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Advanced magnetic anisotropy determination through isothermal remanent
magnetization of nanoparticles

A. Hillion,1 A. Tamion,1,* F. Tournus,1 O. Gaier,2 E. Bonet,2 C. Albin,1 and V. Dupuis1
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We propose a theoretical framework enabling the simulation of isothermal remanence magnetization (IRM)
curves, based on the Stoner-Wohlfarth model combined with the Néel macrospin relaxation time description.
We show how low temperature IRM curves, which have many advantages compared to hysteresis loops, can
be efficiently computed for realistic assemblies of magnetic particles with both a size and anisotropy constant
distribution, and a biaxial anisotropy. The IRM curves, which probe the irreversible switching provoked by an
applied field, are shown to be complementary to other usual measurements (in particular low-field susceptibility
curves where a thermal switching is involved). As an application, the experimental IRM curve of Co clusters
embedded in a carbon matrix is analyzed. We demonstrate how powerful such an analysis can be, which in the
present case allows us to put into evidence an anisotropy constant dispersion among the Co nanoparticles.
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Magnetic nanoparticles are of great interest in a wide
range of disciplines, including magnetic fluids, catalysis,
biotechnology/biomedicine, magnetic resonance imaging,
data storage, and environmental remediation.1–13 Successful
applications of such magnetic nanoparticles in the areas listed
above are highly dependent on the stability of the particles
under a range of different conditions. In particular, these
nanomagnets might be used as magnetic media in future
high-density magnetic storage devices with ultimate recording
bits, i.e., a single nanoparticle or even a single atom.14 Reading
and writing of such a system requires knowing perfectly its
magnetic properties, especially its anisotropy constant.

Magnetic measurements on assemblies of well defined
nanoparticles can be used to infer their intrinsic magnetic
properties. Typically, zero field-cooled/field-cooled (ZFC/FC)
susceptibility curves give information on both the magnetic
size distribution and the effective anisotropy constant
Keff .15–17 This technique, based on thermal switching of the
nanomagnets, is indeed sensitive to the macrospin switching
energy barrier, i.e., the magnetic anisotropy energy (MAE)
Eani = KeffV , where V is the particle volume. Therefore,
even if it is a powerful method, it does not enable us to
get a complete picture of the anisotropy energy landscape
(components beyond the uniaxial anisotropy). On the other
hand, low temperature hysteresis loops bear the signature of
the different magnetic anisotropy contributions.18 However, in
addition to analysis difficulties (i.e., extract the relevant signal
from the spurious contributions like paramagnetic impurities,
diamagnetic substrate . . .), they are difficult to model,19,20

often at the price of expensive numerical calculations: There
is unfortunately no analytical description of hysteresis loops.

In this paper, we propose a convenient method which
obliterates these difficulties, while enabling at the same
time an accurate depiction of the magnetic anisotropy. We
show how an advanced magnetic anisotropy determination is
possible through isothermal remanent magnetization (IRM) of
nanoparticles.

Let us remind the reader the principle of this measurement.
First, the nanoparticle sample has to be demagnetized by zero

field cooling from the superparamagnetic (SP) state. Then,
a magnetic field H is applied before going back to zero: We
then acquire the isothermal remanent magnetic moment. By
successively increasing H , we finally obtain a full IRM (H )
curve. This curve necessarily starts from 0 (for H = 0) and
goes up to a maximum value which appears to be simply
the remanent moment mR obtained after saturation (i.e., the
same remanent state as for the major hysteresis loop). This
protocol was initially used to evaluate the switching field
distribution or, combined with direct current demagnetization
(DcD) measurements, to detect the nature of interactions via
the parameter �m = DcD(H ) − [mR − 2 IRM(H )] or via a
Henkel plot.21–30

IRM curves only reflect the irreversible switching of
magnetic nanoparticles, and the signal (always measured
at zero field) is free of any other magnetic contributions.
Surprisingly, IRM curves seem to be often underrated and are
rarely quantitatively analyzed.31,32 Here, we set up a simple
IRM modeling based on the Stoner-Wohlfarth (SW) model
and the Néel description for the macrospin switching time
τ = τ0e

