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ABSTRACT

In the present work we introduce a general formal (Object
Oriented) model for the representation of musical struc-
ture information, taking into account some common fea-
ture of the information vehiculed by music analysis. The
model is suitable to represent many different kinds of mu-
sical analytical entities. As an example of both musical
and mathematical-computational relevance, we introduce
the D.Lewin’s GIS theory. A GIS is equivalent to a par-
ticular kind of group action over a set: we show that other
related structures can be treated in a similar manner. We
conclude with the prototype implementation of these ideas
in MX, an XML format for music information.

1. INTRODUCTION

Music representation in XML is a field in evolution. There
are many proposals for a possible standard. MX’s pecu-
liarity is its multilayered structure(cfr.[3], [5], [6], [7]).
One of these layers is devoted to music structure infor-
mation, i.e. compositional and analytical aspects of musi-
cal information. The present work constitues a theoretical
survey to individuate formal entities for possible represen-
tations in the format and contains the sketch of a general
model which could suggest some idea to extend its current
implementation.
Analytical information encoding into a format containing
music like mx, could open some different possibilities.
We will imagine here some of these application. A music-
analysis tool based on mx format would give an analyst
a graphical interface to edit his own analysis, not only by
visual, but also by aural means. The same capability (to
aurally show the elements of the analysis), could make an
mx-based tool a strongly popularizing tool, not only from
an educational point of view. A software based on the mx
format would allow to listen (in several audio versions) to
parts of pieces described in the analyses, to directly fol-
low the comments of the analyst on the score while music
involved by these is executed. To have more than one anal-
ysis of the same piece would provide an effective instru-
ment for comparative analysis. Furthermore, the possi-
bility to compare different analyses could have still wider
effects. Let’s imagine as an example to have access to
sources in a big database, containing varied analyses that
could also be generated automatically, as an example, at
the submission of the file in the database. By means of

searches on analysis-data in the files, one could recognize
similarities on structural level between pieces analyzed by
common features. An opportune agent could lead survey-
ings on a specific feature, searching recurrences in order
to determine affinities.
The way in which analytical information could be stored
is the subject of the next section.

2. MUSICAL STRUCTURE

The first problem is to define what is musical structure. If
we consider the approaches to music analysis, we’ll find
each one to have its own tools, methods and results. Each
analysis reveals a specific structure. The problem could
become then: how to model music analyses. We are not
interested here in each motivation for a specific method-
ology. We’ll limit ourselves to observe some common
features.

2.1. Basic common structure of analyses

A very basic structure (of an analysis, not of a piece!),
common to almost all anaytical approaches (e.g. Forte and
set-theory [4], Nattiez and Paradigmatic analysis [12], au-
tomated analysis conducted in ways like Meudic’s [10])
is the segmentation of a piece. In each school of music
analysis, segmentation has its own specificities in term of
when and how it is conducted. Very interesting theoretical
problems arises around segmentation, intended as the pro-
cess by which a piece is segmented, but a discussion here
is beyond the scope of the present work. We will call here
segmentation the result of the process. So we will define a
segmentation of a piece, in a very general sense, as a col-
lection of segments. A segment will be a set of references
to events in a music piece.

When the process of segmentation is done and a collec-
tion of segments is obtained, the next step we want to con-
centrate on is the relating the segments one another. This
is done accordingly the specific methodology in action.
Now we simply notice the presence of relations between
segments.

Segmentation, segments and relations between segments
are the very basic structure contained in MX format to rep-
resent music analyses. We will intend this structure as the
formal shadow of an analysis of a piece of music.



2.2. A formal (object oriented) model for specific anal-
ysis representation

To discover similarities between segments of music we
need a particular musical sensibility. We need to concen-
trate to particular music features. In order to define rela-
tion between segments we need a way to define these fea-
tures. First of all we must decide which musical feature
we are interested in. Many approaches associate feature
vectors to segments (like in [1]). We think that the more
general concept of object could offer a more powerful pos-
sibility: in an object oriented perspective, one will be able
to define his own feature object class in order to model his
own music attitude. In a limit case a feature object could
be just a textual description (not so naturally formalizable
within a vector). So, if we have a segmentation σ we can
imagine an arrow into an abstract FeatureObject Ω class:

f : Σ −→ Ω
σ 7−→ ω (1)

Depending on the particular decisions for a concrete
derived class of objects, let’s call it S (Space of objects),
a part of an analysis will be based on a new association:

fmy : Σ −→ S

σ 7−→ s (2)

Now we can predicate something on the segments σ ∈
Σ in our particular point of view (one could say frame)
by means of the featureObjects s ∈ S. In this perspec-
tive we can relate segments by defining relations between
our objects associated to them. In certain cases there will
be formal rules to establish such relations. In certain cas-
es there will be methods to say if a segment is related to
another and in which way it is.

