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Quasi-static linear problems can be solved efficiently with Boundary Element Method (BEM). This method is based on surface
integral equations dealing with equivalent magnetic and electric surface current densities. Many works have shown the potentiality of
BEM especially for the modeling of non-destructive testing devices. In this paper, after selecting formulations enabling the modeling
of multiply-connected regions, an original coupling is proposed in order to take into account external electric circuit in the problem.

Index Terms—Boundary Element Method, eddy currents, quasi-static, circuit coupling.

THIS study is motivated by the need of efficient quasi-
static electromagnetic formulations associated to non-

simply connected domains and which can be coupled with
circuit equations. For this kind of problems, methods based
on coupling between BEM and Finite Element Method (FEM)
have already shown very good results. However, the accuracy
of these methods is strongly influenced by the volume mesh
of the conductive region which has to be adapted to the skin-
depth in the FEM context. The pure BEM method does not
suffer from this disadvantage because it is only based on
surface discretizations and is more insensitive to frequency
increase keeping the same mesh.

Many BEM formulations have already been proposed to
solve Eddy Current (EC) problems and two options are
possible. The first one consists in solving the full Maxwell
equations including capacitive effects and to use an Helmholtz-
Hodge decomposition to remove low-frequency numerical
noise like proposed in [1]. The second option is to solve
directly Maxwell equations under the quasi-static assumption
(i.e the EC problem) as proposed in [3],[4] or [5]. In this work,
the preference is given to the last approach.

In classical EC problems (like eddy current testing problems
for instance), the active region can be multiply connected,
meaning that it can have through-holes. It is fundamental
to develop formulations which can solve accurately such a
problem. An another key point is the ability of the formulation
to be coupled with external electric circuits which create the
external inductor field. This is what we aim to do in this paper.
After selecting efficient BEM formulations for EC problems,
an original circuit coupling is proposed. All the formulations
are validated on numerous examples by a comparison with
FEM.

I. SURFACE INTEGRAL FORMULATIONS

A. Integral Equations

Let us consider a linear, isotropic and homogeneous con-
ducting material region Ω characterized by the conductivity σ1

and the permeability µ1 and embedded in the free space Ω0.
Γ is the border of the region Ω with the outward unit normal
n. Surface integral equations of E and H at an arbitrary target
point P in Ω0 are :

hH = Hs +

∫

Γ

((n ·H0)∇G0 + Js ×∇G0)dΓ (1)

hE = Es +

∫

Γ

((n ·E0)∇G0 −Ms ×∇G0)dΓ

− jωµ0

∫

Γ

JsG0dΓ

(2)

and for a target point in Ω are :

hH = −
∫

Γ

(
µ0

µ1
(n ·H0)∇G1 − σ1MsG1

)
dΓ

−
∫

Γ

Js ×∇G1dΓ

(3)

hE =

∫

Γ

(Ms ×∇G1 + jωµ1JsG1)dΓ (4)

where h = 0.5 if P is a regular point of the border Γ, h = 1 if P
belongs to Ω or Ω0. The Green kernels expressions are G0 = 1

r

and G1 = 1
4πr e

−(1+j)kr with k =
√

ωµ1σ1

2 , H0 and E0 are
the magnetic and electric fields in the air region respectively,
Hs and Es denote the electric and magnetic vectors of the
incident field respectively, expressed by the current density of
source js as:

Hs =

∫

Ωs

js ×∇G0dΩ

Es = −jω
∫

Ωs

jsG0dΩ

(5)

where Ωs is source current region, Js and Ms are equivalent
magnetic and electrical surface currents such as :

Js = n×H

Ms = −n×E

For the sake of clarity, we use some definitions as follows:

A` (U) = p.v.
∫
Γ

UG`dΓ B` (U) = p.v.
∫
Γ

U×∇G`dΓ

C` (u) = −p.v.
∫
Γ

u∇G`dΓ
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A`× (U) = A` (U)× n,

B`× (U) = B` (U)× n,

C`× (u) = C` (u)× n,

A`n (U) = A` (U) · n,
B`n (U) = B` (U) · n,
C`n (u) = C` (u) · n,

where p.v. denote Cauchy principal value, index ` ∈ {0, 1}.
From the four equations (1)-(4) and by considering their

normal and tangential projections on Γ, we get eight integral
boundary equations.
On the outer side:

