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Nutrient limitation, bioenergetics, and stoichiometry predict elemental fluxes mediated1

by fishes2

Abstract3

1. Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems.4

Fishes are key vectors of carbon (C), nitrogen (N), and phosphorus (P) in aquatic systems, and5

the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoi-6

chiometry. While nutrient limitation has been accounted for in several stoichiometric models,7

there is no current implementation that permits its incorporation into a bioenergetics approach8

to predict consumption rates. This may lead to biased estimates of elemental fluxes.9

2. Here, we introduce a theoretical framework that combines stoichiometry and bioenergetics10

with explicit consideration of limitation. We examine varying elemental limitations across11

different trophic groups and life stages through a case study of three trophically-distinct reef12

fishes. Further, we empirically validate our model using an independent database of measured13

excretion rates.14

3. Our model adequately predicts elemental fluxes in the examined species and reveals15

species- and size-specific limitations of C, N, and P. In line with theoretical predictions, we16

demonstrate that the herbivore Zebrasoma scopas is limited by N and P, and all three fish17

species are limited by P in early life stages. Further, we show that failing to account for18

nutrient limitation can result in a greater than two-fold underestimation of ingestion rates,19

which leads to drastic underestimations of excretion rates.20

4. Our model improved predictions of ingestion, excretion, and egestion rates across all life21

stages, especially for fishes with diets low in N and/or P. Due to its broad applicability, its22

reliance on many parameters that are well defined and widely accessible, and its straightfor-23

ward implementation via the accompanying R-package 7Bb?7Hmt, our model provides a user-24

friendly path toward a better understanding of ecosystem-wide nutrient cycling in the aquatic25

biome.26

1



Introduction27

Internal biological processes of consumer species, such as growth, respiration, and excretion28

are important drivers of ecosystem-scale biogeochemical cycles (Welti et al., 2017). To sur-29

vive, individuals need to gather resources from the environment and, in doing so, transfer en-30

ergy and nutrients within and across ecosystems (Brown, Gillooly, Allen, Savage, & West,31

2004; Mackenzie, Ver, Sabine, Lane, & Lerman, 1993). Therefore, the quantification of en-32

ergy and nutrient fluxes in ecosystems hinges on our ability to understand how energy and33

materials are utilized and transformed at the individual level (Allgeier, Yeager, & Layman,34

2013; Kitchell et al., 1974; Sterner & Elser, 2002).35

In aquatic ecosystems, fishes account for most of the heterotrophic biomass (Odum & Odum,36

1955; Vanni, 2002) and contribute substantially to the storage and flux of carbon (C), nitro-37

gen (N), and phosphorus P (Allgeier, Layman, Mumby, & Rosemond, 2014; Barneche et al.,38

2014; Burkepile et al., 2013; McIntyre et al., 2008; Vanni, 2002). Storage is primarily dic-39

tated by food that is assimilated and allocated to growth, which ultimately underpins criti-40

cal ecosystem services (e.g. finfish fisheries). Fluxes are derived from assimilated (respired41

carbon and excreted nutrients) and non-assimilated food (egested organic waste) (Schreck &42

Moyle, 1990), and they can have important effects on ecosystem processes, such as primary43

production (Allgeier et al., 2013; Capps & Flecker, 2013; McIntyre et al., 2008). Disentan-44

gling how fishes partition ingested elements into biomass and waste products is therefore key45

to link individual-level physiology to ecosystem-level processes, which are of inherent human46

interest (Anderson, Hessen, Elser, & Urabe, 2005; Barneche & Allen, 2018; Hessen, Ågren,47

Anderson, Elser, & De Ruiter, 2004; Hou et al., 2008).48

Ecological stoichiometry provides a theoretical framework to understand how consumers par-49

tition C, N, and P (Sterner & Elser 2002). On the basis of the conservation of mass, the mate-50

rial ingested by consumers equals the sum of biomass accumulation and waste products such51

as respired carbon, excreted nutrients, and egested organic material. Furthermore, stoichio-52

metric theory predicts that the ratio of recycled elements depends on the elemental composi-53

tion of the consumer body, diet, and the gross growth efficiency of the limiting element (Frost54
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et al., 2006; Sterner, 1990). Thus, given known consumption rates, stoichiometric mass bal-55

ance models allow for the prediction of fish excretion rates (Kraft, 1992; Schindler & Eby,56

1997). Consumption rates can be approximated using empirical relationships with body mass57

and temperature (e.g. El-Sabaawi, Warbanski, Rudman, Hovel, & Matthews, 2016), but these58

estimates are highly species-specific, require extensive lab experiments, and may not reflect59

fish consumption rates in the wild.60

Alternatively, consumption rates can be estimated using bioenergetic models. In fact, there is61

a rich history of bioenergetic modelling approaches to estimate energy allocation in fishes un-62

der the assumption that they are limited by energy (C) (e.g. the “Wisconsin model”, Kitchell63

et al. (1974); Hanson, Johnson, Schindler, & Kitchell (1997) and the “Dynamic Energy Bud-64

get model”, Kooijman (2010)). Combined with elemental stoichiometry, bioenergetic models65

therefore provide a conceptual basis to predict how fishes partition energy and elements into66

growth, metabolism, and waste (Deslauriers, Chipps, Breck, Rice, & Madenjian, 2017; Kraft,67

