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Abstract. The total water storage change (TWSC) over land
is a major component of the global water cycle, with a large
influence on the climate variability, sea level budget and wa-
ter resource availability for human life. Its first estimates
at a large scale were made available with GRACE (Grav-
ity Recovery and Climate Experiment) observations for the
2002–2016 period, followed since 2018 by the launch of
the GRACE-FO (Follow-On) mission. In this paper, using
an approach based on the water mass conservation rule, we
propose to merge satellite-based observations of precipita-
tion and evapotranspiration with in situ river discharge mea-
surements to estimate TWSC over longer time periods (typ-
ically from 1980 to 2016), compatible with climate stud-
ies. We performed this task over five major Asian basins,
subject to both large climate variability and strong anthro-
pogenic pressure for water resources and for which long-
term records of in situ discharge measurements are avail-
able. Our Satellite Water Cycle (SAWC) reconstruction pro-
vides TWSC estimates very coherent in terms of seasonal
and interannual variations with independent sources of in-
formation such as (1) TWSC GRACE-derived observations
(over the 2002–2015 period), (2) ISBA-CTRIP (Interactions
between Soil, Biosphere and Atmosphere CNRM – Cen-
tre National de Recherches Météorologiques – Total Runoff
Integrating Pathways) model simulations (1980–2015) and
(3) the multi-satellite inundation extent (1993–2007). This
analysis shows the advantages of the use of multiple satellite-
derived datasets along with in situ data to perform a hydro-

logically coherent reconstruction of a missing water compo-
nent estimate. It provides a new critical source of information
for the long-term monitoring of TWSC and to better under-
stand its critical role in the global and terrestrial water cycle.

1 Introduction

Continental freshwater, excluding ice caps, represents only a
few percent of the total amount of water on Earth. Neverthe-
less it has a major impact on the terrestrial environment and
human life and activities and plays a very important role in
climate variability. Thus, understanding and predicting conti-
nental water storage variations is a topic of great importance
for climate research, global water cycle studies (IPCC, 2014)
and water resource management. In particular, the total water
storage change (TWSC), comprising of all water mass varia-
tions from surface waters (wetland, floodplains, lakes, rivers
and man-made reservoirs), soil moisture, snowpack, glaciers
and groundwater, is of high interest because it represents a
good indicator of potential long-term water cycle (WC) mod-
ifications related to natural or anthropogenic factors (Rodell
et al., 2018).

Therefore, monitoring long-term spatiotemporal changes
in continental freshwater storage has become fundamental.
This question is particularly important for regions such as
southern Asia that experienced drastic changes over the last
decades. The region includes some of the world’s largest
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Figure 1. Five Himalayan basins considered in this study.

rivers (Fig. 1), originating in the Himalayas and crossing
densely inhabited areas of the Indian subcontinent or South-
east Asia, where changes in freshwater availability (Babel
and Wahid, 2008) might threaten food and security for more
than a billion people (Shamsudduha and Panda, 2019; Wijn-
gaard et al., 2018).

Given the limited availability of in situ data in the region,
satellite observations are unique in their ability to monitor
the dynamic of terrestrial waters (Tiwari et al., 2009; Papa
et al., 2015; Salameh et al., 2017) and analyze their recent
large-scale changes (Rodell et al., 2009; Asoka et al., 2017;
Khaki et al., 2018). In particular, since 2002, the GRACE
(Gravity Recovery and Climate Experiment) mission (Tap-
ley et al., 2004) has monitored the mass gravity field vari-
ation and provided an estimation of TWSC at the monthly
scale (for the period of 2002–2016), followed since 2018
by the Gravity Recovery and Climate Experiment Follow-
On (GRACE-FO). However, the GRACE data time span is
still too limited to study the long-term WC behavior related
to climate changes or to human practices.

If classical approaches to retrieve total water storage
(TWS) rely on land surface models (LSMs; Decharme et al.,
2019b; Tootchi et al., 2019), studies have recently attempted
to use instead statistical models fed with various climate
drivers. For instance, Humphrey et al. (2017) have recon-
structed the total water storage anomaly (TWSA) using a lin-
ear regression from precipitation and temperature, and Chen
et al. (2019) have use an artificial neural network to recon-
struct TWSA based on precipitation, temperature and sur-
face variables (e.g., soil moisture and the normalized dif-
ference vegetation index – NDVI). Yang et al. (2018) re-
viewed and compared several statistical methods (linear, ran-
dom forest, artificial neural network and support vector ma-
chine) to reconstruct TWSA from soil moisture, canopy wa-
ter and snow water equivalent. These studies have focused on
TWSA, without monitoring the whole WC. In fact, if statis-
tical methods offer the opportunity to estimate TWS anoma-
lies at a global scale in a simpler way than LSMs, they do
not consider the water balance, and the related TWS estimate
may not be coherent with the other water components.

Several studies have attempted to monitor the WC and pro-
vide independent estimates of TWSC using satellite observa-
tions (Lawford et al., 2007; Pan et al., 2012; Rodell et al.,
2015; Munier and Aires, 2017; Tang et al., 2017). These
analyses potentially allow new opportunities for WC mon-
itoring over long time records in regions with limited access
to in situ measurements. The use of satellite data to study the
WC is however not straightforward. (1) Various datasets exist
for the same geophysical variable, and (2) they all have un-
certainties (systematic bias and random errors), which lead
to (3) the inconsistency between an estimate of the same
variable or among the variable estimates of the WC (Pellet
et al., 2018). No singular estimate can be considered perfect,
and many authors prefer to combine various available prod-
ucts (Sheffield et al., 2009; Sahoo et al., 2011; Azarderakhsh
et al., 2011; Lorenz et al., 2014). For that purpose, some have
focused on the water conservation equation:

1S = P −E−D, (1)

where 1S is TWSC, P is precipitation, E is evaporation
and D is discharge (expressed in mm per month, area-
normalized). This closure of the WC budget allows for a bet-
ter constraint of the integration of the datasets. For instance,
Pan et al. (2012) have used an assimilation approach based on
a Kalman filtering in the Variable Infiltration Capacity (VIC)
model to derive a coherent analysis of the four terrestrial
water variables (P , E, D and 1S) at the basin scale, and
Zhang et al. (2018) derive the methodology at a 0.5◦ LSM
pixel. Tang et al. (2017) implicitly use the water conserva-
tion through the Budyko model to estimate the long-term an-
nual TWSC value based on P , E and R. This approach is not
based on the assimilation of satellite observations but rather
on the calibration of model parameters to match observed
TWSC values. Rodell et al. (2015) used a 3D-VAR (varia-
tional) strategy to optimize the water cycle estimates at the
global and annual scales.

