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ABSTRACT
Manual sleep scoring is a time-consuming task that requires a high level of medical expertise. For this
reason, a number of automatic sleep scoring algorithms have recently been implemented. However,
their use by physicians remains limited for various reasons: a lack of transparency of the approach
used, insufficient heterogeneity among the patients used for testing, or a lack of practicality.
This paper presents a system for facilitated sleep scoring that will overcome these limitations. The
proposed system, a user-friendly tool based on electrophysiological channels, was trained and tested
on large datasets of 300 and 100 distinct recordings from patients with various sleep disorders. The
method replicates the manual sleep scoring process, in accordance with the American Academy of
SleepMedicine (AASM) guidelines and generates patient-dependent sleep scoring (using the SATUD
system). For an improved level of precision and confidence with regard to scoring, our approach also
provides a table that gives indications about the confidence level of the algorithm when scoring sleep.
In contrast to recent deep learning approaches, the algorithms used were chosen for their resilience and
as they are easy to understand. Medical knowledge was included in the process as much as possible.
Results showed that the system is consistent with manual scoring (mean Cohen’s Kappa of 0.69 and
accuracy rate of 77.8%). It proves that a facilitated interpretation of the model, crucial in such fields
as sleep diagnosis, can be provided when using automatic tools.
This new system thereby generates sleep scoring decision support tools, which should easily contribute
to significant time-saving and help sleep specialists to perform sleep diagnosis.

1. Introduction
Sleep-disordered breathing (SDB) is a common health

issue affecting approximatively a third of the population [1–
3]. Symptoms often go unnoticed, since they are not spe-
cific to SDB and are quite common [4]. However, bad sleep
quality can affect several vital functions, such as learning,
memorization and adaptation, resulting in a deterioration of
the quality of life.
Over the past few decades, there has been an increasing need
for sleep diagnosis [5, 6]. The gold-standard procedure for
SDBdiagnosis, called polysomnography (PSG), involves the
recording of electrophysiological (EP) and cardio-respiratory
(CR) signals throughout an entire night [7]. Once recorded,
signals are manually studied by a sleep specialist: respira-
tory events are identified using CR channels, and sleep is
scored using EP channels. A diagnosis is reached by cross-
checking this information with patient symptoms [7].
Sleep scoring is a time-consuming and complex task. It in-
volves the assessment of each 30-second section’s (called an
epoch) degree of vigilance [7]. To do so, EP channels such
as electroencephalograms (EEG), electrooculograms (EOG)
and electromyograms (EMG) are visualized epoch by epoch.
Each epoch is identified as belonging to the W stage (wake-
fulness), the N1 stage (light sleep), the N2 stage (also light
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sleep), the N3 stage (deep sleep) or the R stage (rapid eye
movement sleep). The resulting succession of sleep stages
is called a hypnogram. The American Academy of Sleep
Medicine (AASM) manual for the scoring of sleep and as-
sociated events [7] describes each sleep stage’s properties in
detail, along with possible transitions between sleep stages.
Despite the AASM guidelines, sleep staging remains time-
consuming and complex, and the inter-scorer agreement rate
hardly exceeds 80-90% [8].

Lately, artificial intelligence and more specifically learn-
ing algorithms have proven their ability to solve complex
problems inmany healthcare sectors [9, 10]. New algorithms
for automatic events or sleep analysis have emerged and been
recognized by experts in the field for potentially helping to
improve our understanding of sleep [11] and simplifying the
scoring procedure [12].
A number of systems for automatic sleep scoring using EP
signals have been developed. In such systems, algorithms
are trained so they can classify each epoch into a sleep stage,
using manual scoring as the reference. The algorithms de-
veloped can be broken down into three categories: deep learn-
ing [13], machine learning [14] and hybrid approaches [15].
Deep learning is generally applied directly on raw signals. In
[16, 17], a combination of a Convolutional Neural Network
(CNN) with a Recurrent Neural Network (RNN) is used to
estimate relevant features and classify sleep, taking tempo-
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User-friendly sleep scoring Part I: automatic classification based on medical knowledge

rality into consideration.
On the contrary, machine learning usually requires the ex-
traction of descriptors, called features, before classification.
Various machine learning classifiers were tested. Among
the most widespread, we will mention Support Vector Ma-
chines (SVM) in [18–20], Multi-Layer Perceptrons (MLP)
in [21, 22] and Random Forests (RF) in [23, 24].
Lastly, hybrid approaches combine deep learning ormachine
learningwith expert knowledge. In [25, 26], symbolic fusion
was applied so the features used for classification are quali-
tative, particularly close to the AASM guidelines.

However, automatic sleep staging faces several challenges.
Firstly, the channels used for classification vary greatly from
one patient to another. This high variability between sub-
jects is caused by many factors including the subject’s age,
condition, drug intake, but also the positioning of sensors,
the quality of signals (which can be altered by movements
or sweating, for example) and the presence of accessories.
It particularly complicates the learning process for machine
learning approaches, where features are highly impacted by
subject specific characteristics. This can be overcome if trained
on a large number of subjects with various disorders. In
[27], a review of 154 deep learning-based EEG analysis stud-
ies showed that half of them included less than 13 subjects,
which is reported as being insufficient to illustrate human
heterogeneity.
Another challenge regardingmachine learning or deep learn-
ing approaches is acceptance by the medical community. A
recent review paper by Fiorillo et al. [12] presented the bar-
riers for the clinical use of automated scoring on a daily
basis. The main limitation was the black box behavior of
deep learning algorithms. Nowadays, a certain number of
researchers attempt to improve the interpretability of their
models [28], using, for example, hybrid approaches incor-
porating medical knowledge.
The final criteria is for the model to be easy for physicians to
use. There is often a preliminary human action needed (for
example, identification of artifacted epochs or partial scor-
ing), meaning that methods cannot be applied immediately
once the channels have been recorded.
In summary, the clinical use of automatic sleep scoring re-
mains controversial because of three limitations:
a) lack of confidence in the developed approach (algorithms

