
HAL Id: hal-03013802
https://hal.science/hal-03013802

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do Generalized Draw-down Times Lead to Better
Dividends? A Pontryaghin Principle-Based Answer

Florin Avram, Dan Goreac

To cite this version:
Florin Avram, Dan Goreac. Do Generalized Draw-down Times Lead to Better Dividends? A Pon-
tryaghin Principle-Based Answer. IMA Journal of Mathematical Control and Information, inPress,
�10.1093/imamci/dnaa036�. �hal-03013802�

https://hal.science/hal-03013802
https://hal.archives-ouvertes.fr


IMA Journal of Mathematical Control and Information Page 1 of 16
doi:10.1093/imamci/dnn036

Do Generalized Draw-down Times Lead to Better Dividends? A
Pontryaghin Principle-Based Answer

FLORIN AVRAM

Laboratoire de Mathématiques Appliqueées, (UMR 5142), CNRS,
Universitée de Pau, Pau, France,

DAN GOREAC

School of Mathematics and Statistics, Shandong University, Weihai,
Weihai 264209, PR China

LAMA, Univ Gustave Eiffel, UPEM, Univ Paris Est Creteil, CNRS, F-77447
Marne-la-Valleée, France

[Received on ]

In the context of maximizing cumulative dividends under barrier policies, generalized Azéma-Yor (draw-
down) stopping times receive increasing attention during these last years. Based on Pontryaghin’s max-
imality principle, we illustrate the necessity of such generalizations under the framework of spectrally
negative Markov processes. Roughly speaking, starting from the explicit expression of the optimal value
of discounted dividends in terms of the scale functions, we write down the optimality conditions (via
Pontryaghin’s principle). The use of generalized draw-downs is then quantified through a structure term
(linked to the existence of non bang-bang optimal controls). We thoroughly study several classes of Lévy
processes ([8, 15]) constituting the usual models of insurance claims and a particular piece-wise deter-
ministic Markov model (extending the premium rate to reserve-dependent settings). In all these models
we disprove the consistency of the aforementioned structure equation, thus denying the necessity of such
generalizations. We end the paper with some heuristics on possible non-trivial cases for general Markov
models.
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Stochastic control; Stochastic jump process; Draw-down; Maximum principle; Dividends.

1. Introduction

The problem of dividend maximization for an insurance company is both very important and extensively
studied under different assumptions on the structure of the claims. To give an historical overview, to
a given process (roughly speaking associated to the reserve of the aforementioned insurance company)
(Xt)t>0, we associate the running maximum and the draw-down

X̄t := sup
06s6t

Xs, Yt := X̄t −Xt , ∀t > 0.

In the first-passage theory for processes (Xt)t>0, one usually deals with first passage times above or
bellow a specified level a ∈ R

T X
a+(−) := inf{t > 0 : Xt > (<)a} , (1.1)

where the infimum over empty sets is, as usual, set to be ∞. Whenever no confusion is at risk, we will
drop the upper-script X .

The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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The usual draw-down times are defined, for real values d > 0, by setting

τd := inf{t > 0 : Yt > d}= inf{t > 0 : Xt < X̄t −d} . (1.2)

These times intervene in the optimization of discounted dividends as follows. If one considers the clas-
sical DeFinetti problem of maximizing up to the ruin time T0− the q-discounted dividends in connection
to the wealth process X , then determining the optimal strategy starts by maximizing over levels b > 0
and using as policy the Skorohod regulators constraining the wealth X to remain smaller than b i.e. to
consider

Xb]
t := Xt −Ut , where Ut

(
=Ub

t

)
:= (X̄t −b)+ = max(X̄t −b,0) , (1.3)

then to maximize the value functions

V b(x) := Ex

[∫ T b]
0

0
e−qtdUb

t

]
, where T b]

0 := T0−1T0−<Tb+ + τb1Tb+<T0− . (1.4)

It is well-known cf. [19] that under some further conditions on the Lévy (jump) measure, which
include the case of completely monotone Lévy measures, the value function obtained by maximizing
the discounted dividends is given by

V (x) = sup
b∈R

V b(x), ∀x ∈ R+.

