
INVARIANCE PRINCIPLES FOR CLOCKS

MARIA-EMILIA CABALLERO1 AND ALAIN ROUAULT2

Abstract. We show an invariance principle for rescaled clocks of positive
semi-stable Markov processes, proving a conjecture presented in Remark 4 in

Demni, Rouault, Zani [11], 2015.

1. Introduction - pssMp and OU

For α > 0, a positive self-similar Markov process (pssMp) of index α, is a [0,∞)-
valued strong Markov process (X,Qa), a > 0 with càdlàg paths, fulfilling the scaling
property

({bXb−αt, t ≥ 0},Qa)
(d)
= ({Xt, t ≥ 0},Qba) (1.1)

for every a, b > 0.
The Lamperti transformation (see [17]) connects these processes to Lévy pro-

cesses. Let us summarize this connection. We will follow the notations of [11].
Any pssMp X which never reaches the boundary state 0 may be expressed as

the exponential of a Lévy process not drifting to −∞, time changed by the inverse
of its exponential functional. More formally, if (X, (Qa)a>0) is a pssMp of index α
which never reaches 0, set

T (X)(t) =

∫ t

0

ds

Xα
s

, (t ≥ 0) (1.2)

and let A(X) be its inverse, defined by

A(X)(t) = inf{u ≥ 0 : T (X)(u) ≥ t} , (t ≥ 0) , (1.3)

and let ξ be the process defined by

ξt = logXA(X)(t) − logX0 , (t ≥ 0) . (1.4)

Then, for every a > 0, the distribution of (ξt, t ≥ 0) under Qa does not depend on
a and is the distribution of a Lévy process starting from 0.

Conversely, let (ξt, t ≥ 0) be a Lévy process starting from 0 and let P and E
denote the underlying probability and expectation, respectively.

Fix α > 0. Set

A(ξ)(t) =

∫ t

0

eαξsds . (1.5)

Date: November 19, 2020.
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Here, we assume that ξ does not drift to −∞ i.e. satisfies, lim supt↑∞ ξt =∞. The

inverse process τ (ξ) of A(ξ) is

τ (ξ)(t) = inf{u ≥ 0 : A(ξ)(u) ≥ t} , (t ≥ 0) . (1.6)

For every a > 0, let Qa be the law under P of the time-changed process

Xt = a exp ξτ(ξ)(ta−α) , (t ≥ 0) , (1.7)

then (X, (Qa)a>0) is a pssMp of index α which never reaches 0 and we have the
fundamental relation

τ (ξ)(t) = T (X)(tXα
0 ) . (1.8)

The process (T (X)(t), t ≥ 0) is called the clock associated with the pssMp X.
Some years ago, a particular interest was dedicated to the asymptotic behaviour of
this process in long time ([24], [11]). To recall the Law of Large Numbers we need
some notations.

Let ψ be the Laplace exponent of ξ, defined by

E exp(mξt) = exp(tψ(m)) , (1.9)

and set dom ψ = {m : ψ(m) <∞}. We assume

0 ∈ int dom ψ and p := Eξ1 = ψ′(0) > 0 . (1.10)

Starting from a > 0 such a process Xt never hits 0. Nevertheless, a probability
measure Q0 can be obtained as the weak limit of Qa when a ↓ 0 and under Q0

the canonical process has the same transition semigroup as the one associated with
(X; (Qa)a>0. (see [3], [2], [7], [10], [20]). A sufficient condition is (1.10) plus

the support of ξ is not arithmetic . (1.11)

This latter measure is an entrance law for the semigroup ptf(x) = Exf(Xt) and
satisfies

Q0(f(Xt)) =
1

αEξ1
E
[
I−1∞ f

(
(t/I∞)1/α

)]
(1.12)

where

I∞ =

∫ ∞
0

e−αξsds .

The Law of Large Numbers is the following.

