

Sustainable H2 generation via steam reforming of biogas in membrane reactors: H2S effects on membrane performance and catalytic activity

Adolfo Iulianelli, Matteo Manisco, Nicolas Bion, Anthony Le Valant, Florence Epron, Ozgur Colpan, Elisa Esposito, John C Jansen, Mario Gensini, Alessio Caravella

▶ To cite this version:

Adolfo Iulianelli, Matteo Manisco, Nicolas Bion, Anthony Le Valant, Florence Epron, et al.. Sustainable H2 generation via steam reforming of biogas in membrane reactors: H2S effects on membrane performance and catalytic activity. International Journal of Hydrogen Energy, 2021, 46 (57), pp.29183-29197. 10.1016/j.ijhydene.2020.10.038. hal-03013913

HAL Id: hal-03013913 https://hal.science/hal-03013913

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sustainable H₂ generation via steam reforming of biogas in membrane reactors: H₂S effects on membrane performance and catalytic activity

A. Iulianelli^{1*}, M. Manisco^{1,2}, N. Bion³, A. Le Valant³, F. Epron³, C.O. Colpan⁴, E. Esposito¹, J.C. Jansen¹, M. Gensini¹, A. Caravella²

 ¹ Institute on Membrane Technology - Italian National Research Council - via P. Bucci 17/C, Rende (CS), 87036, Italy
 ² DIMES Dpt. of University of Calabria, via P. Bucci 34/B, Rende (CS), 87036, Italy
 ³ Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, SAMCat, 4 rue Michel Brunet - B27 - TSA 51106, 86073 Poitiers Cedex 9, France
 ⁴ Mechanical Eng. Dpt. of the Dokuz Eylul University, Tinaztepe Yerleskesi Buca, Izmir, 35397, Turkey

(*) Correspondence to: a.iulianelli@itm.cnr.it (Dr. Adolfo Iulianelli)

Abstract

This study proposes as first time the steam reforming of a synthetic biogas stream containing 200 ppm of H_2S , carried out in a non-commercial supported Pd-Au/Al₂O₃ membrane (7-8 µm of selective layer) reactor at 823 K and 150 kPa over a non-commercial Rh(1%)/MgAl₂O₄/Al₂O catalyst, recovering almost 80% of the total hydrogen produced during the reaction and showing a good resistance to the H_2S contamination as confirmed by stable methane conversions for around 400 h under operation. For comparison, the same reaction was carried out in a commercial self-supported Pd-Ag membrane (150 µm of wall thickness) yielding a hydrogen recovery equal to 40% at 623 K and 200 kPa and presenting stable methane conversions for less than 200 h under operation due to the effect of the H_2S contamination.

Keywords: Pd-Au/Al₂O₃ membrane, membrane reactor, hydrogen, Rh-based catalyst, biogas steam reforming

1. Introduction

Today, the general interest on ever more sustainable processes in strategic areas such as energy, environmental protection, etc. is involving a critical challenge represented by the transition from a fossil fuelbased to a sustainable and circular economy [1,2], adopting the principles of Process Intensification Strategy to drive the transition from conventional to alternative and environmentally friendly technologies [3]. The concepts of this new strategy are well-matched by the membrane engineering, which is playing a crucial role in the substitution of a number of traditional devices used in the process engineering with membrane-based units such as the membrane reactors (MRs) [4,5].

As a consequence of the growing interest toward the so-called hydrogen economy [6], in the last decades, hydrogen production and purification technologies have attracted considerable interest and, among them, MR technology received growing attention, because able to combine the exploitation of renewable sources [7-10] with the simultaneous production and purification of hydrogen via reforming reactions [11-15]. In a MR, the presence of a hydrogen perm-selective membrane allows its selective removal from the reaction toward the permeate side, involving the so-called "shift-effect" on the reaction system, responsible for higher reaction products formation and further feed product conversion than an equivalent conventional reformer (CR) (for thermodynamically restricted reactions) [16].

To date, most of the production of hydrogen at a larger scale comes from natural gas steam reforming reaction [17], which involves the exploitation of fossil fuels and the consequent formation of greenhouse gases (GHGs).

According to the standard ISO 14001:2015 Environmental Management, any change to the environment, whether adverse or beneficial, wholly or partially resulting from an organization's environmental aspects should be considered [18]. Hence, a steam reforming plant, both classical and MR based, has an anthropogenic impact on the environment [19].

Among the renewable feedstocks, biogas results to be a greener option than the natural gas for generating hydrogen by reforming processes, which may contributing to lower the emission of GHGs [20]. The composition of biogas may vary greatly, depending on the nature of the residual biomass (sewage treatment plants, animal waste, etc.) used during the anaerobic digestion process, even though it is mostly constituted of CH₄ and CO₂, besides N₂, hydrogen, volatile organic compounds, H₂S, etc. [21,22]. However, the combination of biogas processing with MR technology was not largely studied in the literature, particularly because of the presence of H₂S as main responsible for the membrane and catalyst poisoning and consequent

performance loss. However, in the last years, there has been a growing attention toward the development of high performance reforming catalysts, showing high catalytic activity, high carbon deposition resistance, etc. According to the specialized literature, metal catalysts such as Rh, Pd or Ru, Pt, and Ni, showing high activity and selectivity, were used for hydrogen generation via steam reforming of biogas (SRB) [23]. To date, most of the scientific literature about the SRB reaction in CRs is based on Ni catalysts, even though Rh presents a greater catalytic activity than Ni, associated to a lower coke formation tendency [24-28]. The choice of the support is also of major importance since it plays an essential role in the stability of the catalyst. In the last years, it was experienced that catalysts constituted of Rh supported on γ -Al₂O₃ modified by cations such as Mg²⁺ were efficient for steam reforming reactions [29,30]. On the other hand, only a few studies deal with the utilization of Pd-based MRs to carry out the steam reforming of a real or synthetic biogas stream. In these studies, both fluidized bed [31,37] and packed bed [32-36,38,39] MR modalities were analyzed with the purpose of producing high grade hydrogen using synthetic H₂S free biogas mixtures [31-34], or considering a pre-treatment step useful to remove H₂S prior to the reforming stage [40-42]. In particular, Ru/Al₂O₃ catalyst and a thick self-supported Pd-Ag membrane (200 μm) were used by Itoh's group [32,33], while Ni-based catalysts were packed in self-supported Pd-Ag [38,39] and supported Pd (7 μm layer)/Al₂O₃ MRs [36]. To the best of our knowledge, in only one case a commercial Rh-based catalyst was used in a fluidized bed MR housing a supported Pd-Ag (5 μ m layer)/Al₂O₃ membrane [31].

According to what stated above, pure Pd membranes suffer a lot the H₂S attack, which is responsible for the block of the H₂ dissociation sites and, in some case, for the formation of the Pd₄S in the membrane bulk, causing with the consequent their the performance loss due to the lower hydrogen permeability of Pd₄S than pure Pd, or the membrane failure after long-term exposure [43-48]. On the contrary, Pd-Au and Pd-Cu alloyed membranes result to be more H₂S resistant than pure Pd ones [52-56]. In particular, the growing interest in Pd-Au alloy membranes has been due to their superior hydrogen permeability performance and higher resistance to H₂S poisoning with respect to Pd-Cu membranes [56]. For example, Chen and Ma [44] performed H₂ permeation tests on a Pd-Au membrane in presence of ~ 55 ppm of H₂S at 773 K and 200 kPa, founding that higher temperatures allowed quicker hydrogen recovery when H₂S was removed, whereas

longer H₂S exposure determined longer hydrogen recovery times. Coulter et al. [49] tested Pd-Au membrane foils under permeation tests of hydrogen-rich syngas streams containing from 20 to 50 ppm of H₂S at 673 K and 1253 kPa, at different Au compositions (between 7 and 20 wt%), observing that higher Au content in the alloy determined a lower H₂S inhibition effect on the H₂ permeability. The most recent research focuses on Pd-ternary alloys (among Pd, Au, Pt, Ag etc.) membranes, although their fabrication and testing result to be at an infancy stage [43,49,54,56]. In some case, Pd-ternary alloys membranes showed very good tolerance toward H₂S (up to 1000 ppm) during hydrogen permeation tests, without a clear evidence of performance loss due to the Pd₄S formation [54].