1.1 Scale Functions and Their Logarithmic Derivatives

In the context of spectrally-negative Lévy processes, computations of the value function V b given in
(1.4) (and, hence, of V ) rely on the scale function Wq. Alternatively, after restricting to processes having
scale function Wq ∈C1(0,∞) [12, 13], one can use the logarithmic derivative

νq(x) :=
W ′q(x)
Wq(x)

,x > 0 (1.5)

and the explicit formulae for the wining/survival probability, respectively the value function V b(x) de-
fined in (1.4) are:

Ex
[
e−qTb+1Tb+<Ta−

]
=

Wq(x−a)
Wq(b−a)

= e−
∫ b

x νq(t−a)dt ,

V b(x) =


e−

∫ b
x νq(t)dt

νq(b)
, if x ∈ [0,b],

x−b+V b(b), if x > b.

.

(1.6)

Generalizing to a spectrally-negative-Markov setting relies on the (killed) survival probability:

ψ̄
b
q (x,a) := Ex

[
e−qTb+1Tb+<Ta−

]
, (1.7)

for all q > 0, a 6 x 6 b.
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Remark 1 In the Lévy setting, the explicit formula connecting ψ̄b
q to the scale function is given in (1.6).

Few theoretical results exist for spectrally-negative-Markov processes (in particular for the optimal-
ity of previously-treated barrier-type policies and/or their generalizations); in particular, the existence
and explicit nature of Wq seem to be lost.

Under a mild regularity assumption for the functions ψ̄q, one can infer a different definition of the
function νq (which does not directly involve the scale function Wq and is, therefore, more appropriate in
the general Markov setting) cf. [17].

Assumption 1 For every discount parameter q > 0 and every a 6 x, the application b 7→ ψ̄b
q (x,a) is

differentiable at b = x. We are then able to define

νq(x,a) := lim
ε↓0

1− ψ̄x+ε
q (x,a)
ε

. (1.8)

1.2 Generalized Draw-down Times

In analogy to (1.2), for a given positive real function d such that

• s 7→ d̂(s) := Id(s)−d(s) = s−d(s) is non-decreasing;

• and d̂(s)6 s, ∀s (or, equivalently, d > 0),

the generalized draw-time is defined as

τd := inf{t > 0 : Yt > d (X̄t)}= inf
{

t > 0 : Xt < d̂ (X̄t)
}
. (1.9)

This kind of generalizations have received increasing attention in the last years [7, 18, 25, 4]. By
considering τ

b]
d to be the generalized draw-down time for the reflected process Xb], one defines, for the

spectrally-negative Markov setting, in analogy with (1.4), V+
b,d(x) =Ex

[∫ τ
b]
d

0 e−qtdUb
t

]
and, owing to [5,

Theorem 2.1],

V+
b,d(x) :=

e−
∫ b

x νq(t,d̂(t))dt

νq
(
b, d̂(b)

) . (1.10)

It is, therefore, natural to consider the following problem

Problem 1

V+(x) := sup
b>x; d∈L +,↑(x)

V+
b,d(x), where L +,↑ =

{
d : R→ R+, [d]1 := sup

t,s∈R,t 6=s

|d(t)−d(s)|
|t− s|

6 1

}
,

V+
b,d(x) = e−

∫ b
x νq(t,d̂(t))dt

νq
(
b, d̂(b)

)
.

and ask whether V+ gives better solutions than the use of couples
(
b,db(x)

)
= (b,x−b) correspond-

ing to classical (non-generalized) draw-down. In other words, we strive to give (at least for partial
frameworks and/or examples) an answer to the question

Question 1 Are generalized draw-downs really necessary?
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Remark 2 The reader is invited to note that the formulation of Problem 1 is stronger than the one
encountered in [3]. Indeed, [3] replaces L +,↑(x) with the more optimization-friendly

L +,↑
1 =

{
d : R→ R+ non-decreasing, [d]1 := sup

t,s∈R,t 6=s

|d(t)−d(s)|
|t− s|

∈ [0,1]

}
.

