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Abstract

This paper studies the scheduling of jobs of different families on parallel

machines with qualification constraints. Originating from semi-conductor

manufacturing, this constraint imposes a time threshold between the ex-

ecution of two jobs of the same family. Otherwise, the machine becomes

disqualified for this family. The goal is to minimize both the flow time

and the number of disqualifications. Recently, an efficient constraint pro-

gramming model has been proposed. However, when priority is given to

the flow time objective, the efficiency of the model can be improved.

This paper uses a polynomial-time algorithm which minimize the flow

time for a single machine relaxation where disqualifications are not con-

sidered. Using this algorithm one can derived filtering rules on different

variables of the model. Experimental results are presented showing the

effectiveness of these rules. They improve the competitiveness with the

mixed integer linear program of the literature.

keywords : Parallel Machine Scheduling, Job families , Flow time ,

Machine Disqualification, Filtering Algorithm , Cost-Based Filtering.

1 Introduction

This paper considers the scheduling of job families on parallel machines with
time constraints on machine qualifications. In this problem, each job belongs to
a family and a family can only be executed on a subset of qualified machines.
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In addition, machines can lose their qualifications during the schedule. Indeed,
if no job of a family is scheduled on a machine during a given amount of time,
the machine lose its qualification for this family. The goal is to minimize the
sum of job completion times, i.e. the flow time, while maximizing the number
of qualifications at the end of the schedule.

This problem, called scheduling Problem with Time Constraints (PTC), is
introduced in [11]. It comes from the semiconductor industries. Its goal is
to introduce constraints coming from Advanced Process Control (APC) into a
scheduling problem. APC’s systems are used to control processes and equipment
to reduce variability and increase equipment efficiency. In PTC, qualification
constraints and objective come from APC and more precisely from what is called
Run to Run control. More details about the industrial problem can be found
in [10].

Several solution methods has been defined for PTC [7, 10, 11]. In particular,
the authors of [7] present two pre-existing models: a Mixed Integer Linear
Program (MILP) and a Constraint Programming (CP) model. Furthermore,
they define a new CP model taking advantage of advanced CP features to model
machine disqualifications. However, the paper shows that when the priority
objective is the flow time, the performance of the CP model can be improved.

The objective of this paper is to improve the performances of the CP model
for the flow time objective. To do so, a relaxed version of PTC where quali-
fication constraints are removed is considered. For this relaxation, the results
of Mason and Anderson [9] are adapted to define an algorithm to optimally
sequence jobs on one machine in polynomial time. This algorithm is then used
to define several filtering algorithms for PTC.

Although, the main result of this paper concerns the filtering algorithms for
PTC, there is also two more general results incident to this work. First, those
algorithms can be directly applied to any problem having a flow time objec-
tive and which can be relaxed to a parallel machine scheduling problem with
sequence-independent family setup times. Secondly, the approach is related to
cost-based domain filtering [3], a general approach to define filtering algorithms
for optimization problems.

The paper is organized as follows. Section 2 gives a formal description of
the problem the CP model for PTC. Section 3 presents the relaxed problem and
the optimal machine flow time computation of the relaxed problem. Section 4
shows how this flow time is used to define filtering rules and algorithms for
PTC. Finally, Section 5 shows the performance of the filtering algorithms and
compares our results to the literature.

2 Problem description and modeling

In this section, a formal description of PTC is given. Then, a part of the CP
model of [7] is presented. The part of the model presented is the part that is
useful to present our cost based filtering rules and correspond to the modeling
of the relaxation. Indeed, as we are interested in the flow time objective, the
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machine qualification modeling is not presented in this paper.

2.1 PTC description

Formally, the problem takes as input a set of jobs, N = {1, . . . , N}, a set of
families F = {1, . . . , F} and a set of machines, M = {1, . . . ,M}. Each job j
belongs to a family and the family associated with j is denoted by f(j). For
each family f , only a subset of the machines Mf ⊆ M, is able to process a job
of f . A machine m is said to be qualified to process a family f if m ∈ Mf .
Each family f is associated with the following parameters:

• nf denotes the number of jobs in the family. Note that
∑

f∈F nf = N .
• pf corresponds to the processing time of jobs in f .
• sf is the setup time required to switch the production from a job belonging
to a family f ′ 6= f to the execution of a job of f . Note that this setup
time is independent of f ′, so it is sequence -independent. In addition, no
setup time is required neither between the execution of two jobs of the
same family nor at the beginning of the schedule, i.e. at time 0.