Other approaches perform this integration independently
of any model, which allows the integrated datasets to be inter-
esting for the calibration and validation of the model (Aires,
2014; Munier et al., 2014; Pellet et al., 2019). Pan and Wood
(2006) and Aires (2014) have presented several methodolo-
gies to coherently integrate different hydrological datasets
based on a budget closure. Munier et al. (2014) applied one of
them (Aires, 2014) over the Mississippi basin using a remote-
sensing observation for P , E and 1S and an in situ mea-
surement for D. The optimal integration is based on, first,
a simple-weighting (SW) average and then, a closure post-
filtering (PF) process. The SW+PF method improved the
WC component estimate compared to the in situ observation.
The uncertainties of the integrated product are reduced com-
pared to the original datasets; the coherency is improved; and
the residuals of the WC budget closure are decreased. Fur-
thermore, the authors have developed a calibration approach
based on the integrated product, able to correct each origi-
nal estimate in an independent way. This calibration led to a
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Table 1. Characteristics of the five considered basins and associate in situ measurement stations. (1) Personal communication with
Sylvain Biancamaria. Data derived from radar altimetry water level estimations and calibrated against in situ measurements follow-
ing a similar technique as in Papa et al. (2010). (2) Personal communication with the Bangladesh Water Development Board (BWDB;
http://www.bwdb.gov.bd/, last access: 9 June 2020) as in Papa et al. (2012).

Name Area Outlet station Location Time record Source
(105 km2)

Mekong 7.7 Phnom Penh 11.5◦ N, 104.9◦ E 1993–2016 Personal communication (1)
Ganges 9.6 Hardinge 24.1◦ N, 89.0◦ E 1980–2013 Personal communication (2)
Brahmaputra 5.2 Bahadurabad 25.1◦ N, 89.7◦ E 1980–2013 Personal communication (2)
Godavari 3.2 Polavaram 17.2◦ N, 81.7◦ E 1965–2015 Water Resources Information System of India
Irrawaddy 3.6 Pyay 18.8◦ N, 95.2◦ E 1996–2010 Global Runoff Data Centre (GRDC)

significative reduction of the budget residual (see also Pellet
et al., 2019). It was shown in Munier et al. (2014) that when
three out of four WC components in Eq. (1) are available,
the reconstruction of the missing one can be attempted. This
is possible if the signal-to-noise ratio is sufficient: discharge
reconstruction was not possible in Munier et al. (2014), but
TWSC could be obtained in a very simple way, with results
comparable in quality to a complex assimilation into a hy-
drologic model.

In this study, we propose to use this methodology to recon-
struct the long-term evolution of TWSC over large southern
Asian basins, based on satellite and in situ measurements and
not a hydrological model. We denote this Satellite Water Cy-
cle reconstruction “SAWC”. Section 2 introduces the tools
used in this study, including a description of the region, the
datasets used and the methodology. Section 3 presents the
results and evaluations, while Sect. 4 draws the conclusions
and perspectives.

2 Materials and methods

2.1 Basins

Table 1 lists the basins considered in this study. They are
also represented in Fig. 1. They were defined by first choos-
ing river discharge (D) in situ measurement stations close to
the sea, over the major Himalayan rivers, with a long-enough
time record. The HydroSHEDS (Hydrological data and maps
based on SHuttle Elevation Derivatives at multiple Scales)
topography (Lehner et al., 2006) was then used to determine
the drainage area and basin delineation. The basins were se-
lected based on the following factors: (1) their spatial domain
needs to be large enough compared to the spatial resolution
of the GRACE instrument, and (2) the river discharge mea-
surements need to cover the GRACE period (2002–2015).

The following five basins were chosen:

– Mekong. The Mekong delta is one of the largest deltas
in the world. It is a vast plain (55 000 km2) mostly lower
than 5 m above sea level. Due to the seasonal vari-
ation in water level, the area presents extensive wet-

lands. The Mekong delta region that represents only
12 % of the total Vietnam area, allows ∼ 50 % of the
annual rice production (up to three harvests per year in
some provinces), ∼ 50 % of the fisheries and ∼ 70 %
of the fruit production. Furthermore, questions related
to oceanic water intrusions, the change of agriculture
practices (e.g., number of rice harvest in 1 year), dam
construction, ground water pumping and resulting land
depletion all have an impact on TWSC and would there-
fore benefit from its monitoring.

– Ganges and Brahmaputra. The Ganges–Brahmaputra is
the major river basin of the Indian subcontinent, supply-
ing water to more than 700 million people. It covers an
area of 1.7× 106 km2, at the crossroad of Bangladesh,
India, China, Bhutan and Nepal and is the third-largest
freshwater provider to the world’s oceans (after the
Amazon and the Congo rivers) with a high influence
on the regional climate. The basin is seasonally sub-
ject to the monsoon and faces strong climate variability
between drought and flood periods. Furthermore, water
management is an issue because of the increasing needs
of the population and the demands for the industry and
agriculture sectors. Thus, the freshwater supply leads to
an overabstraction of groundwater stock during the dry
season and then to a rapid fall of groundwater tables.

– Godavari. The Godavari River is the second-longest
river in India after the Ganges, covering a total drainage
area of ∼ 312000 km2 and accounting for nearly 9.5 %
of the total geographical area of the country. It flows
for a length of about 1465 km, from its origin near the
Arabian Sea before falling out in to the Bay of Ben-
gal, crossing several Indian states. The basin receives its
maximum rainfall during the southwest monsoon, from
June to September. The major part of basin is covered
with agricultural land accounting for up to 60 % of the
total area, while ∼ 3.5 % of the basin is covered by wa-
ter bodies. The Godavari basin faces several hydrocli-
matic problems with a large portion of the basin being
prone to drought, while flooding problems are common
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in its lower reaches, and its coastal areas are cyclone
prone.

– Irrawaddy. Running over a length of 2100 km mainly
within the boundaries of Myanmar, the Irrawaddy River
is the most important river in the country. The basin
takes up the northwestern part of Mainland Southeast
Asia, with its source on the southern slopes of the Hi-
malayas Mountains and emptying into the Andaman
Sea of the Indian Ocean. The river basin area covers
more than 400 000 km2 and collects about two thirds
of the surface water volume of Myanmar. It is subject
to a tropical and subequatorial monsoon climate, and
its hydrological regime, similarly to other large rivers
of southern Asia, is fed with water on the slopes of
the Himalayas Mountains, mainly from rains during the
southwest-monsoon period and meltwater of glaciers.
The river is vital for human activities, water supply and
irrigation and hosts a high rate of biodiversity. It is prone
to extreme events, such as floods from very heavy mon-
soon rains or extreme weather events like cyclones and
severe droughts, and under climate change impacts, the
region is facing major challenges for water resources.