The main features are

• compactness of the control parameter u := d′ (linked to the non-decreasing assumption);

• no state constraint on d (other than d(x)> 0 for the starting datum x, condition incorporated into
the initial data and which, together with the non-decreasing property, yields the non-negativeness
of d on [x,b]).

In particular, this leads to the application of standard Pontryaghin principle (for bounded controls and
without state constraints) in [3, Theorem 5.1]. As a consequence of the compactness of the control
parameter u := d′, a bang-bang-type result is obtained in the cited paper. Our present case needs (more
recent) Pontryaghin results for systems exhibiting running state constraints (e.g. [10] or [11]).

Let us briefly explain the arguments developed throughout the remaining of the paper.

1. In section 2, we present the Pontryagin optimality approach to the study of the problem described.
In particular, we focus on a structure equation (2.1) guaranteeing non-triviality of the draw-down
function. To make it simple, since we look at the control parameter (derivative of d), it can
happen that this belongs to the boundary of the admissible set (i.e. is null) whenever the structure
condition is not satisfied. The structure condition will take into account the state-constraint (d > 0)
and a bounded variation (increasing) multiplier. As it is usual, this multiplier will only act when
the constraint is saturated i.e. d(t) = 0. Otherwise, we get a structure equation of PDE-type.
Disproving solvability of such structure equations leads to trivial d and the effort of considering
generalized Azèma-Yor times is not justified. In the same section, we focus on transformations of
the structure equation for functions of Markov processes.

2. In section 3, we focus on the spectrally-negative Lévy processes. In this case, the structure equa-
tion leads to a particular (exponential) requirement (see Proposition 6) on the scale function in
order for the structure equation (2.1) to hold true. We proceed with showing, for several classi-
cal (and important) classes of models, that the structure equation cannot hold true. For all these
examples, the conclusion is that generalized draw-downs do not improve dividend policies.

3. Section 4 focuses on examples escaping the previous setting. We show that the use of the scale
function for Segerdhal-Tichy processes (if optimal) needs not be combined with generalization of
the draw-down functions. In this setting, the results are close to those in section 3. However, we
design a (fictitious) example 1 showing that the structure equation is a key (non-trivial) feature for
more complex systems.

1i.e. we use an optimization point of view rather than starting with the generator of a real Markov proceess
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2. Pontryaghin Approach to Optimality

2.1 The Structure Theorem

We turn to the main theoretical result of the paper strengthening [3, Theorem 5.1] to a larger class
of draw-down functions d. We will only focus on the structure assertions (derived from the Hamilto-
nian and costate component via a Pontryaghin principle for state-constrained trajectories) but, since our
aim here is to disprove utility of the generalized draw-downs, we will not emphasize the transversality
conditions and their implications on optimal barriers and initial positions.

Theorem 3 Let us assume that the optimal draw-down function dopt exists. Then it has the following
form

dopt(t) = 0×1[x,a)(t)+(t−a)1[a,bopt ](t)

(where a > x) unless the "structural equation"

∂yνq
(
t, t−dopt(t)

)
= 0, (2.1)

admits solutions.
In this latter case, the domain [x,bopt ] consists of three types of region:

1. regions on which dopt = 0 (such region are included in
{

t > x : ∂yνq(t, t)< 0
}

);

2. regions [a,b] on which uopt = 1 and, thus, dopt(t) = dopt(a)+ t−a;

3. transition regions (a,b) on which dopt > 0 and (2.1) is satisfied.

Proof. By taking logarithm in (1.10), we get a minimization problem over b > x; d ∈L +,↑ for the cost

− log
(

V+
b,d(x)

)
= log

(
νq
(
x, d̂(x)

))
+
∫ b

x
νq
(
t, d̂(t)

)
dt +

∫ b

x

∂xνq
(
t, d̂(t)

)
+∂yνq

(
t, d̂(t)

)
d′(t)

νq
(
t, d̂(t)

) dt.

By introducing the supplementary equation d′(t) = u(t), we have a problem with

• freedom on the starting datum d(x)> 0,

• free end point b and datum d(b),

• a state-restriction written in a standard form g(d) :=−d 6 0,

• the measurable control u ∈ (−∞,1] to take care of upper restriction on the Lipschitz constant of
d.

