > 0,

$$\frac{1}{\log t} \int_0^t \frac{ds}{X_s^{\alpha}} \to (\alpha p)^{-1}, \quad \mathbb{Q}_a - a.s. \tag{1.13}$$

$$\frac{1}{\log t} \int_1^t \frac{ds}{X_s^{\alpha}} \to (\alpha p)^{-1}, \quad \mathbb{Q}_0 - a.s.$$
 (1.14)

In [11], the authors go on with the study of large deviations. A CLT for Bessel clocks was previously proved in Exercise X.3.20 in [22] and extended to an invariance principle in ([24]), using stochastic analysis. Following the result on LDP for clocks, a general CLT is conjectured in [11] Remark 4. In Section 2, we state an invariance principle (Functional CLT) for this kind of processes. proved in Section 3 and illustrated by examples in Section 4.

The main tool is the introduction of an ergodic process with nice asymptotic properties. With a pssMp (X_t) of index α , it is classical to associate a process called generalized Ornstein-Uhlenbeck (OU) by

$$U(t) = e^{-t/\alpha}X(e^t) \tag{1.15}$$

which is strictly stationary, Markovian, ergodic under \mathbb{Q}_0 , and its invariant measure is the law of X_1 under \mathbb{Q}_0 i.e.

$$\mu^{U}(f) = \frac{1}{\alpha \mathbb{E} \xi_{1}} \mathbb{E} \left[I_{\infty}^{-1} f \left(I_{\infty}^{-1/\alpha} \right) \right]. \tag{1.16}$$

The infinitesimal generators L^X and L^ξ are related by

$$L^X h(x) = x^{-\alpha} L^{\xi}(h \circ \exp)(\log x) \tag{1.17}$$

(see [9], [20]), and the generator of U is

$$L^{U}h(x) = L^{X}h(x) - \frac{x}{\alpha}h'(x)$$
 (1.18)

Two examples of function f are simple and particularly useful.

If $m \in \text{dom } \psi$ the function $x \mapsto \exp(mx)$ is in the domain of L^{ξ} , so that

$$f_m: x \mapsto x^m$$

is in the domain of L^X and we have

$$L^X f_m(x) = \psi(m) f_{m-\alpha}, \qquad (1.19)$$

so that

$$L^{U} f_{m} = \psi(m) f_{m-\alpha} - \alpha m f_{m} . \tag{1.20}$$

The function $\mathfrak{i}(x)=x$ is in the domain of L^{ξ} with $L^{\xi}\mathfrak{i}=p$. Formula (1.17) tells us that the function $\varphi(x)=\log x$ is in the domain of L^X and

$$L^{X}\varphi(x) = \frac{1}{r^{\alpha}}L^{\xi}i(\log x) = \frac{p}{r}, \qquad (1.21)$$

and owing to (1.18)

$$L^{U}\varphi(x) = \frac{p}{x^{\alpha}} - \frac{1}{\alpha}.$$
 (1.22)

Remark 1. There is a variant of U, defined by

$$\tilde{U}(t) = e^{-t/\alpha} X(e^t - 1)$$

which shares the same transition with U and begins at X(0) at t=0 ([1]).

Remark 2. If $(X, (\mathbb{Q}_a)_{a>0})$ is a pssMa of index α , then the process $Y = (X^{\alpha}, (\mathbb{Q}_{a^{\alpha}})_{a>0})$, is a pssMp of index 1. Conversely if $(Y, (\mathbb{Q}_a)_{a>0})$ is a pssMp if index 1 then, for any $\alpha > 0$, the process $(X = Y^{1/\alpha}, (\mathbb{Q}_{a^{1/\alpha}})_{a>0})$ is a pssMp of index α .

2. Main result

The following theorem states an invariance principle (or functional central limit theorem FCLT) under two regimes, \mathbb{Q}_0 and (under conditions) \mathbb{Q}_a , a > 0.