1992; Schindler & Eby, 1997; Schreck & Moyle, 1990). This approach has been widely used68

to estimate consumption rates, given known growth rates in wild fish populations (especially69

via the Fish Bioenergetics software Deslauriers et al., 2017). Nutrient cycling predictions are70

then made by combining modeled ingestion rates based on energetic needs, assimilation ef-71

ficiencies, and nutrient stoichiometry of both a fish’s body and diet (Anderson et al., 2005;72

Kraft, 1992; Schindler & Eby, 1997).73

Although useful and successfully implemented (Deslauriers et al., 2017), this approach is74

limited in its application to fishes that are limited by C. This can be the case, especially for75

trophic groups that feed on nutrient-rich prey (e.g. Schindler & Eby, 1997); yet, many fish76

species in low trophic levels may be limited by N or P because their diets contain lower nu-77

trient levels than their body tissues (McIntyre et al., 2008; Schindler & Eby, 1997). Thus, ap-78

plying the traditional approach of combining stoichiometry and bioenergetics (Kraft, 1992)79

to fish species that are limited by N or P normally results in biologically impossible predic-80

tions of negative excretion rates. Indeed, there is mounting evidence that fishes can be limited81

by nutrients, rather than energy (Benstead et al., 2014; El-Sabaawi et al., 2016; Hood2005;82

Moody, Lujan, Roach, & Winemiller, 2019). While, negative predicted excretion rates can83
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provide evidence for nutrient limitation (e.g. Hood, Vanni, & Flecker, 2005), they do not aid84

our understanding and prediction of realistic elemental fluxes in communities where nutrient-85

limited species are prevalent. Thus, although many stoichiometric models take into account86

nutrient limitation (e.g. Sterner, 1990; El-Sabaawi et al., 2016; Guariento, Luttbeg, Carneiro,87

& Caliman, 2018; Moody et al., 2018, 2019), there is presently no solution for integrating nu-88

trient limitation into bioenergetic models that quantify consumption rates. As fishes in low89

trophic levels often account for a significant proportion of biomass (e.g. Graham et al., 2017)90

and represent important vectors of nutrients, a new approach is needed to accurately predict91

elemental fluxes in the absence of known consumption rates.92

Here, we present a theoretical framework (and a companion R package for its implementa-93

tion: 7Bb?7Hmt) to predict elemental fluxes in fishes that combines bioenergetics and eco-94

logical stoichiometry while directly accounting for N and P limitation, alongside C limita-95

tion. The proposed model framework predicts ingestion rates based on the needs of a fish at96

a certain size for all three elements and a known growth rate. We test our framework via a97

case study of three trophically-distinct coral reef fish species: the herbivore Zebrasoma scopas98

(family Acanthuridae), the omnivore Balistapus undulatus (family Balistidae), and the carni-99

vore Epinephelus merra (family Serranidae). We also validate our model against independent100

empirical excretion estimates for our three fish species. Furthermore, we test whether fishes101

in different trophic levels and life stages are limited by different elements and hypothesize102

that fishes at low trophic levels are limited by N or P rather than C. Finally, we posit that, by103

building on existing approaches, our framework considerately improves the prediction of key104

processes such as ingestion and excretion in the case of strong nutrient limitation, as compared105

to models that only consider C-limitation.106
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Materials and Methods107

1. Theoretical framework108

Carbon, nitrogen, and phosphorus (CNP, expressed in grams) are the three chemical elements109

considered in our model. The approach applies a mass-balance framework based on ecolog-110

ical stoichiometry and the metabolic theory of ecology (Brown et al., 2004; Sterner & Elser,111

2002). Further, the approach relies on the growth trajectory of natural fish populations. The112

proposed model has four main steps (Fig. 1): (1) The minimal required ingestion or minimal113

supply rate of CNP is defined as the sum of CNP needed for a given growth increment and114

minimal inorganic flux (i.e. the minimal requirements of CNP needed for metabolism and the115

maintenance of the body stoichiometry). In this step, we also consider assimilation efficiency,116

which is defined as the capacity of an organism to assimilate C, N or P (input parameters of117

the model). (2) Ingestion is estimated based on the limiting element that is defined by the im-118

balance between the CNP composition of the minimal supply rate and that of the diet. (3) The119

egestion rate is then quantified according to the ingestion rate and the assimilation efficien-120

cies of each element. (4) The residual CNP are allocated toward the total inorganic flux of121

CNP (i.e. the waste inorganic CNP that is produced from physiological transformation). For122

the sake of comparison with existing literature, we note that the inorganic flux of C is gener-123

ally called total metabolic rate, whereas the inorganic fluxes of N and P are called excretion124

rates. Materials that are not assimilated are egested as organic waste. An overview of all main125

variables predicted by the model and input parameters that need to be specified by the user is126

given in Table 1, while other parameters mentioned in the text are fixed in the model. In the127

following sections, we detail each component of the model.128
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Figure 1. Conceptual diagram, explaining different model components. Required

ingestion of C, N and P is calculated through the sum of elements needed for growth and

minimal inorganic flux, taking into account the element-specific assimilation efficiencies,

ak (1). Based on the limiting element (due to the imbalance of food and the required

CNP), the ingestion rate can be estimated (2). The ingested material is partitioned into

egestion (3) and assimilation (body mass growth and flux (4)). The symbol of each

component is indicated in between brackets. The input parameters needed to calculate the

different variables are italicised. See Table 1 for a description of each parameter.
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Table 1. Overview of model parameters and variables, including input parameters, to be
specified by the user of the model, which are indicated with !. Main output variables,
predicted by the model are indicated with ". VBGC = von Bertalanffy growth curve.

