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Abstract 16 

Fire-vegetation relationships are critical to understand transient mountain ecosystems and 17 

their long-term landscape dynamics, which is essential for alpine forest conservation. In this 18 

paper we aim to 1) reconstruct the Holocene fire history at high altitudes of the southern 19 

Central Pyrenees, 2) add evidence to the debate on fire origin, naturally or anthropogenically 20 

produced, 3) determine the importance of fire as a disturbance agent for sub-alpine and alpine 21 

vegetation, in comparison with the plant community internal dynamics applying conditional 22 
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inference trees. We present and compare microcharcoal and pollen data series, from two 23 

lacustrine sedimentary sequences in the Central Pyrenees: Basa de la Mora (BSM), within the 24 

treeline ecotone at the sub-alpine belt (1914 m a.s.l.) and Marboré Lake, above the treeline at 25 

the alpine belt (2612 m a.s.l.). 26 

We evidence that, fire activity was not the most important factor in driving vegetation 27 

dynamics regionally. Our results suggest that spatially, the fire signal might be site-dependent 28 

while over time, climate exerted a strong influence on fire activity during the early-to-mid 29 

Holocene, showing more fires during the Holocene Thermal Maximum (HTM) (ca. 7000-6000 30 

cal yr BP) whereas fire activity decreased with the cold Neoglacial period. At ca. 3700 cal yr BP, 31 

fire activity increased coinciding with a regional landscape opening, suggesting that human 32 

activities may have strengthened the importance of fire. Fire activity remained low over the 33 

last two millennia but a remarkable Holocene maximum for the last centuries in both 34 

sequences is observed, likely related to increasing human pressure. 35 

 36 
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 38 

 39 

 40 

 41 

 42 

 43 

 44 



3 
 

1. Introduction 45 

Fire is a relevant disturbance of the Earth system, driving significant changes in ecosystem 46 

structure and function, species evolution, biomass dynamics or global carbon cycling (Bond 47 

and Midgley, 1995; Bowman et al., 2009; Pausas and Schwilk, 2012; Archibald et al., 2013). Fire 48 

regimes are driven by factors such as climate (e.g. Daniau et al., 2012), vegetation through fuel 49 

load, connectivity or flammability, soil types, ignition sources-natural or anthropogenic-, and 50 

topographical features (Whitlock et al., 2010; Krawchuk and Moritz, 2011). Thus, the sensitivity 51 

of any ecosystem to fire depends on its own characteristics. 52 

Sub-alpine and alpine plant communities are formed by alpine pastures and weakly flammable 53 

conifer woodlands like Pinus sylvestris L., Pinus uncinata Ramond ex DC, Juniperus communis L. 54 

and Abies alba Mill, which hold no post-fire strategy, especially after crown fires (Keeley et al., 55 

2012). Fire in mountains is associated with the occurrence of woody species (Leys et al., 2014), 56 

and is therefore infrequent above the treeline due to the lack of arboreal biomass. Under 57 

natural conditions, fire occurrence will generally be controlled by the fuel moisture degree, in 58 

turn driven by precipitation and temperature. 59 

The high landscape heterogeneity in mountain areas often implies different fire behaviour 60 

(Leys and Carcaillet, 2016; Fréjaville et al., 2018) at the sub-regional or local scales. Mountain 61 

environments are in addition very sensitive to climate, fire, and land use changes, because of 62 

their narrow      tolerance capabilities, especially at the boundaries of the treeline (Theurillat 63 

and Guisan, 2001; Pauli et al., 2012). 64 

Fire occurrence is generally low in alpine ecosystems under present climatic conditions and 65 

land use patterns in the Pyrenees. However, fire activity has changed over time (Jiménez-66 

Ruano et al., 2019) and may have been a more frequent disturbance over the last millennia, 67 

with different climatic settings and more intense human activities. In fact, human activities 68 

have been modifying natural fire regimes through changing land use (Pausas and Keeley, 2014) 69 
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since centuries or even millennia (Carracedo et al., 2017; Morales-Molino et al., 2017), using 70 

fire as a tool in land management. For instance, during the mid-19th century humans used fire 71 

as a common tool to maintain opened mountain landscapes in the Pyrenees (García-Ruiz et al., 72 

2015; García-Ruiz and Lasanta, 2018), modifying the structure of sub-alpine systems. However, 73 

due to the abandonment of traditional land uses, the extension of opened areas has been 74 

reduced, increasing forest connectivity and the accumulation of standing fuel loads. 75 

Consequently, the increase in drought conditions and temperature due to global warming 76 

(IPPC, 2014), together with the increase in the amount of standing fuel may enhance the risk of 77 

wildfires in southern European mountains (Ryan, 2000; Wastl et al., 2013). This may reduce 78 

forest resilience to wildfires (Stevens‐Rumann et al., 2018), while it can also provide an 79 

opportunity for ecosystem restoration under particular circumstances (Leverkus et al., 2019). 80 

Understanding to what extent changing fire regimes at longer temporal scales have 81 

contributed to the current mountain landscapes is paramount for designing sustainability 82 

policies for socio-ecological systems. In this context, long-term ecology research emerges as a 83 

critical tool to obtain the needed time series to address environmental changes at centennial 84 

to millennial      time-scales. Sedimentary microcharcoal analysis improves our understanding 85 

on the long-term role of fire as a key ecological factor (Whitlock and Larsen, 2001; Power et al., 86 

2008; Colombaroli et al., 2010; Feurdean et al., 2012), whereas pollen analysis in sediments 87 

has been widely used for the study of vegetation changes (Carrión et al., 2010; and references 88 

therein Birks and Björn, 2018). Both proxies have facilitated and strengthened our 89 

understanding of past disturbances in the landscape. 90 

The comparison of different charcoal records at global scale has revealed significant regional 91 

differences in fire activity during the Holocene, probably caused by the complex interplay 92 

between climate, vegetation and human impact (Power et al., 2008; Vannière et al., 2011, 93 