are often considered as a black box);
b) insufficient heterogeneity of the dataset, nonetheless nec-

essary for assessing real-life performances;
c) lack of practicality of the developed approach, which some-

times requires human intervention before use.
Themain aim of this study is to implement a user-friendly

automatic sleep scoring system to overcome the three previ-
ous limitations. Unlike most of the recent studies, we chose
to prioritize the understanding of the algorithm’s operating
mode, addressing issue a). To provide an answer to limita-
tion b), the system was tested on a large dataset of patients
with varying levels of SDB severity. Issue c) was also taken

into consideration, since the system was designed to be used
without any preliminary human action (for example partial
sleep scoring or invalidation of epochs) and provides a prob-
ability table to further assist in scoring.
The work proposed here has been designed on EP channels
obtained from polysomnographic recordings. Designed to
assist physicians in their diagnosis, the developed system
combines artificial intelligence and expert knowledge. Med-
ical practitioners’ concerns were considered and the result is
a user-friendly tool providing scoring support to avoid sleep
scorers spending excessive time on sleep staging.

The present article is the first of a two-part paper. In
the following section (Section 2), the recordings used for
training and testing are presented first of all. The algorithm
architecture is then detailed and shows how the three limi-
tations have been addressed. The SATUD algorithm, also
introduced in this section, is detailed in the companion arti-
cle [REF]. The elements for system evaluation are then pre-
sented. In Section 3, the system is compared with manual
scoring and its performance is reported. Its results and im-
pact on sleep diagnosis are discussed in Section 4. Finally,
the conclusion is presented in Section 5.

2. Methods and materials
First of all, this section presents the database on which

the algorithm was trained and tested. The methodology used
in the system is then detailed, followed by a presentation of
the system performance assessment.
2.1. Data acquisition

A total of 400 anonymous sleep recordingswere included
in this study thanks to the sleep cohort of Pays de La Loire.
This cohort is operated under the aegis of the Institut de
Recherche en Santé Respiratoire. Approval was obtained
from theUniversity ofAngers ethics committee and the "Comité
Consultatif sur le Traitement de l’Information en matière de
Recherche dans le domaine de la Santé" (CCTIRS; 07.207bis).
The recordings used in this study were acquired between
2012 and 2018, and all patients gave their written informed
consent. The 400 recordings were divided into two datasets
(D1 and D2). A random selection was made, ensuring equal
representation of the severity of Obstructive Sleep Apnea
(OSA) and the year of recording (see Table 1). D1 was
made up of 300 recordings from 182 males and 117 females
while D2 was made up of 100 recordings from 66 males and
34 females. Recordings from D1 were used as the training
dataset and D2 as the test dataset. D1 dataset was made up
of 329,911 epochs (W: 76,897 - R: 52,036 - N1: 24,283 -
N2: 122,266 - N3: 54,429). As for D2 dataset, it was made
up of 110,978 epochs (W: 24,172 - R: 18,194 - N1: 8,095 -
N2: 41,095 - N3: 19,422).
The subjects, who were suspected of having OSA, under-
went one-night’s PSG in the sleep laboratory of Angers Uni-
versity Hospital (FRANCE). Sleep was recorded following
the AASM guidelines [7]. The CID102L8D polysomno-
graph (CIDELECStGemmes-sur-Loire, FRANCE) used pro-
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Table 1
OSA severity represented by age, using quartiles, evaluated for D1 and D2.

D1 dataset D2 dataset
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

19-43 y.o. 44-53 y.o. 54-62 y.o. 63-86 y.o. 19-41 y.o. 42-53 y.o. 54-63 y.o. 64-79 y.o.

No 32% 18% 9% 5% 44% 8% 8% 8%
Mild 31% 23% 23% 25% 32% 28% 20% 24%
Moderate 17% 24% 30% 36% 12% 36% 36% 24%
Severe 20% 35% 38% 34% 12% 28% 36% 44%

y.o. = years old

vided the usual electrophysiological (EP) and cardio-respiratory
(CR) signals. It also included the PneaVoX® sensor, from
which tracheal sounds and respiratory efforts are estimated
to facilitate event scoring [29–31]. Once the signals were ac-
quired, each sleep recording was manually scored by a sin-
gle sleep specialist in accordance with AASMguidelines, al-
though several sleep specialists were involved in this study.
The hypnogram established by the sleep specialist was con-
sidered as our reference, and was referred to as ℎypnoref inthe rest of this paper. Unlike other studies, epochs with ar-
tifacts were not discarded (neither manually nor automati-
cally) to ensure the algorithm’s efficiency in real-life condi-
tions. The only epochs rejected were those with extremely
bad quality signals preventing the manual scoring of events
and/or sleep (for example epochswithmissing signals). They
were automatically invalidated by the CIDELEC user inter-
face prior to scoring.
2.2. Algorithm structure

The algorithm presented in this sectionwas implemented
usingMatlab® software to provide sleep scoring support tools.
It was designed based on the scoring rules described in the
AASM guidelines [7], and behaves similarly to the manual
scoring process. Its inputs are EP signals and a priori med-
ical knowledge (AASM guidelines). It classifies all epochs
to provide an automatic hypnogram ℎypnoEP, with a prob-
ability

SATUD system
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signals

Patient-speci!c

qualitative features
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knowledge

Random forest

classi!er

Sleep pattern

detection

Sleep transition rules

Mixed ML
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Quantity or cumulative duration of

spindles, K-complex, SWA bursts,
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Manual sleep scoring hypnoref
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Figure 1: Functional architecture of the user-friendly automatic sleep staging system, composed of four main functions (F1, F2, F3 and
F4). Medical knowledge from the AASM manual and electrophysiological signals are used as inputs. The outputs are a hypnogram
ℎypnoEP and the associated probability table probabilitiesEP.