Symbol Description Unit
k Index for element C, N or P _
Sk " Element-specific minimal supply rate g d−1

Gk " Element-specific growth g d−1

F0k " Element-specific minimal inorganic flux g d−1

ak ! Element-specific assimilation efficiency _
lt ! Total length of individual at time t cm
t Age yr
l∞ ! Asymptotic adult length (VBGC) cm
κ ! Growth rate parameter (VBGC) yr−1

t0 ! Age at settlement (VBGC) yr
lwa ! Parameter length-weight relationship g cm−1

lwb ! Parameter length-weight relationship _
Qk ! Element-specific body content percentage of dry mass %
mw Wet body mass g
F0Cr Resting metabolic rate g d−1

F0Cz Mass-specific turnover rate of C g Cg−1d−1

F0Cs Rate of C spent in body mass growth g d−1

f0 ! Metabolic normalisation constant independent of body mass g Cg−αd−1

α ! Mass-scaling exponent _
mw∞ Asymptotic wet mass of an adult individual g
φ Cost of growth g C g−1

θ ! Activity scope _
v ! Environmental temperature °C
h ! trophic level _
r ! Aspect ratio of caudal fin _
F0Nz ! Mass-specific turnover rate of N g Ng−1d−1

F0Pz ! Mass-specific turnover rate of P g Pg−1d−1

mdw Ratio of dry mass and wet mass of fish _
md Dry body mass g
Dk ! Element-specific diet content percentage of dry mass %
Ik " Element-specific ingestion rate g d−1

Wk " Element-specific egestion rate g d−1

Frk " Element-specific residual inorganic flux g d−1

Fk " Element-specific total inorganic flux g d−1
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1.1. Minimal suppy rate129

The first step of the model is an estimate of the minimal supply rate of elements (C, N and P)130

required per day for a given growth increment in an individual of a given size. The required131

CNP is the sum of the elements needed for body mass growth and overhead metabolic and132

maintenance costs (i.e. minimal inorganic flux). The minimal supply rate Sk (g d-1) of the ele-133

ment k= {C, N, P} can therefore be estimated as134

Sk =
(Gk+F0k)

ak
, (1)

where Gk, F0k and ak are element-specific growth rate (g d-1), minimal inorganic flux (g d-1),135

and assimilation efficiency (%), respectively.136

1.1.1. Growth137

The aim of our model is to predict elemental fluxes of fishes in their natural environment.138

Therefore, we use growth rates that can be calculated from otolith analysis. In our model, we139

thus assume that there is enough food available to fulfill the observed growth pattern. We fur-140

ther use the von Bertalanffy growth curve (VBGC) to describe the growth trajectory (Berta-141

lanffy, 1957). Empirically, the VBGC is favorable because its parameters are statistically sim-142

ple to obtain, easy to interpret, and are available for a large number of species (Morais & Bell-143

wood, 2018). Body length, lt (cm in total length, i.e. T.L.), at age t (yr) is144

lt = l∞
(

1− e−κ(t−t0)
)
, (2)

where t0 is age at settlement, l∞ is the asymptotic adult length (i.e. length when growth rate145

is 0), and κ is a growth rate parameter (yr-1) (Bertalanffy, 1957). With this equation, we can146

quantify the age of a fish of a certain size. Then, by adding one day to that age, we can also147

approximate the amount a fish will grow in one day. Using length-weight relationships and148

wet-to-dry mass conversion constants from the literature and FishBase (Froese & Pauly,149

2018), we can finally calculate total growth rate (i.e. G) expressed in dry mass (g d−1). Using150
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element-specific body content percentages, Qk, we calculate element-specific growth as:151

Gk =
Qk
100

G. (3)

1.1.2 Minimal inorganic flux152

Traditionally, the field metabolic rate, F0C, has been studied more intensively than minimal153

excretion rates for N and P, F0N, and F0P. As a consequence, we currently have a better under-154

standing of how assimilated carbon is partitioned into body mass growth (GC) and metabolic155

overhead costs (F0C). For instance, we know that F0C predictably scales with individual wet156

body mass, mw (g) (Hou et al., 2008):157

F0C = θF0Cr =

θ(F0Czmw +F0Cs) =

θ( f0mα−1
w∞ mw +φG),

(4)

where F0Cr is the resting metabolic rate (g C d-1), F0Cz is the mass-specific turnover rate (g C158

g-1 d-1), F0Cs is the rate of carbon spent in body mass growth, and f0 is a metabolic normal-159

ization constant that is independent of body mass (g C g-α d-1) and varies among fish taxa,160

environmental temperature, and trophic level (Barneche & Allen, 2018). α is a dimensionless161

mass-scaling exponent (generally between 0.5 and 1), mw∞ is the asymptotic mass of an in-162

dividual, and φ is the energy expended to produce one unit of body mass (g C g-1; hereafter163

the “cost of growth”). In equation 4, F0C is defined as the sum of the resting metabolic rate,164

F0Cr, and the active rate that sustains locomotion, feeding, and other activities. We assume165

that F0C = θF0Cr in the expression above, where θ is a dimensionless parameter referred to as166

‘activity scope’, which is constrained to be greater than 1 and less than the ratio between max-167

imum metabolic rate and resting metabolic rate (Barneche & Allen, 2018; Hou et al., 2008).168