2.2 Datasets

2.2.1 Datasets used in the integration

The datasets presented in this section will be used in the in-
tegration process to obtain an optimized description of the
WC over the Himalayan basins. Most of them are satellite
products. Only global satellite products have been consid-
ered. In order to integrate them, the datasets have been pro-
jected onto a common 0.25◦ spatial resolution grid using a
conservative interpolation (Jones, 1999) and resampled at the
monthly scale.

– Precipitation (P ). Three datasets based on remote-
sensing observations have been selected. All are prod-
ucts calibrated using gauges measurements: the Global
Precipitation Climatology Project (GPCP-V2; Adler
et al., 2003), the Tropical Rainfall Measuring Mission
Multi-satellite Precipitation Analysis (TMPA, 3B42-
V7; Huffman et al., 2007) and the Multi-Source
Weighted-Ensemble Precipitation (MSEWP) dataset
(Beck et al., 2017). All these global datasets are widely
used in the community. GPCP and TMPA use the
same Threshold-Matched Precipitation Index (TMPI)
algorithm to estimate instantaneous precipitation from
multiple satellites by combining high-quality passive
microwave observations and infrared data: their ap-
proaches differ only in the use of gauge analy-
ses (Global Precipitation Climatology Center; GPCC)
to obtain calibrated estimates. While TMPA is based
on an inverse random-error variance weighting of the
gauge data, GPCP assumes that the precipitation dis-

tribution estimated from the combined satellite esti-
mates is optimal and uses the gauge observations only
for debiasing. The MSEWP dataset merges the highest-
quality precipitation data sources available as a function
of timescale and location. It uses a combination of rain
gauge measurements, the two previous satellite datasets
and a reanalysis. These datasets have been compared
in terms of uncertainties and performance in Sun et al.
(2018). It should be noted that these datasets are not in-
dependent from each other but represent the best up-to-
date precipitation estimates for hydrological studies.

– Evapotranspiration (E). Three satellite-based products
were chosen to describe evapotranspiration over land.
All these datasets are assumed to be satellite-based
products, even if their retrieval algorithms can use aux-
iliary information and a model. The Global Land Evap-
oration Amsterdam Model (GLEAM-V3B; Martens
et al., 2017; Miralles et al., 2011) uses the Priestley and
Taylor (1972) empirical energy-based equation to calcu-
late the reference evapotranspiration and separately esti-
mate the different components of land evaporation: tran-
spiration, bare-soil evaporation, interception loss, open-
water evaporation and sublimation. GLEAM uses re-
analysis (vA) or satellite (vB) precipitation inputs. The
global observation-driven Penman–Monteith–Leuning
(CSIRO; Zhang et al., 2016) evapotranspiration in-
troduced by the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) and the MODIS
Global Evapotranspiration Project (MOD16; Mu et al.,
2011) are both evapotranspiration estimates based on
the Penman–Monteith equations (Penman, 1948; Mon-
teith, 1965). We choose these three datasets due to their
different equations for evapotranspiration. The inter-
comparison of global evapotranspiration algorithms and
datasets can be found in Michel et al. (2016).

– Total water storage change (TWSC; 1S). The TWSC
estimates are all based on the GRACE satellite mea-
surements (Tapley et al., 2004). These estimates include
the surface (wetland, floodplains, lakes, rivers and man-
made reservoirs), soil moisture, snowpack, glaciers and
groundwater waters. Satellite datasets are based either
on the spherical decomposition of GRACE – for in-
stance the Jet Propulsion Laboratory products (JPL;
Watkins and Yuan, 2014) or the MASCON (mass con-
centration; MSC) solution: the JPL (Watkins et al.,
2015) product that also includes a scaling factor for hy-
drological coherency. Another MASCON solution is of-
fered by the Center for Space Research at the Univer-
sity of Texas, Austin (CSR). The CSR and JPL MAS-
CON solutions differ in their processing: the JPL solu-
tion is based on an explicit estimation of mass anoma-
lies at a specific mass concentration block location us-
ing the analytical partial derivatives of the inter-satellite
range-rate measurements (Watkins et al., 2015). The
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CSR MASCON solution is first based on a spherical
decomposition of the inter-satellite range-rate measure-
ments that is truncated spatially at the location of the
mass concentration (Save et al., 2016). The two solu-
tions have been compared to the spherical solutions in
terms of uncertainty in both min–max range and trend in
Scanlon et al. (2016) and Save et al. (2016). We choose
here the JPL solution because it is more independent of
the spherical solution.

Based on preliminary tests, it was observed that the
MASCON solution for TWSC (1S) was in better agree-
ment with the three other water component estimates
and in particular over the Irrawaddy basin, compared to
the spherical solutions. This could be due to the local in-
version in the MASCON solution that prevents it from
the destriping processing usually done in the spherical
decomposition of GRACE. It as been shown that de-
striping could limit the capability of spherical solution
over the particularly south–north-oriented basin (Wahr
et al., 2006; Rateb et al., 2017). In the following, the
JPL MASCON solution is used. Figure 2 represents the
GRACE TWSC and TWSC anomaly (with respect to
the averaged season computed over the 2002–2015 pe-
riod), over the five basins of the previous section. The
annual cycle is well pronounced in each basin, showing
the strong seasonality of the WC in these regions. The
anomalies have strong inter annual variations showing
the evolution of the WC along the years.

– Discharge (D). The Global Runoff Data Cen-
tre (GRDC) gathers discharge measurements at the
global scale. However, for large tropical rivers and more
particularly over southern Asia, only a few stations are
available, and they are not all updated to recent peri-
ods. In particular, among the five considered rivers of
this study (Fig. 1), four of them are not available with
GRDC data, and we obtained them instead from per-
sonal communication and collaboration with local col-
leagues (Table 1).