The associated Hamiltonian is

H(t,d,u, p) :=νq (t, t−d)+
∂xνq +∂yνq

νq
(t, t−d)+

(
p−

∂yνq (t, t−d)
νq (t, t−d)

)
u, (2.2)

while the costate p(t) obeys

∂t p(t) =−∂dH(t,dopt ,uopt , p)−g′(d)dηt =−∂dH(t,dopt ,uopt , p)+dηt , (2.3)
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where η is non-decreasing, of bounded variation on [x,bopt ] and satisfies the complementarity condi-
tion ∫ bopt

x
dopt(t)dηt = 0. (2.4)

The reader is invited to note that the multiplier η only acts on dopt = 0. Due to the linearity (in the
control variable u), uopt = 1 (extremal control) unless the associated coefficient satisfies

p−
∂yνq (t, t−d)
νq (t, t−d)

= 0. (2.5)

By taking ∂t in (2.5) and using (2.3), one deduces

∂yνq
(
t, t−dopt(t)

)
+dηt = 0. (2.6)

We can now make explicit the three types of regions:

1. regions on which uopt < 1, dopt = 0 and on which η is strictly increasing (for sub-domains on
which dη = 0, see the transition regions) for which (2.6) leads to

∂yνq
(
t, t−dopt(t)

)
< 0;

2. regions [a,b] on which uopt = 1 (and the structure equation might not be satisfied) leading to,
dopt(t) = dopt(a)+ t−a; (Please note that such region cannot directly lead back to dopt = 0.)

3. transition regions (a,b) on which uopt < 1 and dopt > 0 (hence dηt = 0 a.s.). In this case, (2.6)
implies (2.1).

Remark 4 1. For precise references for the Pontryaghin principle with running state constraints,
the reader is invited to consult [10] or [11].

2. If the initial datum d(x) > 0 is not free, in absence of solutions to (2.1), the optimal draw-down
picked in this (a priori larger!) class L +,↑ leads to the same optimal draw-down as [3, Lemma
6.1 (1)].

2.2 Functions of Markov Processes

At this point we consider (a slight generalization of) spectrally-negative Markov processes. To be more
precise, given a spectrally-negative Markov processes Xt and a C∞-regular, strictly increasing function
F : R−→ R, we define XF by setting

F
(
XF

t
)
= F (x0)+Xt , ∀t > 0.

Corollary 5 If, for every x > 0, the second partial application associated to the logarithmic derivative
νq for the initial process X (i.e. y 7→ νq(x,y)) is strictly monotone, then the optimal draw-down function
d for the discounted dividends where the wealth is given by XF is piece-wise affine with slope 0 (thus
constant functions) or 1. Generalizing the draw-down beyond this set is pointless.
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Proof. We proceed by contradiction. Let us assume, on the contrary, that, on some non-trivial time
interval (α,β ), the optimal draw-down dopt has a derivative in (−∞,0)∪ (0,1).
Since we deal with two processes X and XF , we make the convention that absence of superscript refers
to the initial process X , while the superscript F indicates that we are talking about characteristics of XF

(e.g. νq vs. νF
q ).

Step 1. Computing the function νF
q .

Due to the monotonicity of F , it is clear that T F
b+ and T F

a− are simply T(F(b)−F(x0))+, respectively
T(F(a)−F(x0))−. Hence, by definition of ψ̄ , one gets

ψ̄
b,F
q (x,y) = ψ̄

F(b)−F(x0)
q (F(x)−F(x0),F(y)−F(x0)) .

Due to the regularity of F and using chain derivation, we have

ν
F
q (x,y) = F ′(x)νq (F(x)−F(x0),F(y)−F(x0)) , (2.7)

for x,y ∈ R+,y 6 x.
Step 2. The structure equation.
Using Theorem 3 (particularly the structure equation (2.1)), it follows that, due to our initial assumption,
on (α,β ), dopt satisfies the equation

0 =∂yν
F
q
(
t, t−dopt(t)

)
=F ′(t)F ′

(
t−dopt(t)

)(
1−
(
dopt)′ (t))

×∂yνq
(
F(t)−F(x0),F(t−dopt(t))−F(x0)

)
.