The cost of growth, φ , varies substantially among fishes, and it may increase with environ-169
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mental temperature, v, trophic level, h, and aspect ratio of caudal fin, r (a proxy for activity170

level) (Froese & Pauly, 2018). Following Barneche & Allen (2018), the cost of growth can be171

calculated as172

lnφ = β0 +βvv+βhlnh+βrln(r+1), (5)

where β0 is a constant, βv, βh, and βr are respectively the model slopes for v, h, and r. We173

note that h and r are two ecological variables that can be retrieved from FishBase (Froese &174

Pauly, 2018). For the purposes of our bioenergetic model, we use average, across-species esti-175

mates for β0, βv, βh, and βr published in Barneche & Allen (2018).176

Aside from inorganic fluxes of C, N and P will also be released at a minimal rate, even when177

they are limiting (Anderson et al., 2005; Sterner & Elser, 2002). The minimal inorganic flux178

of N and P can be experimentally measured as minimal excretion rates during starvation179

(Mayor et al., 2011). We can thus explicitly incorporate N and P turnover rates to estimate180

minimal inorganic flux of N and P (Anderson et al., 2005).181

F0N = F0Nz
QN
100

md,and (6)

182

F0P = F0Pz
QP
100

md, (7)

where F0Nz and F0Pz are nutrient-specific dry mass-specific turnover rates for N (g N g -1 d-1)183

and P (g P g-1 d-1), respectively, and md is the dry mass of the fish (g). Equations 6 and 7 as-184

sume that F0Nz and F0Pz remain constant during ontogeny.185

1.2. Ingestion186

In our model, the quantification of ingestion rate is a two-step process. First, we define the187

minimal required ingestion of CNP by summing element-specific minimal supply rates Sk.188

Second, we approximate the actual ingestion rates by using ecological stoichiometric theory189

(Sterner & Elser, 2002). With known elemental stoichiometry of the diet (DC, DN, DP) we can190
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determine the limiting element as follows:191

limiting element=






C, if SC
SN

> DC
DN

and SC
SP

> DC
DP

N, if SN
SP

> DN
DP

and SC
SN

< DC
DN

P, otherwise






(8)

The actual ingestion rate is then approximated according to the limiting element, following192

Liebig’s minimum law. To do so, we assume fishes have enough food available to meet their193

minimal needs (Sk). For example, if P is limiting, element-specific ingestion rates, Ik, (g d-1)194

are195

IP = SP, (9)

196

IN = IP
DN
DP

, (10)

197

IC = IP
DC
DP

, (11)

where Dk represents element-specific body content percentage of dietary items. Once inges-198

tion rate is estimated, the partitioning of the ingested matter into various pathways (i.e. eges-199

tion, excretion and respiration) can be defined.200

1.3. Egestion or organic waste production201

The rate of organic waste production or egestion rate,Wk (g d-1) can be computed using the in-202

gestion rate of each element and element-specific assimilation efficiencies (Schreck & Moyle,203

1990):204

Wk = (1−ak)Ik. (12)
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1.4. Total inorganic flux205

The rate of total inorganic waste production or flux (i.e. total respiration and excretion) equals206

the ingestion rate minus body mass growth rate and egestion rate for each element (Schreck207

& Moyle, 1990; Sterner & Elser, 2002). If an element is limiting, the individual is likely to208

consume other elements in excess in order to meet the target for that limiting element. In209

such cases, it is often assumed that the exceeding “residual” element will be subject to post-210

absorptive release via inorganic waste production (i.e. residual flux Frk) to maintain body211

homeostasis (Anderson et al., 2005). When N or P are limiting, for example, a certain residual212

amount of C, FrC remains unutilised. However, if C is limiting instead of N or P, excretion213

rates FN and FP will increase by an overhead residual flux Frk. In the example of C limitation,214

the residual flux FrC would equal zero. We can thus quantify the total inorganic flux as fol-215

lows:216

Fk = F0k+Frk, (13)

where217

Frk = Ik−Gk−F0k−Wk. (14)

2. Application218

We validate our modelling approach using data from three reef fish species: the herbivore219

Zebrasoma scopas (family Acanthuridae), the omnivore Balistapus undulatus (family Balis-220

tidae), and the carnivore Epinephelus merra (family Serranidae). All parameters were quan-221

tified using empirical data augmented with information from the literature when needed (see222

supplementary methods, Appendix S1). An overview of all parameter estimates is provided in223

Appendix S2, Table 1.224

We ran the model using R (R Core Team, 2019) and Stan (Stan Development Team, 2018).225

For an easy application of the presented framework, we developed the R package 7Bb?7Hmt,226

which provides a set of user-friendly functions to simulate the model, extract the output vari-227
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ables, and visualize the results (see Appendix S1). Parameter means and standard deviations228

are provided, and a Monte Carlo method is applied to randomly draw each parameter assum-229

ing normal distributions in each iteration. To account for co-variances among parameters, we230

used the Stan function KmHiBnMQ`K�Hn`M;UV, which samples each parameter under consider-231

ation of the co-variance matrix. We included co-variances for body stoichiometry (Qk), diet232

stoichiometry (Dk), length-weight parameters (ε and b), and metabolic parameters (α and233

f0). These parameters were sampled from their log-transformed multinormal distribution then234

back-transformed to natural scale. All other parameters were sampled from truncated normal235

distributions, where the lower and upper bounds are the possible ranges of each respective236

parameter. For our case study, we used 5,000 iterations. If the standard deviation of a given237

parameter is unknown (e.g. r, reported on FishBase), the function automatically fills in the238

standard deviation with a very low value of 10-9 in order to keep the respective parameter ap-239

proximately constant at each iteration of the simulation.240

To compare the predictions of ingestion and excretion rates of our model framework with the241

case where only C-limitation is considered, we simulated ingestion and excretion rates, based242

only on the minimal supply rate of C, thus where Ic equals Sc. Excretion rates or total inor-243

ganic flux rates of N and P are then defined as follows:244

FN = SC
DN
DC

−GN−WN, (15)