In the following, an a priori specification of the uncertainties
for each one of these satellite sources is required. Such char-
acterizations are generally specific to the product and site.
Some studies (Pan et al., 2012; Sahoo et al., 2011; Zhang
et al., 2018) estimate the a priori uncertainty of particular
water components based on the spread among the various
estimates (taking the spread of estimates as an estimate of
the uncertainties can sometimes be dangerous). In our case,
this approach would not take into account the fact that the
precipitation estimates are not independent. The values used
here are derived from Munier et al. (2014), in which the
authors reviewed carefully the literature on this topic. The
partitioning of uncertainty between P and E has however
been modified to allow for larger uncertainty in P , since
datasets are dependent in our case. As the objective of the

current study is to reconstruct GRACE TWSC, the approach
assumes lower errors in the GRACE estimate that becomes
our reference. For the three precipitation datasets, we specify
a 14 mm per month SD (standard deviation) error. Similarly,
for three evapotranspiration datasets, we specify a 7 mm per
month SD. River discharge is an in situ measurement, so a
3 mm per month SD is chosen. Since the objective is the
reconstruction of the GRACE observations over long time
series, we specify a small uncertainty (1 mm per month) to
avoid changing these values during the integration.

2.2.2 Datasets used in the evaluation

– ISBA hydrological model. To evaluate our reconstruc-
tion of the long-term evolution of TWSC over large Hi-
malayan basins, we also use the ISBA-CTRIP (Interac-
tions between Soil, Biosphere and Atmosphere CNRM
– Centre National de Recherches Météorologiques – To-
tal Runoff Integrating Pathways) numerical land surface
system. ISBA-CTRIP is a “state-of-the-art” hydrologi-
cal system that simulates TWSC at the global scale with
a good accuracy, as shown in Decharme et al. (2019a).
The ISBA-CTRIP TWSC data provide all water mass
variations (river water mass and floodplains, snowpack,
canopy water, total soil moisture and groundwater stor-
age). The ISBA land surface model explicitly solves the
energy and water budgets at the land surface at any time
step. The CTRIP river routing model simulates river
discharges up to the ocean from the total runoff com-
puted by the ISBA model. A two-way coupling between
the ISBA and CTRIP models allows one to account
for (1) a dynamic river flooding scheme with explicit
interactions between the floodplains, the soil and the
atmosphere (through free-water evaporation, precipita-
tion interception and infiltration) and (2) a 2D diffusive-
groundwater scheme to represent unconfined aquifers
and upward capillarity fluxes into the superficial soil.
More details can be found in Decharme et al. (2019a).
In this study, we use a product derived from a global of-
fline simulation at 0.5◦ resolution done with this ISBA-
CTRIP configuration and driven at a 3-hourly timescale
by the ERA-Interim (ECMWF Reanalysis) reanalysis
over the 1979–2015 period. To ensure that realistic pre-
cipitation is fed to the ISBA-CTRIP system (Szczypta
et al., 2014), the ERA-Interim precipitation is, here, hy-
bridized to match the monthly values from the gauge-
based Global Precipitation Climatology Center (GPCC)
Full Data Product V6 (Schneider et al., 2011, 2014). At
each time step, ISBA-CTRIP gives the variation of the
total mass of water. The TWSC estimate from ISBA-
CTRIP is then the monthly average of this field, which is
slightly different than the reconstruction via Eq. (1) (see
Appendix A). Since GRACE data are anomalies relative
to a reference geoid, the TWSC estimate from ISBA-
CTRIP is also calculated in terms of the anomaly over
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Figure 2. TWSC (top panels) and TWSC seasonal anomaly (bottom panels) for the three estimates (GRACE, SAWC and ISBA) for the five
Himalayan basins over the GRACE time period.
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the analyzed period. To be consistent with the GRACE
data, the simulated TWS values were smoothed using a
200 km wide Gaussian filter, which is quasi-similar to
the filter used for the GRACE products (Watkins et al.,
2015). In the following, ISBA-CTRIP is shortened in
the ISBA model.

– GLDAS hydrological model. For the purpose of com-
parison, we also use the Noah 2.7.1 land hydrology
model of the Global Land Data Assimilation Sys-
tem (GLDAS). Its purpose is to ingest satellite- and
ground-based observations using advanced land surface
modeling and data assimilation techniques, in order to
generate optimal fields of land surface states and fluxes.
GLDAS is an uncoupled land surface modeling system
that drives multiple models, runs globally at the reso-
lution of 0.25◦ and produces results in near-real time.
The GLDAS system is described in Rodell et al. (2004).
GLDAS is a platform of assimilation and differs from
hydrological models. In particular, they do not model
reservoirs. For our comparison, we use the land water
content output of GLDAS.

These two global and well-known models have been cho-
sen for comparison, even if neither of them includes an-
thropogenic effects on the river discharge and groundwa-
ter storage. Significant efforts have been made during the
last 2 decades to incorporate anthropogenic impacts in an
LSM (Hanasaki et al., 2006; Haddeland et al., 2014), but
crucial challenges still remain. Most of these new schemes
in LSMs have been developed and used offline for regional-
scale studies and without a common and standardized frame-
work (Pokhrel et al., 2016; Döll et al., 2016). At a global
scale, the state of the art does not include the global repre-
sentation of flow regulation and irrigation water needs.

2.3 Methodology

The notations are presented in this section, but more method-
ological details can be found in Aires (2014). The last ver-
sion of the integration methodology is well described in Pel-
let et al. (2019).

2.3.1 Water cycle budget closure at the basin scale

The first step of the integration process consists of merg-
ing the various datasets presented in Sect. 2.2.1. The simple-
weighting estimate (i.e., ensemble mean) is used to describe
each water component based on all the available datasets
(Aires, 2014):

PSW =
1

p− 1

p∑
i=1

∑
k 6=i

(σk)
2

∑
k

(σk)
2 Pi, (2)

where PSW is the simple-weighting estimate, p is the number
of precipitation inputs Pi , σi is the standard deviation of the

input Pi and Pi is the ith precipitation inputs. This equation
is valid when there is no bias error in the Pis (thanks to a
preliminary bias correction) and is optimal when the errors
εi are statistically independent from each other. This expres-
sion is valid for the other water components. The variance of
the PSW uncertainties is then given by

σPSW =
1

(p− 1)2

p∑
i=1


∑
k 6=i

(σk)
2

∑
k

(σk)
2


2

σ 2
i . (3)

A similar approach is used for the three estimates of evapo-
transpiration. Following the error specification in Sect. 2.2.1,
the uncertainty of the precipitation (evapotranspiration)
merged estimate is characterized by an 8 mm per month SD
(4 mm per month SD). Only one discharge dataset is avail-
able, and only the MASCON-JPL is used for TWSC. We de-
noteXSW = (PSW,ESW,DSW,1SSW), where SW stands for
the simple weighting the results of the merging.