The aim of this experimental study is to perform the steam reforming of a synthetic biogas mixture containing H₂S in two MRs: the first, housing a high hydrogen permeable and low hydrogen perm-selective supported Pd-Au/Al₂O₃ membrane; and the second, housing a low hydrogen permeable and high hydrogen perm-selective self-supported Pd-Ag membrane. Both the MRs are packed with a non-commercial Rh(1%)/MgAl₂O₄/Al₂O catalyst. In our previous studies, Pd-Au membranes supported on ceramic [57] and porous stainless steel [58] supports were studied in terms of hydrogen permeation characteristics at different experimental conditions, analyzing the role of the presence/absence of an intermediate layer between the separative metallic layer and the support, without evaluating the effect of the contaminants presence such as H₂S in the feed stream. Furthermore, a H₂S-free synthetic biogas stream was used to produce high grade hydrogen via steam reforming reaction performed in a Pd/Al₂O₃ MR [36].

The novelty of this study consists in evaluating the effects of the H₂S₇ presence in the model biogas stream₇ on the catalytic activity and the hydrogen perm-selectivity characteristics of the Pd-alloyed membranes. As stated above, the effect of H₂S contained in hydrogen-rich feed streams during the hydrogen permeation through Pd-Au membranes was investigated by a number of scientific papers, but to our best knowledge no papers deal with the steam reforming of a H₂S-containing biogas stream carried out in a Pd-Au based MR, where the effects of the simultaneous presence of H₂S, CO₂ and other reaction byproducts were evaluated in terms of hydrogen permeation membrane performance and catalytic activity as well. Furthermore, an equivalent H₂S free biogas mixture is used for better highlighting the role of H₂S during the SRB on the MRs performance, evaluated in terms of methane conversion, hydrogen recovery and purity.

2. Experimental

2.1 Catalyst preparation and characterization

The experimental campaign was performed using a Rh(1%)/MgAl₂O₄/Al₂O catalyst. The catalyst support was constituted of γ -alumina beads (200 m²g⁻¹, 1-2 mm in diameter, provided by AXENS) impregnated with magnesium acetate (Mg(CH₃COO)₂·4H₂O, Alpha Aesar) to achieve 5 wt.% of magnesium in the support [59]. The choice of the acetate was due to the better control of the acidic-base behaviors of the support. After impregnation, the support was subjected to various optimal thermal treatments, especially at high temperature (1273 K) in order to form the MgAl₂O₄ spinel structure at the outer shell of the alumina support [59]. Rh (1% wt), as metallic catalyst phase, was wet impregnated to the support by using RhCl₃ (Alpha Aesar) for 4 h at room temperature. After impregnation procedure, the catalyst was placed under stirring at 318 K for 24 h and dried at 393 K for 15 h. Then, it was activated by calcination at 973 K for 4 h (heating ramp 295 K min⁻¹).

The bare alumina beads, the alumina modified by the addition of magnesium and thermal treatment and Rh/MgAl₂O₄/Al₂O₃ catalyst were characterized by nitrogen adsorption (Micromeritics Tristar 3000) for the determination of the BET surface area, hydrogen chemisorption for the determination of the metal accessibility, ICP-OES (Perkin-Elmer Optima 2000 DV) for the metal content, X-Ray Diffraction (Siemens D5000) and Scanning Electron Microscopy (INCA 300 OXFORD).

2.2 Membranes characterization and testing

The non-commercial supported Pd-Au/ α -Al₂O₃ membrane (Nanjing Tech. University & GaoQ Functional Materials Co., Ltd., China) is constituted of a thin Pd-Au layer (~ 8 µm) deposited on the porous substrate (α -Al₂O₃) via electroless plating technique and the total membrane length is 7.5 cm, with 5.0 cm of active length, o.d. 13 mm and i.d. 8 mm, Figure 1(a).

Chemical and morphological analyses were performed by scanning electron microscopy (Phenom Pro X desktop SEM, Phenom-World), which is equipped with an energy dispersive X-ray spectroscopy detector (EDX) allowing elemental analysis of membrane surface and cross-section before and after (post mortem analysis) the experimental campaign.

Figure 1. Photos of the (a) supported Pd-Au/ α -Al₂O₃ membrane before the experimental tests; (b) bench-scale tubular MR module; (c) photo of the self-supported Pd-Ag membrane; (d) scheme of the Pd-Ag MR.

The bench-scale Pd-Au/Al₂O₃ MR module is illustrated in Figure 1(b), in which the feed, sweep-gas, retentate and permeate streams are clearly shown. The MR module is 12 cm in total length and 3.0 cm of o.d. and the supported Pd-Au based membrane is housed inside by using two graphite gaskets useful to prevent the mixing within permeate and retentate streams. The Rh-based catalyst (1.5 g) was packed in the annulus of the MR, while the permeated products were collected in the lumen of the MR for successive gas chromatograph (GC) analyses.

The commercial self-supported Pd-Ag membrane (Johnson Matthey, UK) is constituted of a wall thickness of about 150 µm, o.d. 10 mm, 145 mm as total length, and 100 mm as active length, Figure 1(c). In this study, the Pd-Ag membrane is closed at one end and the catalyst is packed in the lumen side, Figure 1(d). Before the reaction tests, the Rh-based catalyst was reduced under pure hydrogen for 1 h. The MR was heated up by using an electrical heating tape connected to a temperature controller and a thermocouple. The experimental campaign started with single gas (H₂, N₂, CO₂, CH₄) permeation tests, performed between 573 and 823 K, by varying the feed pressure between 150 and 250 kPa (abs.). Afterwards, the SRB reaction was

carried out in the MRs with the temperature varying between 673 and 823 K and the pressure between 150 kPa (abs.) and 250 kPa (abs.), by means of a back-pressure controller (Fantinelli, Italy) placed at the outlet side of the retentate stream. The H_2O/CH_4 feed molar ratio was set at 2/1 and 3/1, and two synthetic biogas mixtures (with and without H_2S) flowed into the MRs. The composition of the gas mixture for both cases is given in Table 1. The weight hourly space velocity (WHSV) was varied during the reaction tests from 0.2 to 1.3 h⁻¹.

Compound	Mixture 1 (with H ₂ S) [%]	Mixture 2 (H ₂ S free) [%]
CO ₂	35.03	35.00
CH_4	59.94	60.00
N_2	5.01	5.00
H₂S	0.02	

Table 1. Synthetic biogas mixtures used during the experimental reaction tests (molar percentages)

In the experimental setup, deionized water for the SRB reaction, which was vaporized in a preheating zone and, then, mixed with the synthetic biogas mixture, was fed by a P680 HPLC pump (Dionex). The outlet streams were cooled by a cold-trap to condensate the unreacted steam and, hence, analyzed by a temperature-programmed HP 6890 GC, equipped with two thermal conductivity detectors at 523 K and using Ar as a carrier gas. The GC was equipped by three packed columns: Porapack R 50/80 (8 ft × 1/8 inch) and CarboxenTM 1000 (15 ft × 1/8 inch) connected in series, and a Molecular Sieve 5 Å (6 ft × 1/8 inch). Furthermore, a constant flow rate of N₂ (~ 25 mL/min) was used as an internal standard gas to analyze the outlet compositions (dry state) of both permeate and retentate streams. Both single gases (CH₄, CO₂, N₂, H₂) and mixtures were supplied by means of Brooks Instruments 5850S mass-flow controllers, driven by the Lira (Italy) software. Each experimental reaction data of this work represents an average value of – at least – 5 experimental tests taken in 150 min at the steady-state condition with an error variation lower than 2% for each experimental point reported in this work. The performance of the MRs during SRB reaction was evaluated by means of the following definitions:

Methane conversion(%) =
$$\frac{CH_{4-in} - CH_{4-out}}{CH_{4-in}} \times 100$$
 (1)

7

where CH_{4-in} and CH_{4-out} are the inlet and outlet CH₄ molar flow rates, respectively.

Hydrogen recovery (%) =
$$\frac{H_{2-permeate}}{(H_{2-permeate} + H_{2-retentate})} \times 100$$
 (2)

where $H_{2-permeate}$ and $H_{2-retentate}$ are the outlet H_2 molar flow rates in the permeate and retentate sides, respectively.