�E/(kBT ), �E being the switching energy barrier. For a
uniaxial magnetic anisotropy an analytical expression will be
used, whereas for the more general case a numerical approach
will be followed. This deterministic framework (as opposed
to Monte-Carlo methods) allows us to describe IRM curves of
nanoparticle assemblies with realistic parameters, namely tak-
ing into account the temperature, the particle size distribution,
a Keff dispersion, a biaxial anisotropy, etc. The IRM protocol,
where the magnetization switching is due to an applied field,
appears to be complementary to ZFC/FC susceptibility where
the external field is close to zero and the switching is thermally
activated. Combining these two magnetic measurements leads
to an improved characterization of the nanomagnets intrinsic
properties, as we will demonstrate on a diluted Co nanoparticle
assembly. Results will be obtained, in particular a quantifica-
tion of the anisotropy constant dispersion. Finally, we present
the good qualitative agreement between μ-SQUID experi-
ments, on single Co nanoparticles, and SQUID measurements
on assemblies of the same nanomagnets.
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Let us examine, for a single particle size and anisotropy
energy, how the IRM (H ) curve can be modeled. In
the following, we assume that, within the assembly, the
noninteracting magnetic clusters are randomly oriented
and undergo coherent magnetization reversal (macrospin
approximation). In order to take into account the temperature,
which enables the macrospin switching over �E, we
will assume that the reversal occurs when τ � τm, where
τm is the measurement time (typically a few seconds).
This condition is met for �E � ln(τm/τ0) kBT � 25 kBT .
We now consider a uniaxial anisotropy, with a magnetic
anisotropy constant Keff . To a very good approximation, the
evolution of the switching energy barrier can be written:
�E(H ) = KeffV [1 − H/H 0

sw(θ )]3/2, where H 0
sw(θ ) is the

switching field at zero temperature for nanomagnets with an
angle θ between their easy axis and the applied field. Then,
for each orientation, it is possible to express the switching
field Hsw(θ,T ), for a given temperature: Hsw(θ,T ) = c H 0

sw(θ )
with c = 1 − [25kBT /(KeffV )]2/3. The effect of temperature
is a simple reduction, by a factor called here c, of the
zero-temperature switching field. This field H 0

sw(θ ) varies
between HA/2 and HA, where the anisotropy field is defined
by HA = 2Keff/(μ0MS), MS being the particle saturation
magnetization. Consequently, by introducing the reduced field
h = H/(c HA), all the particles will switch between h = 0.5
and h = 1. We thus have for the assembly IRM(h < 0.5) = 0
and IRM(h > 1) = mR . In the interval h ∈ [0.5,1], we can
easily establish an analytical formula for IRM(H,T ):

IRM(H,T ) = mR

1 − x3

1 + x3
with

x = 1 + 2h2 − √
12h2 − 3

2(1 − h2)

For a realistic nanomagnet assembly, there is necessarily a
particle size distribution ρ(V ). The resulting IRM curve can
then be calculated by

IRM(H,T ) = MS

2

∫ ∞

Vmin

1 − x3

1 + x3
Vρ(V )dV,

which can be numerically evaluated without any difficulty.
Here Vmin = 25kBT /Keff is the volume under which the
particles are superparamagnetic, and thus do not contribute
to the IRM signal. In the above expression, the variable x

depends on the particle volume V , as well as on H and T , and
ρ(V )dV represents the number of particles having a volume
in the interval [V,V + dV ]. Note that, with this analytical
formulation, it is also straightforward to take into account an
anisotropy constant distribution f (Keff). In such a case, all the
nanomagnets of the same volume V do not display the same
anisotropy energy Eani: They have a probability f (Keff)dKeff

to have an anisotropy constant in the range [Keff,Keff + dKeff].
Furthermore, it is possible to go beyond the usual uniaxial

anisotropy approximation. Indeed, it has been shown using
a μ-SQUID study that Co clusters, in the fcc phase, have a
biaxial anisotropy.33–36 This can be explained by the physical
origin of the magnetic anisotropy which results both from the
particle surface and its shape. Namely, particles deviating from
a perfectly regular nanocrystal shape (truncated octahedron in
the case of fcc Co) will display, in the general case, a biaxial

anisotropy. The anisotropy energy can then be expressed as
Eani/V = K1m

2
z + K2m

2
y , with z the easy axis, y the hard

axis, x the intermediate axis, m = (mx,my,mz) the unit vector
directed along the particle magnetic moment, and K1 < 0 <