Es× =
1

2
Ms + iωµ0A0

× (Js) + B0
× (Ms) + C0

× (E0n) (6)

Hs
× = −1

2
Js − B0

× (Js) + C0
× (H0n) (7)

Esn =
1

2
E0n + jωµ0A0

n (Js) + B0
n (Ms) + C0

n (E0n) (8)

Hs
n =

1

2
H0n − B0

n (Js) + C0
n (H0n) (9)

On the inner side:

0 = −1

2
Ms + jωµ1A1

× (Js) + B1
× (Ms) (10)

0 =
1

2
Js − B1

× (Js) + σ1A1
× (Ms) + C1

× (H1n) (11)

0 = jωµ1A1
n (Js) + B1

n (Ms) (12)

0 = −1

2
H1n − B1

n (Js) + σ1A1
n (Ms) + C1

n (H1n) (13)

Combining these integral equations by multiplying (6)-
(13) respectively by the weighting factors α`, β`, a`, b` and
summing contributions of Ω0 and Ω, we obtain the system of
six formulations given by Tab. I.

The obtained formulations called from EC1 to EC6. EC1
and EC2 have already been presented in [3]. EC4, EC5 with a
combination such as the PMCWHT formulation was presented
in [1], [5]. EC5 was proposed in [4], the idea of combination
comes from formulation of Muller [7]. The EC6 formulation
has been added to complete the set of combinations.

B. Choice of BEM formulation

Formulations in Tab. I are now examined in the context
of a low frequency eddy current problem. A conductive ring
(rint = 4mm, rext = 10mm,h = 2mm) is considered. An
excitation coil is placed 1mm above (rint = 6.75mm, rext =
7.25mm,h = 0.5mm, I = 10A, 1 turn). The surface of the
ring is discretized by 1792 quadrangle elements. The current
density Ms, Js are interpolated by the facet shape function
(2-form Whitney elements) and the 0-form Whitney elements
for E0n.

Ms =
nM∑
i=1

wiMsi, Js =
nJ∑
i=1

wiJsi, E0n =
nE∑
i=1

αiE0ni.

where nM , nJ , nE are numbers of degree of freedom
corresponding to Ms,Js and E0n.
Using the Galerkin approach, we perform calculations
with frequencies ranging from 10Hz to 100kHz for each
formulation. The reference result is computed by axisymmetric
finite element method. Figure 1 shows the relative loss in
three cases respectively: σ = 5.5E7, µr = 1 (case 1),
σ = 5.5E6, µr = 10 (case 2), σ = 5.5E5, µr = 100 (case 3).
The skin depth varies from 21.46mm to 0.21mm in these
cases. The tests carried out show that the EC1 formulation
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Fig. 1. Error on Joule losses. Comparison of different BEM formulations
with axisymetric FEM problem.

does not work in this case multiply-connected regions, the
current distribution obtained being wrong. That’s why we
don’t show results of EC1 formulations. For the circuit
coupling problem, it is necessary to have the magnetic
potential A outside the conductor (see next section) which
depends on E0n. In EC4, this quantity is not computed.
That’s why we didn’t test this formulation. The number of
candidate formulations for circuit coupling is then reduced
to EC2, EC3, EC5 and EC6, which are compatible with
multiply connected problems and enable the computation
of the magnetic vector potential outside. In the case of
non-magnetic conductivity, the results obtained with EC2,
EC5 and EC6 lead to a better accuracy than EC3 up to a
few kHz. However, with a higher frequency, EC3 becomes
more accurate. In the case of conductive and magnetic
material, when relative permeability is high at 100, all three
formulations give poor results, especially for EC3, EC6 at
a frequency below 10kHz and for EC2, EC5 at a frequency
above 1kHz. With a lower magnetic permeability µr = 10,
EC2 gives better results than the others in the frequency
range considered.Let us notice that if an iterative solver like
GMRES is used, EC6 presents the best convergence rate.

