INVARIANCE PRINCIPLES FOR CLOCKS

MARIA-EMILIA CABALLERO! AND ALAIN ROUAULT?

ABSTRACT. We show an invariance principle for rescaled clocks of positive
semi-stable Markov processes, proving a conjecture presented in Remark 4 in
Demni, Rouault, Zani [11], 2015.

1. INTRODUCTION - PSSMP AND OU

For a > 0, a positive self-similar Markov process (pssMp) of index «, is a [0, 00)-
valued strong Markov process (X, Q,), a > 0 with cadlag paths, fulfilling the scaling

property
({bXparst > 0}, Q0) L ({X1,t > 0}, Qo) (1.1)

for every a,b > 0.
The Lamperti transformation (see [17]) connects these processes to Lévy pro-
cesses. Let us summarize this connection. We will follow the notations of [11].
Any pssMp X which never reaches the boundary state 0 may be expressed as
the exponential of a Lévy process not drifting to —oo, time changed by the inverse
of its exponential functional. More formally, if (X, (Qq)s>0) is a pssMp of index «
which never reaches 0, set

TE(t) = Ot ;; , (t>0) (1.2)
and let AC) be its inverse, defined by
A ) =inf{u>0: T () >t} , (t>0), (1.3)
and let £ be the process defined by
& =log Xyx)(4) —log Xo , (t>0). (1.4)

Then, for every a > 0, the distribution of (&,¢ > 0) under Q, does not depend on
a and is the distribution of a Lévy process starting from 0.

Conversely, let (&,t > 0) be a Lévy process starting from 0 and let PP and E
denote the underlying probability and expectation, respectively.

Fix a > 0. Set

t
A®) (1) = / e ds . (1.5)
0
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Here, we assume that £ does not drift to —oo i.e. satisfies, limsup;, §& = co. The
inverse process (&) of A®) is

7O =inf{fu>0: A9 () >t} , (t>0). (1.6)
For every a > 0, let Q, be the law under P of the time-changed process

Xy = aexp&r©(ta—a) (t=>0), (L.7)
then (X, (Qq)a>0) is a pssMp of index o which never reaches 0 and we have the
fundamental relation

7Ot) =T (XE). (1.8)
The process (TX)(t),t > 0) is called the clock associated with the pssMp X.
Some years ago, a particular interest was dedicated to the asymptotic behaviour of
this process in long time ([24], [11]). To recall the Law of Large Numbers we need
some notations.
Let ¢ be the Laplace exponent of &, defined by

Eexp(mé;) = exp(ti(m)), (1.9)
and set dom ¢ = {m : ¢¥(m) < co}. We assume
0 € int dom % and p := E& = '(0) > 0. (1.10)

Starting from a > 0 such a process X; never hits 0. Nevertheless, a probability
measure Qg can be obtained as the weak limit of Q, when a | 0 and under Q
the canonical process has the same transition semigroup as the one associated with
(X5 (Qq)aso0- (see [3], [2], [7], [10], [20]). A sufficient condition is (1.10) plus

the support of £ is not arithmetic. (1.11)

This latter measure is an entrance law for the semigroup p;f(x) = E, f(X;) and

satisfies
1

(X)) = o B[ 121 (/7)) (1.12)

IOO:/ e s ds .
0

The Law of Large Numbers is the following.

Theorem 1.1 ([11] Th.1). Assume (1.10) and (1.11). Ast — oo,
(1) For every a >0,

where

1 b ds 1

— [ = - " — 0.5. 1.13
logt 0 Xg - (ap) 9 Q a.s ( )
@ t
1 ds 1
— — — a.s. 1.14
logt 1 Xg - (Oép) Y QO a.s ( )

In [11], the authors go on with the study of large deviations. A CLT for Bessel
clocks was previously proved in Exercise X.3.20 in [22] and extended to an invariance
principle in ([24]), using stochastic analysis. Following the result on LDP for clocks,
a general CLT is conjectured in [11] Remark 4. In Section 2, we state an invariance
principle (Functional CLT) for this kind of processes. proved in Section 3 and
illustrated by examples in Section 4.
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The main tool is the introduction of an ergodic process with nice asymptotic
properties. With a pssMp (X;) of index «, it is classical to associate a process
called generalized Ornstein-Uhlenbeck (OU) by

U(t) = e VX (e) (1.15)

which is strictly stationary, Markovian, ergodic under QQqg, and its invariant measure
is the law of X7 under Qg i.e.

