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Abstract. A simple data-driven AutoRegressive (AR) model may be used to assess a model to describe
and to predict the time-series outputs of the PZT sensors receiving Lamb waves for different operating
conditions in composite structures. Thus, this paper presents the potentiality of the use of a set of AR
models to detect, locate, and, manly, to extrapolate a damage sensitive index based on changes in one-
step-ahead prediction errors. To illustrate this proposal, an aeronautical composite panel with bonded
piezoelectric elements, that act both as sensors and actuators, is used to study the relationship between
the variation of the parameters of the identified model and the presence of various simulated damage.
A damage progression evaluation by extrapolating the AR parameters is also suggested and examined
based on cubic spline functions to verify the future state and to observe how the damage could evolute,
based on some simplified assumptions. This step could help to make a decision about a possible required
repair without adopting a complicated and costly physical model.

1 INTRODUCTION

The structural health monitoring (SHM) approaches seem to be in a mature stage in the steps of
detecting and localization of possible damages in structures with several powerful methods proposed and
validated in the last decades. One way to adress this issue may be using data-driven model identification
based on guided wave propagation or random inputs. For example, Nardi et al. [1] using an auto-
regressive (AR) model were able to detect delamination in a carbon-fiber-reinforced-plastic laminate
plate excited by random input using a couple of piezoelectric patches as actuator and sensors. Kim et
al. [2] also showed a possible data-driven system identification through a state-space model to capture
the wave motion in metallic structures. da Silva [3] applied autoregressive with exogenous input (ARX)
model to perform predictions and a waveform generator in a 10 layers carbon-epoxy plate excited by



guided waves assuming different central frequencies and environmental conditions1 and noted some
benefits and disadvantages of the possible performance of this strategy for SHM.

However, to reach a high level in an SHM’s hierarchy2 numerous drawbacks need to be overcome
yet. One of them is that it is essential to have an adequate mathematical model if the user wants to
predict a future state based on previous past data to interrogate about the existence and evolution of
damage propagation. So, these models demand to incorporate information about the damage behavior
in its dynamics to gain a comprehensive physical insight of the monitored structure; consequently, this
model should be most physical possible. However, to construct numerical models, for example, using
finite element models with damages in an initial stage, require much time and may have a high cost
for a real-time monitoring system in the industrial field, even modeling in its healthy state. Another
limitation is that the behavior of damage evolution usually is much complicated to be modeled in a real-
world application because complex types of damage can appear coincidentally with several confounding
effects, like noise, uncertainties, temperature changes, operational variability, etc..

An identified data-driven model, as suggested by Nardi et al. [1] or da Silva [3], could be attractive
to be adopted to extrapolate or to quantify a damage progression as a surrogate model to reach a sub-
sequent application of higher forms of SHM’s hierarchy. Thus, this paper is a first effort of the authors
in this direction seeking to extrapolate AR polynomials through spline functions to extend how damage-
sensitive index could evolute based on simplified assumptions. The proposed procedure has two steps
to be implemented. First, damage detection and location using an index extracted by predictions errors
filtered with a reference AR model is performed. To classify the structural states an analysis of variance
is utilized [4]. Next, when damage is detected a new set of models, named by initial damaged models,
is captured to extrapolate a projected state. A carbon-epoxy laminated plate with controlled progressive
structural change similar to a real damage is used to exemplify the method. Next sections describe these
steps and final remarks.

2 DAMAGE DETECTION USING PREDICTION ERRORS

Assuming a discrete time-series y(k) measured by a PZT sensor in a healthy state, a normalization is
conducted to remove offset and have mean 0 and scaled to have standard deviation 1:

ŷ(k) =
y− ȳ
σ(y)

(1)

where ŷ(k) is the normalized signal, ȳ is the mean and σ(y) is the standard deviation. For simplicity,
hereafter y is used to denote ŷ. Now, a simple AR model can be described by a compact difference
equation [5]:

A(q)y(k) = ere f (k) (2)

where ere f (k) is the one-step-ahead error prediction in a healthy condition assumed to be a white noise
and A(q) = ∑

na
i=0 aiq−i is the healthy AR polynomial3 with the coefficients ai with a lag-order na, e. g.,

y(k)aiq−i = aiy(k− i), where q−i is a lag operator and k is the time sample. The order can be estimated
using Akaike information criterion (AIC) and the polynomial A(q) may be identified through a least
squares or Yule-Walker approach, fully available in Matlab or Octave software. When a new normalized