ability table probabilitiesEP. This table gives information
about the confidence level of the algorithm when epochs
were classified. Figure 1 illustrates the algorithm structure,
described in this section. The architecture is composed of
several main functions: F1, F2, F3 and F4. Each function
aims to reproduce one of the tasks realized by sleep special-
ists when scoring sleep. Firstly, an adaptation to each record-
ing is achieved and provides patient-dependent features (F1).
Using those features, a rough hypnogram is estimated (F2).
Similarly to the manual scoring process, the hypnogram is
then adjusted with regard to sleep patterns (identified in F3),
surrounding epochs and transition rules (F4).
2.2.1. F1 - The SATUD system

Before scoring sleep stages, sleep specialists visualize all
epochs to adapt their scoring to the patient’s specific charac-
teristics. This process was implemented automatically with
the SATUD system, which does not require any training/test
steps. The SATUD system was thus applied to all D1 and
D2 recordings individually.
The SATUD system is fully presented in the companion pa-
per [REF], in which its functioning and a simplified example
of its use for sleep stage classification are detailed.
Briefly, the SATUD system extracted 41 patient-specific qual-
itative features fromEP channels, using a priori medical knowl-
edge obtained from the AASM guidelines. The 41 patient-
specific
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specific qualitative features were defined as the levels of var-
ious sleep stage descriptors (quantitative features), as pre-
sented in Table 2. For example, the AASM guidelines men-
tion the importance of the EEG amplitude (1st line of Ta-
ble 2) to score sleep stages. EEG amplitude is the highest
in N3 and the lowest in N1. It is also generally higher in N2
than inW and R. However, EEG amplitude in R can increase
when there are some artifacts (called Rapid Eye Movement
artifacts). It can also be really high in W when the patient
is agitated (due to movements). With regard to these ele-
ments, we decided to use 2 thresholds so we can associate
EEG amplitude levels (or qualitative features) with stages as
following: N3→High, N2→Mid or High, R→Low or Mid
andN1→Low (nothing forW as it can be Low,Mid or High).
As there was no need for a Mid EEG amplitude level alone,
we did not compute it.

Table 2
List of the 41 sleep stages’ qualitative features (right column)
obtained using the SATUD system. Each qualitative feature
corresponds to a level associated with a descriptor or quantita-
tive feature (left column), identified as relevant for sleep stage
scoring using the AASM guidelines.

Quantitative features Tha Qualitative features used Nb

EEG amplitude 2 Low | Low or Mid
| Mid or High | High 4

EEG instability 1 No | Yes 2

Slow wave activity quantity 2 Low | Low or Mid | High 3

Alpha waves quantity 2 Low | Low or Mid | Mid
| Mid or High | High 5

Beta waves quantity 2 Low | Mid | Mid or High 3

Delta waves quantity 2 Low | Mid or High 2

Theta waves quantity 2 Low | Low or Mid | Mid
or High 3

Chin level 2 Low | Low or Mid | Mid
or High | High 4

Chin instability 2 Low | Low or Mid | Mid
or High | High 4

Summed EOG level 2 Low | Low or Mid | Mid
or High 3

Summed EOG instability 2 Low | Low or Mid | Mid
or High 3

Substracted EOG level 2 Low | Mid or High 2

Substracted EOG instability 2 Low | Mid or High | High 3

Total 41
a Number of Thresholds used.
b Number of qualitative features used for each quantitative feature.

EEG waves (lines 3 to 7 of Table 2) are usually evaluated
using frequency ranges with fixed boundaries. In this work,
those ranges were redefined for each recording to adapt even
further to each patient. In particular, the alpha waves fre-
quency range during wakefulness was adjusted to avoid W
overestimation1.

1Alpha waves are representative of the W stage. For some patients,
they can also occur in the R stage, or even throughout the entire recording
in the case of alpha-delta sleep [32] patients.

2.2.2. F2 - Random forest classifier
Using the 41 patient-specific qualitative features obtained

with the SATUD system (F1) as input, F2 aims to generate
an initial hypnogram. This hypnogram was referred to as a
‘coarse hypnogram’ in the rest of this paper, since it will be
used to obtain a more precise hypnogram (in F4). Because
F2 required training/test steps, all D1 features were concate-
nated into a single large training matrix. In the same way, all
D1 references ℎypnoref were concatenated.The implemented classifier was a random forest [33], a ma-
chine learning algorithm that combines decision trees. This
model was chosen because it is powerful, robust, and not
opaque like deep learning methods. The random forest was
developed using the TreeBagger function fromMatlab®. This
function bagged 100 classification trees using bootstrap sam-
ples of the data and randomly selecting a subset of 6 features
at each node.
Once the model had been trained, it was saved under the
name RF1 to be reused for each test recording individually,
resulting in one coarse hypnogram per D2 recording.
2.2.3. F3 - Sleep pattern detection

Besides continuous features, so-called ‘sleep patterns’
are essential for sleep scoring. F3 aims to identify a majority
of them within EP signals, using their description as men-
tioned in the AASM guidelines. Sleep spindles, K-complex,
Slow Wave Activity (SWA) bursts, Rapid Eye Movements
(REMs), eye blinks and movements were detected using sig-
nal processing algorithms previously implemented and not
detailed in the present paper (filters, wavelets, empirical rea-
soning, etc.). For each sleep pattern, depending on its nature,
its quantity or cumulative duration was computed for each
half-epoch (for better respect of the AASM guidelines). The
resulting features were computed for each recording individ-
ually (D1 and D2), and will be used to enhance the coarse
hypnogram.
2.2.4. F4 - Mixed ML system