K2. In this case there is no analytical expression of the astroid
surface in the field space. Nevertheless, an IRM curve can
be computed by a numerical approach. As for the uniaxial
case, we start by considering the effect of temperature through
a simple reduction of the zero-temperature switching field
(which here depends on both angles θ and ϕ defined by cos θ =
Hz/H and sin θ sin ϕ = Hy/H ): Hsw(θ,ϕ,T ) = c H 0

sw(θ,ϕ).
In order to determine H 0

sw(θ,ϕ), i.e., to build the astroid, we
use the geometrical approach.33,37 In contrast to the uniaxial
case, where the averaging over the macrospin orientations
is performed analytically, followed by the averaging over
the different particle sizes, we here fix an orientation (θ,ϕ)
and determine a switching volume V

θ,ϕ
sw (H,T ). This volume

is the maximum size verifying Hsw(θ,ϕ,T ) � H : It means
that, with this particular orientation, all particles of volume
V � V

θ,ϕ
sw (H,T ) will switch. A numerical integration can then

be performed, first over the particle volume up to V
θ,ϕ

sw (H,T ),
and next over the angles θ and ϕ [which corresponds to
a probability density function ρ(θ,ϕ) = sin θ/2] in order to
determine the contribution of macrospins that have switched.
In the end, we can write

IRM= 2
∫∫

θ,ϕ

∫ V
θ,ϕ

sw

Vmin

MSV cos θρ(V )dVρ(θ,ϕ)dθdϕ,

where the dependence on H and T (and Keff , if an anisotropy
constant dispersion needs to be considered) is incorporated in
the switching volume V

θ,ϕ
sw (H,T ). Note that, as expected the

IRM goes from zero (at H = 0) up to the remanent moment
mR for a large applied field (when the switching volume goes
to ∞).

Now that we have established expressions allowing us to
efficiently simulate IRM(H ) curves at a given temperature,
this framework can be used to analyze experimental curves
combined with other complementary measurements, namely
ZFC/FC susceptibility curves and room temperature m(H )
superparamagnetic loops for which a theoretical description is
also available. We consider here a benchmark sample of Co
nanoparticles, with a mean diameter around 2.5 nm (lognormal
size distribution, with a typical standard deviation of 0.7 nm),
prepared in the gas phase and deposited fragmentation free
onto a Si substrate together with an amorphous carbon
matrix.15,18,38,39 It has been shown that the Co particles are well
crystalized in the fcc phase, with truncated octahedral shapes.
In this case, the biaxial magnetic anisotropy comes from the
finite particle size and is controlled by the facetting.34,36

Given the very low Co concentration (0.5 vol. %, which
corresponds to a mean interparticle distance around 8 nm), we
expect the interparticle interactions to be negligible. In order
to verify this assumption, we take advantage of the IRM and
DcD measurements. For such a diluted sample, as shown in
Fig. 1(b), the �m parameter calculated from IRM and DcD
curves (respectively, dots and squares) is equal to zero within
the uncertainty, whatever the applied magnetic field: There is
thus no detectable magnetizing (�m > 0) or demagnetizing
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FIG. 1. (Color online) ZFC/FC curves (5 mT applied field),
300 K superparamagnetic loop (a) and IRM curve at 2 K (b) for
the Co nanoparticle sample. The experimental measurements (dots)
are compared to the theoretical curves using a uniaxial anisotropy
with a single Keff (solid line, corresponding to the “triple fit” result)
or a Gaussian Keff distribution (dashed line, corresponding to the IRM
best fit, with the same particle size distribution). The experimental
�m curve (stars), deduced from the IRM (dots) and DcD (squares)
curves, is shown in the inset in (b).

(�m < 0) interactions between nanomagnets,30 which allows
us to safely apply the theoretical framework exposed above.

In order to determine the Co clusters magnetic properties,
we first use the triple fit procedure to determine the magnetic
size distribution and the effective anisotropy constant.15 At this
point, a fit is possible with a uniaxial anisotropy and a single
Keff of 95 ± 15 kJ m−3, a median diameter of 2.0 ± 0.2 nm,
and a dispersion parameter of 0.35 ± 0.05 [see Fig. 1(a)].
We then try to reproduce the IRM measurement using these
parameters: As shown in Fig. 1(b), the simulated curve is
however in complete disagreement with the experimental
data. The observed lower slope of the IRM curve suggests
a broader switching field distribution, which can be modeled
by the use of a Keff distribution which can reflect the different
shapes/facetting of the particles. It has indeed already been
shown that the surface of a nanoparticle can significantly affect
its anisotropy.34,40–42 As the measurements are performed on
an assembly of nanoparticles, with different surfaces or shapes,
this leads to a distribution of Keff in the sample.