• γf is the threshold value for the time interval between the execution of two
jobs of f on the same machine. Note that this time interval is computed
on a start-to-start basis, i.e. the threshold is counted from the start of a
job of family f to the start of the next job of f on machine m. Then, if
there is a time interval ]t, t+ γf ] without any job of f on a machine, the
machine lose its qualification for f .

The objective is to minimize both the sum of job completion times, i.e.
the flow time, and the number of qualification looses or disqualifications. An
example of PTC together with two feasible solutions is now presented.

Example 1. Consider the instance with N = 10, M = 2 and F = 3 given in
Table 1(a). Figure 1 shows two feasible solutions. The first solution, described
by Figure 1(b), is optimal in terms of flow time. For this solution, the flow time
is equal to 1 + 2 + 9 + 15 + 21 + 1 + 2 + 12 + 21 + 30 = 114 and the number
of qualification losses is 3. Indeed, machine 1 (m1) loses its qualification for f3
at time 22 since there is no job of f3 starting in interval ]1, 22] which is of size
γ3 = 21. The same goes for m2 and f3 at time 22 and for m2 and f2 at time
26.
The second solution, described by Figure 1(c), is optimal in terms of number
of disqualifications. Indeed, in this solution, none of the machines loses their
qualifications. However, the flow time is equal to 1 + 2+ 9+ 17+ 19+ 9+ 18+
20 + 27 + 37 = 159.

2.2 CP model

In the following section, the part of the CP model of [7] which is useful for
this work is recalled. This part corresponds to a Parallel Machine Scheduling
Problem (PMSP) with family setup times. New auxiliary variables used by our
cost based filtering rules are also introduced. These variables are written in
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f nf pf sf γf Mf

1 3 9 1 25 {2}
2 3 6 1 26 {1, 2}
3 4 1 1 21 {1, 2}

(a) Instance with N =
10, M = 2 and F = 3

m1

m2

2 9 12 15 2122 26 30

f1 f1 f1

f2 f2 f2f3f3

f3f3

(b) An optimal solution for the flow time objective

m1

m2

2 3 9 11 17 20 27 37

f1 f1 f1

f2 f2

f2

f3f3 f3

f3

(c) An optimal solution for qualification losses

Figure 1: Two solution examples for PTC.

bold in the variable description. To model the PMSP with family setup times,
(optional) interval variables are used [5, 6]. To each interval variable J , a start
time st(J), an end time et(J), a duration d(J) and an execution status x(J) is
associated. The execution status x(J) is equal to 1 if and only if J is present in
the solution and 0 otherwise.
The following set of variables is used:

• jobsj , ∀j ∈ N : Interval variable modeling the execution of job j;
• altJj,m, ∀(j,m) ∈ N × Mf(j): Optional interval variable modeling the
assignment of job j to machine m;

• flowtimem and flowtime: Integer variables modeling respectively the
flow time on machine m and the global flow time;

• nbJobsf ,m, ∀(f,m) ∈ F ×Mf : Integer variable modeling the number of
jobs of family f scheduled on m;

• nbJobsm, ∀m ∈ M: Integer variable modeling the number of jobs sched-
uled on m.

To model the PMSP with setup time, the following sets of constraints is used:

flowT ime =
∑

j∈N

et(jobsj) (1)

alternative
(

jobsj ,
{

altJj,m|m ∈ Mf(j)

})

∀j ∈ N (2)

noOverlap
({

altJj,m|∀j s.t. m ∈ Mf(j)

}

, S
)

∀m ∈ M (3)

flowtime =
∑

m∈M

flowtimem (4)
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flowtimem =
∑

j∈N

et(altJj,m) ∀m ∈ M (5)

nbJobsf,m =
∑

j∈N ;f(j)=f

x(altJj,m) ∀(f,m) ∈ F ×Mf (6)

∑

m∈M

nbJobsf,m = nf ∀f ∈ F (7)

∑

f∈F

nbJobsf,m = nbJobsm ∀m ∈ M (8)

∑

m∈M

nbJobsm = N (9)