Theorem 2.1. (1) Under \mathbb{Q}_0 , as $T \to \infty$,

$$\left((\log T)^{-1/2} \left(\int_1^{T^t} \frac{dr}{X^{\alpha}(r)} - \frac{t \log T}{\alpha p} \right); t \ge 0 \right) \Rightarrow (vW(t); t \ge 0) . \tag{2.1}$$

where

$$v^2 = \frac{\sigma^2}{\alpha p^3}, \ \sigma^2 = \psi"(0).$$
 (2.2)

- (2) If one of the following conditions
 - (a) there exists m > 0 such that $\psi(m) < 0$
 - (b) there exists $m > \alpha$ such that $\psi(m) > 0$, is satisfied, then for every a > 0, under \mathbb{Q}_a , as $T \to \infty$, (2.1) holds true.

Remark 3. When the above criterion is not checked, the invariance principle holds true under \mathbb{Q}_a for almost every a (see Theorem 2.8 in [5]).

3. Proof of the main result

3.1. FCLT under the invariant measure. Observe that, owing to (1.15)

$$\int_{1}^{T^{t}} \frac{ds}{(X(s))^{\alpha}} - \frac{t \log T}{\alpha p} = \int_{0}^{t \log T} \left(\frac{1}{U(r)^{\alpha}} - \frac{1}{\alpha p}\right) dr \tag{3.1}$$

which reduces the problem to an invariance principle for a functional of the process U. We will use a classical result on weak convergence.

Theorem 3.1 (Bhattacharya Th. 2.1 [5]). Let (Y_t) be a measurable stationary ergodic process with an invariant probability π . If f is in the range \hat{A} of the extended generator of (Y_t) , then, as $n \to \infty$

$$\left(n^{-1/2} \int_0^{nt} f(Y_s) ds\right)_{t>0} \Rightarrow (\rho W(t))_{t\geq 0} \tag{3.2}$$

where

$$\rho^2 = -2 \int f(x)g(x)\pi(dx) , \ \hat{A}g = f.$$
 (3.3)

Owing to (1.22) we see that the pair (f, g) with

$$f(x) = \frac{1}{x^{\alpha}} - \frac{1}{\alpha p} , \ g(x) = \frac{1}{p} \log x ,$$
 (3.4)

satisfies

$$L^U q = f. (3.5)$$

Now the convergence in distribution comes from Th. 3.1 and formula (3.1), with

$$v^{2} = -2 \int f(x)g(x)\mu^{U}(dx)$$
 (3.6)

where μ^U is the invariant distribution of the process U.

It remains to compute the variance v^2 . From (1.16) and (3.6) we have

$$v^{2} = -2(\alpha p)^{-1} \mathbb{E} \left(I_{\infty}^{-1} f(I_{\infty}^{-1}) g(I_{\infty}^{-1}) \right)$$

$$= 2(\alpha p)^{-1} \mathbb{E} \left(I_{\infty}^{-1} \left(I_{\infty} - (\alpha p)^{-1} \right) p^{-1} \log I_{\infty} \right)$$

$$= 2(\alpha p)^{-2} \mathbb{E} \left(\log I_{\infty} - (\alpha p)^{-1} I_{\infty}^{-1} \log I_{\infty} \right). \tag{3.7}$$

The Mellin transform

$$M(z) = \mathbb{E}(I_{\infty}^{-z})$$

may play a prominent role, since

$$\mathbb{E}(\log I_{\infty}^{-1}) = M'(0) \; ; \; \mathbb{E}\left(I_{\infty}^{-1} \log I_{\infty}^{-1}\right) = M'(1) \; ,$$

so that

$$v^{2} = 2(\alpha p)^{-2} \left(-M'(0) + (\alpha p)^{-1} M'(1) \right). \tag{3.8}$$

We only know that M satisfies the recurrence equation

$$\psi(\alpha z)M(z) = zM(z+1). \tag{3.9}$$

(see [4] Th. 2 i) and Th. 3. and apply scaling). Differentiating twice the above formula gives

$$\alpha^2\psi''(\alpha z)M(z) + 2\alpha\psi'(\alpha z)M'(z) + \psi(\alpha z)M''(z) = 2M'(z+1) + zM''(z+1)$$

which, for z = 0, gives

$$\alpha^2 \psi''(0) + 2\alpha p M'(0) = 2M'(1)$$

and then

$$v^2 = \frac{\psi''(0)}{\alpha p^3} = \frac{\sigma^2}{\alpha p^3} \,. \tag{3.10}$$

This fits exactly with the conjecture in [11] Rem. 4.