245

FP = SC
DP
DC

−GP−WP. (16)

We compared the predicted excretion rates for N and P with our own independent database246

of experimental excretion rates. We collected individual fish using barrier nets, dip nets, cast247

nets, traps, clove oil, and hook and line across different reef habitats around Moorea, French248

Polynesia during austral winter of 2016 and 2017 (n = 128). We aimed to collect individuals249

across the size spectrum present in each species. We immediately transported individuals back250

to shore in an aerated cooler for excretion experiments (see Appendix S1). Excretion rates251

were measured within a maximum of 3 hours after capture. The capture and handling of fishes252
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for this project were approved in a protocol from the University of California Santa Barbara’s253

Institutional Animal Care and Use Committee (IACUC #915 2016-2019).254

Finally, to illustrate the effect of diet stoichiometry, we simulated the model with varying255

% of N and P. For this simulation, we used the parameters of Z. scopas and ran the simula-256

tion for an individual of 10cm. We kept DC constant at 6%. The values of DN and DP var-257

ied around the elemental ratio of Sk. Color palettes were used from the R package fishualize258

(Schiettekatte, Brandl, & Casey, 2019).259

Results260

The application of the developed modeling framework reveals distinct elemental limitations261

across the three species at different lengths (Fig. 2). Z. scopas is limited by either N or P over262

its full size range, with P being the limiting element early in its ontogeny and N becoming the263

limiting element after reaching approximately 7 cm TL. While B. undulatus and E. merra are264

also limited by P at an early life stage, they are predominantly limited by C upon maturation.265
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Figure 2. Proportion of the simulation iterations that determine C, N and P as the limiting

element for Zebrasoma scopas, Balistapus undulatus, and Epinephelus merra.
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Our approach demonstrates that defining the limiting element can be critical to predict a266

species’ ingestion rate, which affects all downstream calculations in the model (e.g. excretion267

rates of N and P) compared to models only considering C limitation (Fig. 3). Specifically,268

assuming C limitation in Z. scopas results in a severe underestimation of ingestion and269

excretion rates (Fig. 3, A, B and C). In the omnivore B. undulatus and the carnivore E.270

merra, the limiting element has less bearing on ingestion rates. Still, without incorporation271

of P limitation, model predictions may result in negative excretion rates of P for growing272

individuals of B. undulatus and E. merra. In the case of E. merra, C-only models predict273

negative P excretion rates for more than half of the simulations under a total length of 10 cm274

(Fig.3, I). Thus, our framework reveals that nutrient limitations and their consequences for275

ingestion rate estimations are highly specific to the three study species and their ontogenetic276

stage.277
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Figure 3. Predicted daily ingestion of carbon and excretion rates for the full model,

considering nutrient limitation and for a model, only taking into account C-limitation.

Horizontal lines show the median values and 95%, 80%, and 50% confidence intervals are

illustrated respectively in vertical lines. A. C ingestion rates of Z. scopas, B. N excretion

rates of Z. scopas, A. P excretion rates of Z. scopas, A. C ingestion rates of B. undulatus,

A. N excretion rates of B. undulatus, A. P excretion rates of B. undulatus, A. C ingestion

rates of E. merra, A. N excretion rates of E. merra, A. P excretion rates of E. merra.
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Our model predicts ingestion rates for Z. scopas, B. undulatus and E. merra at 15 cm TL to be278

28.2 (11.7 – 68.4), 12.9 (3.7 – 56.7), 14.1 (5.5 – 40.1), respectively (in mg dry weight per g279

wet weight of fish per day, median and 95% confidence interval (C.I.)) (see Appendix S2, Ta-280

ble 2). Comparing our predicted excretion rates with empirical data on excretion rates shows281

that our model adequately predicts excretion rates with almost all experimental data falling282

inside the predicted 95% confidence interval (Fig. 4). For N excretion, 100%, 97% and 94%283

of the experimental excretion rates are captured by our predictions for Z. scopas, B. undulatus284

and E. merra, respectively. For P excretion, we adequately predict 93%, 94%, and 90% of the285

experimental excretion rates for the three species, respectively. Predictions for E. merra are286

slightly overestimated compared to experimental excretion rates. Groupers feed infrequently,287

and their stomachs were often found empty, which may have impacted the measured excretion288

rates.289
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Figure 4. Predicted excretion rates for each species of both N and P. The 50%, 80% and

95% confidence intervals are presented around the median. Points show the experimental

excretion rates, obtained from an independent database. A. N excretion rates of Z. scopas,