The next two sections show a formal mathematical mod-
el (of music analytical relevance) which could constitue an
example of a possible instantiation for feature objects and
relations. There will be shown that in these models rela-
tions and objects have particular algebraic structures. This
suggests the possibility (beyond the scope of this paper,
but constituing a trace for further developements) to take
advantage from these structures for further investigation.

3. GENERALIZED INTERVAL SYSTEMS

We’re going to introduce a structure proposed by the amer-
ican music-theorist D.Lewin ([9]). This structure is based
on the concept of interval in an extended manner. With
GIS it’s possible to represent not only pitch-related, but
also rythmic musical objects and their relationships. We
want to emphasize the idea that the choice of a particular
GIS lets the modelling of particular features of music. A
GIS will be a candidate model for a class of objects to
put in the S-level introduced in the previous section.
First of all we proceed with the formal definition of GIS
as given by Lewin. Then we will give an alternative char-
acterization of a GIS which makes use of the concept

of a simply transitive action over a set 1 . This will permit
us to generalize the model in order to represent a more
general family of algebraic musical structures.

Definition 3.1. A GIS is defined as (S, IVLS , int ),
being:

• S (’space’), a set

• IVLS (intervals), a group

• int an application

int : S × S −→ IVLS

satisfying the following conditions:

(A) ∀r, s, t ∈ S

int (r, s) int (s, t) = int (r, t) (3)

(B) ∀s ∈ S, i ∈ IVLS ∃ ! t ∈ S :

int (s, t) = i (4)

Definition 3.2. We will say commutative a GIS which
intervals group is abelian.

Given a GIS , we’ll be able to describe particular
musical features: those represented by the ’space’ of mu-
sical objects (fixing a ’space’ S is a sort of concentrating
on a particular musical dimension). We’ll also be able to
calculate - via IVLS - an interval between two musical
objects (elements of S). In a certain way choosing a GIS
is like modelling a particular analythical attitude.

Some very simple examples.

1 Example. Let the music space be the any musical scale
steps. Given two steps s, t ∈ S, let int (s, t) be the num-
ber of steps between the two. For instance let’s take into
account the diatonic scale. We have

int (C4, D4) = 1

int (C4, A3) = −2

If we move by two steps (e.g. from C4 to E4), then by two
more steps (e.g. from E4 to G4) we’ll have done 2+2=4
degrees of the scale:

int (C4, E4) = 2

int (E4, G4) = 2

int (C4, G4) = 4

The ’space’ S so described, with the additive group of
relative integers Z and the application int is a first, trivial
example of a GIS . In fact: int satisfies (A). It satisfies
also (B): given any step s of the scale S and any n ∈ Z
one can find a step moving by n steps of the scale such
that

int (firstnote, foundnote) = n

1 See [15] for a punctual formalization of the equivalence between the
two definitions



2 Example. Another example of GIS is the space of
picth classes of equal temperament. We forget the octave
of a pitch and concentrate uniquely on its class. We can
represent the pitch classes disposed around a ’clock’, a
well known representation. int(s, t) will be the number
of ’minutes’ in clockwise sense to from the ’minute’ s to
the ’minute’ t. It’s easy to see that

Proposition 3.3. (S, (Z12 ,+), int ) is a GIS.

Remark 3.4. S is the model of set-theoretical analysis.

Now some examples of rythmic GIS

3 Example. Let S be a succession of equidistant temporal
points (imagine a pulsing uniform ’tactus’). We can rep-
resent it with Z . The interval between to of such points
will be the number of ’tactus’ between them. Hence we’ll
have:

IVLS = (Z , +)

int : (s, t) 7→ number of temporal units between s and t

i.e.
int : (s, t) 7→ t− s

4 Example. Another rythmic space is the set of time spans.
An interval will be the ratio between two spans (we per-
ceive a relation between two couples of spans if their ra-
tios coincides). We will then consider

S = Q

IVLS = (Q ∗, ·)
int : (x, y) 7→ y

x

As we said at the beginning of this section, it is possible
to define the GIS structure in the following alternative
way.