3.2. Quenched FCLT. We want to show the FCLT under \mathbb{Q}_a for every a > 0.

Theorem 3.2 (Bhattacharya Th. 2.6 [5]). Let $(p_t)_{t\geq 0}$ be the semigroup of a Markov process (Y_t) . Assume that for every x, as $t\to\infty$

$$||p_t(x;\cdot) - \mu||_{var} \to 0$$
.

Then, with the notations of Theorem 3.1, the convergence (3.2) holds under P_x for every x.

Such a process is called positive recurrent. Moreover, the exponential ergodicity is defined by the existence of a finite function h and a constant γ such that for every x

$$||p_t(x,.) - \pi||_{var} \le h(x)e^{-\gamma t}$$
.

Let us first examine the possibility of a general criterion on the exponent ψ such that the assumptions of the latter theorem are fulfilled. A sufficient condition is given by the so-called Forster-Lyapounov drift criterion, due to [19]).

Theorem 3.3 (Wang Th. 2.1 [23]). Let L the generator of a Markov process Y_t ,

(1) If there exists a continuous function satisfying

$$\lim_{|x| \to \infty} f(x) = \infty \tag{3.11}$$

and constants $K > 0, C > 0, D \in (-\infty, \infty)$ such that

$$Lf \le -C + D1_{[-K,K]}$$
 (3.12)

then the process (Y_t) is positively recurrent.

(2) If there exists a continuous function satisfying (3.11) and constants $K > 0, C > 0, D \in (-\infty, \infty)$ such that

$$Lf \le -Cf + D1_{[-K,K]} \tag{3.13}$$

then the process (Y_t) is exponentially ergodic.

We want to check these criteria for our models, using the function f_m and (1.20).

- (1) When $0 < m < \alpha$ and $\psi(m) > 0$, $f_{m-\alpha}$ is not bounded in the neighbouring of 0, and then is not convenient.
- (2) Let us look for K, C, D in the other cases. For every $C \in (0, \alpha m)$, let us define

$$h_m = L^U f_m + C f_m = \psi(m) f_{m-\alpha} + (C - \alpha m) f_m.$$

- (a) If $\psi(m) < 0$, then $h_m \le 0$ and then for D = 0, (3.13) holds true for every K.
- (b) If $\psi(m) > 0$ and $m > \alpha$, then h_m is increasing for

$$0 < x < x_{\text{max}} = \left(\frac{(m - \alpha)\psi(m)}{m(m - \alpha C)}\right)^{1/\alpha}$$

and decreasing after. It is 0 for $x = x_0 = (\psi(m)/(m - \alpha C))^{1/\alpha} > x_m$. Then choose $K = \psi(m)/(m - C)$ and $D = h_m(x_m)$ and (3.13) holds true.

4. Examples

In this section, we consider examples taken from [11].

When the function ψ is rational, the distribution of I_{∞} may be found in [14]. Let us notice that in all these examples we compute the variance using the elementary formula

$$\psi''(0) = 2\frac{d}{dm} \frac{\psi(m)}{m} \big|_{m=0}.$$

4.1. **Brownian motion with drift.** This is also the Cox Ingersoll Ross model. Let us consider the Lévy process

$$\xi_t = 2B_t + 2\nu t \,,$$

where B_t is the standard linear Brownian motion and $\nu > 0$. In this case, X_t is the squared Bessel process of dimension $d = 2(1 + \nu)$. Its index is 1 and it is the only continuous pssMp (of index 1). We have

$$\psi(m) = 2m(m+\nu), \ p = 2\nu, \ \sigma^2 = 4, \ v^2 = (4\nu^3)^{-1},$$

Condition (3.13) of Th. 3.3 is satisfied (see(2) b) above), we have exponential ergodicity, the FCLT holds under \mathbb{Q}_a for every $a \geq 0$.

The invariant measure for U is easy to determinate, since

$$I_{\infty}^{-1} \stackrel{(d)}{=} 2\mathcal{Z}_{\nu}$$

where \mathcal{Z}_{ν} is gamma with parameter ν (see [3] (6)), so that

$$\mathbb{Q}_0(\varphi) = \frac{1}{\mathbb{E}\xi_1} \int_0^\infty y\varphi(y) \frac{y^{\nu-1}}{2^{\nu}} e^{-y/2} dy$$

which means that the invariant measure is the distribution of $2\mathcal{Z}_{\nu+1}$.