Following Aires (2014), it is then possible to write the con-
servation of water mass at the basin scale as a constraint ap-
plied on the state vector X = (P ,E,D,1S). The WC budget
constraint is expressed in Eq. (4). A relaxed constraint is con-
sidered (Pellet et al., 2019): the WC budget is closed within
an error r that follows a normal distribution with specified
uncertainty (Yilmaz et al., 2011). The problem can be writ-
ten in the following way:

Xt
= (P,E,D,1S)

G= [1,−1,−1,−1]
Xt ·Gt

= r with r ∼N (0,6), (4)

where t is the transpose sign, G is the closure operator and
6 is the variance of the relaxation r . The optimized solution
of this problem can be expressed as

XPF =
(
I −KPF ·G6

−1Gt
)
·XSW, (5)

whereKPF = (B−1
+G6−1Gt)−1, in which PF stands for the

post-filtering process of the previous solution XSW and B is
the a priori error covariance matrix of XSW that is specified
here as

B=


8 0 0 0
0 4 0 0
0 0 3 0
0 0 0 1


2

. (6)

This methodology allows for obtaining a solution XPF that
closes the WC budget (within the relaxation r).

2.3.2 The calibration for the temporal extension of the
closure constraint

An important limitation of the closure integration is the need
for a common coverage period for all sources of information
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Table 2. Root mean square of the WC budget residuals (in mm per
month) for the original (XSW) and the calibrated (XCAL) estimates
over the five considered basins.

Basin Original XSW Calibrated XCAL Improvement
(mm per month) (mm per month) (%)

Mekong 23 16 30
Ganges 20 15 25
Brahmaputra 61 28 54
Godavari 29 20 31
Irrawaddy 44 24 45

used in the integration. The optimized dataset cannot be pro-
vided for time steps with a missing component. To overcome
this issue, a calibration to independently correct each water
component towards the closure solution has been introduced
(Munier et al., 2014). This calibration is based on a statis-
tical regression between the merged observations XSW and
the optimized estimates XPF, assuming that this optimized
dataset represents the reference. In Pellet et al. (2019), the
calibration is not strictly linear in order to avoid correcting
null water fluxes (Munier and Aires, 2017). The following
regression is used for P , E and D:

XCAL = a ·XSW+ b ·
(

1− e
−XSW
c

)
(7)

so thatXCAL becomes closer toXPF. This calibration is close
to a linear calibration, but zero values are kept unchanged.
The variables a, b and c are the calibration parameters. The
calibration is performed not only during the GRACE pe-
riod (2002–2015) but also over the complete record of each
satellite dataset. It was shown in previous studies that the cal-
ibration does not allow for a perfect balance of the WC, but
it greatly reduces the WC budget residuals compared to the
original estimates.

The calibration of Eq. (7) is applied independently on each
dataset of Sect. 2.2.1. Table 2 shows the original (XSW) ver-
sus the calibrated (XCAL) root mean squares of the WC bud-
get residuals. It can be seen that the calibration has a signifi-
cant improvement in each basin, with a decrease of the error
from 25 % (over the Ganges) to 54 % (over the Brahmapu-
tra).

Figure 3 compares in rows the original (XSW) and cali-
brated (XCAL) estimates of the four water components with
the WC budget residuals for the Ganges and the Brahmapu-
tra basins over the GRACE period. It can be seen that for the
Ganges, the water components are not particularly impacted
by the calibration. This is due to the overall coherency of the
various water components estimates and the relatively low
WC budget residual for this particular basin. Only a small
improvement can be noticed in the WC budget residuals. For
the Brahmaputra basin, precipitation and evapotranspiration
are much more impacted by the calibration. The discharge is
slightly changed because we specified a low uncertainty on
this in situ variable (i.e., SD= 1 mm per month). The result-

ing WC budget residuals are much smaller for the calibrated
solution, meaning that this solution is more coherent hydro-
logically.

2.3.3 Satellite Water Cycle (SAWC) reconstruction

Similarly to Munier et al. (2014), the three available wa-
ter components (P , E and D) are used to estimate the
fourth one, TWSC 1S. This allows extending temporally
the monitoring of TWSC before and after the GRACE pe-
riod (2002–2015). In addition, the GRACE satellite has been
down for maintenance every 6 months since 2011. The cal-
ibration approach allows for filling gap measurements in
the GRACE observation with high accuracy (Munier et al.,
2014). Following Landerer et al. (2010) and to avoid tem-
poral mismatching between GRACE-derived TWSC and the
monthly estimate of the other water components, we use cen-
tered differences of the mean TWS anomalies to compute
TWSC 1S(t). The right-hand side of Eq. (1) is therefore
computed for each month t as

1S(t)=
1
4
X′CAL(t − 1)+

1
2
X′CAL(t)+

1
4
X′CAL(t + 1), (8)

where X′CAL = (PCAL−ECAL−DCAL) and 1S is the cen-
tered mass rates

1St =
S(t + 1)− S(t − 1)

2
. (9)

2.3.4 Uncertainty characterization

Estimating product uncertainty is valuable information for
instance in an assimilation framework. Most uncertainty es-
timation approaches require defining first a reference: in situ,
reanalysis or a consensus of all available data. In this work,
the chosen reference is the optimized product (XPF); this is
a solution that is hydrologically more coherent and reliable
than the original datasets. All original satellite datasets are
compared to this reference to compute bias (not shown) and
uncertainty (standard deviation) errors. For instance, for pre-
cipitation: σ 2

P = E[(P −PPF)
2
]. Such an approach was used

in Munier and Aires (2017) and Pellet et al. (2019).
Table 3 gathers the a posteriori uncertainty estimates

(computed as the distance between the original datasets and
the reference) for all the original satellite datasets for P , E
and D over the five considered basins. These a posteriori
uncertainty estimates are in line with the specifications that
were taken a priori for each of the datasets (Sect. 2.2.1). It can
be seen that the Brahmaputra has higher uncertainties, espe-
cially for precipitation. MSEWP appears less reliable than
GPCP or TMPA for precipitation; and GLEAM seems more
reliable than MOD16 or CSIRO over these five basins.

It is possible to compute the SAWC reconstruction of
TWSC based on Eq. (10). Once calibrated, PCAL, ECAL and
DCAL estimates are available over a long time period. They
can be used to infer 1S using the WC budget equation
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Figure 3. Comparison of the four water components estimates and the WC budget residuals (in rows) for the original (XSW, red) and
calibrated (XCAL, green) estimates. The estimates are for the Ganges (top panels) and the Brahmaputra (bottom panels) basins. The last row
of each panel depicts the residual (Res.) of the water budget for these basins.
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Table 3. Uncertainty estimates (in mm per month) in terms of SD er-
ror compared to XPF for P , E and D over the five considered
basins for the original datasets. Gang.: Ganges; Brahm.: Brahma-
putra; Goda.: Godavari; Irrawa.: Irrawaddy.