Definition 3.5 (of GIS, alternative). A GIS is (S, IVLS,
τ ), where S is a set, IVLS a group and τ a simply transi-
tive action of IVLS over S.

4. HARMONIC OBJECTS: KLANG AND THEIR
TRANSFORMATIONS

In this section we will describe a new family of objects
that is interesting from many points of view. The theory
discussed here is introduced by D.Lewin in his book. He
was inspired by the work of the music-theorist H.Riemann.
The original purpose was to find a valid alternative to mu-
sic analysis with roman numbers 2 .
We found very interesting relations between the model
presented here and the entities automatically recognized
by the algorithm suggested in [14]. In particular we think
that the objects we’re going to present, are a suitable for-
mal model for those entities.
At the end of this section we will demonstrate that this
Riemannian model is an example of a generalization of

2 For an interesting introductive overview about the evolution of
harmony notation see the book of Nicolas Cook[2]

the GIS structure, not only an example of an exception.
This suggested us to the possibility to take into account a
more general family of structures. We are going to show
how these are again well defined mathematical structures.

4.1. Definitions

Definition 4.1. A Klang is an ordered couple

(p, σ) ∈ Z12 × Z2

Definition 4.2. We will call K the set of Klangs

Remark 4.3. In the musical semantic a Klang (p, σ) is
an harmonic object of fixed tonic (represented by p) and
modality (major, minor, represented by σ). We will have
a very intuitive notation of the modality of a Klang if we
will consider Z2 in multipicative notation (+1 for a major
mode, −1 for a minor one).

We can now define some particular transformation of
the set of Klangs K. Consider the following example: a
C major harmony followed by a F Major one. We will

Figure 1. C Major, F Major

express what one could write V-I using roman numbers
notation (the first chord has the role of the dominant with
respect to the second one thought as the tonic), by

(C, Major)DOM = (F Major)

The meaning is that

C Major becomes the dominant of F Major

and, using the suggested formalism, we will write

(0,+1)DOM = (5, +1)

where the pith class ’C’ is represented by 0 ∈ Z12 and
’F’ by 5. In this way one can formalize what in perceived
music is the variation of a tonal reference. It’s interesting
to observe that with this formula we do represent the same
information contained in the expression ’V-I’ but not only:
we also have the explicit information about which are the
tonics and modalities of the considered harmonies. We
will consider bijectives transformations of K in K and we
will call them Klang transformations. In general, given

Transf : K −→ K

we will write (p, ρ)Transf = (q, σ) (we use right nota-
tion for historical motivations and to simplify intuition).
The meaning is: the harmony (p, ρ) gets the role given by
Transf in the next harmony (q, σ).



4.2. Transformation examples

We described informally the DOM transformation. We
can give a formal definition. Following the musical se-
mantic we can say that with DOM if we start with a major
(minor) tonality, we obtain a new major (minor) tonality
having its tonic 5 semitones upper with respect to the orig-
inal tonic. It’s possible to formalize this in the following
way:

Definition 4.4 (formal, of DOM transf ).

DOM : K −→ K

(p, σ) 7−→ (p + 5, σ) (5)

Remark 4.5. Here and in this section we will use + and
- followed by numbers to mean the result of the action τ
of on Z12 (we can consider the cartesian product intro-
duced in the definition of Klang as a particular GIS). We
do not enter in more formal details here, but we want to
emphasize that this is not only a stenography and that the
calculations that will follow are formally justifiable.

Remark 4.6. DOM is a bijection of K in itself. 3

What kind of musical sensibility do we model with
this kind of transformation? What do we understand of
a composition if we can remark DOM transformations in
the harmonic texture? A composition ruled only by DOM
could contain any tonality of a fixed mode. We can mod-
el by DOM harmonic movements to neighbour tonality (in
tonal music). We can also think that a only-DOM-sensible
ear could be able to model macro-areas of tonal influence,
without going into deeper details about every single chord
structure in a single area.
Let’s now consider a finer grained harmonic sensibility,
introducing a new transformation of Klang:

Figure 2. A minor, F Major

Definition 4.7. We will call MED a Klang transforma-
tion that describes an harmony (p, ρ) becoming mediant
of a new one (q, σ) (III − I or III[ − I). Starting from
a major harmony we get to a minor one having its tonic 3
semitones ’lower’.