B. P excretion rates of Z. scopas, C. N excretion rates of B. undulatus, D. P excretion rates

of B. undulatus, E. N excretion rates of E. merra, F. P excretion rates of E. merra.
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Predictions are substantially affected by variability in the stoichiometry of dietary sources. To290

illustrate how the diet stoichiometry affects limitations by different elements and ingestion291

and excretion rates, we simulated different scenarios by varying the diet percentages of N and292

P around the stoichiometry of the minimal supply rate of an individual of Z. scopas of 10 cm293

(Fig. 5). When diet stoichiometry differs from this ideal stoichiometry of the minimal supply294

rate, either C, N or P is the limiting element, which in turn affects all downstream biologi-295

cal processes. For example, when the percent of P in the diet is low, P is the limiting element296

(Fig. 5, A).This leads to an increased ingestion rate (Fig. 5, B), a minimal excretion rate of P297

(Fig. 5, C), and a high excretion rate of N (Fig. 5, D).298
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Figure 5. Model simulations with varying levels of DN and DP. DC is kept constant. Diet

stoichiometry affects the limitation and the rates of multiple processes, such as the

ingestion rate and excretion rates. A. The limiting element is indicated for varying levels

of diet stoichiometry (DN and DP). Lines indicate where one limiting element switches to

another. This is equivalent to the threshold elemental ratios, B. IC or Ingestion rates of C

(g/day), C. FN or Total inorganic flux of N (g/day), D. FP or Total inorganic flux of P

(g/day).
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Discussion299

Combining stoichiometry and bioenergetic modeling provides a framework to predict elemen-300

tal fluxes in consumers and their contribution to key biogeochemical cycles. Here, we intro-301

duce a model that incorporates the nutrient requirements of fishes alongside their energetic302

needs to provide accurate predictions of their ingestion, respiration, excretion, and egestion303

rates. With our framework, we confirm the existence of nutrient limitation in fishes, specific304

to the trophic group and life stage, and its effect on multiple processes. We demonstrate the305

accuracy and applicability of the model to predict ingestion and excretion rates for three tropi-306

cal reef fish species, while also reflecting the natural variability of these variables. Our frame-307

work provides an accurate tool to predict CNP fluxes in fishes across diverse trophic groups308

and gauge the role of fish consumers in ecosystems worldwide.309

There is a growing consensus that many fishes are limited by nutrients (Benstead et al., 2014;310

El-Sabaawi et al., 2016; Hood2005; Moody et al., 2019). Yet, fish growth and maintenance311

are often assumed to be limited by energy (C) when applying coupled bioenergetic and stoi-312

chiometric models (Allgeier et al., 2013; Burkepile et al., 2013; Kraft, 1992; Schindler & Eby,313

1997). Our case study confirms that ingestion rates can indeed be determined by N or P lim-314

itation rather than C limitation, especially in species with nutrient-poor diets. This finding is315

expected given the elemental imbalance between the consumer’s body and dietary CNP con-316

tent; however, failing to account for nutrient limitation substantially skews predictions of in-317

gestion rates. For example, assuming only energy limitation for a herbivorous adult Z. scopas318

would result in a greater than two-fold underestimation of its ingestion rate and consequently319

drastic underestimations of excretion and egestion rates. Given the high densities of species320

with nutrient-poor diets across a variety of ecosystems (e.g. herbivorous and detritivorous321

species; Williams & Hatcher (1983); Takeuchi, Ochi, Kohda, Sinyinza, & Hori (2010); Hood322

et al. (2005)), such underestimates may result in strong misconceptions about ecosystem-scale323

nutrients and energy fluxes. Our model framework provides a way to facilitate the direct in-324

corporation of varying elemental limitation across species.325

The developed model predicts ingestion through the integration of metabolic theory and ele-326
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mental limitation, thus circumventing the difficult task of measuring ingestion rates in natural327

populations. Therefore, the first step of our framework focuses on quantifying the minimal328

supply rate for each element (Sk) and determining the limiting element. This includes both329

maintenance rates and element-specific growth rates based on the growth trajectory of nat-330

ural populations. Then, by comparing the stoichiometry of these minimal supply rates with331

diet stoichiometry, we can determine the limiting element. This approach is inspired by the332

threshold elemental ratio (TER) theory, which predicts the ratio at which growth limitation333

switches from one element to another (Sterner & Elser, 2002; Urabe & Watanabe, 1992). In334

fishes, it is widely accepted to integrate metabolic rate into the calculation of TER’s (Frost et335

al., 2006). We built on this work to account not only for maintenance requirements of C, but336

also of N and P. Similar to the energy (C) that is needed to sustain the metabolic rate of fishes337

in the wild, minimal N and P is needed to replace decaying cells and maintain body compo-338

sition. The specific turnover rate of P (F0Pz) is lower than the turnover rate of N (F0Nz) be-339

cause bone cells, which contain the majority of P, degrade slowly compared to other cell types340

(Manolagas, 2000; Sterner & Elser, 2002). Thus, including minimal requirements for all three341

elements lowers the TER of C and nutrients of fishes and increases the probability of detecting342

nutrient limitation.343

The inclusion of nutrient limitation ensures that predicted excretion rates (FP, FN) are always344

higher than zero. This is crucial since N and P will always be released at a minimal rate, even345

when they are limiting (Anderson et al., 2005; Mayor et al., 2011; Sterner & Elser, 2002). Our346

approach reveals that all three study species are limited by P in their early life. By explicitly347

including minimal supply rates in our model, we move beyond simply detecting evidence for348

nutrient limitation (i.e. negative excretion rates; Hood et al, 2005) towards quantifying its ef-349

fect on vital processes across species and ontogeny. Bone growth, for example, requires sub-350

stantial amounts of P and is most rapid during early life-stages (Vanni, 2002), and evidence351

from freshwater ecosystems shows that P can limit fish growth (Benstead et al., 2014; Hood352

et al., 2005). The ontogenetic variation in elemental limitation presented herein confirms the353

importance of considering P-limitation for growth when predicting elemental fluxes in fishes.354