(2.8)

Since F is assumed to be strictly monotone and (dopt)′ 6= 1 on (α,β ), it follows that

∂yνq
(
F(t)−F(x0),F(t−dopt(t))−F(x0)

)
= 0.

This provides a contradiction with our assumption that ∂yνq(x,y) 6= 0, ∀x,y ∈ R+,x > y.

3. The Spectrally-Negative Lévy Framework

Let us consider the case when X is a spectrally-negative-Lévy process. In this case, the process is
described by the Laplace transform and the Lévy-Khintchine triplet (µ,σ ,Π)

E
[
esXt
]
= eψ(s)t , where

ψ(s) =−µs+
σ2

2
s2 +

∫
R−

(
esx−1− sx1|x|<1

)
Π(dx).

(3.1)

Moreover, the scale function Wq is known to be the unique right-continuous function such that∫
∞

0
e−βxWq(x)dx =

1
ψ(β )−q

. (3.2)

Finally, let us point that, in this setting, the logarithmic derivative function is given by

νq(x,y) =
W ′q(x− y)
Wq(x− y)

, 0 6 y 6 x.
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3.1 Specialization of the Structure Theorem

We deduce the following

Proposition 6 For a spectrally-negative Lévy process whose scale function Wq is of class C2, the fol-
lowing dichotomy holds true:

1. the optimal draw-down function dopt is of bang-bang type between constant functions and 1-affine
functions dopt(x) = x− c, or

2. the function Wq is, locally, of exponential type (i.e. there exists a non-empty set
(

α̂, β̂
)
⊂R+ and

the constants c,d ∈ R+ such that Wq(x) = cedx, ∀x ∈
(

α̂, β̂
)

.

Proof. In this framework, due to the previous considerations, the structure equation (2.1) is equivalent
to (

W ′′q Wq−
(
W ′q
)2
)
(d(t)) = 0.

Let us assume that the first assertion fails to hold true on some interval (α,β ), then, using the fact that d

is not constant on (α,β ), it follows that, on the non-empty interval
(

α̂, β̂
)

:= (d(α),d(β )) (recall that
d is strictly increasing in this case), Wq satisfies

W ′′q Wq−
(
W ′q
)2
(s) = 0,

or, again, by a simple calculus argument, that Wq(x) = cedx, ∀x ∈
(

α̂, β̂
)

, for some (non-negative) real
constants c,d.

Remark 7 If the time interval
(

α̂, β̂
)

is the whole real axis, then, by the definition of Wq in (3.2), it

follows that X is a deterministic process (i.e. σ = 0,Π(dx) = 0).

3.2 First Examples

We begin with the simplest non-diffusive example.

Example 8 (Cramér-Lundberg) Let us now consider the usual Cramer-Lundberg model

Xt = x+µt−
Nt

∑
n=1

ξn, ∀t > 0,µ > 0

where (ξn)n>1 are independent real-valued random variables whose common distribution is of ρ > 0-
exponential-type and Nt is an independent Poisson process with intensity λ > 0. In this case, it is easy
to check that the Laplace exponent is

ψ(s) = µs− λ s
ρ + s

.

Computing the scale function starts by solving the equation ψ(s) = q. When µ 6= 0, the roots are

ζ1 =
1

2µ

(√
(λ +q−µρ)2 +4µqρ− (λ +q−µρ)

)
,

ζ2 =
1

2µ

(
−
√

(λ +q−µρ)2 +4µqρ− (λ +q−µρ)

)
.

(3.3)
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Let us exclude the degenerate trivial case ζ1 = ζ2 which may happen if and only if

• q = 0 and the safety coefficient µ−λρ−1 is null.

• no jumps (ρ = ∞ or λ = 0) when X is deterministic.

Then,

Wq(x) =
e−ζ1x

ψ ′(−ζ1)
+

e−ζ2x

ψ ′(−ζ2)
.