Remark 4. Actually it is proved in [18] Rem. 1.2 (2) that U is exponentially ergodic but not strongly ergodic, where strong ergodicity is defined by the existence of $\gamma > 0$ such that

$$\sup_{x} \|P_t(x,.) - \pi\|_{var} \le e^{-\gamma t}.$$

- 4.2. **Poissonian examples.** Let $Pois(a, b)_t$ be the compound Poisson process of parameter a whose jumps are exponential of parameter b. We will consider three models: $\xi_t = dt + Pois(a, b)_t$ with d > 0, $\xi_t = -t + Pois(a, b)_t$ and $\xi_t = t Pois(a, b)_t$.
- 4.2.1. $\xi_t = dt + Pois(a, b)_t$.

$$\psi(m) = m\left(d + \frac{a}{b-m}\right) \quad (m \in (-\infty, b)),$$

$$p = d + \frac{a}{b}$$
, $\sigma^2 = \frac{a}{b^2}$, $v^2 = \frac{ab^3}{a + db)^3}$.

4.2.2. $\xi_t = -t + \text{Pois}(a, b)_t \text{ with } b < a.$

$$\psi(m) = m\left(-1 + \frac{a}{b-m}\right) \quad (m \le b),$$

$$p = \frac{a-b}{b} , \ \sigma^2 = \frac{a}{b^2} , \ v^2 = \frac{ab}{(a-b)^3} .$$

When $\delta = d > 0$, $I_{\infty} \stackrel{(d)}{=} \alpha^{-1}B(1+b,a\alpha^{-1})$ where B(u,v) is the Beta distribution of parameters (u,v) (see [13] Th. 2.1 i)). The invariant measure is then the distribution of W^{-1} where $W \stackrel{(d)}{=} \alpha^{-1}B(b,a\alpha^{-1})$.

When $\delta = -1$, $I_{\infty} \stackrel{(d)}{=} B_2(1+b,a-b)$ (see [13] Th. 2.1 j)), where $B_2(u,v)$ is the Beta distribution of the second order of parameters (u,v). The invariant measure is then the $B_2(a-b+1,b)$ distribution.

4.2.3. $\xi_t = t - \text{Pois}(a, b_t)$ with b > a. It is the so called spectrally negative saw-tooth process.

$$\psi(m) = m \left(1 - \frac{a}{b+m} \right) , (m \in (-b, \infty)),$$
$$p = \frac{b-a}{b} , \sigma^2 = \frac{a}{b^2} , v^2 = \frac{ab}{(b-a)^3}.$$

We have $I_{\infty}^{-1} \stackrel{(d)}{=} B(b-a,a)$ (see [14] Th. 1), so that the invariant measure is B(b-a+1,a).

For examples 4.2.1 and 4.2.2, f_m is in the domain of the generator iff m < b; for example 4.2.3, f_m is always in the domain.

Looking at our above criterion, we see that we have the exponential ergodicity in the first two cases when b > 1, and completely for the third one.

4.3. Spectrally negative process conditioned to stay positive. For $\alpha \in (1,2)$, let X^{\uparrow} be the spectrally α -stable process conditioned to stay positive as defined in [6] Sect. 3.2. and [21] Sect. 3. Its corresponding Lévy process has Laplace exponent

$$\psi(m) = \frac{\Gamma(m+\alpha)}{\Gamma(m)}, (m \in (-\alpha, \infty)).$$

We have

$$p = \Gamma(\alpha)$$
, $\sigma^2 = 2(\Gamma'(\alpha) + \gamma\Gamma(\alpha))$

where $\gamma = -\Gamma'(1)$ is the Euler constant, and then

$$v^{2} = 2 \frac{\Gamma'(\alpha) + \gamma \Gamma(\alpha)}{\alpha \Gamma(\alpha)^{3}}.$$

Using (3.9) one sees directly that $M(z) = \Gamma(\alpha z + 1)/\Gamma(z + 1)$, so that $I_{\infty} \stackrel{(d)}{=} S_{1/\alpha}(1)$, the stable subordinator of index $1/\alpha$ evaluated at 1.

Condition (2) b) of Th. 2.1 is satisfied.