II. CIRCUIT COUPLING

A. Electrical circuit equations

In this part, the construction of the equation dealing with
imposed voltage electrical circuit is according like proposed
in which makes the assumption that the current density is
uniform in the section of the conductor. Note js0(x, y, z) the
space function of the corresponding current density which is
obtained by the electrokinetic resolution of the problem with
the total current is 1A [6]. In the case where the total current
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TABLE I
BEM FORMULATIONS FOR EC PROBLEM

Formulation Factors Variables

EC1 α1 = 1, α0 = β1 = 0, β0 = 1
a1 = a0 = 0, b1 = 0, b0 = 1

Js,Ms,
H0n

EC2 α1 = 0, α0 = β1 = 1, β0 = 0
a1 = 0, a0 = b1 = 1, b0 = 0

Js,Ms,
H0n,E0n

EC3 α1 = α0 = β1 = β0 = 1
a1 = 0, a0 = 1, b1 = b0 = 0

Js,Ms,
E0n

EC4 α1 = α0 = β1 = β0 = 1
a1 = 0, a0 = 1, b1 = b0 = 0

Js,Ms

EC5 α1 = −1, α0 = 1, β1 = −µ1, β0 = µ0
a1 = −1, a0 = 1, b1 = b0 = 0

Js,Ms,
E0n

EC6 α1 = −1, α0 = 1, β1 = −1, β0 = 1
a1 = −1, a0 = 1, b1 = b0 = 0

Js,Ms,
E0n

is equal to I with a voltage imposed U on the conductor
U = Va − Vb with Va, Vb respectively the uniform potential
on borders Γa, Γb, thanks to Stock’s theorem the following
relationship can be written:
∫

Ωs

js0 · ∇V dΩ = Va

∫

Γa

js0 · ndΓ + Vb

∫

Γb

js0 · ndΓ = −U (14)

The electric field E in the conductor is written as:

E = −jωA−∇V (15)

In combination with the above equation and (14), we get:

U =

∫

Ωs

js0 ·EdΩ + jω

∫

Ωs

js0 ·AdΩ (16)

The term of js0 ·E can be written as:
∫

Ωc

js0 ·EdΩ = −
∫

Ωc

js · ∇V0dΩ = U0I = RI (17)

where R is static resistance and R = ρ
∫

Ωc

(js0)
2
dΩ.

Equations (16) and (17) lead to the following electrical circuit
equation :

U =

∫

Ωs

ρI (js0)
2
dΩ + jω

∫

Ωs

js0 ·AdΩ (18)

The total magnetic potential A in (18) is created by both
current flowing in the electric circuit and by eddy currents.

B. Coupling model

The circuit coupling is implemented with the assumption
that the excitation circuits are wound conductors where the
wire size is small enough to not need to take into account the
skin effect in each strand. In the context of circuit coupling, the
conducting region Ω is excited by a set of n electrical circuits
in which the kth electrical circuit Ωsk is connected to voltage
sources Uk. The governing equation is (18). Let us consider
(2). By setting the coefficient h to 1, we get the electrical total
field outside the considered conductor Ω:

E = −jωµ0

n∑

i=1

Ii

∫

Ωs
i

js0iG0dΩ− jωµ0

∫

Γ

JsG0dΓ

−
∫

Γ

Ms ×∇G0dΓ +

∫

Γ

En0∇G0dΓ

(19)

Thanks to the relation E = −jωA, the equation governing
the kth electric circuit becomes:

Uk = Ik


ρ
∫

Ωs
k

(js0k)
2
dΩ + jωµ0

∫

Ωs
k

js0k ·
∫

Ωs
k

js0kG0dΩdΩ




︸ ︷︷ ︸
Term 1

+jωµ0

∫

Ωs
k

js0k

n∑

i 6=k

Ii

∫

Ωs
i

js0iG0dΩdΩ

︸ ︷︷ ︸
Term 2

−
∫

Ωs
k

js0k


−jωµ0

∫

Γ

JsG0dΓ−
∫

Γ

Ms ×∇G0dΓ +

∫

Γ

En0∇G0dΓ


 dΩ

︸ ︷︷ ︸
Term 3

Term 1 presents the proper impedance of the kth electrical
circuit. Term 3 and Term 2 express the reaction of eddy
currents and the influences of others electrical circuits on the
kth electrical circuit respectively.

C. Resolution

Both eddy current BEM formulations and their coupling
with electric circuits are solved simultaneously. According to
(5), the electric and magnetic source fields in BEM formula-
tions can be represented by integral depending on Ik which
are additional unknowns. The final matrix system to solve is
presented in Fig. 2.

k k

M
11

M
12

=

0

Ms

Js

En0

M21           M22 {I } {U }

Fig. 2. Matrix system for solving the coupling problem.