Dataset Basins

Mekong Gang. Brahm. Goda. Irrawa.

P

GPCP 14 15 35 12 10
TMPA 14 13 31 13 11
MSEWP 15 17 32 16 19

E

GLEAM 6 5 6 6 6
MOD16 4 8 6 9 8
CSIRO 8 5 7 5 8

D In situ 3.4 2.7 4.7 2.8 7.7

(Eq. 1), before and after the GRACE period:

1SSAWC = PCAL−ECAL−DCAL. (10)

The reconstruction of TWSC has a different temporal cover-
age for the five basins because D (and then DCAL) availabil-
ity varies (see Table 1). The measurement errors of P , E and
D of Table 3 are assumed to be independent and normally
distributed. In this case, the error in the SAWC reconstruc-
tion of 1S is given by

σ 2
1S = σ

2
P + σ

2
E + σ

2
D, (11)

where σP, σE and σD are the a posteriori uncertainty merged
estimate using Eq. (3) with the values of a posteriori estimate
in Table 3.

3 SAWC reconstruction of TWSC and evaluation

3.1 Evaluation over the GRACE period (2002–2015)

The resulting SAWC time series can be observed (red) and
compared to GRACE measurements (blue) over the 2002–
2015 period in Fig. 2, over the five basins, for the raw and the
anomalies. The ISBA simulation is represented too (green).
The seasonality is well represented in every estimate. The
specific seasonality of each basin is well characterized by
the SAWC reconstruction; see for instance the difference be-
tween the Mekong and the Brahmaputra seasons. The SAWC
reconstruction uses the GRACE data to calibrate the other
datasets, but once the P , E and D calibrations are done, the
SAWC data in Eq. (10) do not use the GRACE data any-
more. This is a good demonstration that GRACE-compatible
TWSC estimates can be obtained from the other water com-
ponents. The rich interannual signal in the anomalies is well
captured too by SAWC times series. Some extreme years
are well captured, e.g., the high extremes of the 2008 year
over the Ganges basin, which are depicted also by the ISBA
model.

In order to quantify the agreement of these times se-
ries, Fig. 4 represents the correlation, the correlation of the
anomaly and the root mean square of the difference (RMSD)
between the four estimates (GRACE, SAWC, ISBA and
GLDAS) over the five Himalayan basins for the GRACE pe-
riod (2002–2015). It can be see that the SAWC times series
is more highly correlated (0.96 on average) with the GRACE
data than the ISBA data (0.94); GLDAS has a much lower
agreement with GRACE (0.91) because it misses completely
the season in the Irrawaddy basin for some years (not shown
for clarity in Fig. 2). Again, it is not surprising that the SAWC
value is close to GRACE because it has been designed to do
that.

In terms of the correlation of anomalies, the SAWC esti-
mate is always closer to the ISBA estimate than to GRACE,
even if the SAWC estimate has a high correlation of anoma-
lies with GRACE (between 0.69 and 0.79) except over the
Brahmaputra basin (0.36). This will be analyzed below.
Comparatively, a GLDAS estimate is less correlated with
GRACE over the four basins (except Brahmaputra basin).
The RMSD and RMSD values of anomalies show a pat-
tern similar to that of the correlation values over all the
basins. The RMSD statistics are better for the SAWC (19 mm
per month error) than for the ISBA model (26 mm per month
error), but this is no surprise because the season is a large
part of these discrepancies. GRACE has a low spatial resolu-
tion (300 km2 at the Equator); this can decrease the accuracy
of the TWSC anomaly estimates over small basins (e.g., Go-
davari or Irrawaddy). The smaller the basin is, the larger the
gap between the SAWC-GRACE and SAWC-ISBA corre-
lation becomes. The SAWC estimate is based on precipita-
tion and evapotranspiration obtained at a finer spatial reso-
lution (0.25◦) than GRACE. Therefore, the SAWC value, as
the ISBA value (at the 0.25◦ spatial resolution), represents
better the anomaly over small basins as long as precipita-
tion and evapotranspiration are accurate enough. Over the
Brahmaputra basin, the large uncertainty of satellite evapo-
transpiration products over the mountains (see the impact of
the calibration for the evapotranspiration estimate over this
basin in Fig. 3) might impact the SAWC TWSC accuracy
and explain why GLDAS and the ISBA model are better over
this basin. This assumption is later confirmed in Fig. 6, in
which precipitation in ISBA and SAWC values are close but
the anomalies of E differ. Overall, it can be concluded that
the SAWC values seems closer to GRACE than ISBA for
some events, as seen in the anomalies over the Brahmaputra
basin. GLDAS has a lower agreement with ISBA, in particu-
lar over the Irrawaddy basin. The discrepancy between sim-
ulated TWSC from ISBA and GLDAS can be explained by
the different representation of aquifers in these two models.
While a 2D diffusive-groundwater scheme in ISBA repre-
sents unconfined aquifer processes (Vergnes and Decharme,
2012; Vergnes et al., 2012), the Noah land model used in
the GLDAS simulations did not include surface and ground-
water storage. Therefore, the simulated mean seasonal cycle
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Figure 4. The correlation (CORR; left panels), the correlation of the anomalies (CORR of anomalies; center-left panels), the root mean
square of the difference (RMSD; center-right panels) and the root mean square of the difference of the anomalies (RMSD an.; right panels)
between the four estimates (GRACE, SAWC, ISBA and GLDAS; abbreviated as GR, SA, IS and GL on the x axis) for the five Himalayan
river basins (in rows) over the GRACE period (2002–2015). Some of the commented statistics are also indicated numerically.

and the interannual variability of TWSC is improved in ISBA
(Decharme et al., 2019b). On the contrary, deviations from
GRACE TWSC can thus be expected with GLDAS (Syed
et al., 2008). Based on these results, the SAWC solution is
compared only to ISBA in the following over the long time
period.