1temperatures changes.
2for example, quantification and prognosis.
3Usually the coefficients ai are normalized such that a0 = 1.



data, x(k), in an unknown state is measured, one can try to predict using the corresponding reference
model:

A(q)x(k) = eunk(k) (3)

where eunk(k) is the unknown error prediction to be classified in a healthy or damaged state. Various
papers have been using a simple damage-sensitive index DI based on a comparison of the variance σ2(·)
of prediction errors [6]:

DI =
σ2 (eunk)

σ2 (ere f )
(4)

If DI belongs a F −distribution4 there is no damage and the unknown condition is associated to
healthy state (null hypothesis H0 is true). On another hand, if the structure presents a damaged state, the
probability distribution of the unknown error changes and the alternative hypothesis H1 is true [7, 6].

To classify the cluster of damages states, a one-way analysis of variance (ANOVA) can be also used to
test the hypothesis that the samples in the running tests DI belong to a population with the same means
(null hypothesis H0), i.e., the systems is classified as healthy state, against the alternative hypothesis H1
that the population means are not all the same, i. e., damaged state [8, 4]. A Tukey’s multiple comparison
test to decide whether the results of ANOVA are statistically significant is also performed to enable us
visible to distinguish the clusters correlated with different damages.

3 EXTRAPOLATION OF AR COEFFICIENTS

After clustering using ANOVA5, a new set of AR models for each initial damage recognized is esti-
mated since the reference model given by Eq. (2) is not anymore accurate. This initial damaged model
is described to predict the current state output x j(k) by:

A j(q)x j(k) = ed j(k) (5)

where A j(q) = ∑
na
i=0 A jiq−i is the AR polynomial with coefficients A ji and ed j(k) is the prediction error

(white noise) in the damaged state j = 1, · · · ,nd classified by ANOVA, where nd is the number of initial
damaged states. An important simplifying assumption is considered here: this classified initial damage
is an early state and do not change abruptly comparing with reference (healthy state). Consequently,
the same regressive order na and framework (AR model) may be employed and the change is smooth
between the coefficients, i.e., A(q) ≈ A j(q), once |ai−A ji |< δ for all i and δ is a small value. It is
essential to observe that the damage index given by eq. 4 is sensitive to the changes to detect damage,
but the specific changes in the coefficients are in general smooths when this structural variation is in the
initial states.

Rearranging the coefficients of reference model A(q) and damaged A j(q) as:

A =


a0 a1 · · · ana

A10 A11 · · · A1na

A20 A21 · · · A2na
...

...
. . .

...
And0 And1 · · · Andna

 (6)

4i.e., eunk and ere f have a normal distribution
5Different classifiers can provide adequate results; the requirement here is to have the initial damage well classified to

estimate a model for extrapolating.



where the first line of the matrix A ∈ Rnd+1×na is formed by the reference coefficients and the next one
by the initial damage states. To enable to perform adequate extrapolations of the AR coefficients in
the reference and damaged conditions, the number of states needs to be nd ≥ 3; otherwise, only linear
extrapolation is plausible. So, it was assumed nd = 3 structural states in damage clusters to permit to
use cubic splines. This piecewise polynomials can be used to extend each polynomial coefficient λi

associated to a future state through [9]:

λi(z) = fi(z)+ξi, i = 0,1, · · · ,na (7)

where z0 < · · ·< zna are defined intervals associated with the order na, fi(z) a smoothing spline estimate
by some minimizer of a penalized criterion, and ξi is an independent random error. More details to find
the spline fi can be seen in [10].

The important issue here is to recognize that now it is possible to have a future model to predict the
data x j(k), when j = nd +1 represents a future state. This model is given by:

Λ(q)x j(k) = ε j(k) (8)

where Λ(q) = ∑
na
i=0 λiq−i is the extrapolated AR model in a future damage condition. The basic premise

is that the damage progression occurs as previously captured by evolution in the lines of matrix A. Thus,
a new index and hypothesis tests can also be estimated to evaluate the progression and the changes of
distribution of the extrapolated prediction error ε j(k) and in the damage index DI .