2016; Marlon et al., 2013). Thus, despite climate seems to be the main fire driving force at 94 
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large spatial scales in fire-prone areas, regional studies evidence that other local factors would 95 

be also determining the high temporal variability in biomass burning (e.g. Gavin et al., 2006; 96 

Feurdean et al., 2012, 2017; Leys and Carcaillet, 2016). Given this spatial and temporal 97 

heterogeneity in variables controlling fire, site-specific histories are needed to show how fire 98 

activity has been modulated by microclimate, vegetation, topography and land-use (Gavin et 99 

al., 2006; Whitlock et al., 2010; Rius et al., 2011). 100 

Apart from fire, climate and other external disturbances, plant population dynamics are also 101 

determined by the ecological memory of a community, defined as the capacity of past states of 102 

the system to influence present or future responses (Padisak, 1992; Ogle et al., 2015). In this 103 

regard, antecedent taxa dynamics and fire activity may also be relevant explaining the 104 

abundance of a taxa at a given time. Therefore, understanding ecological memory may help to 105 

assess long-term ecosystem resilience. 106 

Contrary to other European mountain ranges, where long-term fire activity has been widely 107 

studied in mountain sites (e.g. Tinner et al., 1998, 2015; Blarquez and Carcaillet, 2010; 108 

Colombaroli et al., 2010; Feurdean et al., 2012; Leys et al., 2014; Florescu et al., 2018), we 109 

know little about the long-term fire history of the Iberian Peninsula mountain ranges (Pérez-110 

Obiol et al., 2012; Carracedo et al., 2017; Morales-Molino et al., 2017) and, in particular, of the 111 

Pyrenean mountains. While most studies focus on the eastern part (Ejarque et al., 2010; Bal et 112 

al., 2011; Pérez-Obiol et al., 2012; Cunill et al., 2013; Garcés-Pastor et al., 2017) presenting the 113 

evolution of fire activity during the Lateglacial and Holocene periods very few have been 114 

developed at the central part (Gil-Romera et al., 2014), and little is known about the role of 115 

fire transforming alpine ecosystems. 116 

In the current research we aim to 1) reconstruct the long-term fire history in the southern 117 

Central Pyrenees, 2) add evidence to the debate on fire origin, naturally or anthropogenically 118 

driven, comparing our Holocene fire series with other local and regional evidence, and 3) 119 
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compare the relative influence of antecedent values of pollen abundance and fire activity 120 

versus concurrent fire activity on the dynamics of several taxa. We present an encompassing 121 

comparison of well-dated Holocene sedimentary charcoal records and their fossil pollen 122 

assemblages from the sub-alpine, Basa de la Mora Lake (BSM) (at the treeline) and alpine 123 

Marboré Lake (MAR) (above the treeline). 124 

2. Regional setting 125 

The Pyrenees are a mountain range located in north eastern Iberian Peninsula (Fig. 1a), 126 

between the Atlantic Ocean and the Mediterranean Sea. Water availability in the Pyrenees is 127 

controlled       by an important west-east rainfall gradient (2000 to 1000 mm) driven by the      128 

North Atlantic Oscillations (Araguas-Araguas and Díaz Teijeiro, 2005). The western Pyrenees 129 

have a direct Atlantic influence with a humid climate, while the eastern Pyrenees have a 130 

stronger Mediterranean influence, with a drier and warmer season. Beyond these general 131 

features, there is also a high-climatic variability controlled by topography and elevation, with 132 

highest mean annual precipitation (MAP) values occurring at the highest elevations (2000-133 

2500 mm), and a temperature lapse rate of ca. -0.6º/100 m (García-Ruiz et al., 2015) with a 134 

mean annual temperature gradient that goes from 5-10 ºC, in the valleys to below 0 ºC in the 135 

high massifs (Ninyerola et al., 2005) (Fig. 1b). 136 

The altitudinal gradient defines the main vegetation belts in the Pyrenees (Fig. 2). The low 137 

montane community (ca. 1200-1400 m a.s.l.) is characterized by mosaics of croplands and 138 

open mixed areas of Quercus ilex L., Quercus faginea Lam. /cerrioides Willk. & Costa, P. 139 

sylvestris with a dense shrub land of different juniper species, Buxus sempervirens L. and 140 

Genista scorpius (L.) DC. among others. The upper montane community (ca. 1400-1600 m 141 

a.s.l.) features well-developed broadleaf forests mainly composed by Corylus avellana L., 142 

Betula pendula Roth, Fraxinus excelsior L., Acer campestre L., Sorbus aria (L.) Crantz, Sorbus 143 

aucuparia L. mixed with P. sylvestris, P. uncinata or A. alba. The sub-alpine belt (ca. 1600-2000 144 
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m a.s.l.) is dominated by coniferous forests of P. uncinata with sparse shrubs like J. communis 145 

or Rhododendron ferrugineum L. Although slope orientation, soil formation, microclimate and 146 

past human activities interact to determine the upper limit of the closed forest, the timberline 147 

is located at ca. 1800-1900 m a.s.l. Both timberline and treeline (up to ca. 2000-2200 m a.s.l.) 148 

are communities where the dominant tree is P. uncinata (Fig. 2). Alpine and sub-nival 149 

communities (higher than ca. 2000 m a.s.l.) are formed by alpine herbs and dwarf shrubs. 150 

Fires in the Pyrenees occur mostly in forested areas (Cubo et al., 2012; Vázquez de la Cueva, 151 

2016) and they are mostly naturally produced, triggered by lightning as the main ignition 152 

source in high altitude locations (Amatulli et al., 2007; Cubo et al., 2012; Vázquez de la Cueva, 153 

2016), during summer storms (Font, 1983; Vázquez de la Cueva, 2016). Despite human-caused 154 

fires do happen as well, these take place in the more fragmented areas in the montane zone 155 

(Amatulli et al., 2007). 156 

MAR is an alpine glacial lake located at 2612 m a.s.l. at the base of the Monte Perdido Glacier 157 