Theorem 1.1 ([11] Th.1). Assume (1.10) and (1.11). As t→∞,

(1) For every a > 0,

1

log t

∫ t

0

ds

Xα
s

→ (αp)−1 , Qa − a.s. (1.13)

(2)

1

log t

∫ t

1

ds

Xα
s

→ (αp)−1 , Q0 − a.s. (1.14)

In [11], the authors go on with the study of large deviations. A CLT for Bessel
clocks was previously proved in Exercise X.3.20 in [22] and extended to an invariance
principle in ([24]), using stochastic analysis. Following the result on LDP for clocks,
a general CLT is conjectured in [11] Remark 4. In Section 2, we state an invariance
principle (Functional CLT) for this kind of processes. proved in Section 3 and
illustrated by examples in Section 4.
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The main tool is the introduction of an ergodic process with nice asymptotic
properties. With a pssMp (Xt) of index α, it is classical to associate a process
called generalized Ornstein-Uhlenbeck (OU) by

U(t) = e−t/αX(et) (1.15)

which is strictly stationary, Markovian, ergodic under Q0, and its invariant measure
is the law of X1 under Q0 i.e.

µU (f) =
1

αEξ1
E
[
I−1∞ f

(
I−1/α∞

)]
. (1.16)

The infinitesimal generators LX and Lξ are related by

LXh(x) = x−αLξ(h ◦ exp)(log x) (1.17)

(see [9], [20]), and the generator of U is

LUh(x) = LXh(x)− x

α
h′(x) . (1.18)

Two examples of function f are simple and particularly useful.
If m ∈ dom ψ the function x 7→ exp(mx) is in the domain of Lξ , so that

fm : x 7→ xm ,

is in the domain of LX and we have

LXfm(x) = ψ(m)fm−α , (1.19)

so that

LUfm = ψ(m)fm−α − αmfm . (1.20)

The function i(x) = x is in the domain of Lξ with Lξi = p. Formula (1.17) tells us
that the function ϕ(x) = log x is in the domain of LX and

LXϕ(x) =
1

xα
Lξi (log x) =

p

x
, (1.21)

and owing to (1.18)

LUϕ(x) =
p

xα
− 1

α
. (1.22)

Remark 1. There is a variant of U , defined by

Ũ(t) = e−t/αX(et − 1)

which shares the same transition with U and begins at X(0) at t = 0 ([1]).

Remark 2. If (X, (Qa)a>0) is a pssMa of index α, then the process Y = (Xα, (Qaα)a>0),
is a pssMp of index 1. Conversely if (Y, (Qa)a>0) is a pssMp if index 1 then, for
any α > 0, the process (X = Y 1/α, (Qa1/α)a>0) is a pssMp of index α.



4 M-E. CABALLERO AND A. ROUAULT

2. Main result

The following theorem states an invariance principle ( or functional central limit
theorem FCLT) under two regimes, Q0 and (under conditions) Qa, a > 0.

Theorem 2.1. (1) Under Q0, as T →∞,(
(log T )−1/2

(∫ T t

1

dr

Xα(r)
− t log T

αp

)
; t ≥ 0

)
⇒ (vW (t); t ≥ 0) . (2.1)

where

v2 =
σ2

αp3
, σ2 = ψ”(0) . (2.2)

(2) If one of the following conditions
(a) there exists m > 0 such that ψ(m) < 0
(b) there exists m > α such that ψ(m) > 0,

is satisfied, then for every a > 0, under Qa, as T →∞, (2.1) holds true.

Remark 3. When the above criterion is not checked, the invariance principle holds
true under Qa for almost every a (see Theorem 2.8 in [5] ).

3. Proof of the main result

3.1. FCLT under the invariant measure. Observe that, owing to (1.15)∫ T t

1

ds

(X(s))α
− t log T

αp
=

∫ t log T

0

(
1

U(r)α
− 1

αp

)
dr (3.1)

which reduces the problem to an invariance principle for a functional of the process
U . We will use a classical result on weak convergence.