MED : K −→ K

(p, ρ) 7−→
({

p− 3 if ρ = +1
p− 4 if ρ = −1 , ρ ∗ (−1)

)

Remark 4.8. MED is a bijection

3 It’s injective: ∀k1 = (p1, σ1), k2 = (p2, σ2) ∈ K we have
(k1)DOM = (k2)DOM ⇔ (p1 + 5, σ1) = (p2 + 5, σ2) ⇔ k1 =
k2.
It’s surjective: ∀k1 ∈ K ∃k2 ∈ K so that (k1)DOM = k2. One can
consider p2 := p1 − 5 and σ2 := σ1.

Let’s now go back to the concept of a harmony ruled
by repeated applications of DOM . We can formalize this
concept considering < DOM >, the group generated by
the DOM transformation 4 . We will write DOMn to in-
dicate repeated compositions of DOM with itself n times.
DOM−1 will be the inverse of DOM .
We said that it’s possible to reach with DOM any tonality
of given modality.To formalize this concept we need some
more precise definition. It’s trivial that

Proposition 4.9. <DOM > acts on K.

Let’s remind the following definitions and propositions
(cfr.[8])

Definition. Let G be a group acting on a set X (that’s
equivalent to say that X is a G-set). We define orbit of a
an element x ∈ X the subset of X

G · x = {g · x|g ∈ G}
Proposition. The orbits of a G-set coincide or are dis-
jointed. So a G-set is decomposable as the union of dis-
jointed subsets.

Proposition. Given a G-set X, the relation ∼ on X

x ∼ y ⇔ ∃g ∈ G : g · x = y

is an equivalence relation.

Definition. X/G is the set of the equivalence classes of ∼
(quotient of X mod G).

We can now enunciate the following

Proposition 4.10. the orbit of an element (p, +1) (major
harmony) of the <DOM >-set K, is the set of all and only
those elements of the form (_, +1), i.e. all the major har-
monies. (the same happens for the minor harmonies). The
set {major harmonies, minor harmonies } is the quotient
set K/ <DOM > that is:

K/ <DOM >' Z2

Consider now the following musical fact: the mediant
of the mediant of any given harmony (major or minor) is
it’s dominant. Algebrically we should have MED2 =
DOM . In fact:

((p,−1)MED)MED = (p− 3, +1)MED

= (p− 3− 4,−1)
= (p− 7,−1)
= (p + 5,−1)

((p, +1)MED)MED = (p− 4,−1)MED

= (p− 4− 3, +1)
= (p− 7, +1)
= (p + 5, +1)

4 Note that this is a group with respect to composition of transforma-
tions (bijections) of K to K, being a subgroup of all the bijections of K
in itself.



(we used the fact that 5 ∼= 7(mod12)). And <DOM > is
a subgroup of <MED>.

What about the behavior of MED? We have the fol-
lowing

Proposition 4.11. We have 5

∀k ∈ K orbit<MED>(k) = K

i.e. K/ <MED>' {·}

Proof. First of all let’s try to define MEDn.
Given k = (p, σ) ∈ K, we’ll call (q, ρ) the Klang (p, σ)MED

The modality (second component) of a Klang change
sign for odd values of n, it doesn’t for even values. That
is ρ = σ · (−1)n.

What happens to the tonic (first component of the Klang)?
Let n be even.

For σ = +1 we have q = p−3−4−3−...−3−4 (mod12)
For σ = −1 We have q = p−4−3−4−...−4−3 (mod12)
Hence, in both cases,

q = p− n

2
· 7 (mod12)

Let n be odd.
For σ = +1 we have q = p−3−4− ...−4−3 (mod12).
So in this case

q = p− n− 1
2

· 7− 3 (mod12)

For σ = −1 we have q = p−4−3− ...−3−4 (mod12).
So in this case

q = p− n− 1
2

· 7− 4 (mod12)

How then acts < MED > on the set K? Musically
reasoning we should expect the orbit of any k ∈ K to be
the whole K. So, we wonder if the following proposition
is true

Proposition. Given (p, σ) ∈ K

∀(q, ρ) ∈ K ∃n ∈ N sothat(p, σ)MEDn = (q, ρ)

Remark that calculating n correspond to the musical
question: how many mediant harmony modulations do we
need to go from any given harmony to another? This ques-
tion is answered solving the last equation with respect to
n.

We can proceed in the following way (solution algo-
rithm).