In the system, Ms(nM×1), Js(nJ×1), En0(nE×1) are vectors of
the degrees of freedom corresponding to Ms, Js and En0. The
matrix M11 is constructed as the one used to solve the single
eddy current problem by BEM formulation. The M11 matrix
is built like the one used to solve the eddy current problem
by BEM formulation. Let’s establish the matrices M12, M21

and M22. The current density js0k is interpolated also by the
facet shape function:

js0k =

nk∑

i=1

wkijki

where jki can be determinded thanks to the pre-computation of
the electrokinetic current density j0k discussed in the section
III.B.
Suppose that the M21 matrix is composed of three parts N1,
N2, N3 corresponding to three sets of unknown Ms, Js, En0

respectively. The kth row of these matrices corresponds to the
Term 3 of equation of the kth electrical circuit.
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N1
kj = jωµ0

nk∑

i=1


jki

∫

Ωs
k

wki

∫

Γ

wjG0dΓdΩ




N2
kj =

nk∑

i=1


jki

∫

Ωs
k

wki

∫

Γ

wj ×∇G0dΓdΩ




N3
kj = −

nk∑

i=1


jki

∫

Ωs
k

wki

∫

Γ

αj∇G0dΓdΩ




The matrix M22 is constructed according to Term 1 and Term
2. Its kth row takes the following form:

M22
kk = ρ

nk∑

i=1

jki

nk∑

j=1

jkj

∫

Ωs
k

wkiwkjdΩ (20)

M22
kt = jωµ0

nk∑

i=1

jki

nt∑

j=1

jtj

∫

Ωs
k

wki

∫

Ωs
t

wtjG0dΩdΩ (21)

M12 is established in the same way as M22, follows the source
formula (5).

D. Validation

The circuit coupling has been tested with EC6 formulation.
A conductive square section ring is taken into account. The
system is excited by an external circuit, which is concentric
and coaxial with the ring. The geometric and property descrip-
tions are shown in Tab. II and Fig. 3. In BEM, the geometry is
meshed with about 2464 quadrangle elements. The reference is
calculated by the FEM method with a 2D axisymmetric model
and a circuit coupling in which a mesh of 43500 triangles is
used. The total currents flowing in the electrical circuit are
compared in Tab. III. The magnetic flux density is calculated
on line segment A(28.5, 0, 5) − B(28.5, 0, 30) at frequency
f = 10Hz and shown in Fig. 4. The component By = 0 is
not displayed in the figure. The eddy current distribution in
this case is shown in Fig 3.

TABLE II
PROBLEM DESCRIPTIONS

Ring with square section Electrical circuit
Conductivity 3.526E7 (S/m) Imposed voltage 10 (V)
Relative permeability 1 Height/width 5 (mm)
Height 60 (mm) Number of turns 100
External radius 25 (mm) External radius 31 (mm)
Internal radius 10 (mm) Internal radius 26 (mm)

TABLE III
CURRENT IN THE EXTERNAL ELECTRICAL CIRCUIT

Frequency (Hz) 10 1000 10000

BEM Current (A) -2.4586+0.0353j -1.4166+1.0339j -0.0726+0.3331j
Mod(I) (A) 2.4589 1.7536 0.3409

Ref. Current (A) -2.4585+0.0353j -1.4257+1.0260j -0.0765+0.3385j
Mod(I) (A) 2.4588 1.7565 0.3470

Dif. of Mod(I)(%) 0.0028 0.1570 1.7603

The BEM circuit coupling leads to results very close to
those calculated by FEM method with a axisymetric model.
Differences can be explained by the difference of the mesh

N1
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nk∑
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Fig. 3. Eddy current distribution J(A ·m−2) on the surface of the ring at
f = 10Hz
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size and by the order of the shape functions ( first order for
BEM functions and second order for FEM) but results remains
very goods.

IV. CONCLUSION

In this article, different formulations for the eddy current
problem have been recalled and compared at low frequency.
These formulations generally work well with low relative
permeability. A coupling model that simultaneously solves
the eddy current and electrical circuit equations has also been
proposed.
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III. CONCLUSION

In this article, different formulations for the eddy current
problem have been recalled and compared at low frequency.
These formulations generally work well with low relative
permeability. A coupling model that simultaneously solves
the eddy current and electrical circuit equations has also been
proposed.
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