Theorem 3.1 (Bhattacharya Th. 2.1 [5]). Let (Yt) be a measurable stationary

ergodic process with an invariant probability π. If f is in the range Â of the extended
generator of (Yt), then, as n→∞(

n−1/2
∫ nt

0

f(Ys)ds

)
t≥0
⇒ (ρW (t))t≥0 (3.2)

where

ρ2 = −2

∫
f(x)g(x)π(dx) , Âg = f . (3.3)

Owing to (1.22) we see that the pair (f, g) with

f(x) =
1

xα
− 1

αp
, g(x) =

1

p
log x , (3.4)

satisfies

LUg = f . (3.5)

Now the convergence in distribution comes from Th. 3.1 and formula (3.1), with

v2 = −2

∫
f(x)g(x)µU (dx) (3.6)

where µU is the invariant distribution of the process U .
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It remains to compute the variance v2. From (1.16) and (3.6) we have

v2 = −2(αp)−1E
(
I−1∞ f(I−1∞ )g(I−1∞ )

)
= 2(αp)−1E

(
I−1∞

(
I∞ − (αp)−1

)
p−1 log I∞

)
= 2(αp)−2E

(
log I∞ − (αp)−1I−1∞ log I∞

)
. (3.7)

The Mellin transform

M(z) = E(I−z∞ )

may play a prominent role, since

E(log I−1∞ ) = M ′(0) ; E
(
I−1∞ log I−1∞

)
= M ′(1) ,

so that

v2 = 2(αp)−2
(
−M ′(0) + (αp)−1M ′(1)

)
. (3.8)

We only know that M satisfies the recurrence equation

ψ(αz)M(z) = zM(z + 1) . (3.9)

(see [4] Th. 2 i) and Th. 3. and apply scaling). Differentiating twice the above
formula gives

α2ψ′′(αz)M(z) + 2αψ′(αz)M ′(z) + ψ(αz)M ′′(z) = 2M ′(z + 1) + zM ′′(z + 1)

which, for z = 0, gives

α2ψ′′(0) + 2αpM ′(0) = 2M ′(1)

and then

v2 =
ψ′′(0)

αp3
=

σ2

αp3
. (3.10)

This fits exactly with the conjecture in [11] Rem. 4.

3.2. Quenched FCLT. We want to show the FCLT under Qa for every a > 0.

Theorem 3.2 (Bhattacharya Th. 2.6 [5]). Let (pt)t≥0 be the semigroup of a Markov
process (Yt). Assume that for every x, as t→∞

‖pt(x; ·)− µ‖var → 0 .

Then, with the notations of Theorem 3.1, the convergence (3.2) holds under Px for
every x.

Such a process is called positive recurrent. Moreover, the exponential ergodicity
is defined by the existence of a finite function h and a constant γ such that for
every x

‖pt(x, .)− π‖var ≤ h(x)e−γt .

Let us first examine the possibility of a general criterion on the exponent ψ such
that the assumptions of the latter theorem are fulfilled. A sufficient condition is
given by the so-called Forster-Lyapounov drift criterion, due to [19]).

Theorem 3.3 (Wang Th. 2.1 [23]). Let L the generator of a Markov process Yt,
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(1) If there exists a continuous function satisfying

lim
|x|→∞

f(x) =∞ (3.11)

and constants K > 0, C > 0, D ∈ (−∞,∞) such that

Lf ≤ −C +D1[−K,K] (3.12)

then the process (Yt) is positively recurrent.
(2) If there exists a continuous function satisfying (3.11) and constants K >

0, C > 0, D ∈ (−∞,∞) such that

Lf ≤ −Cf +D1[−K,K] (3.13)

then the process (Yt) is exponentially ergodic.

We want to check these criteria for our models, using the function fm and (1.20).

(1) When 0 < m < α and ψ(m) > 0, fm−α is not bounded in the neighbouring
of 0, and then is not convenient.

(2) Let us look for K,C,D in the other cases. For every C ∈ (0, αm), let us
define

hm = LUfm + Cfm = ψ(m)fm−α + (C − αm)fm .

(a) If ψ(m) < 0, then hm ≤ 0 and then for D = 0, (3.13) holds true for
every K.

(b) If ψ(m) > 0 and m > α, then hm is increasing for

0 < x < xmax =

(
(m− α)ψ(m)

m(m− αC)

)1/α

and decreasing after. It is 0 for x = x0 = (ψ(m)/(m− αC))
1/α

> xm.
Then choose K = ψ(m)/(m − C) and D = hm(xm) and (3.13) holds
true.

4. Examples

In this section, we consider examples taken from [11].
When the function ψ is rational, the distribution of I∞ may be found in [14]. Let

us notice that in all these examples we compute the variance using the elementary
formula

ψ′′(0) = 2
d

dm

ψ(m)

m

∣∣
m=0

.