(Fig. 1c). BSM (1914 m a.s.l.) is a shallow glacial lake located on the north-facing slope of the 158 

Cotiella Peak (Fig. 1d). Although both lakes in this study lay at the Central Pyrenees and are ca. 159 

30 km from each other, each lake presents quite different geographical and ecological 160 

characteristics summarized in Table 1. MAR does not present woody vegetation around the 161 

lake, as it is placed in the alpine belt. The treeline is located 600 m below, thus, fires are less 162 

likely locally. However, BSM is currently located in the sub-alpine belt, and thus, within the 163 

treeline ecotone dominated by P. uncinata communities. Fires can potentially occur in the 164 

vicinity of the lake, although fire activity is nowadays low in this place. Furthermore, the 165 

modern fire activity at a regional scale in both areas is weak, with ca. 1 to 2 fire events 166 

occurring every 30 years, invariably set by natural causes (mostly summer storms) that, 167 

however, often create mid-to-large fires with a burnt area between 10-100 Ha (Vázquez de la 168 

Cueva, 2016). 169 
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 170 

3. Materials and Methods 171 

3.1 Lake-coring, chronology and pollen analysis 172 

Previous multiproxy analyses of both sedimentary records have already been published, Pérez-173 

Sanz et al. (2013) for BSM Lake and Leunda et al. (2017) and Oliva-Urcia et al. (2018) for MAR 174 

Lake. In the present study we focus on the Holocene section of both sequences. BSM depth-175 

age model is based on 13 14C terrestrial plant macrofossil ages along 11 m depth (mean 176 

sedimentation rate: 0,149 cm/yr), and MAR depth-age model is based on 9 14C bulk sediment 177 

dates along 6 m depth (mean sedimentation rate: 0,061 cm/yr). In both cases, the most recent 178 

part has been dated with 210Pb/137Cs. Depth-age models were carried out with Clam 2.2 179 

software (Blaauw, 2010) using linear interpolation between dated levels (Fig. 3). Pollen 180 

analysis for both sequences was conducted in Pérez-Sanz et al. (2013) and Leunda et al. (2017) 181 

following the standard chemical procedure (Moore et al., 1991) but including Thoulet solution 182 

(2.0 g/cm3) for separation and Lycopodium clavatum spores to calculate concentration 183 

(Stockmarr, 1971). Pollen has been identified under a light microscope, and using the 184 

reference collection from the Pyrenean Institute of Ecology (IPE-CSIC), determination keys and 185 

photo atlases (Moore et al., 1991; Reille, 1992). Results have been calculated both in 186 

percentages and pollen accumulation rates; (PAR #/cm2yr). More details about the 187 

chronological framework and pollen analysis are provided in Pérez-Sanz et al. (2013) and 188 

Leunda et al. (2017). 189 

3.2 Microcharcoal analysis 190 

We present here microcharcoal series for BSM and MAR as fire proxy, aiming to achieve our 191 

first objective, i.e. to reconstruct the long-term regional fire activity. The term microcharcoal 192 

refers to small carbonized particles (Fig. S1) produced during vegetation fires (Jones et al., 193 
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1997) and transported by aeolian and fluvial agents from the combustion site to the 194 

sedimentation basin. In lakes charcoal preserves well due to its relatively high resistance to 195 

chemical and microbial decomposition (Habib et al., 1994; Hart et al., 1994; Verardo, 1997; 196 

Hockaday et al., 2006; Quénéa et al., 2006). 197 

Microcharcoal analyses were carried out in a total of 108 samples for MAR and 130 samples 198 

for BSM. We sampled microcharcoal at the same depths of the pollen samples previously 199 

analysed. In BSM sample resolution was every 5 cm with a mean temporal resolution between 200 

samples ca. 70 years, while MAR sampling was performed every 5-10 cm with a mean 201 

temporal resolution between samples ca. 109 years, except for the upper part, where 202 

sampling      was every 2 cm. Sediment samples were processed using the chemical procedure 203 

following Daniau et al. (2009, 2013) at the UMR-EPOC laboratory (CNRS-Université de 204 

Bordeaux). The microcharcoal extraction technique consisted of a chemical treatment of 37% 205 

HCl, 68% HNO3 and 33% H2O2 performed over 24 h on 0,3 g of dried sediment, followed by a 206 

dilution of 0,1 applied to the residue. The suspension was then filtered onto a cellulose acetate 207 

membrane containing nitrocellulose of 0,45 µm porosity and 47 mm in diameter. A portion of 208 

this membrane was mounted onto a slide. 209 

The identification and quantification of microcharcoal was performed using automated image 210 

analysis with an automated Leica DM6000M microscope at x500 magnification in transmitted 211 

light and following the criteria proposed by Boulter (1994), identifying charcoal as being black, 212 

opaque and angular with sharp edges. This technique, allows identifying microcharcoal 213 

particles automatically, once colour and lightning settings are established for identifying them, 214 

reducing considerably the counting task. Identification of unburned particles, characterized by 215 

the absence of plant structures and distinct level of reflectance, was used to set the best-fit 216 

threshold level to secure identification of microcharcoal by image analysis. Critical particles 217 

were distinguished from dark minerals by reflected light (Clark, 1984) and in order to have a 218 
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good statistical representation of each sample, 200 view fields (200 images) of 0.0614 mm2 219 

were taken in colour with a 1044 x 772 pixels digitizing camera (1 pixel = 0.276 µm). The 220 

surface scanned by the microscope represented a surface area of 12.279 mm2. Although this 221 

technique has primarily been applied in marine sediments (Daniau et al., 2009, 2013) it has 222 

also been successfully used for lake sediments (e.g. Tinner et al., 1999; Leys et al., 2014; Remy 223 

et al., 2018). Microcharcoal particles below 10 µm have not been considered, as theoretical 224 

considerations showed that particles smaller than 5-10 μm in diameter are difficult to identify 225 