The last major element for sleep scoring are sleep tran-
sition rules. As described in the AASM guidelines, effi-
cient sleep scoring requires the knowledge of surrounding
epochs (especially for N2 and R sleep stages). F4 is a mixed
machine learning system that combines the coarse hypno-
gram (obtained in F2), sleep pattern quantity or duration
(obtained in F3) and a priori knowledge of sleep transition
rules (obtained from the AASM guidelines). F4 outputs are
the final hypnogram ℎypnoEP, along with the probability ta-ble probabilitiesEP. Figure 2 illustrates F4 structure. Its
architecture is composed of several main functions: F4.1,
which estimates a hypnogram using the coarse hypnogram
and sleep patterns by taking temporality into consideration,
F4.2 and F4.3, which adjust and correct the obtained hypno-
gram ensuring that there are no forbidden epoch sequences,
and F4.4, which is an independent function using the coarse
hypnogram and sleep patterns to provide a supplementary
scoring support tool.
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Figure 2: Functional architecture of the mixed ML system, composed of four main functions (F4.1, F4.2, F4.3 and F4.4).
Inputs are sleep transition rules (from the AASM manual), the coarse hypnogram (from F2) and sleep patterns (from F3). The
manual scoring ℎypnoref was used for training. The outputs are the hypnogram ℎypnoEP and the associated probability table
probabilitiesEP.

F4.1 To address the timeline, nine features were identified
within the coarse hypnogram (five features) and sleep
patterns (four features). These features were extracted
in regard to the current epoch, as shown in Figure 3.

epoch

Coarse hypnogram

Quantity or cumulative duration of sleep spindles and K-complex 

Quantity or cumulative duration  of
SWA bursts, eye blinks, REMs and movements

epoch - 1epoch - 2 epoch + 2epoch + 1

epochepoch - 1epoch - 2 epoch + 2epoch + 1

epochepoch - 1epoch - 2 epoch + 2epoch + 1

15 sec

30 sec

feat6

feat1 feat2 feat3 feat4 feat5

feat7

feat8 feat9

Figure 3: Features extracted from the coarse hypnogram
and sleep patterns, in regard to the current epoch.

These features constitute the classifier input vector,
noted V. As a consequence, the surrounding epochs
are taken into consideration by the classifier. The cho-
sen classifier was a random forest, developed with the
same settings as in F2. It was trained concatenating
all V vectors from D1 recordings as the input, and all
D1 references ℎypnoref as the reference. The resultinghypnogram will be referred to as hypno_temp1 in the
rest of this paper. The trained model, called RF2, was
saved to be reused for each test recording individually,
resulting in one hypno_temp1 per D2 recording.

F4.2 hypno_temp1 was smoothed using the transition rules
described in the AASM guidelines. These rules, that
define the possible or forbidden transitions between
sleep stages, were implemented using theAASMguide-
lines but also empirically, by studying the errors that
occurred the most. The smoothed hypnogram will be
referred to as hypno_temp2 in the rest of this paper.

F4.3 hypno_temp2was further smoothed using aViterbi hid-
den Markov model [34], trained to identify and cor-
rect sequence mistakes [35, 36]. To do so, we used

the hmmviterbi Matlab® function, which required the
computation of two matrices:

• the emission probabilitymatrixEMIS, which cor-
responds to the probability of each sleep stage
being emitted depending on the reference sleep
stage. It was estimated using the confusion ma-
trix between hypno_temp2 and ℎypnoref ;

• the transition probability matrix TRANS, which
corresponds to the probability of transition be-
tween each sleep stage. It was estimated from
ℎypnoref.

Using thesematrices, theViterbi hiddenMarkovmodel
smooths hypnogram hypno_temp2, resulting in the fi-
nal one ℎypnoEP. EMIS and TRANS were both esti-
mated from D1 and then saved to be reused for each
test recording individually, resulting in one ℎypnoEPper D2 recording.

F4.4 Independently from F4.1, F4.2 and F4.3, a table called
probabilitiesEP was also computed. This table con-
tains, for each epoch, the estimated probabilities of
being in each sleep stage. It can be used to deter-
mine which epochs were more or less easily scored by
the algorithm. probabilitiesEP computation is not de-
tailed in this paper. In brief, it was established bymea-
suring the agreement between sets of features which
were selected as being representative of each specific
sleep stage. probabilitiesEP thus reflects the algorithm’s
doubts when scoring sleep. Thanks to this, the med-
ical practitioner knows which epochs the algorithm
found difficult or easy to score.

2.3. System evaluation
Results were estimated from the recordings included in

the test dataset D2. As a reminder, this dataset is made up
of independent recordings not used during training. Each
recording was processed using the previously trained mod-
els. Then, the resulting ℎypnoEP and probabilitiesEP were
gauged using the associated ℎypnoref (in 2.3.1 and 2.3.2, re-spectively). In both sections, reported scores correspond to
the averaged individual scores.
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2.3.1. Evaluation of hypnoEP accuracy
For each recording, hypnoEP was compared to hypnorefusing a contingency table (see Table 3).

Table 3
Contingency table.

Automatic analysis
W N1 N2 N3 R Total

R
ef
er
en
ce

W n11 n12 n13 n14 n15 n1.
N1 n21 n22 n23 n24 n25 n2.
N2 n31 n32 n33 n34 n35 n3.
N3 n41 n42 n43 n44 n45 n4.
R n51 n52 n53 n54 n55 n5.

Total n.1 n.2 n.3 n.4 n.5 n

The overall accuracy of the automatic scoring is assessed us-
ing Cohen’s Kappa � [37] and accuracy rate Acc.
� is probably themost used index for automatic sleep scoring
evaluation. Indeed, it measures the agreement between the
reference and the automatic analysis by taking into consid-
eration the random component of this agreement (expected
agreement on the assumption that the manual and automatic
analyses are totally independent). � is calculated from the
proportion of observed agreement Po and the proportion of
random agreement Pe:

� =
Po − Pe
1 − Pe

with Po = 1
n
∑5
i=1 nii and Pe = 1

n2
∑5
i=1 ni. × n.i.