Hydrogen permeate purity (%) =
$$(H_{2-permeate}/F_{permeate}) \times 100$$
 (3)

where $F_{permeate}$ represents the outlet permeate molar flow rate. Furthermore, to analyze the permeation behaviours of the Pd-Au/Al₂O₃ and Pd-Ag membranes, single gas permeation tests were done according to the following general equation, regulating the H₂ flux permeating through a generic membrane:

$$J_{H_2} = Pe(p_{H_2-retentate}^n - p_{H_2-permeate}^n)$$
(4)

where J_{H2} indicates the H_2 flux permeating through the membrane, Pe is the H_2 permeance, $p_{H2-retentate}$ and $p_{H2-permeate}$ are the H_2 partial pressures in the retentate and permeate sides, respectively, and n (variable in the range 0.5 - 1) is the dependence factor of the H_2 permeating flux on the H_2 partial pressure;

$$\alpha_{H2/i} = \frac{J_{H2}}{J_i}$$
(5)

where $\alpha_{H2/i}$ represents the "ideal selectivity", calculated as the ratio within the hydrogen permeating flux (J_{H2}) over the permeating flux of another pure gas (J_i, with i = CO₂, CH₄, and N₂). The correlation between the H₂ membrane permeability (P_{H2}) and the temperature was described by an Arrhenius-like equation (Eq. 6).

$$P_{H2} = P_{H2,0} exp^{(-\frac{E_A}{RT})}$$
(6)

where $P_{H2,0}$ represents the pre-exponential factor, *R* is the universal gas constant, E_A is the apparent activation energy and *T* is the temperature.

3. Results and Discussion

3.1. Characteristics of the Rh/MgAl₂O₄/Al₂O₃ catalyst for reforming reaction

X-Ray diffractograms of the bare alumina support, of the alumina modified by Mg^{2+} and of the Rh/MgAl₂O₄/Al₂O₃ catalyst are displayed in Figure 2(a). It can be seen that the impregnation of the magnesium precursor salt followed by a thermal treatment allows the incorporation of the Mg^{2+} cations into

the alumina support forming a magnesium aluminate phase, MgAl₂O₄, coexisting with an α -Al₂O₃ phase, with no trace of isolated Mg species, in accordance with the results of Aupretre et al. [59]. The SEM image of an alumina bead after modification by Mg²⁺ shows a core-shell structure with MgAl₂O₄ in the shell (thickness in the range of 190-210 µm) and a core of Al₂O₃. When rhodium is added, the diffractogram is similar to that of MgAl₂O₄/Al₂O₃ with no diffraction lines corresponding to Rh species indicating a good dispersion of Rh species on the support, Figure 2(b).

Figure 2. (a) X-Ray diffractograms of the alumina beads (Al₂O₃), the alumina beads modified by addition of Mg²⁺ (MgAl₂O₄/Al₂O₃) and the final catalyst (Rh/ MgAl₂O₄/Al₂O₃) (• : MgAl₂O₄, o : α-Al₂O₃, ж : γ-Al₂O₃) and (b) SEM image of one bead of MgAl₂O₄/Al₂O₃.

The main characteristics of these materials are reported in Table 2. The thermal treatment at high temperature and the addition of Mg^{2+} induce a strong decrease of the BET surface area of the support from 207 m² g⁻¹ for the bare alumina to 84 m² g⁻¹ for while the addition of Rh does not modify the support. Rh and Mg contents are similar to the nominal values and the Rh dispersion of 40 wt% corresponding to Rh particle sizes of 2 nm considering hemispherical particles.

Catalyst	BET surface area (m ² g ⁻¹)	Rh content (wt.%)	Mg content (wt.%)	Rh dispersion ^a (%)
γ- Al ₂ O ₃	207	-	-	-
$MgAl_2O_4/Al_2O_3$	84	-	4.6	-
$Rh(1\%)/MgAl_2O_4/Al_2O_3$	84	0.93	4.6	40

 Table 2. Main characteristics of the studied catalyst.

 a determined from H_{2} chemisorption measurements considering a stoichiometry H/Rh of 1 $\,$

3.2 Experimental tests on the Pd-Au/Al₂O₃ membrane: gas permeation, SEM and EDX analyses

The first part of the whole experimental campaign of this work was devoted to analyzing the chemicalphysical characteristics of the Pd-Au/Al₂O₃ membrane before the permeation and reaction tests.

Figures 3(a) and (b) show the Pd-Au/Al₂O₃ membrane, evidencing the characteristic cauliflower morphology of Pd-alloy layer at different magnification, respectively. Figure 3(c) illustrates the cross-section of the membrane from which the thickness of the dense metallic layer was estimated to be around 7-8 μm. Figure 3 (d) reports the porous Al₂O₃ support, where Pd was deposited with Au to constitute a thin dense layer well adhered to the former. The EDX analysis on this membrane confirmed the presence of the following atoms: Pd, Au, Al, O besides Si, Y and N as impurities, Figure 4.

0 1 2 206,447 counts in 30 seconds

Figure 4. EDX analysis on the Pd-Au/Al₂O₃ membrane before the gas permeation and reaction tests.

Afterwards, single gas permeation tests were carried out on the $Pd-Au/Al_2O_3$ membrane in order to evaluate the H_2 perm-selectivity characteristics and the resistance to the effect of H_2S during the permeation test using the gaseous mixtures (Mixture 1 and Mixture 2) of Table 1. In particular, pure H_2 permeation tests were conducted between 573 and 823 K, varying the transmembrane pressure between 0 and 100 kPa, Figure 5(a).

Figure 5. (a) H₂ flux permeating through the Pd-Au/Al₂O₃ membrane vs transmembrane pressure at different operating temperatures; (b) H₂ permeability vs 1/T for the Pd-Au/Al₂O₃ membrane at 50 kPa of transmembrane pressure.

As expected, the H₂ flux permeating through the membrane increased by raising the transmembrane pressure (as higher the transmembrane pressure as higher the H₂ permeation driving force) and the temperature. In particular, an increase of temperature allowed an enhancement of the H₂ permeating flux; indeed, the H₂ permeability depends on the temperature according to an Arrhenius-like equation, Figure 5(b) The apparent activation energy (E_A) was graphically estimated at 50 kPa of transmembrane pressure from the plot of Figure 5(b), which gives 12.1 kJ/mol with the correlation coefficient R² ~ 0.97, hence comparable to other literature data [60-68], Table 3.

Furthermore, a graphical assessment of the H_2 permeating flux plot as a function of the H_2 permeation driving force at different "n-value" was carried out. The "n" exponent of the hydrogen partial pressure represents the dependence factor of the H_2 flux permeating through the membrane on the H_2 partial pressure, and the regression factor (R^2) indicates when it achieves the maximum value, the best experimental data fitting.

Metallic layer	Layer thickness (μm)	Substrate	Permeation T (K)	∆p (kPa)	E₄ (kJ/mol)	Ref.
Pd-Cu	7	Al ₂ O ₃ -PNS ^a	813	2000	19.0	[60]
Pd-Cu	20	Al ₂ O ₃	673	50	18.5	[61]
Pd-Au	5	YSZ ^b	623-823	100-700	7.5	[62]
Pd-Cu	17	PSS ^c	823	70	9.4	[63]
Pd-Ag	48	PSS ^c	623-823	180-250	9.0	[64]
Pd	15	Al ₂ O ₃	623-923	30	10.0	[65]
Pd	7	Al ₂ O ₃	623-723	100	11.4	[66]
Pd-Cu	10	ZrO2/PSS ^c	713	-	15.4	[67]
Pd-HF	5	Al ₂ O ₃	873	200	21.3	[68]
Pd-Au	8	Al ₂ O ₃	673	50	12.1	This work

Table 3. Comparison of the activation energy (E_A) of the Pd-Au/Al₂O₃ membrane with other literature data.

^a Porous nickel support

^b Yttria stabilized zirconia

^c Porous stainless steel

Commonly, for thin metallic layers (< 5 μ m) "n" may range between 0.5 and 1.0 and, when n = 0.5, the Eq. (4) describing the correlation between the H₂ permeating flux and H₂ permeation driving force becomes the Sieverts-Fick law, which means that the H₂ permeation depends substantially on the diffusion of atomic H₂ into the bulk [63]. The latter case results to be the rate-limiting step of the overall permeation process. On the other hand, when n = 1, Eq. (4) describes the H₂ permeation controlled by the mass transport to or from the surface or by the dissociative adsorption or associative desorption. When "n-value" ranges from 0.5 to 0.8, the H₂ permeation is regulated by different contributions such as diffusion, Knudsen, or viscous flow [69]. In Table 4, the n-values are reported as a function of temperature and each value of them represents the best data fitting (maximum R²) at a set temperature.

Table 4. H_2 partial pressure exponent (n-value) at the maximum R^2 as a function of temperature for the Pd-Au/Al₂O₃membrane.