Beyond the incorporation of nutrient limitation, our model framework provides a way to esti-355
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mate uncertainty of predictions. Empirically-measured excretion rates can considerably vary356

for similarly sized individuals of the same species (Allgeier, Wenger, Rosemond, Schindler,357

& Layman, 2015; Francis & Côté, 2018; Whiles, Huryn, Taylor, & Reeve, 2011). Yet, exist-358

ing models that combine stoichiometry and bioenergetics do not account for this natural vari-359

ability (e.g. Deslauriers et al., 2017), which hampers our ability to gauge the uncertainty of360

resulting estimates. With the use of MCMC iterations, the R package 7Bb?7Hmt incorporates361

the distribution of parameters with their means and standard deviations, resulting in realistic362

credibility intervals of ingestion and excretion rates, although variability in model output does363

not necessarily reflect natural variability. The utility of this approach is clear when compar-364

ing our predictions to reported ingestion rates. For example, Z. scopas reportedly ingests 49365

mg of dry mass per gram of wet fish weight (Polunin, Harmelin-Vivien, & Galzin, 1995), a366

value centered within the predicted range of our model (11.7 – 68.4 at 15 cm TL). Similarly,367

the ingestion rate of juvenile coral trout, Plectropomus leopardus, a predatory species in the368

same family as E. merra (family Serranidae), ranges between 9 to 14 mg of dry mass per gram369

of wet weight (Sun et al., 2014), which lies within the 95% prediction for E. merra from our370

model (5.5 – 40.1). Tracing the sensitivity of predictions to uncertainty in specific parameters371

enables the determination of the main sources of variability that may shift estimates among372

studies or species.373

As all models, our approach relies on several simplifying assumptions. First, our model374

assumes that fishes maintain homeostasis (Sterner, 1990). Since fishes can have flexible body375

stoichiometry depending on dietary nutrient content (Benstead et al., 2014; Dalton et al.,376

2017), this assumption may impose biases when simulating effects of varying diet stoichiom-377

etry on elemental fluxes. Yet, empirically measures relationships between nutrient content378

of body and diet can easily be incorporated into our model simulations, thus ameliorating the379

effects of this simplification. Second, similar to most stoichiometric mass balance models,380

our framework is based on Liebig’s minimal rule, which states that growth is strictly limited381

by the element in shortest supply relative to demand. However, there is emerging evidence382

that consumers may simultaneously be limited by more than one element (Sperfeld, Martin-383

Creuzburg, & Wacker, 2012). For example, P plays an essential role in fish energy uptake384
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(Xie et al., 2011), and the incorporation of interactive co-limitation into stoichiometric models385

may further improve predictions of elemental fluxes. Finally, we assume that fishes follow a386

growth trajectory defined by the VBGC curve, and that there is enough food available in the387

natural environment to meet the growth requirements for each element. The VBGC is fitted388

on size-at-age data that are mostly acquired via annual otolith readings. In our model, we use389

this fitted growth function to estimate daily growth rates for each element through integration390

with length-weight relationships and body stoichiometry. This does not capture, for instance,391

seasonal variation of food availability. Other stoichiometric models mostly use gross growth392

efficiencies, or GGE’s (i.e. growth/ingestion of the limiting element) (e.g. El-Sabaawi et al.,393

2016; Frost et al., 2006; Guariento et al., 2018; McManamay, Webster, Valett, & Dolloff,394

2011; Moody et al., 2019). However, consumer GGE’s vary widely, and specific values are395

poorly understood (McManamay et al., 2011). Furthermore, even if element-specific GGE’s396

are quantified, they may not reflect growth observed in natural populations. Therefore, we397

suggest that the use of otolith-based growth quantification provides a reasonable alternative to398

model elemental fluxes of natural fish populations.399

Beyond model assumptions, the accuracy of our model naturally relies on the accuracy of each400

parameter estimate. Yet, parameters are often difficult to obtain. We sought to balance the ac-401

curacy of predictions and ease of application. Parameters involving growth, length-weight402

relationships, metabolism, and stoichiometry are increasingly accessible for many species403

due to predictive modeling and open-access databases (e.g. Froese, Thorson, & Reyes, 2014;404

Barneche et al., 2014; Froese & Pauly, 2018; Killen et al., 2016; Morais & Bellwood, 2018;405

Vanni et al., 2017). Yet, there are a number of parameters that are still sparsely quantified406

and may limit the applicability of our framework. In particular, data on diet stoichiometry407

and assimilation efficiencies are rare. In our case study, we used assimilation efficiency con-408

stants for C, N and P, that are predominantly based on predatory fishes. In reality, assimila-409

tion efficiencies can vary substantially, and, in particular, assimilation efficiency of phospho-410

rus is likely correlated with diet quality (Czamanski et al., 2011). Further, N- and P-specific411

turnover rates are newly introduced parameters and therefore poorly known. As these parame-412

ters depend on the cell turnover rates of N- and P-rich tissues (e.g. bone for P), we suggest that413
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these parameters may be applicable across species. Nevertheless, further research is needed414

to gain further insight. While variation in these parameters can impact the model output via415

the limiting element and ingestion rate, ongoing compilations of databases of poorly known416

parameters will improve the application of the proposed modeling framework.417

In addition, we quantified the activity scope (i.e. field metabolic rate) as the average of418

maximum metabolic rates (MMR) and standard metabolic rates (SMR) divided by the SMR,419

assuming that a fish reaches values close to MMR when undertaking activities in the wild420