4.4. Hypergeometric stable process. The modulus of a Cauchy process in \mathbb{R}^d for d>1 is a 1-pssMp with infinite lifetime. The associated Lévy process is a particular case of hypergeometric stable process of index α as defined in [8], with $\alpha < d$. The characteristic exponent given therein by Th. 7 yields the Laplace exponent:

$$\psi(m) = -2^{\alpha} \frac{\Gamma((-m+\alpha)/2)}{\Gamma(-m/2)} \frac{\Gamma((m+d)/2)}{\Gamma((m+d-\alpha)/2)} , \quad (m \in (-d,\alpha)).$$

We have

$$p = 2^{\alpha - 1} \frac{\Gamma(\alpha/2) \Gamma(d/2)}{\Gamma(d - \alpha)/2)} \ , \ \sigma^2 = p \left[1 - \gamma - \Psi((d - \alpha)/2) - \Psi(\alpha/2) \right] \ ,$$

where Ψ is the Digamma function.

The distribution of the limiting variable I_{∞} is studied in [15] and [14].

Condition (2) b) of Th. 2.1 is never satisfied. Condition (2) a) can be satisfied if $\alpha > 2$, taking $m \in (2, \min(\alpha, 4))$ since $\Gamma(-m/2) > 0$ hence $\psi(m) < 0$.

4.5. Continuous State branching process with immigration (CBI). Let $\kappa \in [0,1)$ and $\delta > \kappa/(\kappa+1)$. Let X be the continuous state branching process with immigration ([16] Sec. 13.5) whose branching mechanism is

$$\phi(\lambda) = \frac{1}{\kappa} \lambda^{\kappa + 1}$$

and immigration mechanism is

$$\chi(\lambda) = \delta \phi'(\lambda)$$
.

We have the representation

$$\phi(\lambda) = \int_0^\infty (e^{-\lambda z} - 1 + \lambda z) \mu(dz) , \mu(dz) = \frac{\kappa + 1}{\Gamma(1 - \kappa)} \frac{dz}{z^{\kappa + 2}} .$$

This process is self-similar of index κ (see [21], lemma 4.8)¹ and the corresponding Laplace exponent is

$$\psi(m) = c(\kappa - (\kappa + 1)\delta - m)\frac{\Gamma(-m + \kappa)}{\Gamma(-m)}, \ (m \in (-\infty, \kappa))$$

and

$$p = c((\kappa + 1)\delta - \kappa)\Gamma(\kappa) > 0 , \ \sigma^2 = c(\Gamma(\kappa) + (\kappa - (\kappa + 1)\delta)(\Gamma'(\kappa) + \gamma\Gamma(\kappa))$$
$$v^2 = \frac{\sigma^2}{\kappa n^3} . \tag{4.1}$$

We can then apply Th. 2.1(1) and conclude that under \mathbb{Q}_0 , as $T \to \infty$

$$\left((\log T)^{-1/2} \left(\int_1^{T^t} \frac{dr}{X^{\kappa}(r)} - \frac{t \log T}{\kappa p} \right); t \ge 0 \right) \Rightarrow (vW(t); t \ge 0). \tag{4.2}$$

The entrance law is given in Remark 4.9 (2) in [21]. Let us notice that the case $\delta = 1$ corresponds to a critical continuous state branching process conditioned never to be extinct as mentioned in Remark 4.9 (1) in [21].

Now, to get an invariance principle under \mathbb{Q}_a for a > 0, we have a problem since we cannot choose m such that f_m satisfies (3.12). Nevertheless there is another way to get an invariance principle under \mathbb{Q}_a for a > 0.

We introduce the OU process defined by

$$\widetilde{U}(t) := e^{-\kappa^{-1}t} X\left(e^t - 1\right) \tag{4.3}$$

which is a CBI with immigration mechanism χ and branching mechanism

$$\widetilde{\phi}(\lambda) = \phi(\lambda) + \kappa^{-1}\lambda$$

(see [21] section 5.1). Let us stress that it is not stationary. We observe that

$$\int_{1}^{\infty} \log z \ \mu(dz) < \infty \,,$$

so that applying [12] Th. 7.7 and Cor. 5.10, we conclude that \tilde{U} is exponentially ergodic and the convergence (3.2) holds under the conditions (3.3).