Т [К]	n-value
573	0.5
623	1.0
673	0.8
823	0.8

According to what was demonstrated by Caravella et al. [70] for membrane thickness (Pd-based layer) lower than 20 μ m, the trend of n-value may show a maximum that, in this work, was reached at 623 K. Therefore, at a lower temperature, the H₂ permeation through the Pd-Au/Al₂O₃ membrane is controlled by the diffusion through the Pd-Au bulk, showing the best n-value is equal to the Sieverts coefficient (0.5). Increasing the temperature, the maximum R² was achieved at higher n-values. In particular, at 623 K, the best n-value was equal to 1, highlighting that the H₂ permeation is completely controlled by the surface mass transport. By increasing the temperature, the best n-value achieved a plateau around 0.8. This means that different mechanisms contribute to control the hydrogen permeation through this membrane. Afterwards, as a function of the operating time, the permeation of H₂ through the membrane was studied as a component in H₂-rich gas mixtures (a constant H₂ stream, 474 mL/min, mixed with a gaseous stream constituted of CO₂/CH₄/N₂ with and without H₂S, Table 5) and compared to that as single gas. This allowed to evaluate the eventual depletion of the H₂ permeating volume flow rate due to the effects of the concentration polarization, the adsorption of some components on the membrane surface, and - particularly - the harmful presence of H₂S.

-	Qтот-mix gases (*) Qн2 [mL/min] [mL/min]		QTOT H2-rich mix [mL/min]	XH2-rich mix [%]		
	26.4	474	500.4	95		
	54.6	474	528.6	90		
	11.8	474	586.8	81		
	173.4	474	647.4	73		
	294	474	768	62		
	666.6	474	1140.6	42		

Table 5. H2-rich gas mixtures composition constituted of a constant H2 stream, 474 mL/min, mixed with variablevolume flow rates of gaseous streams constituted of CO2/CH4/N2, with and without H2S.

(*) Gaseous mixtures composition (without H₂);

a) with H₂S: CO₂(35.03%)/CH₄(59.94%)/N₂(5.01%)/H₂S(0.02%);

b) without $H_2S: CO_2(35\%)/CH_4(60\%)/N_2(5\%)$.

Figure 6. Volume flow rate permeating through the Pd-Au/Al₂O₃ membrane of H₂ as single gas and as component in H₂-rich gaseous mixtures (with and without H₂S) vs time at 673 K and 100 kPa of H₂ partial pressure difference across the membrane.

Figure 6 sketches a constant trend of the permeating volume flow rate of H₂ (around 380 mL/min as mean value) as single gas in a range time of 14 h under testing at 673 K and 100 kPa of H₂ partial pressure difference across the membrane. To evaluate the effects on the H₂ permeation of other compounds typically present in a SRB reformed streams (CO₂, CH₄, N₂, and H₂S), the two gaseous mixtures (with and without H₂S) were mixed with a constant H₂ stream and the H₂ partial pressure difference across the membrane was set at 100 kPa. This was done by varying the total feed pressure as a consequence of the H₂ composition variation in the final H₂-rich gas mixtures in order to be able to correctly compare the H₂ permeation through the membrane at the same H₂ partial pressure difference set for the case of H₂ tested as a single gas. Considering the H₂-rich gas mixture without H₂S, it is evident that the lower is the H₂ composition, the higher is the depletion of the H₂ permeating flow rate as a consequence of the ever more pronounced concentration polarization effect. Furthermore, as demonstrated by Mejdell et al. [71], the presence of a growing amount of CO₂ in the gaseous mixture is a further reason of the depletion of the H₂ permeating flow rate, since it may be adsorbed on the membrane surface, inducing an inhibitive effect on the H₂ permeation. Hence, the H₂ flow rate permeating through the Pd-Au/Al₂O₃ membrane ranged from 340 mL/min at x_{H2} = 0.95 to 140 mL/min at x_{H2} = 0.42. The initial H₂ permeation membrane performances were recovered reaching the permeating flow rate of 380

mL/min after 13 h of pure H₂ flowed as single gas into the MR module. However, the depletion of the H₂ permeating flow rate was more severe when H₂S was present in the H₂-rich gas mixture. A part from the aforementioned effects of the concentration polarization and CO₂ inhibition, the presence of H₂S lowered the H₂ permeating flow rate, which passed from 365 mL/min at $x_{H2} = 0.95$ to 81 mL/min at $x_{H2} = 0.42$. Even in this case, the H₂ permeation characteristics of the Pd-Au/Al₂O₃ membrane were reversibly recovered after flowing once again pure H₂ to the membrane module. The capacity of fully restoring the hydrogen permeation characteristics shown by the non-commercial membrane results to be one of the most significative results of this work because it avoids the substitution of the membrane, hence resulting economically attractive for possible scale up of this technology.

3.3 Preliminary experimental tests on the commercial self-supported Pd-Ag membrane: gas permeation analyses

The single gas permeation tests on the self-supported Pd-Ag membrane were performed at different temperatures ranging between 573 and 673 K, by varying the transmembrane pressure between 0 and 200 kPa, Figure 7(a). The maximum operating temperature for this commercial membrane is set at 673 K, consequently, all the experimental campaign considered the aforementioned temperature as the maximum operable condition. The experiments evidenced that only H₂ may permeate through the membrane for all the tested temperatures. Therefore, the H₂ permeation mechanism is regulated by the diffusion through the membrane bulk and the H₂ permeating flux followed the Sieverts-Fick law (n-value equal to 0.5). As for the supported Pd-Au/Al₂O₃ membrane, also for the self-supported Pd-Ag membrane the H₂ permeating flux increased as a consequence of both temperature and transmembrane H₂ partial pressure difference raise.

Figure 7. (a) H₂ flux permeating through the self-supported Pd-Ag membrane vs transmembrane pressure at different operating temperature; (b) H₂ permeability vs 1/T for the self-supported Pd-Ag membrane at 50 kPa of transmembrane pressure.

Figure 7(b) shows the Arrhenius plot for the Pd-Ag membrane at transmembrane pressure equal to 50 kPa. In this case, the apparent activation energy was equal to 14.8 kJ/mol.

3.4 SRB reaction tests

SRB reaction tests were carried out firstly in the Pd-Au/Al₂O₃ MR at 823 K and 150 kPa, by varying the H₂O/CH₄ molar ratio between 2/1 and 3/1, and the WHSV between 0.5 and 1.3 h⁻¹, analyzing the experimental results in term of CH₄ conversion, Figure 8(a) and H₂ recovery, Figure 8(b). As shown in Figure 8(a), at constant WHSV CH₄ conversion increased at a higher H₂O/CH₄ molar ratio (from 18 to almost 25% at WHSV = 0.5 h⁻¹) because, as expected, an excess of steam favored higher conversions from a thermodynamic point of view. Nevertheless, no higher feed molar ratios were used because a larger excess of steam may determine a negative effect on the H₂ permeation mechanism, acting a dilution of the products present in the reaction side, lowering the H₂ partial pressure and, consequently, the H₂ permeation driving force.

Figure 8. (a) CH₄ conversion vs feed molar ratio at different WHSV, T = 823 K and p = 150 kPa during SRB reaction carried out in the Pd-Au/Al₂O₃ MR in comparison with the equilibrium conversion at the set conditions in an equivalent CR; (b) H₂ recovery vs feed molar ratio at different WHSV, T = 823 K and p = 150 kPa during SRB reaction carried out in the Pd-Au/Al₂O₃ MR.

In comparison with an equivalent CR operated at the same experimental conditions, the Pd-Au/Al₂O₃ MR showed a better conversion at lower WHSV and stoichiometric feed molar ratio, whereas it was comparable at higher WHSV, Figure 8(a). On the contrary, in the presence of an excess of water in the feed, CH_4 conversion overcame the thermodynamic equilibrium conversion of the equivalent CR at both the WHSVs investigated in this work.