(Clark, 1988). 226 

From the microcharcoal measurements, three parameters were calculated for each sample: (i) 227 

the concentration of microcharcoal (CCnb: #/g); (ii) the concentration of microcharcoal surface 228 

(CCs), which is the sum of all surfaces of microcharcoal in one sample per gram (μm2/g) and (iii) 229 

microcharcoal accumulation rate (CHAR: #/cm2yr), in order to have a time-fitted value of 230 

charcoal. 1cm3 of sediment was sampled with a syringe and weighted (g) in order to calculate 231 

sediment density (g/cm3) and multiply it with charcoal concentration (#/g) and sedimentation 232 

rate (cm/yr) to obtain microcharcoal accumulation rate (#/cm2yr). 233 

Several replicate analyses were done (7 for MAR and 10 for BSM) randomly analysing 10 times 234 

each. For this replicate samples, the mean value and standard deviation was calculated. For 235 

the comparison of both sequences, microcharcoal influx data was normalized with Z-scores 236 

(Glantz et al., 2016). 237 

3.3 Numerical analyses: conditional inference trees 238 

Accomplishing the third objective of our research implied estimating to what extent long-term 239 

fire dynamics is a relevant variable shaping the sub-alpine and alpine Pyrenees landscape. We 240 

thus calculated the effect that antecedent and concurrent fires (CHAR), have on the 241 

abundance of certain taxa (PAR). On the other hand, we intend to quantify to what extent PAR 242 

itself is determined by its own antecedent values. In doing so, we incorporate a quantitative 243 
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approach to the ecological memory concept (Ogle et al., 2015). In order to analyse the effect 244 

of past and concurrent CHAR and past PAR on each PAR value, we aligned the samples of each 245 

site with their antecedent ones, generating a data structure with a lag of order 1, following the 246 

model expressed in Equation 1: 247 

Equation 1: PAR ~ CHAR + CHAR.antecedent + PAR.antecedent 248 

PAR is the response, with the same age and depth as CHAR which represents concurrent fire, 249 

while CHAR.antecedent and PAR.antecedent have the age and depth of the previous sample, 250 

and represent the effect of past states on the dynamics of the system. 251 

PAR values of Pinus, Abies, Betula, Corylus, and Herbs were used as response variable for both 252 

sites. Deciduous Quercus was only modelled in BSM because MAR records very low and sparse 253 

Quercus PAR values. 254 

The models were fitted with conditional inference trees (Hothorn et al., 2006) through the 255 

ctree function of the R package partykit (Hothron and Zeileis, 2015). Conditional inference 256 

trees are recursive partition models that use a permutation test to find on each iteration the 257 

threshold of any predictive variable that better splits the data into two homogeneous 258 

partitions. The process is repeated on each data partition until further data splitting is not 259 

possible, or the terminal nodes of the recursive partition tree reach a minimum sample size. 260 

The resulting model is a regression tree, in which variables located higher up in the tree 261 

hierarchy are more important to explain patterns in the data than variables located in lower 262 

nodes. Regression trees are easy to interpret, represent partial interactions among predictive 263 

variables, and do not rely on assumptions about the properties of the data in the way linear 264 

models do. Despite the fact that they are generally underused in ecology, conditional inference 265 

trees have proved to be extremely useful in conservation biology (Johnstone et al., 2014). 266 

4. Results 267 
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4.1 Temporal trends in microcharcoal records 268 

Variations in microcharcoal concentrations (CCnb and CCs) in each lake show very similar 269 

fluctuations (Fig. S2). This confirms that both CCnb and CCs record the same pattern of 270 

microcharcoal concentration variability, suggesting that there is no microcharcoal 271 

overrepresentation as the result of potential fragmentation during particle production or 272 

transport and thus, both units could be used to interpret the fire record (Daniau et al., 2012). 273 

CHAR values (microcharcoal influx) also follow similar concentration variability in both 274 

sequences (Fig. S2). 275 

4.1.1 MAR Lake microcharcoal sequence 276 

The beginning of the sequence shows a low microcharcoal influx between ca. 9500-7000 cal yr 277 

BP (mean influx of 9x104 particles/cm2yr; SD 2.3x104 #/cm2yr). Microcharcoal increases from 278 

7000-6500 and 6200-5700 cal yr BP (mean influx of 1.7x105 particles/cm2yr; SD 3.9x104 279 

particles/cm2yr). A significant decrease is appreciated from 5700-3600 cal yr BP (mean influx of 280 

1x105 particles/cm2yr; SD 2.8x104 particles/cm2yr). Fluctuating CHAR values are found between 281 

3600 and 1600 with several local maxima (up to an influx value of 2.6x105 particles/cm2yr). The 282 

signal becomes weak between 1600-1000 cal yr BP but an abrupt and consistent charcoal 283 

increase is observed afterwards until present day, reaching maximum values (maximum influx 284 

value 3.1x105 particles/cm2yr) (Fig. S2 and Fig. 4a). 285 

4.1.2 BSM Lake microcharcoal sequence 286 

At BSM, low but fluctuating values are present during 9500-6600 cal yr BP (mean influx 1.6x105 287 

particles/cm2yr; SD 2x105 particles/cm2yr) with a significant microcharcoal peak at ca. 6700 cal 288 

yr BP (microcharcoal influx of 2.2x105 particles/cm2yr). Subsequently, the signal is weakened 289 

with sustained low microcharcoal values until ca. 3700 cal yr BP (mean influx 5.4x104 290 

particles/cm2yr; SD 2.4x104 particles/cm2yr), where it increases showing a marked isolated 291 
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maximum (microcharcoal influx of 2.2x105 particles/cm2yr). Microcharcoal signal maintains low 292 

afterwards, until almost recent times (mean influx 4.4x104 particles/cm2yr; SD 2.3x104 293 

particles/cm2yr) with the exception of a minor fire peak ca. 1200 cal yr BP. The maximum 294 

microcharcoal signal is found for the last decades (up to an influx value of 2.4x105 295 

particles/cm2yr) (Fig. S2 and Fig. 4g). 296 

4.2 Conditional inference trees 297 

Conditional inference trees (Fig. 5 and Fig. S3 for all taxa and sites) found significant patterns 298 

of influence of the explanatory variables we have used (antecedent PAR, antecedent CHAR and 299 