Pushing forward this result to the process X we obtain the following Proposition which is an invariance principle for the clock of CBI.

Proposition 4.1. For a > 0, under \mathbb{Q}_a as $T \to \infty$,

$$\left((\log T)^{-1/2} \left(\int_0^{T^t - 1} \frac{dr}{X^{\kappa}(r)} - \frac{t \log T}{\kappa p} \right); t \ge 0 \right) \Rightarrow (vW(t); t \ge 0). \tag{4.4}$$

Remark 5. In [12] Cor. 5.10, the authors mentioned that if one starts from a general test function, it is unlikely to find an explicit formula for the asymptotic variance in terms of its admissible parameters, except when $f(x) = \exp(\lambda x)$. Our result provides one more example, $f(x) = x^{-\kappa} - (\kappa p)^{-1}$ of a test function with explicit asymptotic variance.

Aknowledgment. This paper was written during a stay of the second author to UNAM during December 2019. He thanks the probability team for its warm hospitality.

¹Beware, our ϕ is $-\varphi$ therein

References

- J. Bertoin. Ergodic aspects of some Ornstein-Uhlenbeck type processes related to Lévy processes. Stochastic Processes Appl., 129(4):1443-1454, 2019.
- [2] J. Bertoin and M.E. Caballero. Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli, 8(2):195–205, 2002.
- [3] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. *Potential Anal.*, 17(4):389–400, 2002.
- [4] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv., 2:191–212, 2005.
- [5] R.N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete, 60(2):185–201, 1982.
- [6] M.E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. J. Appl. Probab., 43(4):967–983, 2006.
- [7] M.E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of lévy processes. Ann. Probab., 34(3):1012–1034, 2006.
- [8] M.E. Caballero, J.C. Pardo, and J.L. Pérez. Explicit identities for Lévy processes associated to symmetric stable processes. *Bernoulli*, 17(1):34–59, 2011.
- [9] Ph. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for exponential functionals of Lévy processes. In *Exponential functionals and principal values related to Brownian motion*, pages 73–130. Bibl. Rev. Mat. Iberoam., 1997.
- [10] L. Chaumont, A. Kyprianou, J.C. Pardo, and V. Rivero. Fluctuation theory and exit systems for positive self-similar Markov processes. Ann. Prob., 40(1):245–279, 2012.
- [11] N. Demni, A. Rouault, and M. Zani. Large deviations for clocks of self-similar processes. In In Memoriam Marc Yor-Séminaire de Probabilités XLVII, pages 443–466. Springer, 2015.
- [12] M. Friesen, P. Jin, J. Kremer, and B. Rüdiger. Exponential ergodicity for stochastic equations of nonnegative processes with jumps. arXiv preprint arXiv:1902.02833, 2019.
- [13] H. K Gjessing and J. Paulsen. Present value distributions with applications to ruin theory and stochastic equations. Stochastic Processes Appl., 71(1):123–144, 1997.
- [14] A. Kuznetsov. On the distribution of exponential functionals for Lévy processes with jumps of rational transform. Stochastic Processes Appl., 122(2):654–663, 2012.
- [15] A. Kuznetsov and J. C. Pardo. Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math., 123(1):113–139, 2013.
- [16] A.E. Kyprianou. Fluctuations of Lévy processes with applications. Universitext. Springer, Heidelberg, second edition, 2014. Introductory lectures.
- [17] J. Lamperti. Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22:205–225, 1972.
- [18] P.-S. Li and J. Wang. Exponential ergodicity for general continuous-state nonlinear branching processes. *Electron. J. Probab.*, 25, 2020.
- [19] S.P. Meyn and R.L. Tweedie. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab., 25(3):518-548, 1993.
- [20] J.C. Pardo and V. Rivero. Self-similar Markov processes. Bol. Soc. Mat. Mexicana (3), 19(2):201–235, 2013.
- [21] P. Patie. Exponential functional of a new family of Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math., 133(4):355–382, 2009.
- [22] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag. Berlin, third edition, 1999.
- [23] J. Wang. Criteria for ergodicity of Lévy type operators in dimension one. Stochastic Processes Appl., 118(10):1909–1928, 2008.
- [24] M. Yor and M. Zani. Large deviations for the Bessel clock. Bernoulli, 7:351–362, 2001.