4 EXPERIMENTAL EXAMPLE

Figure 1 shows a carbon-epoxy laminated with layup containing 10 plies unidirectionally oriented
along 0◦ with four PZTs SMART Layers from Accelent Technologies, with 6.35 mm in diameter and
0.25 mm in thickness with a free-free boundary condition. PZT 1 is used as an actuator with a five-cycle
tone burst input signal applied with 35 V of amplitude and center frequency of 250 kHz. The outputs
are collected in PZT 2, PZT 3 and PZT 4 with a sampling rate of 5 MHz and timespan of 200 µs. Data
acquisition was controlled by Labview using a NI USB 6353 from National Instrument (NIDaq) and an
oscilloscope DSO7034B Keysight assuming a controlled temperature of 30◦C with all tests conducted
inside a thermal chamber from Thermotron.
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Figure 1: Illustration of the experimental setup with details about the geometry and instrumentation utilized.



Figure 2: Healthy output time-series when PZT 1 acts as an actuator with a central frequency of 250 kHz.

Figure 2 illustrates the output time-series measured by PZTs in a healthy state normalized by Eq. 1.
An industrial adhesive putty was glued on the plate surface to simulate gradual damage by an additional
mass increasing progressively the coverage area in the path between PZT 1 and PZT 2. This change
modifies local material properties with a similar effect to the real damages in composites structures as
performed by Lee et al. [11]. In each structural state, 100 tests were repeated for an adequate statistical
characterization of the proposed damage detection.

4.1 AR model identification

The AIC order selection with a focus of prediction indicates that order of na = 40 is sufficient to give
an adequate validation for all paths of propagation, as seen in fig. 3. A raffle is performed to sort within
100 realizations randomly the signals in the PZT 2, PZT 3 and PZT 4 to be used as a reference and a
specific healthy model A(q) is identified in each path using the least square method. This is executed to
reduce computational processing time. Other realizations were filtered using this reference model by Eq.
2 to estimate the prediction error in the healthy state.

Figure 4(a) shows the comparison between the measured versus predicted assuming one validation
data. The analysis of the autocorrelation function of residuals also indicates that the prediction errors are
white noises, i. e., the model has identified adequately, as observed in the fig. 4(b).

4.2 Damage detection

Once a reference model, named by H, is correctly identified, it is used to detect some possible struc-
tural change. Only half of the data in the healthy state is utilized, and the next 50 is applied to evaluate
the presence of false positive using the hypothesis test. A set of blind tests using three different structural
states associated with damage is performed, named by D1, D2 and D3 with progressive damage severity
associated with area covered given by 490 mm2 (0.19%), 707 mm2 (0.28%) and, 962 mm2 (0.38%),
respectively. Each structural condition was also measured by 100 realizations in each path. It is worth
noting that the algorithm admits that all these data are assumed in unknown condition to be classified
initially in two groups: healthy or damage. The prediction errors of these unknown conditions are com-
puted using Eq. 3 and then the damage index DI is estimated by each test using the Eq. 4. The Lilliefors
test is used to warranty that the variance of the prediction errors σ2(·) in healthy states have normal



Figure 3: AIC order selection with focus in prediction.

(a) −Measured vs · · · Predicted. (b) Whiteness test criteria within of 95% confidence
bound patch.

Figure 4: Healthy output predicted by healthy model AR(40).

distributions, i. e., the DI trends to have a F − distribution in the reference condition [6].
Figure 5(a) illustrates the index DI , where is possible to observe, as presumed, that the sensor PZT

2 is sensible to the presence of damage while other PZTs the distinction between the different situations
is not possible. Figure 5(b) displays the evolution of the indices with the increase of the damage using a
box-and-whisker plot assuming known each damage state. A superposition in the upper quartile of the
indices computed in the healthy state and the lowest quartile (even the median value) of damage states
are also observed in PZT 3 and PZT 4.

Figure 6 illustrates the receiver operating characteristics (ROC) curve to detect damage against refer-
ence condition considering all PZTs sensors. The line (0,1) designates the correct classification that is
achieved by PZT 2, that is the path where the damage is located. Additionally, the ANOVA procedure is
computed to classify if the means are different or not, combined with a Tukey multiple comparisons to
see whereby statistically significant the clusters are.



(a) DI . (b) Boxplot of DI .

Figure 5: Damage index DI . (a) Damage index DI : Healthy - training data (o), Healthy - test data(�) and
Damaged (o). −− is the threshold line assuming a significance level of 5%. (b) Box plots to observe the median,
quartiles and outliers in the index distribution.

Figure 6: Receiver Operating Characteristics (ROC) curve: � PZT 2, o PZT 3 , and ∗ is PZT 4.

Figure 7 presents this plot for PZT 2, where the circle is the mean value of the cluster with a 95%
confidence interval. Three groups, nd = 3, are distinctly separated and correlated with three possible
structural states. After clustering, a new set of AR models in each damage group for PZT 2 is identified
for monitoring the structural state and to implement the extrapolation explained in the next section.
Other PZTs are not used here to identify new models because none variations are observed permitting
the identification of a new polynomial A j(q) in Eq. 5.