The parity of n is determined by the condition σ·(−1)n =
ρ.

σ, ρ of the same sign: n is even.
Depending on the parity of n and on σ we will consider

one of the three pieces of MEDn.

5 We intend with orbit<MED>(k) the orbit of k as an element of the
<MED> - set K, that is <MED> ·k

We’ll have three cases:

n σ equation in Z12

even +1 or −1 7h = r (h := n
2 , r := p− q)

odd +1 7h = r (h := n−1
2 , r := p− q − 3

odd −1 7h = r (h := n−1
2 , r := p− q − 4

Every equation has only one solution in Z12 because 7
and 12 are coprime. The proposition follows.

Let’s now introduce a third transformation of particu-
lar musical interest. We are taking into account the har-
monic movement from an harmony to the one having the
same tonic, but opposed modality (an example is the well-
known phenomenon of the ’terza piccarda’: when a piece
in minor mode ends with a chord of the same tonic, but
major mode).

Figure 3. D minor, D Major

Proceeding formally:

Definition 4.12 (of PAR transformation).

PAR : K −→ K

(p, σ) 7−→ (p,−σ) (6)

Remark 4.13. PAR is a bijection. (It’s trivial)

As usual let < PAR > be the group generated by
PAR.

Remark 4.14. PAR2 = 1.

Consider now the group generated by MED and PAR.
We immediately note that
1 Exercise. the group <MED, PAR> is not abelian.
Counter-example:

((0, +1)MED)PAR = (9,−1)PAR = (9, +1)

(i.e. C Major becomes MEDiant of A minor that becomes PAR-
allel of A major)

((0, +1)PAR)MED = (0,−1)MED = (8, +1)

(i.e. C Major becomes PARallel of C minor that becomes ME-
Diant of A flat Major)

What about the orbit of an element k ∈ K? We have:

Proposition 4.15.

∀k := (p, σ) ∈ K orbita<PAR>(k) = {(p, σ), (p,−σ)}
i.e. K/ <PAR>' Z12

<MED,PAR> contains MED, hence it’s clear that
the orbit of an element will coincide with the whole K,
and that <MED>⊆<MED,PAR>.
It’s not difficult to prove that



Proposition 4.16. <MED> 6=<MED, PAR>.

Proof. We have to show that PAR 6∈< MED >, i.e.
there is no value of n such that MEDn = PAR. If
there were a solution what would it be? For instance let’s
pose the following harmonic question: is there a value of
n ∈ N for which C Maj becomes MEDn of C min?
Formally:

(0,+1)MEDn = (0,−1) (7)

Let’s follow the procedure of the proof in the previous
note. Modes of harmonies in 7 are opposed, so n will
be odd. The starting mode is +1, hence 7h = r (where
h := n−1

2 and r := p− q − 3 = 0− 0− 3 = −3) i.e.

7h = −3

which (unique) solution is for h = 3, so n = 7.

Then we have (0, +1)MED7 = (0,−1). Let’s consider
the detailed definition of MED7:

(p, σ)MED7 =
({

p if σ = +1
p− 1 if σ = −1 , σ · (−1)

)

Hence MED7 6= PAR. But it’s the only element of <
MED> that maps C Maj to C min, and so we proved that
PAR 6∈<MED>, and so

<MED>⊂<MED, PAR>

.

4.3. Conclusions: generalizing the GIS structure

Summarizing. We exhibited a family of musical entities,
which reduce harmonic information to single element of a
set. We showed how harmonic facts can be algebrically in-
terpreted. We showed that Klangs and particular transfor-
mation groups (of musical meaning), constitue more gen-
eral structures than GIS. In which way, exactly? Let’s
go into deeper details.

We note that

Proposition 4.17. The action (application of transforma-
tions) of the group <MED> on K is simply transitive.

Proof. In fact <MED> ·k = K (4.11).

Hence

Proposition 4.18. K,<MED>, action is a GIS (com-
mutative).

We discovered in 4.16 that also the orbit <MED, PAR>
·k is the whole K. But is the action of < MED, PAR >
simply transitive? The existence in the axiom ?? is guar-
anteed by the orbit coincident to K. On the other hand the
solution of 7 in proposition 4.16 falsifies the unicity in the
same axiom.

Let’s remember at this point the following

Definition. The action of a group on a set X is transitive
iff

∀x, y ∈ X ∃g ∈ G : x · g = y

Then we can say that

Proposition 4.19. The action of <MED, PAR> on K
is transitive.