4.1. Brownian motion with drift. This is also the Cox Ingersoll Ross model.
Let us consider the Lévy process

ξt = 2Bt + 2νt ,

where Bt is the standard linear Brownian motion and ν > 0. In this case, Xt is the
squared Bessel process of dimension d = 2(1 + ν). Its index is 1 and it is the only
continuous pssMp (of index 1). We have

ψ(m) = 2m(m+ ν), p = 2ν, σ2 = 4 , v2 = (4ν3)−1, .

Condition (3.13) of Th. 3.3 is satisfied (see(2) b) above), we have exponential
ergodicity, the FCLT holds under Qa for every a ≥ 0.
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The invariant measure for U is easy to determinate, since

I−1∞
(d)
= 2Zν

where Zν is gamma with parameter ν (see [3] (6)), so that

Q0(ϕ) =
1

Eξ1

∫ ∞
0

yϕ(y)
yν−1

2ν
e−y/2dy

which means that the invariant measure is the distribution of 2Zν+1.

Remark 4. Actually it is proved in [18] Rem. 1.2 (2) that U is exponentially ergodic
but not strongly ergodic, where strong ergodicity is defined by the existence of γ > 0
such that

sup
x
‖Pt(x, .)− π‖var ≤ e−γt .

4.2. Poissonian examples. Let Pois(a, b)t be the compound Poisson process of
parameter a whose jumps are exponential of parameter b. We will consider three
models : ξt = dt+Pois(a, b)t with d > 0, ξt = −t+Pois(a, b)t and ξt = t−Pois(a, b)t.

4.2.1. ξt = dt+ Pois(a, b)t.

ψ(m) = m

(
d +

a

b−m

)
(m ∈ (−∞, b)) ,

p = d +
a

b
, σ2 =

a

b2
, v2 =

ab3

a+ db)3
.

4.2.2. ξt = −t+ Pois(a, b)t with b < a.

ψ(m) = m

(
−1 +

a

b−m

)
(m ≤ b) ,

p =
a− b
b

, σ2 =
a

b2
, v2 =

ab

(a− b)3
.

When δ = d > 0, I∞
(d)
= α−1B(1 + b, aα−1) where B(u, v) is the Beta distribu-

tion of parameters (u, v) (see [13] Th. 2.1 i)). The invariant measure is then the

distribution of W−1 where W
(d)
= α−1B(b, aα−1).

When δ = −1, I∞
(d)
= B2(1 + b, a− b) (see [13] Th. 2.1 j)), where B2(u, v) is the

Beta distribution of the second order of parameters (u, v). The invariant measure
is then the B2(a− b+ 1, b) distribution.

4.2.3. ξt = t−Pois(a, bt) with b > a. It is the so called spectrally negative saw-tooth
process.

ψ(m) = m

(
1− a

b+m

)
, (m ∈ (−b,∞)) ,

p =
b− a
b

, σ2 =
a

b2
, v2 =

ab

(b− a)3
.

We have I−1∞
(d)
= B(b − a, a) (see [14] Th. 1), so that the invariant measure is

B(b− a+ 1, a).

For examples 4.2.1 and 4.2.2, fm is in the domain of the generator iff m < b; for
example 4.2.3 , fm is always in the domain.
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Looking at our above criterion, we see that we have the exponential ergodicity
in the first two cases when b > 1, and completely for the third one.

4.3. Spectrally negative process conditioned to stay positive. For α ∈
(1, 2), let X↑ be the spectrally α-stable process conditioned to stay positive as
defined in [6] Sect. 3.2. and [21] Sect. 3. Its corresponding Lévy process has
Laplace exponent

ψ(m) =
Γ(m+ α)

Γ(m)
, (m ∈ (−α,∞)) .

We have

p = Γ(α) , σ2 = 2 (Γ′(α) + γΓ(α))

where γ = −Γ′(1) is the Euler constant, and then

v2 = 2
Γ′(α) + γΓ(α)

αΓ(α)3
.

Using (3.9) one sees directly that M(z) = Γ(αz+1)/Γ(z+1), so that I∞
(d)
= S1/α(1),

the stable subordinator of index 1/α evaluated at 1.
Condition (2) b) of Th. 2.1 is satisfied.