W) = B 12 (1207 (1.16)

The infinitesimal generators LX and L¢ are related by
LXh(x) = 27 L8 (h o exp)(log ) (1.17)
(see [9], [20]), and the generator of U is
LUnh(z) = LXh(z) — gh’(a:) . (1.18)

Two examples of function f are simple and particularly useful.
If m € dom v the function 2 — exp(mz) is in the domain of L¢ |, so that

fmix—=a™,
is in the domain of LX and we have
L™ frn(2) = 9 (m) frn—a (1.19)
so that
LY frn = (m) frn—a — am f . (1.20)

The function i(x) = z is in the domain of L¢ with L% = p. Formula (1.17) tells us
that the function ¢(x) = log is in the domain of L*X and

1 . b
X - 3 —
LY p(x) = x—aL i(logz) = o (1.21)
and owing to (1.18)
@=L -1 (1.22)
el .

Remark 1. There is a variant of U, defined by

Ut)=e /X (et — 1)
which shares the same transition with U and begins at X (0) at ¢ = 0 ([1]).

Remark 2. If (X, (Qa)a>0) is a pssMa of index «, then the process Y = (X%, (Que )a>0),
is a pssMp of index 1. Conversely if (Y, (Qq4)a>0) is a pssMp if index 1 then, for
any a > 0, the process (X = Y/* (Q,1/4)a>0) is a pssMp of index a.
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2. MAIN RESULT

The following theorem states an invariance principle ( or functional central limit
theorem FCLT) under two regimes, Qp and (under conditions) Q,,a > 0.

Theorem 2.1. (1) Under Qq, as T — oo,

((logT)1/2 < " X(‘Zr) - tlogT) > o) = (WW(t);t > 0) . (2.1)

ap

where
2

v? = ;Lpg, o2 =97 (0). (2.2)

(2) If one of the following conditions
(a) there exists m > 0 such that ¥(m) < 0
(b) there exists m > « such that ¥(m) > 0,
is satisfied, then for every a > 0, under Qq, as T — oo, (2.1) holds true.

Remark 3. When the above criterion is not checked, the invariance principle holds
true under Q, for almost every a (see Theorem 2.8 in [5] ).
3. PROOF OF THE MAIN RESULT

3.1. FCLT under the invariant measure. Observe that, owing to (1.15)

[ttt ) e

which reduces the problem to an invariance principle for a functional of the process
U. We will use a classical result on weak convergence.

Theorem 3.1 (Bhattacharya Th. 2.1 [5]). Let (Y;) be a measurable stationary
ergodic process with an invariant probability w. If f is in the range A of the extended
generator of (Yz), then, as n — oo

<n-1/2 / " f(Ys)ds>t20 = (W (D)o (3.2)

where
o= -2 [ fa)gtaynlds) . dg 1. (3.3)
Owing to (1.22) we see that the pair (f,g) with
1 1 1
flo)=— op g9(z) og T, (3.4)
satisfies
LVg=Ff. (3.5)

Now the convergence in distribution comes from Th. 3.1 and formula (3.1), with

o= 2 / f(@)g(@)n? (dx) (3.6)

where U is the invariant distribution of the process U.
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It remains to compute the variance v2. From (1.16) and (3.6) we have
v? = =2(ap)'E (I f(IN9(ILh)
=2(ap) "E (I3 (Ino — (ap) ™) p~ " log )
= 2(ap) ?E (log Ioc — (ap) "I log L) (3.7)
The Mellin transform
M(z) = E(I.7)

oo

may play a prominent role, since
E(logIZ") = M'(0) ; E (I log I)') = M'(1),
so that
v? = 2(ap)? (=M’ (0) + (ap) ' M'(1)) . (3.8)
We only know that M satisfies the recurrence equation
Y(az)M(z) =zM(z+1). (3.9)

(see [4] Th. 2 i) and Th. 3. and apply scaling). Differentiating twice the above
formula gives

" (az) M (z) + 209 (az) M (2) + Y(az)M" (z) = 2M' (2 + 1) + 2M" (2 + 1)
which, for z = 0, gives
2" (0) + 2apM’(0) = 2M’(1)
and then

" 2
2 _Y'0) o
v ap?  apd’ (3.10)

This fits exactly with the conjecture in [11] Rem. 4.