It is usually interpreted using six ranges:
(i) � < 0.0: Poor agreement
(ii) 0.0 ≤ � < 0.2: Slight agreement
(iii) 0.2 ≤ � < 0.4: Fair agreement
(iv) 0.4 ≤ � < 0.6: Moderate agreement
(v) 0.6 ≤ � < 0.8: Substantial agreement
(vi) 0.8 ≤ �: Almost perfect agreement
Acc corresponds to the percentage of correctly scored epochs:

Acc(%) = 1
n

5
∑

i=1
nii × 100

Overall scores were also reported while considering subjects
by age or OSA severity.

Table 4
Overall and individual performances obtained from automatic sleep staging on D2 dataset.
D2 dataset W N1 N2 N3 R All
Cohen’s Kappa 0.74± 0.14 0.23± 0.11 0.64± 0.14 0.71± 0.20 0.80± 0.14 0.69± 0.10
Accuracy rate (%) 92.3± 4.5 92.1± 3.4 83.3± 6.2 92.7± 4.5 95.1± 3.0 77.8± 7.0
Sensitivity (%) 82.3± 15.5 20.8± 9.0 83.9± 9.5 74.9± 20.3 83.3± 16.5 N.A.
Specificity (%) 94.0± 5.7 97.8± 1.1 83.3± 8.0 96.5± 4.3 97.4± 2.2 N.A.
N.A. = Not Applicable

Furthermore, scores were estimated for each sleep stage in-
dividually. To do so, we adopted a one-vs.-rest approach
where each stage is alternatively considered as the positive
class and the others are combined into a single negative class.
From the resulting true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), we estimated
each stage’s Cohen’s Kappa, accuracy rate, sensitivity (de-
fined as TP

TP+FN ) and specificity (defined as TN
TN+FP ).

2.3.2. Decision support with probabilitiesEPSince the probability table probabilitiesEP has no refer-
ence with which to be compared, we evaluated the mean
probability given by probabilitiesEP when epochs are cor-
rectly versus erroneously scored in a specific sleep stage.
The greater the difference between those mean probabili-
ties, the better the probability table. Indeed, we want the
mistakes in the algorithm to be limited to epochs where the
features designated multiple sleep stages rather than a single
one (suggesting manual scoring may also have been com-
plex).

3. Results
3.1. Evaluation of hypnoEP accuracy

Among the 100 recordings, 84% obtained an overall Co-
hen’s Kappa � above 0.60, showing a substantial or almost
perfect agreement with the manual scoring.
Table 4 gives, for D2 recordings, the mean value and the
standard deviation of the overall Cohen’s Kappa � and ac-
curacy rate Acc of ℎypnoEP. Scores per sleep stage are also
reported. The overall � and Acc were 0.69 and 77.8%, re-
spectively. If we consider each sleep stage detection individ-
ually, stage R obtained the best scores with a � reaching 0.80
(almost perfect agreement with the reference). � mean val-
ues indicate all other sleep stages got a substantial agreement
with the manual scoring, except stage N1. Sensitivities were
all above 82%, except for N2 and N1 sleep stages (74.9%
and 20.8%, respectively). Specificities were all above 94%,
except for N2 sleep stage (83.3%).

Table 5 and Table 6 report the performances obtained
depending on the subject’s age (using quartiles) and OSA
severity (based on a physician’s diagnosis).
There was a substantial agreement with the manual scoring
for all groups. For age groups, the lowest scores were ob-
tained for 53-63 year old patients, and the better ones for pa-
tients above 63 years old. For OSA severities, � were above
0.70 for patients with mild or moderate OSA, and below for
patients with no or severe OSA.
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Table 5
Overall performances depending on the subject’s age, using
quartiles. Q1 = 19-41 years old, Q2 = 41-53 years old, Q3 =
53-63 years old and Q4 = 63-79 years old.

Q1 Q2 Q3 Q4

� 0.69± 0.10 0.69± 0.10 0.67± 0.10 0.70± 0.09
Acc 78.2± 6.6 77.9± 6.5 75.8± 7.1 78.9± 6.7

Table 6
Overall performances depending on the subject’s OSA severity
(obtained by the sleep expert).

No Mild Moderate Severe

� 0.67± 0.12 0.70± 0.10 0.73± 0.06 0.65± 0.10
Acc 76.6± 7.7 79.1± 6.7 80.4± 4.7 74.6± 7.7

Figure 4 presents the confusionmatrix related to Table 4.
The quantity of epochs manually scored in each stage (W:
24,172 - R: 18,194 - N1: 8,095 - N2: 41,095 - N3: 19,422)
should be borne in mind while interpreting the confusion
matrix. Commonmistakes appeared to be N1 andN3 epochs
being automatically scored as N2 sleep stage.
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Figure 4: Confusion matrix (percentage over lines) obtained
from automatic sleep staging on D2 dataset.

3.2. Decision support with probabilitiesEP
probabilitiesEP is a supplementary scoring support tool

that helps make the system more practical to use and im-
proves physicians’ confidence in the algorithm.
Table 7 reports themean probabilities associatedwith epochs
correctly and erroneously estimated by ℎypnoEP, dependingon sleep stages. In this table, we can see that epochs cor-
rectly identified as N2 have a reported mean probability of
66% of being N2 stage, whereas the epochs over-detected as
N2 have a reported mean probability of only 44% of being
N2. It makes a difference of 22% between actual N2 epochs
and not. Algorithm confidence when scoring an epoch into
N2 sleep stage is thus greater when it is an actual N2 epoch.
Considering the mean probabilities reported for the other
sleep stages, we can see that all differences are above 15%,

Table 7
Mean probabilities per sleep stage while the reference agrees
or disagrees with the stage detected by the system.