However, at each feed molar ratio, an increase of WHSV lowers the CH₄ conversion due to the lower contact time between the reactants and the catalyst, Figure 8(a). This involves a reduction of H₂ produced during the reaction and, consequently, a lower H₂ permeation driving force, responsible for a lower H₂ removal and, consequently, for a lower H₂ recovery, Figure 8(b). On the contrary, an increase of feed molar ratio induces an enhancement of H₂ production, involving a higher H₂ permeation driving force with a consequent larger H₂ removal from the reaction to the permeate side. This favors an increase of H₂ collected in the latter side and, consequently, the increment of the H₂ recovery (from 70 to almost 80% at WHSV = 0.5 h⁻¹), Figure 8(b). To confirm that coke was formed during the SRB reaction, after each experimental test, a H₂/N₂ mixture was fed to the reaction side of the MR in order to observe a possible formation of CH₄ as proof of its presence. No O₂ was used because it could oxidize the metallic layer of the membrane, causing its failure. In all the experimental tests, the GC analyses confirmed the production of CH₄, and the evolution of the depletion of the H₂ stream fed during the H₂/N₂ mixture treatment was detected up to completely convert the coke present in the reaction zone. This objective was achieved when the H₂ molar flow rate fed to the MR (by using the H₂/N₂ mixture) was equal to that present in the outlet stream, as a proof that no C was present in the reaction side. As expected, more coke was formed at lower feed molar ratio and higher WHSV. In order to be sure about the validity of the experimental tests, the carbon balance within the inlet and outlet streams was evaluated also taking into account the amount of coke formed during the H₂/N₂ mixture treatment (this was done by integrating the evolution of the CH₄ molar flow rates detected during the H₂/N₂ treatment). The carbon balance was then closed in all the experimental tests with a maximum error equal to $\pm 6\%$.

From a general point of view, although superior to the maximum conversions achievable in the equivalent CR at the same set conditions, the conversions of the Pd-Au/Al₂O₃ MR were limited by the relatively low H_2 perm-selectivity (as a consequence of the non-full H_2 perm-selectivity of this membrane), which did not allow to involve a stronger 'shift effect' of the SRB reaction system.

On the contrary, the experimental campaign using the self-supported Pd-Ag MR evidenced great performance in terms of conversion, although with limited H₂ recovery. Figure 9(a) shows the CH₄ conversion at 673 K as a function of reaction pressure and WHSV. The different reaction temperature at which the Pd-Ag MR was exercised with respect to the Pd-Au/Al₂O₃ MR was due to the maximum temperature limit imposed for avoiding the Pd-Ag membrane failure. As for the first MR, the conversion was improved by increasing the feed molar ratio and lowering the WHSV. As the best value, the Pd-Ag MR reached almost 85% of CH₄ conversion at 673 K, feed molar ratio = 3/1 and WHSV = 0.2 h⁻¹. Being the Pd-Ag membrane fully H₂ perm-selective, the shift effect operated by the membrane in removing H₂ from the reaction side to the pervious MR investigated. Figure 9(b) sketches the H₂ recovery against the feed molar ratio at 673 K, 100 kPa of transmembrane pressure and different WHSVs. Being the Pd-Ag membrane less permeable than the Pd-Au/Al₂O₃ membrane, the H₂ recovery during SRB reaction in the Pd-Ag MR was macroscopically lower than that achieved in the Pd-Au/Al₂O₃ MR. The best value, equal to almost 40%, was reached at feed molar ratio = 3/1 and WHSV = 0.2 h⁻¹.

Figure 9. (a) CH₄ conversion vs feed molar ratio at T = 673 K and different reaction pressure and WHSV during SRB reaction carried out in the Pd-Ag MR; (b) H₂ recovery vs feed molar ratio at different WHSV, T = 673 K and p = 200 kPa during SRB reaction carried out in the Pd-Ag MR.

In Table 6, the best performance of the supported Pd-Au/Al₂O₃ and unsupported Pd-Ag MRs are reported. Much better CH₄ conversion was achieved in the Pd-Ag MR due to a large effect of the SRB reaction shift towards the products, as a consequence of the selective hydrogen permeation through the membrane. The former MR achieved great performance even though it was exercised at a lower temperature (673 K) and this constituted a further advantage over the Pd-Au/Al₂O₃ MR in terms of energy saving. However, due to the low hydrogen permeability characteristics of the unsupported Pd-Ag membrane related to its thick wall (150 μ m) the hydrogen recovery was not higher than 40% although its purity was around 100% with a CO content \leq 20 ppm, making this stream useful for low-temperature (LT) PEM fuel cell supplying. Nevertheless, the composition of hydrogen of the retentate stream is equal to a bit more than 50% at the best conditions Figure 10(a), decreasing to around 40% at lower H₂O/CH₄ molar ratio, Figure 10(b). Hence, the retentate stream would need to be treated in a second stage process to further transform the residual CH₄ into H₂ and CO₂ and recover as much as possible H₂, implying additional operation costs due to a higher number of stages processing.

Figure 10. Molar retentate composition (dry) at WHSV = 0.2 h⁻¹, T = 673 K and p = 200 kPa during SRB reaction carried out in the Pd-Ag MR: (a) feed molar ratio = 3/1; (b) feed molar ratio = 2/1.

On the other hand, the Pd-Au/Al₂O₃ MR allowed higher hydrogen recovery (80% at the best conditions as reported in Table 6) with a purity not adequate to low-temperature PEM fuel cells supplying (CO content at the best operation conditions investigated in this work equal to 1300 ppm), but useful for feeding high-temperature PEM or other kinds of fuel cells.

Reactor	Membrane	Selective dense	Catalyst	т (к)	T [K] p [kPa]	H ₂ O/CH ₄	CH ₄ conversion	H_2 recovery	H ₂ purity	Rof
typology	typology	layer [µm]	cutaryst	. [17]		feed ratio	[%]	[%]	[%]	nen
MR ^a	$Pd-Au/Al_2O_3$	~ 8	Rh/MgAl ₂ O ₄ /Al ₂ O ₃	823	150	3/1	25	~ 80	~ 50	This work
	$Pd-Au/Al_2O_3$	~ 8	$Rh/MgAl_2O_4/Al_2O_3$	823	150	3/1	45	82	55	This work
MR ^a	Pd-Ag	150	Rh/MgAl ₂ O ₄ /Al ₂ O ₃	673	200	3/1	85	~ 40	~ 100	This work
MR ^b	Pd-Ag	150	Rh/MgAl ₂ O ₄ /Al ₂ O ₃	673	200	3/1	97	45	~ 100	This work
MR ^b	Pd-Ag	200	Ru/Al ₂ O ₃	723	500	3/1	-	~ 10	~ 100	[32]
MR ^b	Pd-Ag	200	Ru/Al ₂ O ₃	723	100	3/1	-	50	~ 100	[33]
MR ^b	Pd/Al ₂ O ₃	7	Ni/Al ₂ O ₃	723	350	3/1	34	70	70	[36]
MR ^b	Pd-Ag	~ 80	Ni/Al ₂ O ₃	823	100	-	15	-	~ 100	[38]
CR^{b}	-	-	Ni-Rh/Al ₂ O ₃	973	120	3/1	85	-	~ 77 ^c	[72]
CR ^a	-	-	Ni-Rh/Al ₂ O ₃	973	120	3/1	~ 20	-	~ 20 ^c	[72]
CR^{b}	-	-	Ni/Al ₂ O ₃	964	-	2/1	~ 85	-	58	[73]
CR^{b}	-	-	Ni/CeO ₂	873	-	1/1	58	-	59	[74]
CR^{b}	-	-	Rh/CeO ₂	1173		3/1	100	-	63	[75]
CR^{b}	-	-	Ni/Al ₂ O ₃	1073	100	2/1	99	-	45	[76]
CR ^a	-	-	Ni/Al ₂ O ₃	1073	100	2/1	22	-	-	[76]

 Table 6. SRB reaction carried out in MRs and CRs. Qualitative comparison among the experimental results of this work and literature data.

^a H₂S in the feed

^b H₂S free feed

^c Calculated

Nevertheless, the low hydrogen perm-selectivity characteristics of the supported Pd-Au/Al₂O₃ membrane affected at lot the SRB reaction performance in terms of CH₄ conversion even though it was qualitatively

comparable with other few data about supported Pd-based MRs present in literature working at similar temperatures (Table 6), although the experimental data of this work dealt with a model biogas stream containing H₂S.

To evaluate the negative effect on the catalytic performance due to the presence of H₂S in the feed stream, a H₂S free model biogas stream (Table 5) was adopted to carry out the SRB reaction in both the MRs and the results were reported in Table 6. As shown, the Pd-Au/Al₂O₃ MR reached better CH₄ conversion (45%) at 823 K, 150 kPa of pressure and 3/1 as feed molar ratio than the case of supplying a model biogas stream containing H₂S (~ 25%). Meanwhile, both H₂ recovery (82%) and purity (55%) were slightly higher, probably due to the larger amount of H₂ present in the reaction side that globally enhanced the H₂ permeation driving force. Also in the case of the Pd-Ag MR, at 673 K, 200 kPa, and 3/1 as feed molar ratio, CH₄ conversion improved up to 97% as well as the H₂ recovered in the permeate side (45%). What reported above demonstrated that the presence of H₂S in the model biogas feed stream affected negatively the catalyst and membrane performance in both the MRs. This was also recently confirmed by Yin et al. [60], who carried out the SRB in a CR at 973 K, 120 kPa, and 3/1 as feed molar ratio, observing the CH₄ conversion decrease from 85% (in the case of a model H₂S free biogas stream supplying) to around 20% (using a model H₂S containing biogas stream), Table 6. In addition, Papurello et al. [64] observed lower catalytic performance during SRB in a CR exercised at 1073 K, 100 kPa and stoichiometric feed ratio owing to the negative effect of H₂S present in the model biogas feed stream, registering the depletion of CH₄ conversion from 99 to 22%.