In view of Proposition 6, non-trivial draw-downs can only happen if, on some interval
(

α̂, β̂
)

the
function Wq is of (pure) exponential type; however, this can not happen once outside the historically
excluded cases above.2

Example 9 (The tempered stable process) For this class of processes, the Laplace exponent is given
by

ψ(s) = (s+a)α −aα ,

where s > 0, a > 0, α ∈ (0,1). In this case, it is known (cf. [16], see also [9]) that

Wq(x) = e−axxα−1
∑
n>0

yn

Γ (α(n+1))
|y=(q+aα )xα .

Let us now assume the existence of some (α̂, β̂ ) as in Proposition 6.

1) On the set
(

α̂, β̂
)

, one should have x 7→ logW q(x) = c̃+dx is affine. Hence, by defining

Eα,α(y) := ∑
n>0

yn

Γ (α(n+1))
,

one looks for solutions of the equation

logEα,α ((q+aα)xα)+(α−1) logx = c̃+(d +a)x,

so for affine portions of x 7→ Eα,α ((q+aα)xα)+(α−1) logx.
In other words, one looks for the level lines of the modified log-derivative

d
dx

logEα,α ((q+aα)xα)+
α−1

x
= (d +a)> 0.

Numerically checking that such level lines cannot yield non-trivial solution is then facilitated by the
widely-spread implementation of Mittag-Leffler functions (or, at least, of the Gamma function). To
illustrate this, we consider, in Fig. 1, the oscillating case (a = 0) corresponding to α-stable processes
close to exponential α = 1.01, respectively for a larger α = 1.5. We equally zoom on different regions
for the initial fortune (where the global picture might appear controversial) to show that, indeed, these

2Indeed, if one has the equality ea1x

a2
+ eb1x

b2
= ecx on some interval, then the function e(a1−c)x

a2
+ e(b1−c)x

b2
= 1 on that interval

or, again, the derivative (a1− c) e(a1−c)x

a2
+(b1− c) e(b1−c)x

b2
= 0. Should a1− c 6= 0, it follows that (b1−c)a2

(a1−c)b2
e(b1−a1)x =−1 has an

infinity of solutions. Then, necessarily, a1 = b1.
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regions also fail to contain non-trivial level-solutions.
2) If β̂ = ∞, then, necessarily,

d = (q+aα)
1
α −a.

This is a consequence of the fact that the Mittag-Leffler function defining Wq is, asymptotically, of
1
α

y
1−α

α exp
(

y
1
α

)
-type (recall that y = (q+aα)xα ). It follows that

lim
x→∞

Wq(x)

exp
((

(q+aα)
1
α −a

)
x
) ∈ (0,∞)

which leads to our assertion.
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FIG. 1. Modified log-derivative of Mittag-Leffler function x 7→ d
dx logEα,α ((q+aα )xα )+ α−1

x .

3.3 Erlang Mixtures with Finite Number of Components

Let us now turn to the case in which

Assumption 2 X has paths of bounded variation and furthermore the Lévy measure Π has rational
transform, i.e.

Π(dx) = 1x<0

m

∑
j=1

a j |x|m j−1 eρ jxdx,

(for some m ∈ N∗, ρ j > 0 and m j ∈ N).

Recall now that for any Lévy process without positive jumps there exists a function ûq with Radon-

Nikodym derivative
∫
R+ P(−X∈dx)dt

dx such that

Wq(x) =
eΦ(q)x

ψ ′ (Φ(q))
− ûq(x),
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where Φ(q) := sup{s > 0 : ψ(s) = q} ,∀q > 0. (For a proof of this result and the computability ad-
vantages of ûq, the reader is referred to [14, Section 5] and [2, End of Section 3.1], and for numeric
experiments with its Laguerre series, to [26].

Under the Assumption 2 one explicitly computes the function ûq as

ûq(x) =−
n

∑
j=1

e−ζ jx
n j

∑
k=1

c j,k

(k−1)!
xk−1,

∀x > 0. Here, the elements ζ j are the distinct solutions with positive real part to ψ(ζ ) = q and n j are
their respective multiplicities. The constants c j,k are obtained from decomposing 1

ψ(x)−q in simple frac-
tions.