CHAR) on PAR, except in the case of Pinus and Betula in MAR (Fig. S3a,b). For most taxa, 300 

PAR.antecedent, which represents the endogenous dynamics of the taxa, is the best 301 

explanatory variable (Fig. 5a,c,d,e,f and Fig. S3c,d,e). Hence, larger values of antecedent PAR 302 

seem to have a positive effect on the taxa’s abundance, at any given time, especially in BSM. 303 

Antecedent CHAR had a significant and positive effect on Quercus PAR in BSM (Fig. 5f), while 304 

concurrent CHAR influenced positively the pollen abundance of Abies and Corylus in MAR (Fig. 305 

5a,b). The boxplots represent mean values of each PAR series classified according to the 306 

explanatory variables. For instance, looking at Abies MAR (Fig. 5a), abies.antecedent is the best 307 

explanatory variable determining large Abies values (right boxplot), only when 308 

abies.antecedent is low, concurrent CHAR succeeds predicting Abies PAR to a certain 309 

threshold, producing the next classified group (central boxplot). 310 

5. Discussion 311 

5.1 Pollen and microcharcoal source: considerations for the studied sequences 312 

Comparing these two sequences brings forward the need to look at site-specific settings, as 313 

these might be determining different fire behaviour and, what it is most important, source 314 

area for biological proxies and transport pathways (Corella et al., 2018). The study sites are 315 
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defined by both catchment dimensions and altitude, thus, several studies have evidenced that 316 

higher elevations may record best regional rather than local environmental variations 317 

(Escudero et al., 2016; Corella et al., 2018). 318 

MAR (2612 m a.s.l.) is placed ca. 600 m higher than the current treeline (Figs. 1c and 2), and 319 

we infer that due to the absence of tree macrofossils along the sedimentary sequence (Leunda 320 

et al., 2017), the treeline would have not reached the Marboré cirque during the Holocene. 321 

Moreover, MAR lies in an open cirque wind-exposed supporting that the source area of both 322 

arboreal pollen and microcharcoal particles would come from large areas both from northern 323 

and southern slopes of the Pyrenees, having a wide catchment area and thus registering fires 324 

and vegetation dynamics from far. Indeed, regional tropospheric circulation becomes a more 325 

important factor in particle transport and deposition above ca. 2100 m a.s.l., whereas below 326 

this altitude horizontal regional transport is less patent (Escudero et al., 2016). 327 

On the other hand, BSM is currently located in the sub-alpine belt (1914 m a.s.l.) at the 328 

treeline ecotone (Figs. 1d and 2). During the Holocene the lake would have been likely 329 

colonized by different forest communities (Pérez-Sanz et al., 2013), enabling fires to also occur 330 

locally. Thus, the source area of both tree pollen and microcharcoal could be partially a 331 

background signal but still more local than in MAR, with an important input from nearby forest 332 

communities. 333 

5.2 Fire history through the Holocene in the Central Pyrenees 334 

5.2.1 Low fire activity during the early Holocene (ca. 9500-7000 cal yr BP) 335 

Fire activity was relatively low during the early Holocene, as inferred from both BSM and MAR 336 

sequences, although they show differing patterns; MAR holds a lower variability compared to 337 

BSM which evidences a fluctuating fire activity (Fig. 4a,g). A rather low fire activity is also 338 

detected in other Pyrenean sequences (Cunill et al., 2013; Gil-Romera et al., 2014; Garcés-339 
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Pastor et al., 2017). Pine communities dominated both lakes at a regional scale (ca. 70% of 340 

pine pollen; Fig. 4b,h), and despite the lack of treeline reconstructions for the early Holocene 341 

in the Pyrenees, Cunill et al. (2013) demonstrated the existence of pine biomass at 2200 m 342 

a.s.l. in the eastern Pyrenees, which could mean that BSM could already be surrounded by 343 

pines. On the other hand, the importance of mesophytes (mainly Corylus and Betula) is clear in 344 

the MAR sequence, similar to more Atlantic sites like El Portalet (González-Sampériz et al., 345 

2006; Gil-Romera et al., 2014). In this regard, significant differences in vegetation composition 346 

have been recorded along the Pyrenees during the early Holocene related to the more Atlantic 347 

(González-Sampériz et al., 2006; Gil-Romera et al., 2014; Leunda et al., 2017) vs. more 348 

Mediterranean influence (e.g. Miras et al., 2007; Pérez-Obiol et al., 2012; Pérez-Sanz et al., 349 

2013; Connor et al., 2019).  350 

Thus, the different patterns between BSM and MAR in terms of fire activity could be related to 351 

the differences in biomass type and availability and to the lake´s geographical settings, which 352 

today is characterized by different amounts of rainfall (Fig. 1b). Especially, the rainfall gradient 353 

has a critical effect on the landscape flammability as, if biomass is available, dry settings will 354 

more easily become flammable. This would have been the case in BSM, located at a denser 355 

vegetated, drier and more continental lower altitude (Pérez-Sanz et al., 2013) compared to the 356 

alpine, locally wetter MAR site. 357 

Even if fire severity and extent is difficult to infer from microscopic charcoal data alone, pollen 358 

assemblages variation (e.g. an increase in herbaceous pollen taxa) can be used as indirect 359 

evidence for high severity fires (Minckley and Shriver, 2011). As there are no evidences of 360 

landscape opening in terms of herb expansion, it is likely that these fires did not play a 361 

significant role in vegetation dynamics. In addition to this, no human occupation signs have 362 

been detected for the Central Pyrenees at this period. The livelihood of Mesolithic (11700-363 