To check the performance (in terms of CH₄ conversion) during SRB in both of the MRs under longer-term reaction tests, the operating conditions were set at 823 K, 150 kPa and feed molar ratio = 3/1 for the Pd-Au/Al₂O₃ MR and at 673K, 200 kPa and feed molar ratio = 3/1 for the Pd-Ag MR, supplying the synthetic biogas stream containing H₂S. As shown in Figure 11, in the first 50 minutes transient phenomena occurred, in which CH₄ conversion increased up to around 25-30% for the Pd-Au/Al₂O₃ MR and 85% for the Pd-Ag MR. Afterwards, the conversion remained stable in the first MR up to around 400 min; then, it slightly decreased up to less than 10% after 1000 min under testing. For the second MR, the conversion remained stable up to around 200 min; after that, it decreased quickly up to reach around 10% after 1000 min under testing.

22

Figure 11. CH₄ conversion vs time on stream during SRB reaction in (a) Pd-Au/Al₂O₃ MR, (b) Pd-Ag MR. Experimental conditions: (a) T = 823 K, p = 150 kPa, feed molar ratio = 3/1; (b) T = 673, p = 200 kPa, feed molar ratio = 3/1. A synthetic H₂S containing biogas mixture was used as feed stream (Table 2).

Although qualitatively the Pd-Au/Al₂O₃ MR showed lower conversions than the Pd-Ag MR, it is possible to observe that the first MR contrasted better the exposure to the H₂S containing biogas feed stream, doubling the time in which a performance decrease was observed in the second MR. This could be due to the higher H₂S resistance of the Pd-Au alloy than the Pd-Ag one [65], making stable the performance of the Pd-Au/Al₂O₃ MR for a longer operation time.

3.4 Post mortem analyses

After the experimental campaign, a post mortem analysis was carried out on the supported Pd-Au/Al₂O₃ (non-commercial) membrane. The SEM images at different magnification of the upper part of the Pd-Au layer evidence still the typical cauliflower morphology, Figure 12(a), whereas EDX analysis pointed out the presence of sulfur as a consequence of a possible membrane surface contamination Figure 12(b), which could be responsible for the gradual decrease in the perm-selectivity characteristics of the membrane, Figure 6, and its deactivation in time, Figure 11.

Figure 12. Post mortem analysis: (a) SEM images of the Pd-Au/Al₂O₃ membrane (outer) surface at different magnification and an accelerating voltage of 15 kV; (b) EDX analysis on the Pd-Au/Al₂O₃ membrane after the experimental campaign.

Conclusion

The steam reforming of a H₂S containing biogas mixture was carried out over a non-commercial Rh(1%)/MgAl₂O₄/Al₂O catalyst in two Pd-based MRs to evaluate the effects of the H₂S presence during the SRB reaction on the MRs performance in terms of hydrogen permeation characteristics and catalytic activity as the first time (to our best knowledge).

A high hydrogen permeable and low hydrogen perm-selective supported Pd-Au/Al₂O₃ membrane housed in a MR showed limited CH₄ conversion, around 25% (the best value), reached at 823 K and 150 kPa, but relatively high hydrogen recovery, 80%, reached at the same operating conditions. For comparison, feeding a H₂S free biogas mixture the conversion and hydrogen recovery were superior to the previous case (45% and 82%, respectively, at 823 K and 150 kPa), pointing out how the H₂S induced a depletion of the PdAu/Al₂O₃ MR performance. A depletion of catalytic activity with time was also observed as there was a progressive decrease of CH₄ conversion, from 25-30% to less than 10%, under H₂S containing biogas stream conditions. As confirmed by the hydrogen-rich gas mixture (H₂S containing) permeation tests, the Pd-Au alloy seems to be more resistant to the H₂S attack than the Pd-Ag, even though the defects in the metallic layer of the supported Pd-Au/Al₂O₃ membrane limited the performance in terms of hydrogen perm-selectivity. Furthermore, as evidenced by the EDX tests in the post mortem analyses, the presence of sulfur was detected in the Pd-Au metallic layer. Nevertheless, the hydrogen permeation characteristics of the Pd-Au/Al₂O₃ membrane were recovered by feeding pure hydrogen allowing its utilization in other experimental campaigns.

The utilization of a low permeable but fully hydrogen perm-selective Pd-Ag membrane (commercial) in a MR allowed better performance than the previous MR in terms of conversion, 85%, reached at milder operating temperature (673 K). It was due to the larger shift effect realized by the fully hydrogen perm-selective Pd-Ag membrane on the SRB reaction system with the further advantage of recovering a pure hydrogen stream. On the contrary, owing to the thicker metallic layer, the hydrogen permeability was relatively low and the hydrogen recovered was not higher than 40% at 673 K and 200 kPa.

Under long-term SRB reaction tests, the Pd-Ag MR showed a faster decrease of the CH_4 conversion (from 85 to around 10%) than the Pd-Au/Al₂O₃ MR due to the effect of H₂S present in the biogas feed mixture because - as also confirmed in the specialized literature ([44-46]) - the Pd-Au alloy seems to be more H₂S resistant than other Pd-alloys. Furthermore, the negative effect of H₂S was permanent in the Pd-Ag membrane, determining its failure after a prolonged exposure, which was not recovered by supplying pure hydrogen as in the case of the supported Pd-Au membrane of this work.

As a future work, a better deposition of the metallic layers (Pd and Au) on the Al₂O₃ support will constitute the future development of this kind of supported membrane in order to improve its hydrogen permselectivity and, consequently, the conversion and hydrogen permeation performance during the steam reforming of biogas mixtures (*in natura*).

25

Acknowledgments

Nanjing Tech. University & GaoQ Functional Materials Co., Ltd. (China) are particularly acknowledged for providing the Pd-Au/ α -Al₂O₃ membrane used in this work.

Acronyms

Conventional Reactor
Energy Dispersive X-ray
Gas Chromatograph
Weight Hourly Space Velocity
High Temperature
Low Temperature
Membrane Reactor
Proton Exchange Membrane
Scanning Electron Microscopy
Steam Reforming of Biogas

Symbols

E _A	Apparent activation energy
F _{permeate}	Outlet permeate molar flow rate
$H_{2\text{-permeate}}$	Permeate H ₂ molar flow rate
$H_{2\text{-retentate}}$	Retentate H ₂ molar flow rate
J _{H2}	H ₂ permeating Flux
n	Dependence factor of the hydrogen flux on the hydrogen partial pressure
Pe	H ₂ permeance
P _{H2}	H ₂ permeability
Р _{н2,0}	Pre-exponential factor
$p_{H2-permeate}$	H ₂ partial pressures in the permeate side
p _{H2-retentate}	H ₂ partial pressures in the retentate side
R	The universal gas constant,
Т	Temperature.
Δp	Transmembrane pressure
αн2/і	Ideal selectivity of H ₂ over another gas

References

[1] Y. Kalmykova, M. Sadagopan, L. Rosado, Circular economy – From review of theories and practices to development of implementation tools, Resou. Conserv. Recycl., 135 (2018) 190-201.

[2] K. Handayani, Y. Krozer, T. Filatova, From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning, Energy Policy, 127 (2019) 134-146.

[3] A. Górak, A. Stankiewicz (Eds.). (2011). Research Agenda for Process Intensification: Towards a Sustainable World of 2050. Creative Energy - Energy Transition. Retrieved from http://3me.tudelft.nl/fileadmin/Faculteit/3mE/Actueel/Nieuws/2011/docs/DSD_Research_Agenda.pdf (Accessed July 2020).

[4] K.K. Sirkar, A.G. Fane, R. Wang, R. Wickramasinghe, Process intensification with selected membrane processes, Chem. Eng. Proce. Process Int., 87 (2015) 16-25.

[5] E. Drioli, A. Brunetti, G. Di Profio, G. Barbieri, Process intensification strategies and membrane engineering, Green Chem., 14 (2012) 1561-1572.