ℎypnoref agrees ℎypnoref disagrees

ℎypnoEP = W 79% 60%
ℎypnoEP = N1 65% 56%
ℎypnoEP = N2 66% 44%
ℎypnoEP = N3 87% 71%
ℎypnoEP = R 69% 53%

except N1 sleep stage.
Erroneous epochs are thus more likely to have small and uni-
form probabilitiesEP values than correctly classified ones.
Indeed, the latter should show a clear superiority of the prob-
ability associated with their sleep stage compared with oth-
ers. probabilitiesEP points out epochs which need to be
checked as a priority, and manually corrected if necessary.

4. Discussion
The main goal of this study was to implement a user-

friendly automatic sleep scoring system.
Several factors have helped to overcome the three limi-

tations presented above:
a) the developed system was designed to be as easy as pos-

sible to interpret. To do so, its construction replicates
manual scoring and uses medical knowledge extracted
from the AASM guidelines. Firstly, the channels cho-
sen were the same ones as when manually scoring sleep.
Secondly, we know that medical practitioners quickly vi-
sualize the recording before scoring it, to become famil-
iar with its specific characteristics and score accordingly.
This step, replicated in the SATUD system (set out in the
companion paper [ref]), causes the automatic hypnogram
to be patient-dependent. Thirdly, most of the elements
described in the AASM guidelines were included in the
system: continuous features, sleep patterns, surrounding
knowledge and transition rules. Lastly, the methodolo-
gies implemented in the system were established using
interpretable algorithms or medical knowledge;

b) algorithm performances were evaluated on a hundred in-
dependent recordings, from patients with andwithout sleep-
disordered breathing;

c) the system works in real-life conditions and does not re-
quire any previous human intervention. There is no need
for invalidation of epochs or event scoring. probabilitiesEPalso improves system practicality by pointing out epochs
that should be checked as a priority.
Despite these restrictions, the method showed it could

get results comparable to those obtained with manual scor-
ing, reaching Cohen’s Kappa values around 0.69 and accu-
racy rates around 78% (see Table 4). There was no sig-
nificant impact of age on performance (see Table 5). As
for OSA severity (see Table 6), performance was the low-
est for patients with severe OSA syndrome. Surprisingly,
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Table 8
Performance of 5-stage classification using electrophysiological channels, compared with related works.

Number of one-night PSG
(training and test) Subject diagnosis Approach

Overcome
limitations* Acc (%) �

Zokaeinikoo et al. 2016 [24] 20 (LOOCV**) Healthy only ML c 74
Biswal et al. 2018 [16] 10,000 (9,000-1,000) Healthy and SDB DL b and c 88 0.81
Zhang et al. 2019 [17] 5,804 (5,213-580) Healthy and SDB DL b and c 87 0.82
Chen al. 2019 [26] 16*** Healthy and SDB Interpretable a and b 80 0.72
This work 400 (300-100) Healthy and SDB Interpretable a, b and c 78 0.69

ML = Machine Learning, DL = Deep Learning
* Limitations overcome from our point of view.
Limitation a: model opacity, b: insufficient heterogeneity of dataset and c: lack of practicality

** Leave-One-Out Cross-Validation: one by one, each subject’s recording was selected as the test dataset, and the others were combined
into the training dataset. Final results are provided by the model with the highest scores.

*** Semi-automated method that requires the manual scoring of 5% of each recording.

the group with the second worst performance was patients
with no OSA syndrome. Nonetheless, the results obtained
for all groups were acceptable (the lowest � was 0.65), in-
dicating the algorithm is robust to more or less fragmented
sleep recordings. Considering each sleep stage individually
(see Figure 4 and Table 4), it seems that the errors were
mainly N3 epochs misclassified as N2 sleep stage. Also,
sleep stage N1 had very low performance compared to other
stages. This is not surprising, since sleep stage N1 is a transi-
tional stage representing approximately 5% of the night with
a very likely overlap with W and N2 stages. In fact, inter-
scorer agreement for N1 sleep stage is the lowest [8]. Table
7 showed that misclassified epochs have lower probability
values in the returned table probabilitiesEP, compared with
correctly scored epochs. Using probabilitiesEP, some of the
mistaken epochs could thus be identified and rescored by the
manual scorer. A possible strategy would be to highlight
epochs with no obvious superiority of one stage probability
among the others. The scorer could consider reviewing only
those epochs.

Table 8 presents the obtained results, compared with the
literature. Only studies using EEG, EOG and EMG, com-
paredwith hypnogramsmanually scored following theAASM
guidelines and indicating the number of patients and train-
ing/test repartitions were considered for comparison. Deep
learning approaches, which reached better scores, do not over-
come limitation a). Chen et al. approach [26], which is also
interpretable, do not overcome limitation c) since it is semi-
automated. Our method showed that despite the inclusion of
transparency, hybridmethods can still reach adequate scores.

The proposed system provides resilient tools to facili-
tate sleep scoring, thus assisting sleep experts in diagnosing
sleep disorders. As we are aware of sleep specialists’ mis-
trust in automatic approaches, we identified three limitations
to their use and designed the system to overcome them. To
go even further, several perspectives are considered. Firstly,
we would like to evaluate this methodology using record-
ings from other sleep laboratories. Indeed, our recordings
were all provided by one sleep laboratory and, even if sev-
eral manual scorers established the references, local scor-
ing practices may have influenced the algorithms. Secondly,

micro-arousals2 (used when manually scoring sleep as they
are required by some transition rules), were not detected in
this system. Work is currently being done to identify them.
Thirdly, the automatic sleep scoring impact on sleep diagno-
sis should be evaluated. The Apnea Hypopnea Index (AHI)
resulting from the current system should be compared with
the one resulting from manual scoring. Lastly, since sleep
diagnosis is sometimes performed using devices that do not
record EP channels, it would be interesting to see how good
automatic sleep scoring from cardio-respiratory channels could
be.