4.3 Prevision of future AR damaged model

Three damaged models are estimated using one of the conditions presents in the clusters in fig. 7 after
detecting and clustering. Combined with the reference model, a matrix given by Eq. 6 is formed with
nd = 3 and na = 20 to help the extrapolation. A cubic spline polynomial created with the data in matrix



Figure 7: Classification of the clusters of different damage’ states using ANOVA of DI . 3 groups (in red) have
means significantly different from healthy H.

A permits to estimate an extrapolated model Λ(q) to use Eq. 8 to predict future states.
More eight future damage conditions are simulated by increasing the covered area to prove the bene-

fits of the extrapolated model. First, a damage D4 with a surface area covered of 0.5% is used to predict
the future state. Figure 8(a) presents the comparison between the measured and predicted by the extrap-
olated model in damage condition D4. Figure 8(b) shows the residual analysis by the autocorrelation
function to confirm an adequate prediction.

(a) −Measured vs · · · Predicted. (b) Whiteness test criteria.

Figure 8: Output predicted by the extrapolated model AR(40) for damage condition D4.

When the damage condition is measured a model can be identified, and one can compare the DI
obtained by model identified by extrapolation and when the damage happens, now assuming the new
reference as D4. The box-plot is also presented in fig. 9(a) for the other damage conditions to observe its
similarity comparing the real data measured and extrapolated. It is possible to observe a similarity, where
the DI using the prediction errors filtered by extrapolated model presents a more significant dispersion.
Figure 9(b) illustrates the predictions obtained by the filtered model using the real data (measured) and



extrapolated model. It is found a more significant dispersion to a broad horizon when the damage (surface
area covered by the adhesive) is supposed severe and the model is not validated for this situation. This
choice here of the validated horizon of prediction is correlated with the level of severity of the damage,
once the extrapolation is done considering does not modify the framework and order of the AR model.
Additionally, it is fundamental to observe that usually when damage is alerted in a monitored system,
a repair or visual inspection can be performed to evaluate the structural safety. Thus, assuming a short
horizon with initial damage, this extrapolated model has a nice feature almost equal to a real model
identified when the damage increases and is helpful to make decisions.

(a) Boxplot of DI . (b) DI .

Figure 9: Damage index DI for PZT 2: (a) Box plots of the damage index DI in extrapolated condition
D4 to observe the median, quartiles and outliers in the index distribution assuming the extrapolated model and
damaged model. (b) o real damage D4 represents the new reference, ∗ extrapolated damaged D4 (extrapolated new
reference), ∗ extrapolated damage, and real Damaged (o) is the future damaged condition.

Figure 10 shows the ROC curve comparing the similar performance between the extrapolated and the
real model to detect all future damage conditions. The extrapolated model in structural state D4 also
allows dividing the clusters associated with the other damages using ANOVA, as seen in fig.11.

5 CONCLUSIONS

This paper demonstrated that multiple AR identified models in the healthy and in the initial damaged
conditions could be helpful to perform an extrapolation to a future state if the damages progress in a
similar way. This kind of technique combined with a Bayesian approach for extrapolating, seeking to
reach high levels of SHM’s hierarchy, may provide a significant physical insight if we compare with the
trend curves computed by damage-sensitive index with some machine learning approach. First, a model
is identified associated with parameters that can predict future states or conditions before the occurrence.
Of course, the basic premise is that the evolution of the initial damage is not abrupt and does not happen
in different points. Investigations regarding these issues are necessary because in a real-world scenario
the behavior of a damage evolution is complex.

To identify with other input signals, for example, random input, and with different temperatures and
operational conditions is required to be able to conduct tests with a focus in a simulation and not the only
prediction. Other models can also be employed, in particular, Gaussian Process (GP) combined with
AutoRegressive models because of the ability of these models to predict with band confidence and admit



Figure 10: Receiver Operating Characteristics (ROC) curve: � Extrapolated, and o Real.

Figure 11: Classification of the clusters of different damage’ states using ANOVA of DI assuimg extrapolated
model. 3 groups (in red) have means significantly different from healthy H.

a priori probability identified to extrapolate a future state. Numerical simulation using finite element
models are further beneficial to correlate more intense and complicated damage progression with an
extrapolated data-driven model, and some studies are started in this direction.
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