7800 cal yr BP) people was hunting-gathering in small nomadic groups (Valdeyron et al., 2008; 364 
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Ejarque et al., 2010), which implies weak environmental imprints (Montes et al., 2016; Rojo-365 

Guerra et al., 2018). 366 

5.2.2 Increasing fire activity at HTM (ca. 7000-5500 cal yr BP) 367 

Fire activity increased over the mid-Holocene in both sequences. MAR records an earlier 368 

increase starting at ca. 7000 cal yr BP and, although fluctuating, lasting until ca. 5500 cal yr BP 369 

(Fig. 4a), whereas the increase in fire activity in BSM occurs at ca. 6700 cal yr BP (Fig. 4g). 370 

Other eastern Pyrenean sequences such as in Estanilles peatbog also show a fire increase 371 

(Pérez-Obiol et al., 2012).      372 

The expansion of mesophytes (especially Betula, deciduous Quercus and Corylus) in BSM 373 

occurred during the mid-Holocene (8200-5500 cal yr BP; Fig. 4 j,k), when Betula could have 374 

reached the sub-alpine belt (Pérez-Sanz et al., 2013; Leunda et al., 2019). The treeline, mainly 375 

composed by Pinus, would have reached the highest levels during this period (Cunill et al., 376 

2013; Leunda et al., 2019). This biomass expansion has been closely related to  a summer 377 

temperature increase. In fact, the chironomid based July temperature reconstruction for the 378 

Holocene in BSM, shows that the maximum summer temperatures occurred between 8000-379 

6500 cal yr BP (Fig. 4n) which is in agreement with other European summer temperature 380 

reconstructions  defining the HTM (Renssen et al., 2009; Samartin et al., 2017). Thereby, 381 

favourable climate conditions for burning established supported by the constant and 382 

increasing biomass availability. Nevertheless, fires were probably neither intense nor virulent, 383 

since vegetation does not show important changes.      384 

In addition to this, scatter Neolithic archaeological sites have been found at lower elevations in 385 

the Central Pyrenees where sparse fumier levels (succession of animal manure, soil and plant 386 

remains, which besides being naturally fermented, were sometimes burned to sanitize the 387 

enclosure (Alday et al., 2012; Montes and Alday, 2012) were identified (Figs. 1a and 6o). 388 

However, no pollen evidence for agro-pastoral activities are detected in MAR and BSM nor in 389 
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the nearby palaeoenvironmental sequences at this time (González-Sampériz et al., 2017). 390 

Nevertheless, a rather early human impact with punctual presence of cereal pollen grains since 391 

the Neolithic onset (ca. 7000 cal yr BP) or even earlier (Ejarque et al., 2010; Pérez-Obiol et al., 392 

2012) has been detected in the eastern Pyrenean palaeoenvironmental sequences, where 393 

sparse sub-alpine Neolithic settlements were found (Gassiot Ballbè et al., 2014; Gassiot Ballbè, 394 

2016). 395 

Thus, even if it is not possible to discard punctual anthropogenic burning practices during the 396 

Neolithic period, it is not likely that they would leave a large imprint at high altitude sites as 397 

evidences for human presence occur locally at lower altitudes (González-Sampériz et al., 2019). 398 

Thus, the driving mechanism for the increase in fire activity at both sites at ca. 7000 cal yr BP 399 

might be related to both biomass availability and increasing summer temperatures. 400 

5.2.3 Fire activity decline during the Neoglacial period (ca. 5500-3700 cal yr BP)      401 

Both in BSM and MAR there’s a general fire activity decline concurrent at regional (Rius et al., 402 

2011; Garcés-Pastor et al., 2017) and subcontinental scales (Vannière et al., 2011) at ca. 5700 403 

cal yr BP (Fig. 4a,g). Wildfire weakening coincides with the beginning of the Neoglacial period 404 

(Davis et al., 2009; Kumar, 2011) where a glacier expansion occurred at ca. 5100 ± 100 cal yr 405 

BP, in both southern (García-Ruiz et al., 2014) and the northern (Gellatly et al., 1992) slopes of 406 

the Central Pyrenees. We lack an independent temperature reconstruction for 6000-4200 cal 407 

yr BP period due to low chironomid contents in BSM. However, during the late-Holocene 408 

(4200-2000 cal yr BP) inferred temperatures were the lowest through the Holocene (Fig. 4n; 409 

Tarrats et al., 2018). 410 

A lower proportion of archaeological settlements were present in Central Pyrenees at this time 411 

(Fig. 4o), as societies may have also been affected by the wetter/cooler oscillations of the 412 

Neoglacial period. Rius et al. (2011) also indicated fewer signs of human activities at the 413 
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northern slope of the Pyrenees. This scenario suggests that climatic control is still dominant in 414 

promoting fire occurrence during the mid-to-late-Holocene transition. 415 

Simultaneously, Abies spread from ca. 6000 cal yr BP in both BSM and MAR (Fig. 4c,i) and in 416 

other Pyrenean records (Miras et al., 2007; Pérez-Sanz et al., 2013; Garcés-Pastor et al., 2017). 417 

Abies is a mesophilous, late-successional tree species very shade tolerant and considered to 418 

prefer cool and moist sites (Villar et al., 1997). Different studies have also demonstrated that 419 

Abies is a fire sensitive taxon, being negatively affected by fire activity (Tinner et al., 1999; 420 

Schwörer et al., 2015). So, we argue that the fir spread could be favoured by both the 421 

temperature descent and a weaker fire activity until ca. 3500 cal yr BP (Fig. 4a,g). 422 

Deciduous trees progressively declined during this period in our study sites following the same 423 

pattern as other Pyrenean sequences (González-Sampériz et al., 2006; Miras et al., 2007; 424 