5. Conclusion
In this paper, a new approach for automatic sleep stag-

ing was presented. Its architecture was designed to repro-
duce step-by-step the manual scoring tasks realized by sleep
experts: adaptation to each recording’s specific characteris-
tics, study of temporal and spectral content, identification
of sleep patterns and classification regarding surrounding
epochs and transition rules. As it is easy to understand, this
model is well suited to the medical community which lacks
confidence in the models generally implemented.
The method was evaluated on 100 patients with and with-
out sleep-disordered breathing, and results showed the au-
tomatic hypnogram made a good performance regardless of
subjects’ age or OSA severity. With a mean Cohen’s Kappa
and accuracy rate of 0.69 and 77.8%, respectively, the algo-
rithm obtained a high agreement with the manual scorer.
The proposed method was put together as a scoring support
tool for sleep scoring and is thus useable immediately after
the polysomnographic recording, without the need for any
preliminary human action. Besides the automatic hypno-
gram, it also points out epochs which should be checked and
rescored if necessary.
Given that sleep scoring is a time-consuming and complex
task, the presented user-friendly tool should greatly support
sleep specialists in their diagnosis.

2Short awakenings, markers of sleep disruption

J. Vanbuis et al.: Preprint submitted to Elsevier Page 8 of 10



User-friendly sleep scoring Part I: automatic classification based on medical knowledge

Funding
This study was supported by grants from the Institut de

Recherche en Santé Respiratoire des Pays de La Loire.

Acknowledgements
The authors would like to thank Christelle Gosselin and

Jean-Louis Racineux, from the Institut de Recherche en Santé
Respiratoire des Pays de La Loire, and Margaux Blanchard,
from the ESEO. Thanks to Alain Le Duff and Lucile Riaboff,
previously from the ESEO. We thank Julien Godey, Laetitia
Moreno and Marion Vincent, sleep technicians in the De-
partment of Respiratory and Sleep Medicine of Angers Uni-
versity Hospital.

References
[1] R. Heinzer, S. Vat, P. Marques-Vidal, H. Marti-Soler, D. Andries,

N. Tobback, V. Mooser, M. Preisig, A. Malhotra, G. Waeber, P. Vol-
lenweider, M. Tafti, J. Haba-Rubio, Prevalence of sleep-disordered
breathing in the general population: theHypnoLaus study, The Lancet
Respiratory Medicine 3 (2015) 310–318. doi:10.1016/S2213-2600(15)
00043-0.

[2] J. B. Croft, CDC’s Public Health Surveillance of Sleep Health, 2017.
[3] C. V. Senaratna, J. L. Perret, C. J. Lodge, A. J. Lowe, B. E. Campbell,

M. C. Matheson, G. S. Hamilton, S. C. Dharmage, Prevalence of ob-
structive sleep apnea in the general population: A systematic review,
Sleep Medicine Reviews 34 (2017) 70–81. doi:10.1016/j.smrv.2016.
07.002.

[4] AASMTaskForce, Sleep-related Breathing Disorders in Adults:
Recommendations for Syndrome Definition and Measurement Tech-
niques in Clinical Research, Sleep 22 (1999) 667–689. doi:10.1093/
sleep/22.5.667.

[5] K. A. Franklin, E. Lindberg, Obstructive sleep apnea is a com-
mon disorder in the population- a review on the epidemiology of
sleep apnea, Journal of Thoracic Disease 7 (2015) 1311–1322.
doi:10.3978/j.issn.2072-1439.2015.06.11.

[6] P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen, K. M.
Hla, Increased Prevalence of Sleep-Disordered Breathing in Adults,
American Journal of Epidemiology 177 (2013) 1006–1014. doi:10.
1093/aje/kws342.

[7] R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, R. M. lloyd,
S. F. Quan, M. M. Troester, B. V. Vaughn, The AASM Manual for
the Scoring of Sleep and Associated Events: Rules, Terminology and
Technical Specifications, number 2.4 in American Academy of Sleep
Medicine, Darien IL, 2017.

[8] R. S. Rosenberg, S. Van Hout, The American Academy of Sleep
Medicine Inter-scorer Reliability Program: Sleep Stage Scoring,
Journal of Clinical Sleep Medicine (2013). doi:10.5664/jcsm.2350.

[9] A. L. Fogel, J. C. Kvedar, Artificial intelligence powers dig-
ital medicine, npj Digital Medicine 1 (2018). doi:10.1038/
s41746-017-0012-2.

[10] E. J. Topol, High-performance medicine: the convergence of human
and artificial intelligence, Nature Medicine 25 (2019) 44–56. doi:10.
1038/s41591-018-0300-7.

[11] T. Penzel, R. Conradt, Computer based sleep recording and analysis,
Sleep Medicine Reviews 4 (2000) 131–148. doi:10.1053/smrv.1999.
0087.

[12] L. Fiorillo, A. Puiatti, M. Papandrea, P.-L. Ratti, P. Favaro, C. Roth,
P. Bargiotas, C. L. Bassetti, F. D. Faraci, Automated sleep scoring: A
review of the latest approaches, Sleep Medicine Reviews 48 (2019).
doi:10.1016/j.smrv.2019.07.007.

[13] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015)
436–444. doi:10.1038/nature14539.

[14] C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

[15] S. Wermter, R. Sun, An Overview of Hybrid Neural Systems, in:
G. Goos, J. Hartmanis, J. van Leeuwen, S. Wermter, R. Sun (Eds.),
Hybrid Neural Systems, volume 1778, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000, pp. 1–13. doi:10.1007/10719871_1, series Ti-
tle: Lecture Notes in Computer Science.

[16] S. Biswal, H. Sun, B. Goparaju, M. B.Westover, J. Sun,M. T. Bianchi,
Expert-level sleep scoring with deep neural networks, Journal of
the AmericanMedical Informatics Association 25 (2018) 1643–1650.
doi:10.1093/jamia/ocy131.