We find that a Gaussian Keff distribution allows us to repro-
duce the experimental IRM curve [see Fig. 1(b)]. However, the

ZFC/FC curves and in particular the merging temperature are
known to be very sensitive to the broadness of the switching
energy barrier distribution, and such an anisotropy constant
distribution appears to be incompatible with the ZFC/FC
measurements [see Fig. 1(a)]. Concerning the m(H ) at 300 K
the simulated curve (with Langevin functions) does not change
because there is no influence of the anisotropy constant Keff

in this regime.
This discrepancy can be understood by the different reversal

process involved in low-field susceptibility measurements
(thermal switching) and for the IRM (field assisted switching).
To go further, note that a biaxial anisotropy also leads to a
broadening of the switching field distribution,18 as compared
to the uniaxial case, but will not modify the distribution of
blocking temperature.43 The consequence is that the shape of
ZFC/FC curves is sensitive to the |K1| term (lowest energy
barrier) while that of IRM curves reflects both |K1| and K2

contributions. The idea is then to use at the same time a biaxial
anisotropy (by fixing a K2/|K1| ratio for simplicity) and an
anisotropy constant distribution to simultaneously reproduce
the entire IRM(H ) at 2 K, ZFC/FC curves and m(H ) at 300 K.
These curves involve different physical processes, which we
want to successfully describe with a unique set of parameters.
The results and the fitting parameters are displayed in Fig. 2(b).
They reveal the presence of a significant biaxial anisotropy
term (K2 � |K1|) as well as an anisotropy constant distribution
(relative standard deviation around 35%) which appears to be
necessary to reproduce the experimental curves. A simulated
IRM with the same parameters and K2 = 0 is also presented, to
emphasize the importance of the biaxial term. In size selected
CoPt alloy clusters (relative size dispersion around 8%), a
large anisotropy constant dispersion has been revealed using
only a simultaneous fit of the ZFC/FC curves and m(H ) at
300 K.44 The ZFC/FC curves are very sensitive to the factor
KD3, and then if the diameter distribution is well known and
sharp enough it is possible to infer the anisotropy constant
distribution directly from the triple fit. In the present study, the
approach is more general because there is no need to have a
very narrow size distribution: The Keff dispersion is revealed
thanks to the IRM curve, and could not have been characterized
using only ZFC/FC curves. Let us emphasize that the reason
why IRM curves allows us to determine more precisely the
magnetic anisotropy of nanoparticles is that it is controlled
by the ratio between the applied field and the switching field,
the latter being related to the anisotropy field and not the
anisotropy energy (in contrast to ZFC/FC curves where the
key parameter is the ratio between the thermal energy and
the anisotropy energy K1V ).

In order to validate the results obtained on this Co clusters
assembly by the combined analysis of the IRM and other
magnetization curves, we have simulated the m(H ) hysteresis
loop at 2 K with the same parameters,18 and we find an
excellent agreement.45 Furthermore, a statistical μ-SQUID
study, which enables the determination of the switching field of
each individual nanomagnet, has been performed for a hundred
of particles [see Fig. 3(a)]. The deduced anisotropy field
distribution is presented on Fig. 3(b) together with the one in-
ferred from the SQUID measurements:46 The two distributions
are in good agreement47 (median HA and dispersion). Being
able to extract, from standard magnetometry measurements
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FIG. 2. (Color online) ZFC/FC curves (5 mT applied field), 300 K superparamagnetic loop (a) and IRM curve at 2 K (b) for the Co
nanoparticle sample. The experimental measurements (dots) are compared to the theoretical curves (solid line, corresponding to the best global
fit) using a biaxial anisotropy and an anisotropy constant distribution. The fits correspond to a median magnetic diameter Dm = 2.1 nm, a
dispersion parameter w = 0.31, a mean effective anisotropy constant K1 = 115 kJ/m3 with a standard deviation (anisotropy constant dispersion)
of σK1 = 40 kJ/m3, and a ratio K2/|K1| = 1.2. The astroid (map of the switching field) corresponding to the median values is shown in the
inset in (b). In dashed line the IRM curve simulated with K2 = 0 is shown.

on a macroscopic nanoparticle assembly, the same type of
information as from a cutting-edge unique experimental setup
(μ-SQUID) is quite remarkable.