3.2. Quenched FCLT. We want to show the FCLT under Q, for every a > 0.

Theorem 3.2 (Bhattacharya Th. 2.6 [5]). Let (p;)¢>0 be the semigroup of a Markov
process (Yi). Assume that for every z, ast — o0

pe(z;-) — pllvar = 0.
Then, with the notations of Theorem 3.1, the convergence (3.2) holds under P, for

every x.

Such a process is called positive recurrent. Moreover, the exponential ergodicity
is defined by the existence of a finite function h and a constant v such that for
every x

Hpt(xv ) - ﬂ-Hvar S h(;v)e_"’t .

Let us first examine the possibility of a general criterion on the exponent v such
that the assumptions of the latter theorem are fulfilled. A sufficient condition is
given by the so-called Forster-Lyapounov drift criterion, due to [19]).

Theorem 3.3 (Wang Th. 2.1 [23]). Let L the generator of a Markov process Yz,
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(1) If there exists a continuous function satisfying

lim f(x) =00 (3.11)

|| =00
and constants K > 0,C > 0,D € (—o0,00) such that
Lf<-C+ Dl[fK,K] (3.12)

then the process (Yi) is positively recurrent.
(2) If there exists a continuous function satisfying (3.11) and constants K >
0,C >0,D € (—00,00) such that

Lf<-Cf+ Dl[fK,K] (313)
then the process (Y3) is exponentially ergodic.

We want to check these criteria for our models, using the function f,, and (1.20).

(1) When 0 < m < a and ¢¥(m) > 0, fin—q is not bounded in the neighbouring
of 0, and then is not convenient.

(2) Let us look for K,C, D in the other cases. For every C € (0,am), let us
define

hm = LUfm + Cfm = Z/}(m)fmfoz + (C - am)fm~

(a) If ¢p(m) < 0, then h,, < 0 and then for D = 0, (3.13) holds true for
every K.
(b) If ¢y(m) > 0 and m > «, then h,, is increasing for

(m — aw(m))”a

O<I<Imax_(m(m—a0)

and decreasing after. It is 0 for z = zg = (¢(m)/(m — aC))l/a > T
Then choose K = ¢(m)/(m — C) and D = hp,(z,,) and (3.13) holds
true.

4. EXAMPLES

In this section, we consider examples taken from [11].
When the function ¢ is rational, the distribution of I, may be found in [14]. Let
us notice that in all these examples we compute the variance using the elementary

formula
_p 4 ¥m)

dm m |m:0 '

¥"(0)
4.1. Brownian motion with drift. This is also the Cox Ingersoll Ross model.
Let us consider the Lévy process
€t = QBt + 2l/t,

where By is the standard linear Brownian motion and v > 0. In this case, X; is the
squared Bessel process of dimension d = 2(1 + v). Its index is 1 and it is the only
continuous pssMp (of index 1). We have

P(m) =2m(m+v), p=2v, 0> =4, v*> = (471,

Condition (3.13) of Th. 3.3 is satisfied (see(2) b) above), we have exponential
ergodicity, the FCLT holds under Q, for every a > 0.
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The invariant measure for U is easy to determinate, since

1t 2oz,

where Z,, is gamma with parameter v (see [3] (6)), so that
1 ~ v —y/2
- Y__e-vi2g
Qo) = g | wen) ey

which means that the invariant measure is the distribution of 22, ;.

Remark 4. Actually it is proved in [18] Rem. 1.2 (2) that U is exponentially ergodic
but not strongly ergodic, where strong ergodicity is defined by the existence of v > 0
such that
sup || Py(@,.) = 7lloar < e
xr

4.2. Poissonian examples. Let Pois(a,b); be the compound Poisson process of
parameter a whose jumps are exponential of parameter b. We will consider three
models : & = dt+Pois(a, b); with d > 0, & = —t+Pois(a, b); and & = t—Pois(a, b);.

4.2.1. & = dt + Pois(a, b);.

wlm) =m (a+ ) (e (-o0.0).

b—m
a 5 a 9 ab?
P=dt T T VT T a
4.2.2. & = —t + Pois(a, b); with b < a.
w(m)=m(—1+bam) (m <),

a—>b 5 G 2 ab

Py O T Y T a e

When 6 =d > 0, I @ a 'B(1 + b,aa™t) where B(u,v) is the Beta distribu-

tion of parameters (u,v) (see [13] Th. 2.1 i)). The invariant measure is then the

distribution of W~ where W &2 a tB(b,aat).