In this context, Proposition 6 implies:

Proposition 10 Let X be a spectrally-negative Lévy process whose Lévy measure Π satisfies Assump-
tion 2 and such that, for every 0 6 s < t 6 ∞ and every constant k ∈ R,

ûq /∈ SpanC([s,t];R)

{
eΦ(q)·,ek·

}
.

Then the optimal generalized draw-down associated to X is a combination of piecewise-constant func-
tions and 1-affine functions (x− c).

We may conclude:

1. If either n > 2 or the multiplicity n j > 1 for some 1 6 j 6 n, then, by applying the previous
proposition, dopt is trivial (piece-wisely constant or 1-affine).

2. If n = 2 and n j = 1 for j ∈ {1,2}, then

ûq(x) =−
e−ζ1x

ψ ′ (−ζ1)
− e−ζ2x

ψ ′ (−ζ2)
.

In this case, even if, say, −ζ1 = Φ(q), one gets Wq a linear combination (with non-null coeffi-
cients) of two exponentials. Due to Proposition 6, it follows, again, that dopt is trivial.

3. The remaining case leads to Wq(x) = eΦ(q)x

ψ ′(Φ(q)) or, again (see Remark 7), to deterministic processes

Xt = x+ ct (where, of course the obvious strategy is to take dividends as U0
t := x+ ct, t > 0).

3.4 Completely Monotone Case

Let us now turn our attention to another case of spectrally negative Lévy processes where results can be
made more precise.

Assumption 3 The measure Π admits a density π such that R∗+ 3 x 7→ π(−x) is completely monotone3

with respect to the Lebesgue measure on R+.

3A C∞-regular function f : R+→ R+ is said to be completely monotone if, for every n > 1, the n-th order derivative satisfies
(−1)n f (n) > 0 on R+.
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In this case, due to Berstein’s theorem (see e.g. [23] or [14, Proof of Theorem 3.4 ], there exist a > 0,
b > 0 some Borel measure µ on R∗+ such that t 7→ 1∧ t is µ-integrable and

Wq(x) =eΦ(q)x
(

a+bx+
∫
(0,∞)

(
1− e−xt)

µ(dt)
)

=eΦ(q)xx
(

b+
∫

∞

0
e−xt

µ̄(t)dt,
) (3.4)

where µ(∞) := a, µ̄(t) := µ ((t,∞]) . In this case, the result of Proposition 6 specializes to

Proposition 11 For a completely monotone spectrally-negative Lévy process (i.e. satisfying Assumption
3), either

1. the optimal draw-down function dopt is of bang-bang type between constant functions and 1-affine
functions
or

2. there exists a non-empty set
(

α̂, β̂
)
⊂ R+ and the constants b > 0, c,d ∈ R such that the tail µ̄

satisfies ∫
∞

0
e−xt

µ̄(t)dt =−b+
cedx

x
,∀x ∈

(
α̂, β̂

)
(3.5)

The proof is a consequence of the identity (3.4) and Proposition 6.

Remark 12 1. The constant c in the second assertion must be non-negative (otherwise the equality
cannot hold true).

2. The exponent constant d has to satisfy d 6 1
β̂

(otherwise the right-hand member is non-decreasing
and the equality in (3.5) cannot hold true).

3. If β̂ = ∞, then b = 0 (i.e. the diffusion coefficient is null).

4. Beyond Lévy

Example 13 An intreaguing, famous non- Lévy process is the Segerdahl-Tichy process studied in [22,
24] (see also [1], [20], [20]) is the Cramér-Lundberg-like example in which the premium function is
state-dependent i.e.

Xt = x+
∫ t

0
p(Xs)ds−

Nt

∑
n=1

ξn.