Constraint (1) is used to compute the flow time of the schedule. Con-
straints (2)–(3) are used to model the PMSP with family setup time. Con-
straints (2) model the assignment of jobs to machine. Constraints (3) ensure
that jobs do not overlap and enforce setup times. Note that S denotes the setup
time matrix: (Sf,f ′) is equal to 0 if f = f ′ and to sf otherwise. A complete
description of alternative and noOverlap constraints can be found in [5, 6].
In [7], additional constraints are used to make the model stronger, e.g. ordering
constraints, cumulative relaxation. They are not presented in this paper.
Constraints (4)–(9) are used to link the new variables to the model. Con-
straints (4) and (5) ensure machine flow time computation. Constraints (6)
compute the number of jobs of family f executed on machine m. Constraints (7)
make sure the right number of jobs of family f is executed. Constraints (8)
and (9) are equivalent to constraints (6) and (7) but for the total number of
jobs scheduled on machine m. The bi-objective optimization is a lexicographical
optimization or its linearization [2].

3 Relaxation description and sequencing

3.1 R-PTC description

The relaxation of PTC (R-PTC) is a parallel machine scheduling problem with
sequence-independent family setup time without the qualification constraints
(parameter γf ). The objective is then to minimize the flow time. In this section,
it is assumed that a total the assignment of jobs to machines is already done and
the objective is to sequence jobs so the flow time is minimal. Therefore, since
the sequencing of jobs on M machines can be seen as M one machine problems,
this section presents how jobs can be sequenced optimally on one machine. In
Section 4, the cost-based filtering rules handle partial assignments of jobs to the
machines.

3.2 Optimal sequencing for R-PTC

The results presented in this section were first described in [8]. They are adapted
from Mason and Anderson [9] who considers an initial setup at the beginning
of the schedule. The results are just summarized in this paper.
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First, a solution can be represented as a sequence S representing an ordered
set of n jobs. Considering job families instead of individual jobs, S can be seen
as a series of blocks, where a block is a maximal consecutive sub-sequence of
jobs in S from the same family (see Figure 2). Let Bi be the i-th block of
the sequence, S = {B1, B2, . . . , Br}. Hence, successive blocks contain jobs from
different families. Therefore, there will be a setup time before each block (except
the first one).

f1 f1 f1f2f3

0 5 10 15 20 25 30 35

B1 B4B3B2

0 5 10 15 20 25 30 35

Figure 2: Block representation of a solution.

The idea of the algorithm is to adapt the Shortest Processing Time (SPT )
rule [12] for blocks instead of individual jobs. To this end, blocks are considered
as individual jobs with processing time Pi = sfi + |Bi| ·pfi and weight Wi = |Bi|
where fi denotes the family of jobs in Bi (which is the same for all jobs in Bi).

The first theorem of this section states that there always exists an optimal
solution S containing exactly |F| blocks and that each block Bi contains all jobs
of the family fi. That is, all jobs of a family are scheduled consecutively.

Theorem 1. Let I be an instance of the problem. There exists an optimal
solution S∗ = {B1, . . . , B|F|} such that |Bi| = nfi where fi is the family of jobs
in Bi.

Sketch. For a complete proof of the theorem, see [8].
Consider an optimal solution S = {B1, . . . , Bu, . . . , Bv, . . . , Br} with two blocks
Bu and Bv (u < v), containing jobs of the same family fu = fv = f . Then,
moving the first job of Bv at the end of block Bu can only improve the solution.

Indeed, let us define P andW as: P =
∑v−1

i=u+1 Pi+sf andW =
∑v−1

i=u+1 |Bi|.
In addition, let S′ be the sequence formed by moving the first job of Bv, say
job jv, at the end of block Bu. The difference on the flow time between S and
S′, is as follows:

FTS′ − FTS =

{

W · pf − P if |Bv| = 1
W · pf − P −

∑r

i=v+1 |Bi| · sf if |Bv| > 1

Using Lemma 1 of [8] stating that P/W ≥ pf , then FTS′ − FTS < 0 and
the flow time is improved in S′. Hence, moving the first job of Bv at the end of
block Bu leads to a solution S′ at least as good as S.

Therefore, a block Bi contains all jobs of family fi. Indeed, if not, applying
the previous operation leads to a better solution. Hence, |Bi| = nfi and there
are exactly F blocks in the optimal solution, i.e. one block per family.
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f nf pf sf MPTf

1 2 11 2 12
2 3 12 9 15

(a) Instance with N = 5 and
F = 2.