When 6 = —1, Lo 2 By(1 4 b,a— b) (see [13] Th. 2.1 j)), where By (u, v) is the

Beta distribution of the second order of parameters (u,v). The invariant measure
is then the Bs(a — b+ 1,b) distribution.

4.2.3. & = t—Pois(a, by) with b > a. Tt is the so called spectrally negative saw-tooth
process.

¢(m)=m(1_bfm) , (m € (—b,0)),
7bfa 2 a 2 ab
P= 7 T U T

We have I_! @ B(b — a,a) (see [14] Th. 1), so that the invariant measure is
Bb—a+1,a).

For examples 4.2.1 and 4.2.2, f,, is in the domain of the generator iff m < b; for
example 4.2.3 | f,, is always in the domain.
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Looking at our above criterion, we see that we have the exponential ergodicity
in the first two cases when b > 1, and completely for the third one.

4.3. Spectrally negative process conditioned to stay positive. For a €
(1,2), let X' be the spectrally a-stable process conditioned to stay positive as
defined in [6] Sect. 3.2. and [21] Sect. 3. Its corresponding Lévy process has
Laplace exponent

L'(m+ a)

, (m e (—a,00)).

We have
p=T(a), 0® =2(I"(a) +1T(a))
where v = —I"(1) is the Euler constant, and then
2 T@) 90 (@)
al(a)®
Using (3.9) one sees directly that M (z) = I'(az+1)/T(2+1), so that I, @ S1/a(1),
the stable subordinator of index 1/« evaluated at 1.
Condition (2) b) of Th. 2.1 is satisfied.

4.4. Hypergeometric stable process. The modulus of a Cauchy process in R?
for d > 1 is a 1-pssMp with infinite lifetime. The associated Lévy process is a
particular case of hypergeometric stable process of index « as defined in [8], with
a < d. The characteristic exponent given therein by Th. 7 yields the Laplace
exponent :

P((—-m+«)/2) T((m+d)/2)

?/J(m) =-2¢ F(—m/Q) F((m ¥ d— Oé)/2) ’ (m € (_d7 a)) .
We have
p= 2W L 0% =pll— - W((d—a)/2) - ¥(a/2)]

where ¥ is the Digamma function.
The distribution of the limiting variable I, is studied in [15] and [14].
Condition (2) b) of Th. 2.1 is never satisfied. Condition (2) a) can be satisfied
if & > 2, taking m € (2, min(«,4)) since I'(—m/2) > 0 hence 1p(m) < 0.

4.5. Continuous State branching process with immigration (CBI). Let
k €[0,1) and § > K/(k+1). Let X be the continuous state branching process with
immigration ([16] Sec. 13.5) whose branching mechanism is

B = - A

K

and immigration mechanism is
X(A) = ¢ (N).
We have the representation

$(N) = /Ooo(e‘“ 1 A(dz) (dz) = P02

T(1 — k) zrt2°
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This process is self-similar of index x (see [21], lemma 4.8)! and the corresponding
Laplace exponent is

_ T'(—m + k)
P(m) =c(k — (k+1)5 — m)m , (m € (=00, k)
and
p=c((k+1)0 —r)T(k) >0, 0% =c(T(k) + (k — (k + 1)) (I (r) +T(x))
o2
v? = el (4.1)

We can then apply Th. 2.1(1) and conclude that under Qqg, as T' — oo

((logT)1/2 </1T Xih("r) _ “ZiT> > 0) = (W (t);t > 0). (4.2)

The entrance law is given in Remark 4.9 (2) in [21]. Let us notice that the case
6§ = 1 corresponds to a critical continuous state branching process conditioned never
to be extinct as mentioned in Remark 4.9 (1) in [21].

Now, to get an invariance principle under Q, for a > 0, we have a problem since
we cannot choose m such that f,, satisfies (3.12). Nevertheless there is another
way to get an invariance principle under Q, for a > 0.

We introduce the OU process defined by

U(t) := er X (' —1) (4.3)
which is a CBI with immigration mechanism y and branching mechanism
o) = o(N) + 171N,

(see [21] section 5.1). Let us stress that it is not stationary. We observe that
oo
/ log z pu(dz) < oo,
1

so that applying [12] Th. 7.7 and Cor. 5.10, we conclude that U is exponentially
ergodic and the convergence (3.2) holds under the conditions (3.3).

Pushing forward this result to the process X we obtain the following Proposition
which is an invariance principle for the clock of CBI.