Proof. The existence of an element of the group which
maps an element of the set in another one, for any choice
of the elements, is ensured by the presence of MED and
by the proposition 4.11.

Finally, let’s consider the actions of < PAR > and
<DOM > on K. These are not even transitive (4.15 and
4.15).

In conclusion, we characterized some musical entities,
considered in conjunction with some transformations, which
are or not GIS, depending on the family of transforma-
tions. By way of compensation we can say that when
the axioms of GIS are not respected, we can anyhow
find very similar algebrical structure. Weakening the ax-
ioms we can still model these musical structure with group
actions over sets.

We want to conclude this formal part of the work em-
phasizing that the characterization of the entities described
in terms of group actions over sets will let us to define, in
a uniform way, verification rules for binary relations be-
tween elements of a (finite) G-set, relations that emerge
from the G-set structure. Given a G-set X , being g ∈ G,
two elements x, y ∈ X will be g-related iff action(x, g) =
y.

5. IMPLEMENTATION

We conclude with the sketch of the implementation in the
structural layer of MX. For a general description of MX
format see [7], [5].

5.1. Representing more analyses

<!ELEMENT structural
(themes?, CPN*, analysis*)>

We added to the structural element the capacity to con-
tain zero or more analyses as sub-elements. In this way it
will be possible to contain more different analytical view-
points. We want to emphasize that this is in line with the
general phylosophy of MX: many different points of view
on the same represented entity (the same happens in the
audio, performance and notational levels).

<!ELEMENT analysis
(segmentation,
relationships?,
featureObjectRelationships?)
>
<!ATTLIST analysis

id ID #REQUIRED



author CDATA #IMPLIED
description CDATA #IMPLIED

>

An analysis is made up by a segmentation, (optionally) a
set of relations between segments and (optionally) a set of
relations between featureObects that one will be able to
use when defining relations between segments.

5.2. Representing the segmentation

<!ELEMENT segmentation (segment+)>
<!ATTLIST segmentation

id ID #REQUIRED
description CDATA "null"
method CDATA "null"

>

A segmentation is made up of one or more segments. A
segmentation is identified by an unique ID in the MX doc-
ument. A segmentation is described by a generic parame-
ter (’null’ by default). A segmentation is described by an
indication of which method has been used to generate it
(’null’ by default).

<!ELEMENT segment
(segmentevent+,
featureObject*)>
<!ATTLIST segment

id ID #REQUIRED
>

A segment is made up of a set of events in the mu-
sic piece. A segment is identified by an unique ID in the
MX document. A segment contains zero or more feature
objects, so one can predicate in many ways on the same
segment of an analysis.

<!ELEMENT segmentevent EMPTY>
<!ATTLIST segmentevent

id_ref IDREF #REQUIRED
>

An event of the piece of music is identified by a ref-
erence to an event in the element of the spine of the MX
document (cfr.[7]).

We want to emphasize that a segment can be any col-
lection of musical events (in one or more voices) and that
segments can overlap (as in the analyses of Lewin) or not
(as in other analyses). In our model there is no limitation,
so we can support any approach to segmentation.

5.3. FeatureObject implementation

Feature objects will be assigned to a segment. Now the
problem is to let custom implementation of featureObject
classes. To address this problem we follow an extensi-
ble content model pattern (see [13]). So, we have a basic
structure of the element featureObject, defined with some
parameter entities that will allow the extensions.

<!ENTITY
\%addedFeatureObjectClasses
"">

<!ENTITY
\%supportedFeatureObjectClasses
"simpleDescription
\%addedFeatureObjectClasses;"

>

<!ELEMENT featureObject
(\%supportedFeatureObjectClasses)>

<!ATTLIST featureObject
id ID #IMPLIED
name CDATA #REQUIRED
>

<!ELEMENT
simpleDescription
(#PCDATA)>

A feature object is identified by an unique ID in the MX
document and will have (optionally) a name. A feature ob-
ject will contain an object of one of the supported classes.
The standard model contains a trivial featureObject class
simpleDescription which content is a simple text.