Family 1 precedes family 2 (SMPT).

FT = 19811 22 43 55 67

FT = 181

Family 2 precedes family 1 (No SMPT).

12 24 36 49 60

(b) Scheduling jobs of a family before those of the other one.
Numbers are completion times of the jobs.

Figure 3: Scheduling all blocks according to the SMPT rule is not optimal.

At this point, the number of block and theirs contents are defined. The next
step is to order them. To this end, the concept of weighted processing time is
also adapted to blocks as follows.

Definition 1. The Mean Processing Time (MPT) of a block Bi is defined as
MPT (Bi) = Pi/Wi.

One may think that, in an optimal solution, jobs are ordered by SMPT
(Shortest Mean Processing Time). However, this is not always true since no
setup time is required at time 0. Indeed, the definition of block processing time
always considers a setup time before the block. In our case, this is not true for
the first block. Example 2 gives a counter-example showing that scheduling all
blocks according to the SMPT rule is not optimal.

Example 2 (Counter-example – Figure 3). Consider the instance given by
Table 3(a) that also gives the MPT of each family (MPTf = pf + (sf ÷ nf )).
Figure 3(b) shows the SMPT rule may lead to sub-optimal solutions when no
setup time is required at time 0. Indeed, following the SMPT rule, jobs of family
1 have to be scheduled before jobs of family 2. This leads to a flow time of 198.
However, schedule jobs of family 2 before jobs of family 1 leads to a better flow
time, i.e. 181.

Actually, the only reason why the SMPT rule does not lead to an optimal
solution is that no setup time is required at time 0. Therefore, in an optimal
solution, all blocks except the first one are scheduled according to the SMPT
rule. That is the statement of Theorem 2 for which a proof is given in [8].

Theorem 2. In an optimal sequence of the problem, the blocks 2 to |F| are
ordered by SMPT (Shortest Mean Processing Time). That is, if 1 < i < j then
MPT (Bi) ≤ MPT (Bj).

The remaining of this section explains how these results are used to define a
polynomial time algorithm for sequencing jobs on a machine so the flow time is
minimized. This algorithm is called sequencing in the remaining of the paper.

Theorem 1 states that there exists an optimal solution S containing exactly
|F| blocks and that each block Bi contains all jobs of family fi. Theorem 2
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states that the blocks B2 to B|F| are ordered by SMPT . Finally, one only
needs to determine which family is processed in the very first block.

Algorithm sequencing takes as input the set of jobs and starts by grouping
them in blocks and sorting them in SMPT order. The algorithm then computes
the flow time of this schedule. Each block is then successively moved to the
first position (see Figure 4) and the new flow time is computed. The solution
returned by the algorithm is therefore the one achieving the best flow time.

B1, . . . , Bf−1 sf Bf sf+1Bf+1, . . . , B|F|

(a) SMPT Sequence

Bf s1 B1, . . . , Bf−1sf+1Bf+1, . . . , B|F|

(b) Bf is moved in the first position.

Figure 4: SMPT Sequence and Move Operation.

The complexity for ordering the families in SMPT order is O(F logF ).
The complexity of moving each block to the first position and computing the
corresponding flow time is O(F ). Indeed, there is no need to re-compute the
entire flow time. The difference of flow time coming from the Move operation
can be computed in O(1). Hence, the complexity of sequencing is O(F logF ).

4 Filtering rules and algorithms

This section is dedicated to the cost-based filtering rules and algorithms de-
rived from the results of Section 3. They are separated into three parts, each
one corresponding to the filtering of one variable: flowtimem (Section 4.1);
nbJobsf,m (Section 4.2); nbJobsm (Section 4.3). Note that the two last vari-
ables constrained by the sum constraint 8.

During the solving of the problem, jobs are divided for each machine m into
three categories based on the interval variables altJj,m: each job either is, or
can be, or is not, assigned to the machine. Note that the time windows of the
interval variables are not considered in the relaxation. For a machine m, let
NA

m be the set of jobs for which the assignment to machine m is decided. In
the following of this section, an instance I is always considered with the set
NA = ∪m∈MNA

m of jobs already assigned to a machine. Thus, an instance is
denoted by (I,NA).