Here, ξn are independent real-valued variables exponentially distributed (with parameter ρ) and N is
an independent Poisson process of intensity λ > 0. The optimal dividends problem is far from being
resolved in this case [6]. However, fixing a lower barrier y = 0 yields still one variable functions Wq(x),

νq(x) :=
W ′q(x)
Wq(x)

.
When further considering linear premiums

p(x) := µ + εx, ∀x ∈ R,
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formulas become explicit

Wq(x) =ϕ

(
q
ε
+1,

λ +q
ε

+1,ρ
(

x+
µ

ε

))
× (εx+µ)

λ+q
ε × e−ρx

, (4.1)

where the function ϕ(a,b,x) is a solution to the Kummer equation

xϕ
′′(x)+(b− x)ϕ ′(x)−aϕ(x) = 0 (4.2)

(see [20, Section 5.1] and the original papers [22, 21] for the related ruin problem).
Let us show now that here as well, assuming the existence of some non-empty set

(
α̂, β̂

)
on which

Wq(x) = cedx for some constants c > 0,d > 0 is impossible when we exclude the trivial purely determin-
istic case. Indeed, on this set, W ′q(x) = dWq(x). By computing derivative in (4.1), we get

dWq(x) =
(

ρ
ϕ ′

ϕ

(
ρ

(
x+

µ

ε

))
+

λ +q
εx+µ

−ρ

)
Wq(x),

or, again, for some constant c̃ > 0,

ϕ(y) = c̃e
(

d
ρ
+1
)

yy−
λ+q

ε .

Then, by computing first and second order derivatives (if c̃ 6= 0 which would lead to Wq = 0) and
substituting them into (4.2), one gets

y

[
λ +q
εy2 +

(
d
ρ
+1− λ +q

εy

)2

−
(

d
ρ
+1− λ +q

εy

)]

+

(
λ +q

ε
+1
)(

d
ρ
+1− λ +q

εy

)
−
(q

ε
+1
)

=0.

(4.3)

By recalling that this should hold true for an infinity of solutions y ∈
(

ρ
(
α̂ + µ

ε

)
,ρ
(

β̂ + µ

ε

))
and by

multiplying the equality with y2, it follows that the resulting polynomial should be always 0. This im-

plies, in particular, that the coefficient of y3 i.e.
(

d
ρ
+1
)2
−
(

d
ρ
+1
)

should be 0 which can only happen
if ρ = ∞ (no actual jumps).

4.1 A Hint on Possible Non-trivial Draw-downs

Even though all the examples and frameworks studied so far in this paper turn out to discard the use of
generalized draw-downs and even if we conjecture that this should be the case for every one-parameter
scale function Wq, let us end the paper with a non-trivial draw-down strategy in a fictitious framework
(where the scale function is given a priori without constructing it from a true Markov process).

Example 14 We consider a continuous positive quadratic form Q : R2 → R+ and the two-parameter
scale-like function

W (x,y) := e
∫ x

0 Q(z,y)dz.
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One easily notes that
∂xW (x,y)
W (x,y)

> 0

and sets

ν(x,y) :=
∂xW (x,y)
W (x,y)

= Q(x,y).

To simplify arguments, one starts with x = 0 and d(x) = 0 fixed. The aim is to minimize∫ b

0
ν(t, t−d(t))dt + log(ν (b,b−d(b)))

The best strategy is to pick d such that it minimizes the quadratic terms Q(t, t−d(t)) thus, necessarily,

∂yQ
(
t, t−dopt(t)

)
= 0,

(of course, by taking care to insure bopt > 0). A plethora of examples can be inferred (e.g. by taking
Q(x,y) = (y−ϕ(x))2 + ε + Q̃(x) for some nonlinear ϕ , a non-negative function Q̃ and ε > 0). The
reader is invited to take a look at [3, Section 8] where

ε :=
1
4
, ϕ(x) := x2, Q̃(x) = 2

(
x− 1

2

)2

.

5. Conclusion

In this short paper, we raise the question of the utility of generalized draw-downs for the problem of
maximization of dividends. For all the examples treated in either general classes of spectrally negative
Lévy processes or on particularly relevant examples (e.g. particular piecewise-deterministic Markov
processes), as soon as the scale function of the fortune process is of one variable, the answer is, invari-
ably negative. The use of non-affine draw-down functions does not improve dividends. We conjecture
that, for such processes, as shown in our cases, the draw-down is always trivial (in the sense that, piece-
wise, it is either constant or of form x− c for some constant c > 0). As shown in the last example
(Subsection 4.1), it is imperative to search for the utility of such generalizations in the general Markov
case.
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