[17] L. Zhang, D. Fabbri, R. Upender, D. Kent, Automated sleep stage
scoring of the Sleep Heart Health Study using deep neural networks,
Sleep 42 (2019). doi:10.1093/sleep/zsz159.

[18] S. Enshaeifar, S. Kouchaki, C. C. Took, S. Sanei, Quaternion Singu-
lar Spectrum Analysis of Electroencephalogram With Application in
Sleep Analysis, IEEE Transactions on Neural Systems and Rehabili-
tation Engineering 24 (2016) 57–67. doi:10.1109/TNSRE.2015.2465177.

[19] T. Lajnef, S. Chaibi, P. Ruby, P.-E. Aguera, J.-B. Eichenlaub,
M. Samet, A. Kachouri, K. Jerbi, Learning machines and sleeping
brains: Automatic sleep stage classification using decision-tree multi-
class support vector machines, Journal of Neuroscience Methods 250
(2015) 94–105. doi:10.1016/j.jneumeth.2015.01.022.

[20] S. Mahvash Mohammadi, S. Kouchaki, M. Ghavami, S. Sanei, Im-
proving time-frequency domain sleep EEG classification via singular
spectrum analysis, Journal of Neuroscience Methods 273 (2016) 96–
106. doi:10.1016/j.jneumeth.2016.08.008.

[21] S. Charbonnier, L. Zoubek, S. Lesecq, F. Chapotot, Self-evaluated
automatic classifier as a decision-support tool for sleep/wake staging,
Computers in Biology andMedicine 41 (2011) 380–389. doi:10.1016/
j.compbiomed.2011.04.001.

[22] G. Garcia-Molina, F. Abtahi, M. Lagares-Lemos, Automated NREM
sleep staging using the Electro-oculogram: A pilot study, in: En-
gineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, IEEE, 2012, pp. 2255–2258.
URL: http://ieeexplore.ieee.org/abstract/document/6346411/.

[23] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, H. Dickhaus, Au-
tomated sleep stage identification system based on time-frequency
analysis of a single EEG channel and random forest classifier, Com-
puter Methods and Programs in Biomedicine 108 (2012) 10–19.
doi:10.1016/j.cmpb.2011.11.005.

[24] M. Zokaeinikoo, Automatic Sleep Stages Classification, Ph.D. thesis,
2016. URL: http://trace.tennessee.edu/utk_gradthes/4088/.

[25] A. Ugon, Fusion Symbolique et Données Polysomnographiques,
Ph.D. thesis, 2015.

[26] C. Chen, A. Ugon, C. Sun, W. Chen, C. Philippe, A. Pinna, Towards a
Hybrid Expert System Based on Sleep Event’s Threshold Dependen-
cies for Automated Personalized Sleep Staging by Combining Sym-
bolic Fusion and Differential Evolution Algorithm, IEEE Access 7
(2019) 1775–1792. doi:10.1109/ACCESS.2018.2887082.

[27] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk,
J. Faubert, Deep learning-based electroencephalography analysis:
a systematic review, Journal of Neural Engineering 16 (2019).
doi:10.1088/1741-2552/ab260c.

[28] F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Inter-
pretable Machine Learning, arXiv:1702.08608 [cs, stat] (2017).
ArXiv: 1702.08608.

[29] M. Glos, A. Sabil, K. S. Jelavic, C. Schöbel, I. Fietze, T. Penzel, Char-
acterization of Respiratory Events in Obstructive Sleep Apnea Using
Suprasternal PressureMonitoring, Journal of Clinical SleepMedicine
14 (2018) 359–369. doi:10.5664/jcsm.6978.

[30] T. Penzel, A. Sabil, The use of tracheal sounds for the diagnosis
of sleep apnoea, Breathe 13 (2017) e37–e45. doi:10.1183/20734735.
008817.

[31] T. Penzel, A. Sabil, Physics and Applications for Tracheal Sound
Recordings in Sleep Disorders, in: K. N. Priftis, L. J. Hadjileontiadis,
M. L. Everard (Eds.), Breath Sounds, Springer International Publish-
ing, Cham, 2018, pp. 83–104. doi:10.1007/978-3-319-71824-8_6.

[32] P. Hauri, D. R. Hawkins, Alpha-delta sleep, Electroencephalogra-
phy and Clinical Neurophysiology 34 (1973) 233–237. doi:10.1016/

J. Vanbuis et al.: Preprint submitted to Elsevier Page 9 of 10



User-friendly sleep scoring Part I: automatic classification based on medical knowledge

0013-4694(73)90250-2.
[33] T. K. Ho, Random Decision Forests (1995). doi:10.1109/ICDAR.1995.

598994.
[34] L. E. Baum, T. Pietrie, Statistical Inference for Probabilistic Functions

of Finite State Markov Chains, The Annals of Mathematical Statistics
(1966) 1554–1563. doi:10.1214/aoms/1177699147.

[35] J. Yang, Toward physical activity diary: motion recognition using
simple acceleration features with mobile phones, in: Proceedings
of the 1st international workshop on Interactive multimedia for con-
sumer electronics - IMCE ’09, ACMPress, Beijing, China, 2009, p. 1.
doi:10.1145/1631040.1631042.

[36] L. Riaboff, S. Poggi, A. Madouasse, S. Couvreur, S. Aubin,
N. Bédère, E. Goumand, A. Chauvin, G. Plantier, Development of
a methodological framework for a robust prediction of the main be-
haviours of dairy cows using a combination of machine learning al-
gorithms on accelerometer data, Computers and Electronics in Agri-
culture 169 (2020). doi:10.1016/j.compag.2019.105179.

[37] J. Cohen, A Coefficient of Agreement for Nominal Scales, Educa-
tional and Psychological Measurement 20 (1960) 37–46. doi:10.1177/
001316446002000104.

J. Vanbuis et al.: Preprint submitted to Elsevier Page 10 of 10