Pèlachs et al., 2007; Pérez-Sanz et al., 2013; Garcés-Pastor et al., 2017; Leunda et al., 2017), 425 

very likely related to these changing      climatic conditions. 426 

5.2.4.High variability of fire activity over the last 3700 years 427 

A great increase in fire activity is appreciated in both sequences; at ca. 3700 cal yr BP in BSM, 428 

followed by the rise in MAR between 3500-3000 cal yr BP. In regard to the eastern Pyrenean 429 

palaeoenvironmental sequences, a general intensification of fire occurrence is observed for 430 

the last ca. 4000 years, with an alternation of higher and lower periods of fire activity, 431 

denoting spatial and temporal disparities in fire activity (Bal et al., 2011; Rius et al., 2011; 432 

Garcés-Pastor et al., 2017). Dated palaeofire layers also appear more frequently from ca. 3000 433 

cal yr BP onwards, indicating the occurrence of fires. 434 

Herbs increase significantly both in MAR and BSM (reaching values >30%) (Fig. 4f,m), indicating 435 

a regional opening of the landscape where fire may have played an important role. Previous 436 

fires were probably not as severe as those occurred over the last four millennia. Hence, fire did 437 
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not provoke important biomass losses, contrarily to what may have occurred over the last ca. 438 

3700 years. Abies decreased (Fig. 4c,i), suggesting again that fir’s populations may have been 439 

negatively affected by fires.  440 

Regarding climatic factors, reconstructed summer temperatures in the area are the lowest for 441 

the whole Holocene (Fig. 4n; Tarrats et al., 2018), which apparently may have not favoured fire 442 

occurrence. A decoupling of fire and climatic control has been attributed to human impact, 443 

overriding the effect of natural ignition in alpine ecosystems (Colombaroli et al., 2010). 444 

However, there is a significant gap of archaeological settlements during the Bronze-Iron Age, 445 

from 4000 cal yr BP onwards both in the Central (Fig. 4o; González-Sampériz et al., 2019) and 446 

in the eastern Pyrenees (Gassiot Ballbè et al., 2014), despite an intensification of agricultural 447 

and grazing indicators has been detected in the eastern Pyrenean sequences (Miras et al., 448 

2007; Pèlachs et al., 2007; Bal et al., 2011; Pérez-Obiol et al., 2012; Garcés-Pastor et al., 2017). 449 

This heterogeneous pattern in fire activity, during an arguable period of anthropogenic fire 450 

dynamics, could be associated with a steady but non-permanent human impact in mountain 451 

areas during the Bronze Age and onwards in a complex landscape scenario. Human-induced 452 

fires, would have locally maintained more open landscapes in specific areas (González-453 

Sampériz et al., 2019). 454 

A great spatial variability in terms of fire activity has also been observed in other European 455 

mountain ranges such as the Alps (Colombaroli et al., 2010; Leys et al., 2014) and in the 456 

Carpathians (Feurdean et al., 2012; Florescu et al., 2018) but generally indicating increasing 457 

human related landscape transformations during the last 4000 years. 458 

The slight increase of fire activity in BSM during the Medieval Period (Fig. 4g) could be related 459 

to the intensification of the landscape opening over the last 1000 years, (increase in Artemisia, 460 

Poaceae, Cichorioideae, Chenopodiaceae) (Fig. 4f,m) as well as the high presence of human 461 

settlements in the eastern Pyrenees (Gassiot Ballbè, 2016). Simultaneously, and perhaps with a 462 
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synergistic effect to human activity, drier conditions during the Medieval Climate Anomaly 463 

(MCA), a period of aridity recognized in most of south-western Europe (Seager et al., 2007; 464 

Moreno et al., 2012), could have also favoured fire occurrence. 465 

In addition to this, historical documents record mining activities to exploit iron, silver and lead 466 

at least since Medieval times (Bielza de Ory et al., 1986) in the Bielsa-Parzán area (Fig. 1a) as 467 

well as in other Pyrenean areas (Pèlachs et al., 2009). The increase in herbs at this time, could 468 

be very likely related to the land-use intensification that occurred, as miners were given lands 469 

in order to ensure their permanence in the valley (Bielza de Ory et al., 1986). Both mining and 470 

smelting activities very likely affected forests through deforestation and burning due to 471 

increasing energy demand (Bielza de Ory et al., 1986; Jouffroy et al., 2005; Pèlachs et al., 472 

2009). However, no signs of contamination in terms of trace metal deposition increase      is 473 

detected in MAR and BSM lakes at this time (Corella et al., 2018; Oliva-Urcia et al., 2018), 474 

probably related to the low intensity of the mining activities to cause a regional imprint. 475 

MAR shows a prominent charcoal peak at the end of the 19th century, which stays relatively 476 

high until ca. 1930 AD (Fig. 6). This tendency concurs with the Pb enrichment in MAR Lake 477 

sediments (Fig. 6) (Corella et al., 2018; Oliva-Urcia et al., 2018) likely related to the onset of 478 

large-scale Pb production in the Parzán area which started by the end of the 19th century 479 

lasting until 1930, when the closure of the mines occurred due to the decrease in Pb prices 480 

(Nieto-Callén, 1996; Fanlo et al., 1998). The historical metal mining in this area ended at this 481 

time. This Pb enrichment is not detected in BSM , probably related to the lake characteristics 482 

and its lower altitude, that greatly reduce the lake sensitiveness to record historical pollution 483 

of trace metals as suggested by Corella et al. (2018). 484 

For more recent times, the significant increase in fire activity registered in BSM at 1980 AD 485 

(being the maximum microcharcoal peak) (Fig. 4g) could be related to the large fires that 486 

occurred in summers of 1980 AD, 1981 AD, 1986 AD and 1991 AD in the Central Pyrenees 487 
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where 2200 to 6500 Ha of woodlands were burnt in each fire (El País, 1980; Vázquez de la 488 

Cueva, 2016). 489 

           490 

5.3 How determinant was fire modifying alpine landscapes in the Pyrenees during the 491 

Holocene? 492 

Regardless the site-to-site variations that seem to determine fire activity most, an interesting 493 

finding is that fire at these altitudes has not generally played a critical role in vegetation 494 

dynamics. This finding suggests that, as occurs in the present, past alpine and sub-alpine 495 

vegetation communities were not, broadly speaking, fire-prone neither fire-driven ecosystems 496 