Some notations are now introduced. For a variable x, x (resp. x) represents
the lower (resp. the upper) bound on the variable x. Furthermore, let FT ∗(X )
be the flow time of the solution returned by the algorithm sequencing applied
on the set of jobs X .
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f nf pf sf

1 3 2 5
2 3 3 3
3 4 4 1

(a) Instance data.

f1 f3 f2

0 5 10

f1 f3f2 f2

0 5 10 15

(b) Illustration of Rule 1 and Rule 3.

Figure 5: Illustration of flowtimem filtering (Rule 1).

4.1 Increasing the machine flow time

The first rule updates the lower bound on the flowtimem variable and follows
directly from Section 3. The complexity of this rule is O(M · F · logF ).

Rule 1. ∀m ∈ M, f lowtimem ≥ FT ∗(NA
m)

Proof. It is sufficient to notice that, for a machine m, sequencing gives a lower
bound on the flow time. In particular, FT ∗(NA

m) is a lower bound on the flow
time of m for the instance (I,NA).

Example 3. Consider an instance with 3 families. Their parameters are given
by Table 5(a). A specific machine m is considered and set NA

m is composed of
one job of each family. This instance and NA

m is used in all the example of this
section.
Suppose flowtimem ∈ [0, 35]. The output of sequencing is given on the top of
Figure 5(b). Thus, the lower bound on the flow time can be updated to 2+7+13 =
22, i.e. flowtimem ∈ [22, 35].
Suppose now that an extra job of family f2 is added to NA

m (on the bottom of
Figure 5(b)). Thus, FT ∗(NA

m) = 2+8+11+16 = 37 and 37 > flowtimem = 35.
Thus, the assignment defined by NA

m is infeasible.

Another rule can be defined to filter flowtimem. This rule is stronger than
Rule 1 and is based on NA

m and nbJobsm. Indeed, nbJobsm denotes the min-
imum number of jobs that has to be assigned to m. Thus, if one can find the
nbJobsm jobs (including the one of NA

m) that leads to the minimum flow time,
it will give a lower bound on the flow time of machine m.
Actually, it may be difficult to know exactly which jobs will contribute the least
to the flow time. However, considering jobs in SPT order and with 0 setup
time gives a valid lower bound on flowtimem. First, an example illustrating
the filtering rule is presented and then, the rule is formally given.

Example 4. Consider the instance described in Example 3. Suppose NA
m is

composed of one job of each family and flowtimem ∈ [22, 60]. Suppose also
nbJobsm = 6. Thus, 3 extra jobs need to be assigned to m.
Families in SPT order are {f1, f2, f3} and the remaining number of jobs in each
family is 2, 2, 3. Hence, the 3 extra jobs are: 2 jobs of f1 and 1 job of f2.
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To make sure the lower bound on the flow time is valid, those jobs are sequenced
on m with no setup time. In Figure 6, fj denotes “classical” jobs of family fj
while f ′

j denotes jobs of family fj with no setup time.

Figure 6 shows the results of sequencing on the set of jobs composed of NA
m

plus the 3 extra jobs, i.e. nbJobsm = 6. Here, FT ∗ = 2+4+6+9+14+20 = 55.
Thus, the lower bound on flowtimem can be updated and flowtimem ∈ [55, 60].

f1 f ′
1 f ′

1 f ′
2 f3 f2

0 5 10 15 20

Figure 6: Illustration of flowtimem filtering (Rule 2).

Note that, because Rule 1 does not take nbJobsm into account, it gives a lower
bound of 22 in this case.

Let NO
m denotes the set composed of the first nbJobsm − |NA

m | remaining
jobs in SPT order with setup time equal to 0.

Rule 2. ∀m ∈ M, f lowtimem ≥ FT ∗(NA
m ∪ NO

m )

Proof. First note that if NO
m = ∅, Rule 1 gives the result. Thus, suppose

that |NO
m | ≥ 1. By contradiction, suppose ∃m ∈ M such that flowtimem <

FT ∗(NA
m ∪ NO

m ). Thus, there exists another set of jobs NO
m with:

FT ∗(NA
m ∪NO

m) < FT ∗(NA
m ∪ NO

m ) (10)

First, note that w.l.o.g. |NO
m| = |NO

m |. Indeed, if |NO
m| > |NO

m |, we can remove

jobs from |NO
m | without increasing the flow time. Furthermore, w.l.o.g. we can

consider that ∀j ∈ NO
m, sfj = 0. Indeed, since setup times can only increase

the flow time, thus inequality (10) is still verified.
Let S = {j1, · · · , jnbJobsm} be the sequence returned by the sequencing algo-

rithm on NA
m ∪NO

m. Let also ji be the job in NO
m \ NO

m with the SPT . Finally,

let jk be the job with the SPT in ∈ NO
m \NO

m. Thus, since pfji
> pfjk , sequence

S
′
= {j1, · · · , ji−1, jk, ji+1, · · · jnbJobsm} has a smaller flow time than S.
Repeated applications of this operation yield to a contradiction with equa-

tion (10).