[6] T. Biegler, The hydrogen economy, The Skeptic, 25 (2005) 1-29.

[7] N. Armaroli, V. Balzani, The Hydrogen Issue, ChemSusChem. 4 (2011) 21–36.

[8] A. Górak, A. Stankiewicz (Eds.). (2011). Research Agenda for Process Intensification: Towards a Sustainable World of 2050. Creative Energy - Energy Transition. Retrieved from http://3me.tudelft.nl/fileadmin/Faculteit/3mE/Actueel/Nieuws/2011/docs/DSD_Research_Agenda.pdf (Accessed July 2020).

[9] US Department of Energy. Hydrogen production pathways (2017). Website: http://energy.gov/eere/fuelcells/hydrogen-production-pathways (Accessed September 2019).

[10] M. Van der Hoeven, Technology Road Map: Hydrogen and Fuel Cells - International Energy Agency (2015) 1-75.

https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHydrogenandFuelCells .pdf (Accessed July 2020).

[10] M. Voldsund, K. Jordal, R. Anantharaman, Hydrogen production with CO₂ capture, Int. J. Hydrogen Energy. 41 (2016) 4969-4992.

[11] Y.F. Yan, L. Zhang, L.X. Li, Q. Tang, Progress in catalytic membrane reactors for high purity hydrogen production, J. Inorg. Mater., 26 (2011) 1233-1243.

[12] A. Iulianelli, A. Basile, New perspectives in hydrogen production, separation and utilization, in Current Trends and Future Developments on (Bio-) Membranes series, ISBN 9780128173848, Elsevier Publishing, 2020, pp. 1-462. https://www.elsevier.com/books/current-trends-and-future-developments-on-bio-membranes/basile/978-0-12-817384-8.

[13] A. Brunetti, P. Zito, L. Giorno, E. Drioli, G. Barbieri, Membrane reactors for low temperature applications: An overview, Chem. Eng. Proc. Process Intensif., 124 (2018) 282-307.

[14] M. Meénendez, Inorganic membrane reactors for energy applications, Nanoporous Materials for Energy and the Environment, Pan Stanford Publishing Pte. Ltd., G. Rios, G. Centi, N. Kanellopoulos (Eds.), ISBN 978-981426717-5, (2011), pp. 283-297.

[15] A. Iulianelli, S. Liguori, A. Vita, C. Italiano, C. Fabiano, Y. Huang, A. Basile, The oncoming energy vector: hydrogen produced in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO₂ catalyst, Catal. Today, 259 (2016) 368-375.

[16] A. Iulianelli, A. Basile, Development of membrane reactor technology for H₂ production in reforming process for low-temperature fuel cells, Ch. 12 in Current Trends and Future Developments on (Bio-) Membranes: Co-generation systems and membrane technology (A. Basile Ed.), ISBN: 978-0-12-817807-2, Elsevier (2020), pp. 287-305.

[17] N.Z. Muradov, N.T. Vezirŏglu, From hydrocarbon to hydrogen-carbon to hydrogen economy. Int. J. Hydrogen En., 30 (2005) 225-237.

[18] ISO 14001:2015 Environmental management systems — Requirements with guidance for use, 3 (2015)
 1-35, <u>https://www.iso.org/standard/60857.html</u> (Accessed on July, 2020)

[19] European Industrial Gases Association (EIGA) Doc. 122/18, Environmental impact of hydrogen plants, https://www.eiga.eu/index.php?eID=dumpFile&t=f&f=3445&token=0c6c43064280cb30331fe047f6b79848 5b157e2a (Accessed on July, 2020).

[20] A. Brunetti, Y. Sun, A. Caravella, E. Drioli, G. Barbieri, Process intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems, Int. J. Greenhouse Gas Contr., 35 (2015) 18-29.

[21] C.S. Lau, A. Tsolankis, M.L. Wyszynski, Biogas upgrade to syn-gas (H₂-CO) via dry and oxidative reforming, Int. J. Hydrogen En., 36 (2011) 397-404.

[22] S. Rasi, A. Veijanen, J. Rintala, Trace compounds of biogas from different biogas production plants, Energy, 32 (2007) 1375-1380.

[23] S.D. Angeli, L. Turchetti, G. Monteleone, A.A. Lemonidou, Catalyst development for steam reforming of methane and model biogas at low temperature, Appl. Catal. B Env., 181 (2016) 34-46.

[24] S. Araki, N. Hino, T. Mori, S. Hikazudani, Durability of a Ni based monolithic catalyst in the autothermal reforming of biogas, Int. J. Hydrogen En., 34 (2009) 4727-4734.

[25] M. Luneau, E. Gianotti, F.C. Meunier, C. Mirodatos, E. Puzenat, Y. Schuurman, N. Guilhaume, Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas, Appl. Catal. B Env., 203 (2017) 289-299.

[26] J. Xu, W. Zhou, Z. Li, J. Wang, J. Ma, Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst: Effect of operating conditions, Int. J. Hydrogen En., 35 (2010) 13013-13020.

[27] S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, Biogas reforming over bimetallic PdNi catalysts supported on phosphorus-modified alumina, Int. J. Hydrogen En., 36 (2011) 10635-10647.

[28] U. Izquierdo, V.L. Barrio, K. Bizkarra, A.M. Gutierrez, J.R. Arraibi, L. Gartzia, J. Bañuelos, I. Lopez-Arbeloa, J.F. Cambra, Ni and Rh single bond Ni catalysts supported on Zeolites L for hydrogen and syngas production by biogas reforming processes, Chem. Eng. J., 238 (2014) 178-188.

[29] N. Bion, D. Duprez, F. Epron, Design of nanocatalysts for Green hydrogen production from bioethanol, ChemSusChem, 5 (2012) 76-84.

[30] A. Le Valant, A. Garron, N. Bion, D. Duprez, F. Epron, Effect of higher alcohols on the performances of a 1%Rh/MgAl₂O₄/Al₂O₃ catalyst for hydrogen production by crude bioethanol steam reforming, Int. J. Hydrogen En., 36 (2011) 311-318.

[31] P. Durán, A. Sanz-Martínez, J. Soler, M. Menéndez, J. Herguido, Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes, Chem. Eng. J., 370 (2019) 772-781.

[32] J.M. Vásquez Castillo, T. Sato, N. Itoh, Effect of temperature and pressure on hydrogen production from steam reforming of biogas with Pd-Ag membrane reactor, Int. J. Hydrogen En., 40 (2015) 3582-3591.

[33] T. Sato, T. Suzuki, M. Aketa, Y. Ishiyama, K. Mimura, Steam reforming of biogas mixtures with a palladium membrane reactor system, Chem. Eng. Sci., 65 (2010) 451-457.

[34] T.M. Raybold, M.C. Huff, Analyzing enhancement of CO₂ reforming of CH₄ in Pd membrane reactors, Aiche J., 48 (2002) 1051-1061.

[35] G. Di Marcoberardino, X. Liao, A. Dauriat, M. Binotti, G. Manzolini, Life cycle assessment and economic analysis of an innovative biogas membrane reformer for hydrogen production, Processes, 7 (2019) 86.

[36] A. Iulianelli, S. Liguori, Y. Huang, A. Basile, Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells, J. Power Sou., 273 (2015) 25-32.

[37] D Saebea, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Enhancement of hydrogen production for steam reforming of biogas in fluidized bed membrane reactor, Chem. Eng. Trans., 39 (2014) 1177-1182.

[38] F.S.A. Silva, M. Benachour, C.A.M. Abreu, Evaluating hydrogen production in biogas reforming in a membrane reactor, Braz. J. Chem. Eng., 32 (2015) 201-210.

[39] G. Bagnato, A. Iulianelli, A. Vita, C. Italiano, M. Laganà, C. Fabiano, C. Rossi, A. Basile, Pure hydrogen production from steam reforming of bio-sources, Int. J. Membrane Sci. Techn., 2 (2015) 48-56.

[40] H.J. Alves, C.B. Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Arau[´] jo, Overview of hydrogen production technologies from biogas and the applications in fuel cells, Int. J. Hydrogen En., 38 (2013) 5215-5225.

[41] I.U. Khan, M.H. Dzarfan Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, I. Wan Azelee, Biogas as a renewable energy fuel – A review of biogas upgrading, utilization and storage, En. Conv. Managm., 150 (2017) 277-294.

[42] G. Di Marcoberardino, S. Foresti, M. Binotti, G. Manzolini, Potentiality of a biogas membrane reformer for decentralized hydrogen production, Chem Eng. Proc. Process Int., 129 (2018) 131-141.