3.2 Comparison with ISBA TWSC

In Fig. 5, the SAWC reconstruction is compared to the
ISBA simulation over a long time record. ISBA is avail-
able from 1980 to 2015; the SAWC reconstruction is avail-
able based on the river discharge in situ measurements cov-
erage (see Table 1). The first important remark to be made
regards the very good seasonal cycle agreement between the
SAWC and ISBA values: correlations are larger than 0.93,
except for the Brahmaputra with a correlation of 0.88. This
basin presents a particular water cycle in 2007 that is ana-

lyzed in Appendix (Fig. B1). In the following, the year 2007
has been removed from the comparison analysis. For the
Ganges basin, the main difference between the two estimates
is that ISBA represents larger negative seasonal peaks and
a slight phase in the seasons over the Mekong. In terms
of seasonal anomalies, the agreement is also satisfactory
with correlations between 0.61 (Godavari and Irrawaddy)
and 0.78 (Mekong is always well represented in our analy-
sis), except again for the Brahmaputra (correlation of 0.22).
However, based on the 2007 analysis over the Brahmapu-
tra (Fig. B1), we believe that the SAWC anomalies might be
more reliable because they use measured in situ D values as
compared to the models.

In Fig. 6, we analyze the long-term TWSC time series in
terms of anomalies with respect to the climatological sea-
son. Furthermore, the times series of these anomalies have
been smoothed using a 3-year moving window. For instance,
a peak value of 10 mm per month means that the time series
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Figure 5. Times series of TWSC (left panels) and the seasonal cycle (right panels) from 1980 to 2015 for the SAWC and ISBA model
estimates over the five considered basins. Correlations of raw (CORR) and anomaly (An. CORR) values are also provided.

Figure 6. Times series of the WC components (in mm per month) for 1980–2015 in terms of anomalies (with respect to the climatological
season) smoothed using a 3-year moving window for the five considered basins for the SAWC (red) and ISBA (green) estimates. Observations
are also represented in black (MSEWP for P and in situ measurements for D).
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was on average 10 mm higher than the climatological season
for 3 consecutive years (i.e., 360 accumulated millimeters in
3 years).

In general, the SAWC model reproduces well the long-
term anomalies of the MSEWP precipitation dataset. This
satellite dataset was used as input with two close other prod-
ucts (TMPA and GPCP calibrated using the same precip-
itation gauges) for the SAWC reconstruction (while ISBA
uses a mix between GPCC and the ECMWF reanalysis; see
Sect. 2.2.2). In general, ISBA precipitation inputs have some
differences with MSEWP during the 1980s and in 2010–
2015; this requires further investigations beyond the scope
of this study. The evapotranspiration anomalies are relatively
flat for all basins, except for the Godavari, where both the
SAWC and ISBA values are in good agreement. By construc-
tion, the discharge D measurements are well reproduced by
the SAWC reconstruction, but some significant differences
can be observed for the ISBA model. These important tem-
poral variations of the D anomalies have an important im-
pact on the other WC components of the SAWC reconstruc-
tion. TWSC anomalies 1S have a rather constant behav-
ior in the ISBA analysis, but large variations are present in
the SAWC reconstruction. For instance, there is a large wa-
ter deficit in 1990–1991 over the Brahmaputra or over the
Ganges in 1985–1887.

From this comparison, the following conclusions can be
drawn. When precipitation from the SAWC reconstruction
matches well precipitation used to force ISBA, discharge
simulated by ISBA is quite close to in situ measurements
(discharge from the SAWC reconstruction), as well as for
the Mekong and the Godavari basins, which could be seen
as an indicator of the good quality of PSAWC. On the con-
trary, the main differences between DISBA and DSAWC are
either due to large differences of precipitation amounts or to
the TWSC dynamics. In ISBA, the groundwater storage is a
simple delayed reservoir (with a constant delay parameter)
which tends to attenuate the river dynamics. It is then not
able to simulate long-term groundwater dynamics (Pedinotti
et al., 2012). Moreover, the ISBA model does not represent
anthropogenic factors such as groundwater extraction, river
regulation or irrigation, which may significantly impact river
discharges. For instance, in Fig. 6, the Mekong River dis-
charge anomalies show a lower min–max range in the obser-
vations than in ISBA. Li et al. (2017) highlight the impact
of the construction of the Xiaowan and the Nuozhadu dams
starting in 1991. The dam reduces the streamflow in particu-
larly wet seasons and increases the streamflow in particularly
dry seasons, which lowers the anomaly variations. For this
basin, D is more correlated to precipitation in ISBA (0.94)
than in the SAWC (0.63) solutions. This shows that modeled
D is more straightforwardly dependent of the precipitation
than in observations. On the contrary, the TWSC anomaly
is less linked to precipitation in the ISBA model than in the
SAWC model, where natural recharge is better represented.
This difference is also discussed in Appendix A. The integra-

tion of anthropogenic processes are currently under develop-
ment, as are alternatives like data assimilation (Emery et al.,
2018; Albergel et al., 2017).

3.3 Indirect evaluation using the GIEMS inundation
area

An important component of TWS corresponds to the surface
waters. The GIEMS (Global Inundation Extent from Multi-
Satellites) database provides an estimation of the inundation
extent from 1993 to 2007, at the global scale, on a 0.25◦ res-
olution equal-area grid (Prigent et al., 2007). GIEMS was
fully assessed over Asian basins, especially using GRACE
data (Papa et al., 2008). The SAWC reconstruction of TWSC
and the inundation area time series are represented jointly in
Fig. 7 to measure their coherency. Since surface waters are
only one part of TWS, we do not expect a perfect match be-
tween the two times series. However, the coherency between
them is noticeable, and correlation ranges from 0.76 (Go-
davari) to 0.85 (Ganges). Furthermore, the interannual vari-
ability of both times series can be measured by the seasonal
anomalies, and their correlations are significative; they os-
cillate from 0.24 (Irrawaddy) to 0.42 (Ganges), except for
the Brahmaputra, where problems were already noticed (see
Fig. 6). This comparison is not a direct evaluation of TWSC,
but the fact that coherency can be found between two com-
pletely independent measurements on the water cycle is a
positive point for the evaluation of the SAWC reconstruction.

4 Conclusion and perspectives

The total water storage (TWS) as well as its change (TWSC)
is a crucial element of the water cycle because of its impact
on water management and its role as a tracer of human activ-
ity. The first measurement available to monitor it came from
the GRACE instrument in 2002. As longer time records are
necessary for climate studies, we propose here to use satellite
observations for precipitation and evapotranspiration with in
situ river discharge measurements to estimate TWSC over
the period of 1980–2015. Our approach is based on the wa-
ter conservation rule over each basin. We performed this task
over five major Asian basins because their evolution is re-
lated to important questions about water management, cli-
mate change and land use changes. Our SAWC reconstruc-
tion of TWSC has been evaluated using (1) GRACE obser-
vations (over the 2002–2007 period), (2) ISBA model simu-
lations (1980-2015) and (3) surface inundation area (1993–
2007). The seasonality and interannual variability of TWS of
the SAWC reconstruction appear coherent with these inde-
pendent sources of information.