The complexity of Rule 2 is O(M · F · logF ). Indeed, sorting families in
SPT order can be done in O(F · logF ). Creating the set NO

m is done in O(F )
and sequencing is applied in O(F · logF ) which gives a total complexity of
O(F · logF +M · (F + F · logF )).

10



4.2 Reducing the maximum number of jobs of a family

The idea of the filtering rule presented in this section is as follows. For a family
f , nbJobsf,m define the maximum number of jobs of family f that can be
scheduled on m. Thus, if adding those nbJobsf,m to NA

m leads to an infeasibility,
nbJobsf,m can be decreased by at least 1. Let denote by N f

m the set composed
of nbJobsf,m jobs of family f minus those already present in NA

m .

Rule 3. If ∃(f,m) ∈ F × M such that FT ∗(NA
m ∪ N f

m) > flowtimem, then
nbJobsf,m ≤ nbJobsf,m − 1

Proof. Suppose that for a family f and a machine m, we have a valid assignment
such that FT ∗(NA

m ∪ N f
m) > flowtimem and nbJobsf,m = nbJobsf,m. By

Rule 1, the assignment is infeasible which is a contradiction.

Example 5. Let us consider the instance defined by example 3. In the first part
of this example, NA

m is composed of one job of each family and flowtimem ∈
[22, 35]. Suppose that nbJobsf2,m = 2. Thus, NA

m ∪ N f
m contains one job of

family f1 and f3 and two jobs of family f2. The bottom part of figure 5(b)
shows that FT ∗(NA

m ∪ N f
m) = 37 > flowtimem = 35. Thus, nbJobsf2,m < 2.

The complexity of Rule 3 is O(M ·F · logF +M ·F 2 · log |DMAX
nbJobsf,m

|) with

|DMAX
nbJobsf,m

| the maximum size of the domain of variables nbJobsf,m. Indeed, the
first part corresponds to the complexity for applying the sequencing algorithm
on all machine. This algorithm only need to be applied once since each time
we remove jobs from N f

m, FT ∗ can be updated in O(F ). Indeed, only the
position of the family in the sequence has to be updated. Thus, the second
part corresponds to the updating of FT ∗ for each family and each machine. By
proceeding by dichotomy, this update has to be done at most log |DMAX

nbJobsf,m
|

times. Thus, the complexity of Rule 3 is O(M ·F · (logF +F · log |DMAX
nbJobsf,m

|)).

4.3 Reducing the maximum number of jobs on a machine

The idea behind Rule 2 can be used to reduce the maximum number of jobs on
machine m. Indeed, for a machine m, nbJobsm is the maximum number of jobs
that can be scheduled to m. Thus, if it is not possible to schedule nbJobsm on
m without exceeding the flow time, then nbJobsm can be decreased.

The extra jobs that will be assigned on m must be decided. Note that those
jobs must give a lower bound on the flow time for nbJobsm jobs with the pre-
assignment defined by NA

m . Thus, jobs can be considered in SPT order with no
setup time. Before giving the exact filtering rule, an example is described.

Example 6. Consider the instance described in Example 3. In the first part
of this example, NA

m is composed of one job of each family and flowtimem ∈
[22, 60]. Suppose nbJobsm = 7. Thus, the 4 extra jobs assigned to m are: 2 jobs
of f1 and 2 jobs of f2. Figure 7 shows the results of sequencing on the set of jobs
composed of NA

m plus the 4 extra jobs. Here, FT ∗ = 2+4+6+11+14+17+23 =

11



77 which is greater than flowtimem = 60. Thus, nbJobsm cannot be equal to 7
and can be filtered.

f1 f ′
1 f ′

1 f ′
2 f ′

2f3 f2

0 5 10 15 20

Figure 7: Illustration of Rule 4.

Let NNS
m denotes the set composed of the first nbJobsm−|NA

m | jobs in SPT
order with setup time equal to 0.