[43] F. Braun, A.M. Tarditi, J.B. Miller, L.M. Cornaglia, Pd-based binary and ternary alloy membranes: Morphological and perm-selective characterization in the presence of H₂S, J. Membrane Sci., 450 (2014) 299-307.

[44] C.-H. Chen, Y.H. Ma, The effect of H₂S on the performance of Pd and Pd/Au composite membrane, J. Membrane Sci., 362 (2010) 535-544.

[45] A. Caravella, N. Hara, H. Negishi, S. Hara, Quantitative contribution of non-ideal permeability under diffusion-controlled hydrogen permeation through Pd-membranes, Int. J. Hydrogen En., 39 (2014) 4676-4682.

[46] S.-E. Nam, K.-H. Lee, Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier, J. Membrane Sci., 192 (2001) 177-185.

[47] Z. Wang, V. Li, S.L.-I. Chan, Review of alloy membranes/films for hydrogen separation or purification, J. Rare Earths, 23 (2005) 611-616.

[48] M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi, Palladium membranes applications in reaction systems for hydrogen separation and purification: A review, Chem. Eng. Proc.: Proc. Intens., 121 (2017) 24-49.

[49] K.E. Coulter, J.D. Way, S.K. Gade, S. Chaudhari, G.O. Alptekin, S.J. DeVoss, S.N. Paglieri, B. Pledger, Sulfur tolerant PdAu and PdAuPt alloy hydrogen separation membranes, J. Membrane Sci., 405-406 (2012) 11-19.

[50] K. Zhang, J.D. Way, Palladium-copper membranes for hydrogen separation, Sep. Purif. Techn., 186 (2017) 39-44.

[51] S.W. Lee, D.K. Oh, J.W. Park, C.B. Lee, D.W. Lee, J.S. Park, S.H. Kim, K.R. Hwang, Effect of a $Pt-ZrO_2$ protection layer on the performance and morphology of Pd-Au alloy membrane during H_2S exposure, J. Alloys Compd., 641 (2015) 210–215.

[52] B.C. Nielsen, Ö.N. Dog^{*}an, B.H. Howard, Effect of temperature on the corrosion of Cu-Pd hydrogen separation membrane alloys in simulated syngas containing H₂S, Corrosion Sci., 96 (2015) 74-86.

[53] E. Acha, Y.C. van Delft, J.F. Cambra, P.L. Arias, Thin PdCu membrane for hydrogen purification from insitu produced methane reforming complex mixtures containing H₂S, Chem. Eng. Sci., 176 (2018) 429-438.

[54] F. Braun, J.B. Miller, A.J. Gellman, A.M. Tarditi, B. Fleutot, P. Kondratyuk, L.M. Cornaglia, PdAgAu alloy with high resistance to corrosion by H₂S, Int. J. Hydrogen En., 37 (2012) 18547-18555.

[55] L.F. Zhao, A. Goldbach, H. Xu, Tailoring palladium alloy membranes for hydrogen separation from sulfur contaminated gas streams, J. Membrane Sci., 507 (2016) 55-62.

[56] A.E. Lewis, H. Zhao, H. Syed, C.A. Wolden, J. Douglas Way, PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide, J. Membrane Sci., 465 (2014) 167-176.

[57] A. Iulianelli, J.C. Jansen E. Esposito, M. Longo, F. Dalena, A. Basile, Hydrogen permeation and separation characteristics of a thin Pd-Au/Al₂O₃ membrane: The effect of the intermediate layer absence, Catal. Today, 330 (2019) 32-38.

[58] A. Iulianelli, M. Alavi, G. Bagnato, S. Liguori, J. Wilcox, M.R. Rahimpour, R. Eslamlouyan, B. Anzelmo, A. Basile, Supported Pd-Au membrane reactor for hydrogen production: membrane preparation, characterization and testing, Molecules, 21 (2016) 581-594.

[47] **[59]** F. Auprêtre, C. Descorme, D. Duprez, D. Casanave, D. Uzio, Ethanol steam reforming over Mg_xNi_{1-x} Al_2O_3 spinel oxide-supported Rh catalysts, J. Catal., 233 (2005) 464-477.

[60] S.-K. Ryi, J.-S. Park, K.-R. Hwang, D.-W. Kim, H.-S. An, Pd-Cu alloy membrane deposited on alumina modified porous nickel support (PNS) for hydrogen separation at high pressure, Korean J. Chem. Eng., 29 (2012) 59-63.

[61] A. Iulianelli, K. Ghasemzadeh, M. Marelli, C. Evangelisti, A supported Pd-Cu/Al₂O₃ membrane from solvated metal atoms for hydrogen separation/purification, Fuel Proc. Techn., 195 (2019) 106141-106149.

[62] Neil S. Patki, Sean-Thomas B. Lundin, J. Douglas Way, Apparent activation energy for hydrogen permeation and its relation to the composition of homogeneous PdAu alloy thin-film membranes, Sep. Pur. Techn., 191 (2018) 370-374.

[63] M.S. Islam, M.M. Rahman, S. Ilias, Characterization of Pd-Cu membranes fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation, Int. J. Hydrogen En., 37 (2012) 3477-3490.

[64] J.R. Brenner, G. Bhagat, P. Vasa, Hydrogen purification with palladium and palladium alloys on porous stainless steel membranes, Int. J. Oil Gas Coal Techn., 1 (2008) 109.

[65] W. Wang, X. Pan, X. Zhang, W. Yang, G. Xiong, The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes, Sep. Pur. Techn., 54 (2007) 262-271.

[66] S. Liguori, A. Iulianelli, F. Dalena, P. Pinacci, F. Drago, M. Broglia, Y. Huang, A. Basile, Performance and long-term stability of Pd/PSS and Pd/Al₂O₃ for hydrogen separation, Membranes, 4 (2014) 143-162.

[67] W.-H. Chen, M.-H. Hsia, Y.-H. Chi, Y.-L. Lin, C.-C. Yang, Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd-Cu membrane tubes, Appl. Energy, 113 (2014) 41-50.

[68] N. Pomerantz, Y.H. Ma, Novel method for producing high H₂ permeability Pd membranes with a thin layer of the sulfur tolerant Pd/Cu fcc phase, 370 (2011) 97-108.

[69] S. Yun, S.T. Oyama, Correlations in palladium membranes for hydrogen separation: A review, J. Membrane Sci., 375 (2011) 28-45.

[70] A. Caravella, F. Scura, G. Barbieri, E. Drioli, Sieverts law empirical exponent for Pd-based membranes: critical analysis in pure H₂ permeation, J. Phys. Chem. B, 114 (2010) 6033-6047.

[71] A.L. Mejdell, M. Jøndahl, T.A. Peters, R. Bredesen, H.J. Venvik, Effects of CO and CO₂ on hydrogen permeation through a \sim 3 µm Pd/Ag 23 wt.% membrane employed in a microchannel membrane configuration, Sep. Purif. Techn., 68 (2009) 178-184.

[72] W. Yin, N. Guilhaume, Y. Schuurman, Model biogas reforming over Ni-Rh/MgAl₂O₄ catalyst. Effect of gas impurities, Chem. Eng. J., 398 (2020) 125534.

[73] A. Effendi, Z.-G. Zhang, K. Hellgardt, K. Honda, T. Yoshida, Steam reforming of a clean model biogas over Ni/Al₂O₃ in fluidized- and fixed-bed reactors, Catal. Today, 77 (2002) 181-189.

[74] H.S. Roh, I.H. Eum, D.W. Jeong, Low temperature steam reforming of methane over Ni–Ce(1–x)Zr(x)O2 catalysts under severe conditions, Renew. Ener., 42 (2012) 212-216.

[75] C. Italiano, M.A. Ashraf, L. Pino, C.W. Moncada Quintero, S. Specchia, A. Vita, Rh/CeO₂ thin catalytic Layer deposition on alumina foams: catalytic performance and controlling regimes in biogas reforming processes, 8 (2018) 448.

[76] D. Papurello, V. Chiodo, S. Maisano, A. Lanzini, M. Santarelli, Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds, Renew. Ener., 127 (2018) 481-494.

[77] A Doukelis, K Panopoulos, A Koumanakos, E Kakaras, Fabrication of palladium-based membranes by magneton sputtering, Ch. 2 In Palladium membrane technology for hydrogen production, carbon capture and other applications: Principles, Energy Production and Other Applications, Woodhead Publishing Series in Energy, 2014, ISBN: 9781782422341, pp. 1-402.