The advantages of the proposed methodology are numer-
ous. It is an integration method that gathers all the observa-
tions available, from both satellite and in situ measurements.
Contrarily to traditional assimilation, this methodology does
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Figure 7. Evaluation of TWSC from the SAWC reconstruction using the GIEMS inundated area from 1993 to 2007 over the figure considered
basins. The correlation between them (CORR) is also provided, together with the correlation of the anomalies (An. CORR).

not use a land or hydrological model, except the water con-
servation law. It uses the multiplicity of observations to re-
duce uncertainties for each one of the water cycle compo-
nents and introduces more hydrological coherency among
them. If the river discharge measurement is available, it al-
lows for handling a true anthropized discharge (not an ideal-
ized natural one, as provided by models in most cases). How-
ever, if this discharge is not available, the methodology can-
not be applied; and if important uncertainties on discharge
measurements are present, these errors will be propagated to
all the other water components.

We foresee many perspectives for this work. First, we
would like to extend the TWSC estimation to other basins.
This work can be done over large basins (compatible with
the GRACE spatial resolution) and where the in situ river
discharge measurements are available. Once this is done over
a sufficient number of large basins, the optimized databases
can be used as a reference to calibrate the satellite estimates
at the global scale. This allows for the use of the satellite ob-
servations at the global scale and not only over the basins
where the integration was performed (Munier and Aires,
2017). River discharges could potentially be estimated over
unmonitored basins or over longer time series than the moni-
toring. Total water storage could also be estimated over mon-
itored basins and over longer times series than the GRACE
record (as was done here). When discharge is not monitored,
the use of modeled river discharges could be attempted.

Our methodology can also be used to detect incoherencies
in our estimations of the water cycle components. For in-
stance, large budget errors could indicate regions where the
evapotranspiration is biased (e.g., due to an under- or overes-
timation of the irrigation, as in the Nile basin). Our approach
could detect such problems and propose a bias correction of
the specific water component.

Finally, we expect to use a similar methodology over con-
nected subbasins. It is possible to estimate the surface wa-
ter storage using water extent and topography (Papa et al.,
2015), but the horizontal underground transport of water has
not been able to be measured so far. The difference of to-
tal water storage and surface water storage should help us
estimate the ground water storage and characterize its hori-
zontal transport. This would be a major achievement, as this
important process of the global water cycle has been largely
unknown so far.
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Appendix A: Computation of total water storage
change (TWSC)

For a given month, TWSC corresponds to the variation of
the total water storage (TWS) between the first day of the
month and the first day of the following month. As shown
in Eq. (1), TWSC equals the sum of inflows into the do-
main (P ) minus outflows out from the domain (E+Q) during
the whole month (P , E and Q represent monthly averages).
The ISBA land surface model may provide all variables, in-
cluding TWS, at a daily time step, so that it is possible to
compute TWSC as the above-mentioned difference. By con-
struction, the water balance is closed in the ISBA model, and
the absolute difference between TWSC and P −E−Q does
not exceed 10−6 mm per month (with a root mean square
of 10−9 mm per month). On the other hand, it is not possi-
ble to compute the exact TWSC value with GRACE data,
since TWS at the beginning of each month is not available.
Instead, GRACE data correspond to monthly averages of
TWS anomalies (temporal mean removed). To approximate
TWSC, we used the centered difference from Eq. (9). Yet,
this approximation introduces important errors compared to
the true TWSC value. Figure A1a shows the impact of this
approximation with ISBA outputs (where the true TWSC
value is represented by P −E−Q). To reduce this error, we
followed Landerer et al. (2010) by computing P −E−Q
using Eq. (6). Figure A1b shows a better match between the
approximated P−E−Q and the centered TWSC value. Nev-
ertheless, the reader should keep in mind that both approxi-
mations increase final uncertainties by about 5 to 10 mm per
month. This error has a quite high frequency and is reduced
to less than 1 mm per month when using a 3-year moving
average as in Fig. 7.

https://doi.org/10.5194/hess-24-3033-2020 Hydrol. Earth Syst. Sci., 24, 3033–3055, 2020



3048 V. Pellet et al.: Long-term total water storage change from a Satellite Water Cycle reconstruction

Figure A1. Comparison between the two estimates of TWSC over the Ganges basin: the closure at any time step in the ISBA model
(P −E−Q, in blue) and the centered difference of the observed TWS anomalies with GRACE (in red). The difference of the two estimate
is also shown (in green). The figure shows the original time series (a) and the seasonal anomalies (b).
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Figure A2. Same as Fig. A1, but the closure is now ensured with Eq. (8), following Landerer et al. (2010). This approximation leads to a
better match of the two estimates.
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Appendix B: Exploration of the 2007 event over
Brahmaputra

An extreme inundation occurred in the spring of 2007 over
the Brahmaputra basin (Gouweleeuw et al., 2018; Islam
et al., 2010; Webster et al., 2010). It is interesting here to
analyze how this was handled in the SAWC reconstruction
and the ISBA model. Figure B1 compares them for the four
water component estimates. The climatological seasons are
also represented (dashed lines) for the purpose of compari-
son. Two basins are illustrated: the Ganges and the Brahma-
putra.

In this sample, it can be seen that the model follows clas-
sical seasonality for each water component and both basins.
In the SAWC reconstruction, the seasonal anomaly is well
reproduced for discharge D, which was expected, since this
observation was used in the SAWC integration process. This
translates into a pronounced anomaly in TWSC. This shows
the benefits and the risks associated with the SAWC recon-
struction: if the in situ D is reliable, then the SAWC re-
construction will reproduce it well, and the impact on the
other components can be important. If D measurements are
erroneous, this can introduce considerable noise into the
WC analysis.

This relates also to the question of the natural versus real
or anthropized discharge D. A hydrological model will gen-
erally consider natural rivers. It is difficult to obtain all the
necessary information to model true discharge (dam man-
agement, pumping for irrigation, etc.). An interesting way to
constrain models to follow in situ measurements of the dis-
charge would be to assimilate these measurements into the
model (Wang et al., 2018).
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Figure B1. Comparison between the SAWC reconstruction (red) and the ISBA model output (green) estimates for the year 2007 with a large
inundation in the Brahmaputra basin for the four water components estimates (in rows) for the Ganges (left panels) and the Brahmaputra
(right panels) basins. The climatological season is also represented in dashed lines.
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