Rule 4. If ∃m ∈ M such that FT ∗(NA
m∪NNS

m ) > flowtimem, then nbJobsm ≤
nbJobsm − 1

Proof. The arguments are similar to those for Rule 2.

The complexity of Rule 4 is O(M · F · logF + M · F 2 · |DMAX
nbJobsm

|) with

|DMAX
nbJobsm

| the maximum size of the domain of variables nbJobsm. Indeed, as
for Rule 3, the algorithm sequencing only needs to be applied once and then
can be updated in O(F ). For each machine and each family, this update has to
be done at most |DMAX

nbJobsm
| times. Indeed, proceeding by dichotomy here implies

that FT ∗ cannot be updated but has to be re-computed each time. Thus, the
complexity of Rule 4 is O(M · F · (logF + F · |DMAX

nbJobsm
|)).

5 Experimental Results

This section starts with the presentation of the general framework of the ex-
periments in 5.1. Following the framework, the filtering rules are evaluated in
Section 5.2. Then, the model is compared to those of the literature in Sec-
tion 5.3. Last, a brief sensitivity analysis is given in Section 5.4.

5.1 Framework

The experiment framework is defined so the following questions are addressed.
Q1. Which filtering rule is efficient? Are filtering rules complementary?
Q2. Which model of the literature is the most efficient?
Q3. What is the impact of the heuristics? Of the bi-objective aggregation?
To address these questions, the following metrics are analyzed: number of feasi-
ble solutions, number of proven optimums, upper bound quality; solving times;
number of fails (for CP only).

The benchmark instances used to perform our experiments are extracted
from [10]. In this paper, 19 instance sets are generated with different number
of jobs (N), machines (M), family (F ) and qualification schemes. Each of the
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instance sets is a group of 30 instances. There is a total of 570 feasible instances
with N = 20 (180), N = 30 (180), N = 40 (30), N = 50 (30), N = 60 (60),
N = 70 (90).

The naming scheme for the different solving algorithms is described in Ta-
ble 1. The first letter represents the model where ILP model, CPO model and
CPN model denotes respectively the ILP model and CP model of [7], and the CP
model detailed in Section 2.2. The models are implemented using IBM ILOG
CPLEX Optimization Studio 12.10 [4]. That is CPLEX for the ILP model and
CP Optimizer for CP models. The second letter indicates whether two heuris-
tics are executed to find solutions which are used as a basis for the models.
These heuristics are called Scheduling Centric Heuristic and Qualification Cen-
tric Heuristic [10]. The goal of the first heuristic is to minimize the flow time
while the second one tries to minimize the number of disqualifications. The
third letter indicates the filtering rules that are activated for the CPN model.
Rule 2 is used for the letter L because it has been shown more efficient than
Rule 1 in preliminary experiments. The fourth letter indicates the bi-objective
aggregation method: lexicographic optimization; linearization of lexicographic
optimization. The last letter indicates the objective priority. Here, the priority
is given to the flow time in all experiments because the cost-based filtering rules
concern the flow time objective.

Model Heuristic Filtering rule Bi-objective Priority

I ILP model None L Rule 2 None S Weighted sum F Flow time
O CPO model H All F Rule 3 A All L Lexicographic Q Disqualifications
N CPN model M Rule 4

Table 1: Algorithms Encoding.

All the experiments were led on a Dell computer with 256 GB of RAM
and 4 Intel E7-4870 2.40 GHz processors running CentOS Linux release 7 (each
processor has 10 cores). The time limit for each run is 300 seconds.

5.2 Evaluation of the filtering rules

In this section, the efficiency and complementary nature of the proposed filter-
ing rules are investigated. In other words, the algorithms N *LF are studied. To
this end, the heuristics are not used to initialize the solvers. The lexicographic
optimization is used since it has been shown more efficient in preliminary ex-
periments.

First, all algorithms find feasible solutions for more than 99% of the in-
stances. Then, for each algorithm, the number of instances solved optimally
is drawn as a function of the time in Figure 8(a). The leftmost curve is the
fastest whereas the topmost curve proves the more optima. Clearly, compared
to N LF, the filtering rules accelerates the proof and allow the optimal solving of
around eighty more instances. One can notice that the advanced filtering rules
(N FLF, N MLF, N ALF), also slightly improves the proof compared to the simple
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