(Murchie, Cooke, Danylchuk, & Suski, 2011). In reality, activity scope may vary depending421

on life history traits and behavior (Killen, Norin, & Halsey, 2017), and field metabolic rates422

can be elevated with the presence of predators, which in turn can affect nutrient cycling423

(Dalton, Tracy, Hairston, & Flecker, 2018; Guariento et al., 2018). Recent advances, such424

as bio-telemetry (Norin & Clark, 2016) or otolith chemistry (Chung, Trueman, Godiksen,425

Holmstrup, & Grønkjær, 2019) may improve estimates of field metabolic rates. Similarly,426

specific dynamic action (SDA), which is the metabolic rate needed to assimilate food (Hou et427

al., 2008) depends on the quality and quantity of food (McCue, 2006) and may thus influence428

ingestion rates, but it is poorly known across most species. Finally, reproduction is not yet429

incorporated into the model because data on both gonad stoichiometry and reproductive430

growth is rare. This may underestimate energy and nutrient investment of fishes, thus skewing431

model predictions. Nonetheless, as new data on reproductive growth, activity scope, or SDA432

become available, these elements can be incorporated in the future.433

Despite these limitations, our framework provides new avenues for addressing pressing ques-434

tions in ecology. Data on the daily actions of fishes are difficult to obtain due to the chal-435

lenges of conducting research in aquatic environments. Novel techniques such as fish gut436

content DNA metabarcoding (Casey et al., 2019) or compound-specific stable isotope anal-437

yses (Hopkins & Ferguson, 2012) permit improved insights into species-specific ingestion438

of prey resources. However, no current empirical technique can estimate rates of food inges-439

tion via these linkages across a broad range of species. Combining our model with emerging440

techniques to quantify species-specific resource use can help us to address long standing ques-441

tions. How much prey do top predators consume daily? How do rates of algal consumption442
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differ among herbivorous species? How much production by lower trophic levels is needed443

to fuel the growth of predatory fisheries species? By providing a tool to answer these ques-444

tions, our model empowers fundamental and applied researchers to tackle some of the most445

outstanding questions in fish ecology.446

Beyond single species and their pairwise interactions, our model provides means to examine447

community- and ecosystem-scale dynamics. Specifically, based on simple census data of fish448

communities, our model can help decompose system-wide fluxes (cf. Burkepile et al., 2013;449

Allgeier et al., 2014; Francis & Côté, 2018). This is particularly important for open ecosys-450

tems in which the dominant sources of energy and nutrients are unclear or variable. For exam-451

ple, on coral reefs, debates persist on the importance of external (i.e. pelagic) subsidies versus452

internal nutrient cycling (e.g. Brandl, Tornabene, et al., 2019; Morais & Bellwood, 2019). Our453

model can help estimate how much pelagic or benthic prey is consumed by reef fishes and454

how these resources are propagated through food webs, which enables researchers to quantify455

reef functioning (Brandl, Rasher, et al., 2019). Thus, merging what is eaten (i.e. food web as-456

sembly) with how much is eaten (i.e. realistic consumption rates as provided by our model)457

can significantly augment our understanding of ecosystem functioning, especially in systems458

where fishes are the dominant consumers.459

Finally, given the heavy exploitation of fish communities for global human consumption, our460

model offers a tool for understanding and predicting the effect of human-driven changes on461

ecosystem functioning. Yearly, more than 100 million tons of fishes are caught in marine462

systems worldwide (Cashion et al., 2018), imposing an unparalleled top-down stressor on463

global fish communities, which erodes biomass and alters the size and trophic structure of464

fish communities (Essington, Beaudreau, & Wiedenmann, 2006; Pauly, Christensen, Dals-465

gaard, Froese, & Torres, 1998). As exemplified here, elemental fluxes are influenced by diet466

and life stage. Thus, our model provides a tool to estimate the impact of size and trophic struc-467

ture shifts on elemental cycling. In addition, increasing temperatures resulting from climate468

change can affect primary production in the world’s oceans, thus imposing a bottom-up effect469

on fish communities (Lotze et al., 2019), which are likewise affected by rising temperatures470

(Pinsky, Eikeset, McCauley, Payne, & Sunday, 2019). Temperature is known to affect mul-471
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tiple parameters in this model, such as metabolic rate and growth rate (Morais2018; Killen et472

al., 2016), which enables assessment of the impact of temperature on elemental fluxes. Given473

human-driven alterations in both primary production through climate change and fish com-474

munity structure through extensive fishing, it is urgent to understand how these changes may475

impact biogeochemical fluxes. Our model and its implementation provide a path toward rising476

to this challenge.477

Data accessibility478

All data and code to reproduce figures will be available online on GitHub https://github.com/nschiett/.479

The full model code is available on GitHub through the R package 7Bb?7Hmt: https://github.com/nschiett/fishflux.480
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