5.3.1. Adding a custom featureObject class

If we want to extend the model to represent our custom
feature object we have to create our own definition of a
class and introduce the name of the new class in the pa-
rameter entity defined in the dtd. For instance what fol-
lows is a Klang implementation 6 . We chose to represent
pitch class and modality of a Klang as attributes (attribute
models part of the internal state of an object

<!DOCTYPE mx SYSTEM "mx.dtd"[
<!ENTITY

\%addedFeatureObjectClasses
"|Klang">

<!ELEMENT Klang EMPTY>
<!ATTLIST Klang
pc (0|1|2|3|4|5|6|7|8|9|10|11)

#REQUIRED
mod (-1|+1) "+1"

#REQUIRED
implementingClass CDATA

#IMPLIED
>
]>
...
<featureObject id="497"
name="klang c-">
<Klang pc="0" mod="-1"/>

</featureObject>
...

6 The optional attribute implementingClass could contain the name
of an implementing class written in some programming language. This
could be useful in an environment involving an application.



5.4. Representing relations between segments

As we said in 2.2, we want to relate segments by means of
relations between feature objects associated to them.

In our model a relationship is a sub-element of the con-
tainer relationships, which is part of an analysis.

<!ELEMENT relationship EMPTY>
<!ATTLIST relationship
id ID #REQUIRED
description CDATA #IMPLIED
segmentA_id IDREF #REQUIRED
segmentB_id IDREF #REQUIRED
featureObjectA_id IDREF

#IMPLIED
featureObjectB_id IDREF

#IMPLIED
featureObjectRelationship IDREF

#IMPLIED
>

A relation between segments is identified by an unique
identifier in the mx document.

A relation between segments is defined by the refer-
ences to the two segments A and B involved.

One can also specify which featureObject to chose from
the feature objects associated to segments A and B. When
the objects are specified, it is possible to specify also in
which kind of relation A and B are 7 .

Now we introduce a prototypical definition of feature-
Object relations.

<!ELEMENT
featureObjectRelationship
(verRule)>

<!ATTLIST featureObjectRelationship
id ID #IMPLIED
>
<!ELEMENT verRule (#PCDATA)>

A relation of featureObjects is identified by an unique
identifier in the MX document (that can be referenced in
the definition of a relationship between segments). It is
defined by a sub-element which can contain the rule to
check if the relation is verified. The idea is to let the user
to describe this rule in terms of a syntax that a parser will
understand. We make an example in a java-jsp expression
language-like syntax[11].

If we want to introduce an implementation of the DOM
transformation of Klang we will add the following lines to
the document.

<!DOCTYPE mx SYSTEM "mx.dtd"[
...
<!ENTITY

verRule_KlangMED

7 Note that it is possible to have more than one relation between A and
B. For instance, if we have a G-set X with an action that is not simply
transitive, we can have the same objects (i.e. set elements x1, x2 ∈
X) in more than one relation (if there exist two distinct group-elements
g, h ∈ G such that action(x1, g) = x2 and action(x1, h) = x2).

"((k1.mod eq 1)&&(k1.pc-3 eq k2.pc))
||
((k1.mod eq(-1))&&(k1.pc-4 eq k2.pc))"

>
]>
...
<featureObjectRelationship id="1045">
<verRule>&verRule_KlangMED;</verRule>
</featurefeatureObjectRelationship/>

...

6. CONCLUSIONS

Let’s try to sketch a possible not so sci-fi implementation
of the ideas here exposed.

Let’s imagine a musical database containing mx-encoded
files. Now, the system could proceed to examine the har-
monic successions of the pieces and to write in the file
the obtained analysis, defining at the same time, automat-
ically, the tie between the recognized chords and the seg-
ments of the piece which such chords are attributed. Imag-
ine segmentations like those obtained by the algorithm de-
scribed by S.C.Sapp(cfr. [14]) 8 . We will have segments
with keys associated to them (key regions). But keys are
representable by Klang objects.
At the end of the process, chain of relations between suc-
cessive harmonies would be exposed and saved in the xml
file. An agent which we asked to carry out a search of
pieces harmonically similar to others could try (e.g. using
approximate string matching techniques) to search pieces
containing chains of relations with a sufficient number of
correspondences. The presence of an algebraic structure
could inform an intelligent agent to use algorithms which
could make use of this structure.
The encoding of the analytical information obtained by
the work of complex algorithms, and the possibility to
take advantage of it later, through more simple algorithms,
would remarkably speed up some different tasks of infor-
mation retrieval.
Future developements will be the refinement of the im-
plementation here proposed and the examination of oth-
er existing models from the perspective of objects here
described.
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