4.4. Hypergeometric stable process. The modulus of a Cauchy process in Rd
for d > 1 is a 1-pssMp with infinite lifetime. The associated Lévy process is a
particular case of hypergeometric stable process of index α as defined in [8], with
α < d. The characteristic exponent given therein by Th. 7 yields the Laplace
exponent :

ψ(m) = −2α
Γ((−m+ α)/2)

Γ(−m/2)

Γ((m+ d)/2)

Γ((m+ d− α)/2)
, (m ∈ (−d, α)) .

We have

p = 2α−1
Γ(α/2)Γ(d/2)

Γ(d− α)/2)
, σ2 = p [1− γ −Ψ((d− α)/2)−Ψ(α/2)] ,

where Ψ is the Digamma function.
The distribution of the limiting variable I∞ is studied in [15] and [14].
Condition (2) b) of Th. 2.1 is never satisfied. Condition (2) a) can be satisfied

if α > 2, taking m ∈ (2,min(α, 4)) since Γ(−m/2) > 0 hence ψ(m) < 0.

4.5. Continuous State branching process with immigration (CBI). Let
κ ∈ [0, 1) and δ > κ/(κ+ 1). Let X be the continuous state branching process with
immigration ([16] Sec. 13.5) whose branching mechanism is

φ(λ) =
1

κ
λκ+1

and immigration mechanism is

χ(λ) = δφ′(λ) .

We have the representation

φ(λ) =

∫ ∞
0

(e−λz − 1 + λz)µ(dz) , µ(dz) =
κ+ 1

Γ(1− κ)

dz

zκ+2
.
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This process is self-similar of index κ (see [21], lemma 4.8)1 and the corresponding
Laplace exponent is

ψ(m) = c(κ− (κ+ 1)δ −m)
Γ(−m+ κ)

Γ(−m)
, (m ∈ (−∞, κ))

and

p = c((κ+ 1)δ − κ)Γ(κ) > 0 , σ2 = c (Γ(κ) + (κ− (κ+ 1)δ)(Γ′(κ) + γΓ(κ))

v2 =
σ2

κp3
. (4.1)

We can then apply Th. 2.1(1) and conclude that under Q0, as T →∞(
(log T )−1/2

(∫ T t

1

dr

Xκ(r)
− t log T

κp

)
; t ≥ 0

)
⇒ (vW (t); t ≥ 0) . (4.2)

The entrance law is given in Remark 4.9 (2) in [21]. Let us notice that the case
δ = 1 corresponds to a critical continuous state branching process conditioned never
to be extinct as mentioned in Remark 4.9 (1) in [21].

Now, to get an invariance principle under Qa for a > 0, we have a problem since
we cannot choose m such that fm satisfies (3.12). Nevertheless there is another
way to get an invariance principle under Qa for a > 0.

We introduce the OU process defined by

Ũ(t) := e−κ
−1tX

(
et − 1

)
(4.3)

which is a CBI with immigration mechanism χ and branching mechanism

φ̃(λ) = φ(λ) + κ−1λ ,

(see [21] section 5.1). Let us stress that it is not stationary. We observe that∫ ∞
1

log z µ(dz) <∞ ,

so that applying [12] Th. 7.7 and Cor. 5.10, we conclude that Ũ is exponentially
ergodic and the convergence (3.2) holds under the conditions (3.3).

Pushing forward this result to the process X we obtain the following Proposition
which is an invariance principle for the clock of CBI.

Proposition 4.1. For a > 0, under Qa as T →∞,(
(log T )−1/2

(∫ T t−1

0

dr

Xκ(r)
− t log T

κp

)
; t ≥ 0

)
⇒ (vW (t); t ≥ 0) . (4.4)

Remark 5. In [12] Cor. 5.10, the authors mentioned that if one starts from a general
test function, it is unlikely to find an explicit formula for the asymptotic variance
in terms of its admissible parameters, except when f(x) = exp(λx). Our result
provides one more example, f(x) = x−κ − (κp)−1 of a test function with explicit
asymptotic variance.

Aknowledgment. This paper was written during a stay of the second author
to UNAM during December 2019. He thanks the probability team for its warm
hospitality.

1Beware, our φ is −ϕ therein
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