Proposition 4.1. For a > 0, under Q, as T — o0,

<(10gT)—1/2 (/OT'1 X(ZT) - “ZiT> > 0) = (oW (t);t>0).  (4.4)

Remark 5. In [12] Cor. 5.10, the authors mentioned that if one starts from a general
test function, it is unlikely to find an explicit formula for the asymptotic variance
in terms of its admissible parameters, except when f(z) = exp(Az). Our result
provides one more example, f(z) = 27" — (kp)~! of a test function with explicit
asymptotic variance.
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10

(1]
2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

(10]
(11]
(12]
(13]
(14]
15]
[16]
(17]
18]
(19]
20]
21]

22]

23]

24]

M-E. CABALLERO AND A. ROUAULT

REFERENCES

J. Bertoin. Ergodic aspects of some Ornstein—Uhlenbeck type processes related to Lévy pro-
cesses. Stochastic Processes Appl., 129(4):1443-1454, 2019.

J. Bertoin and M.E. Caballero. Entrance from 0+ for increasing semi-stable Markov processes.
Bernoulli, 8(2):195-205, 2002.

J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential
functionals of Lévy processes. Potential Anal., 17(4):389-400, 2002.

J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv., 2:191-212,
2005.

R.N. Bhattacharya. On the functional central limit theorem and the law of the iterated
logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete, 60(2):185-201, 1982.

M.E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti rep-
resentation. J. Appl. Probab., 43(4):967-983, 2006.

M.E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes
and overshoots of 1évy processes. Ann. Probab., 34(3):1012-1034, 2006.

M.E. Caballero, J.C. Pardo, and J.L. Pérez. Explicit identities for Lévy processes associated
to symmetric stable processes. Bernoulli, 17(1):34-59, 2011.

Ph. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for exponen-
tial functionals of Lévy processes. In Exponential functionals and principal values related to
Brownian motion, pages 73-130. Bibl. Rev. Mat. Iberoam., 1997.

L. Chaumont, A. Kyprianou, J.C. Pardo, and V. Rivero. Fluctuation theory and exit systems
for positive self-similar Markov processes. Ann. Prob., 40(1):245-279, 2012.

N. Demni, A. Rouault, and M. Zani. Large deviations for clocks of self-similar processes. In
In Memoriam Marc Yor-Séminaire de Probabilités XLVII, pages 443-466. Springer, 2015.
M. Friesen, P. Jin, J. Kremer, and B. Ridiger. Exponential ergodicity for stochastic equations
of nonnegative processes with jumps. arXiv preprint arXiv:1902.02833, 2019.

H. K Gjessing and J. Paulsen. Present value distributions with applications to ruin theory
and stochastic equations. Stochastic Processes Appl., 71(1):123-144, 1997.

A. Kuznetsov. On the distribution of exponential functionals for Lévy processes with jumps
of rational transform. Stochastic Processes Appl., 122(2):654-663, 2012.

A. Kuznetsov and J. C. Pardo. Fluctuations of stable processes and exponential functionals
of hypergeometric Lévy processes. Acta Appl. Math., 123(1):113-139, 2013.

A.E. Kyprianou. Fluctuations of Lévy processes with applications. Universitext. Springer,
Heidelberg, second edition, 2014. Introductory lectures.

J. Lamperti. Semi-stable Markov processes. 1. Z. Wahrscheinlichkeitstheorie und Verw. Ge-
biete, 22:205-225, 1972.

P.-S. Li and J. Wang. Exponential ergodicity for general continuous-state nonlinear branching
processes. Electron. J. Probab., 25, 2020.

S.P. Meyn and R.L. Tweedie. Stability of Markovian processes III: Foster—Lyapunov criteria
for continuous-time processes. Adv. Appl. Probab., 25(3):518-548, 1993.

J.C. Pardo and V. Rivero. Self-similar Markov processes. Bol. Soc. Mat. Mezicana (3),
19(2):201-235, 2013.

P. Patie. Exponential functional of a new family of Lévy processes and self-similar continuous
state branching processes with immigration. Bull. Sci. Math., 133(4):355-382, 2009.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer-Verlag, Berlin, third edition, 1999.

J. Wang. Criteria for ergodicity of Lévy type operators in dimension one. Stochastic Processes
Appl., 118(10):1909-1928, 2008.

M. Yor and M. Zani. Large deviations for the Bessel clock. Bernoulli, 7:351-362, 2001.