In conclusion, we have proposed a theoretical framework
enabling the efficient simulation of IRM curves for realis-
tic assemblies of magnetic particles with both a size and
anisotropy constant distribution, and a biaxial anisotropy.
Because they probe another type of switching process (field
assisted switching), IRM curves are complementary ZFC/FC
curves. The experimental IRM curve of Co clusters embedded
in a carbon matrix has thus been analyzed, in combination with
other magnetometry measurements, resulting in a powerful
technique of magnetic properties characterization. In partic-
ular, we have been able to put into evidence an anisotropy
constant dispersion among pure Co nanoparticles, confirmed
by single particles measurements with a μ-SQUID device.
IRM curves then constitute a highly valuable way to probe

FIG. 3. (Color online) Examples of μ-SQUID measurements
(a) allowing us to determine the anisotropy field HA of individual
Co nanoparticles, together with the distribution [histogram in (b)
deduced from a hundred of analysis]. The HA probability distribution
function (PDF) inferred from the SQUID magnetometry investigation
on a Co cluster assembly is also shown (dashed line) for comparison.

the intrinsic properties of nanomagnets of any kinds, and are
much easier to model than hysteresis loops.

The authors acknowledge funding from the ANR DYSC
research project, and technical support from the PLYRA and
the CML platform.

APPENDIX: ANALYTICAL EXPRESSION OF THE IRM
IN THE STONER-WOHLFARTH CASE

We consider the case of uniaxial particles, randomly
oriented, at zero temperature (Stoner-Wohlfarth model). For
a given orientation (angle θ ) between the easy axis and the
applied magnetic field, it is well known that the switching
field can be written as

H 0
sw(θ ) = HA(cos2/3 θ + sin2/3 θ )−3/2,

HA being the anisotropy field [i.e., HA = 2Keff/(μ0MS)].
The switching field can also be written in a different way,
using the switching angle θ0 (the angle between the particle
magnetic moment and the applied field, at the moment when
the switching energy barrier disappears) which is directly
related to θ through the equation tan θ0 = − tan1/3 θ . We obtain
the following expression:

H 0
sw(θ ) = HA

(1 − tan2 θ0 + tan4 θ0)1/2

(1 + tan2 θ0)2
.

It is then possible to determine, for an applied field
H ∈ [HA/2,HA], the range of particles orientations which
will switch, i.e., the interval [θ1,θ2] where the inequality H >

H 0
sw(θ ) is verified. Since the switching field curve is symmetric

with respect to θ = π/4 which is also the minimum [with
H 0

sw(π/4) = HA/2], we have θ1 = π/4 − δ and θ2 = π/4 + δ,
where δ depends on H (it goes from zero for H = HA/2 to
π/4 for H = HA).

The IRM curve can now be expressed, taking into account
the random orientation of the easy axes in the particle
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assembly, as

IRM(H ) = 2
∫ π/4+δ

π/4−δ

Ntotμ cos θ
sin θ

2
dθ

= Ntotμ

2

∫ π/4+δ

π/4−δ

sin(2θ )dθ,

where μ is the magnetic moment of a particle (μ = MSV ) and
Ntot the total number of particles. By simple integration and
noting that Ntotμ/2 = mR , we finally have

IRM(H ) = mR sin(2δ) = mR cos(2θ1).

This shows that in order to know IRM(H ), all the problem
relies on the determination of θ1 defined by H 0

sw(θ1) = H (and
θ1 being the solution below π/4). By introducing the reduced
parameters h = H/HA and x = tan2 θ0, we then have to solve
the equation:

h = (1 − x + x2)1/2

1 + x
,

which corresponds to the simple second order
equation

x2(1 − h2) − x(1 + 2h2) + (1 − h2) = 0.

The smallest solution is given by

x1 = (1 + 2h2) − √
12h2 − 3

2(1 − h2)
.

Finally, θ1 can be deduced from x1 because we have
θ1 = arctan(x1

3/2). Note however that a simple analytical
expression, the one given in the paper, can be obtained
for the IRM curve. We can indeed take advantage of the
equality x1

3 = tan2 θ1, by writing cos(2θ1) = cos2 θ1 − sin2 θ1

and then use the trigonometric relations cos2 = 1/(1 + tan2)
and sin2 = tan2 /(1 + tan2) to obtain

IRM(H ) = mR

1 − x1
3

1 + x1
3

for H ∈ [HA/2,HA].
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P. Mélinon, and A. Pérez, Phys. Rev. Lett. 86, 4676 (2001).
35A. Tamion, C. Raufast, E. Bonet, V. Dupuis, T. Fournier, T. Crozes,

E. Bernstein, and W. Wernsdorfer, J. Magn. Magn. Mater. 322, 1315
(2010).

36M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Mélinon,
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