(Leys et al., 2014). Thus, fire regimes may have not been the most relevant factor on forest 497 

dynamics, unlike Mediterranean ecosystems, which are composed of highly flammable 498 

sclerophilous vegetation (Keeley et al., 2012). This situation has also been observed in other 499 

studies in mountain areas e.g. in the Dolomites (Leys et al., 2014). 500 

According to our data, the selected forest taxa in BSM and MAR are best characterised by their 501 

own endogenous effect, i.e., a higher antecedent presence of a particular taxa has a positive 502 

effect on its abundance (Fig. 5a,c,d,e,f). In other words, a larger population will cope better 503 

with environmental change and disturbances, and remain large until a certain threshold in a 504 

specific forcing is reached. While in MAR fire may have played a more important role for 505 

Corylus and Abies (Fig. 5a,b), we interpret inter-site differences as a consequence of the proxy 506 

potential source area, as several studies have evidenced that higher elevations may record 507 

best regional rather than local environmental variation (Escudero et al., 2016; Corella et al., 508 

2018). 509 

Fire at BSM might be indeed reflecting local but scattered events that, according to our data, 510 

do not imply any response for most taxa, except for deciduous Quercus (Fig. 5f) (likely Quercus 511 
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pubescens or Q. humilis). This taxon, unlike all the others, may not have been locally present 512 

nearby the lake (Pérez-Sanz et al., 2013). However, it successfully sprouts after fire generally 513 

out-competing non-serotinous pines like the ones present in the sub-alpine belt (Sánchez-514 

Pinillos et al., 2018) as the ones present in BSM. MAR, more exposed to tropospheric 515 

circulation due to its higher altitude, is possibly reflecting an even more regional picture of 516 

both vegetation and fire variability. This fact implies, on the one hand, that proxies might be 517 

recorded with larger lags than expected. On the other hand, it indicates that environmental 518 

variability from different locations might be harmonized by sedimentary processes at these 519 

altitudes that prevents evidencing spatial co-occurrent effects of disturbance on vegetation 520 

response. Such might be the case of the positive effect that CHAR has on Abies if antecedent 521 

PAR values are under the threshold (Fig. 5a). This would be one example of a, probable, lack of 522 

spatial simultaneity on fire occurrence and vegetation response where charcoal and pollen 523 

might be arriving from different areas. While this might be the case for all other taxa in MAR 524 

too, concurrent CHAR is the only variable with a positive influence on Corylus PAR in this site 525 

(Fig. 5b). In this particular case hazel is indeed a clear case of a temperate tree where both 526 

neo- and palaeoecology studies (Tinner et al., 1999; Finsinger et al., 2006) have evidenced a 527 

fast and positive fire response given its resprouting ability after burning (Delarze et al., 1992). 528 

Besides the post-fire strategy, hazel pollen production is enhanced when vegetation is opened 529 

by disturbance (Aaby, 1986; Bégeot, 1998). This fact is likely explaining why the concurrent 530 

rather than the antecedent fire is more critical in affecting Corylus presence, as resprouting 531 

and pollination would happen very soon after fire. 532 

Finding that fire might not be the most critical factor shaping the long-term dynamics of the 533 

analysed tree taxa has important consequences for conservation practices as fire occurrence 534 

has been predominantly low in these sub-alpine areas and  thus future scenarios with more 535 

active fires might threaten the treeline ecosystems. In fact, the abandonment of agro-pastoral 536 

activities in mountain areas during the past decades in the Pyrenees has provoked bush 537 
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encroachment, which concurring with the rise in average temperatures, may increase fire risk 538 

during the next decades forced by the synergistic effect of both climate conditions and human 539 

impact 540 

 541 

6. Conclusion 542 

Here we present the comparison of two long-term fire activity records from different altitudes 543 

in the Central Pyrenees providing a better understanding of the Holocene fire-vegetation 544 

dynamics in this mountain range. Our results highlight that caution should be taken when 545 

comparing the results of different lacustrine sequences, even if they are in the same mountain 546 

range, and just few km away, as site-specific settings may determine different fire behaviour 547 

and source areas. We argue that fire activity during the early-to-mid-Holocene was relatively 548 

low and mostly controlled by climate. High summer temperatures together with high biomass 549 

accumulation led to a prolonged period of high fire activity during ca. 7000-6000 cal yr BP as 550 

recorded in MAR with a coeval increase in fire activity, but shorter in duration, in BSM at ca. 551 

6700 cal yr BP. Burning decreased, concurring with the Neoglacial period, which suggests that 552 

climatic control was still dominant in promoting fire occurrence until 3700 cal yr BP, when fire 553 

activity increased coevally to the opening of the landscape and decoupled from climate as the 554 

only fire driver. Although from ca. 3000 cal yr BP onwards, fire activity decreases the increasing 555 

human pressure over the last centuries, lead to a remarkable rise in fire activity. Our results 556 

highlight that, overall fire activity does not seem to be a critical factor shaping alpine 557 

ecosystem through the Holocene. However, the increase in arboreal biomass due to 558 

abandonment of traditional land uses in mountain areas together with the rise in average 559 

temperatures during the last decades, may increase fire risk in the nearby future, as occurred 560 

in the HTM. 561 

 562 
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 1018 

Figure 1. (a) Location map of the study lakes Marboré (MAR) and Basa da la Mora 1019 

(BSM) in the Pyrenees together with other existing records; in blue: dated palaeofire 1020 

 1021 

levels; in red: archaeological settlements; in green: other existing fire and pollen 1022 

records; in pink: mires. 1: Plandaniz (González-Sampériz et al., 2019); 2: Aragüés 1023 

(González-Sampériz et al., 2019); 3: Las Blancas (González-Sampériz et al., 2019), 4: 1024 

Portalet peatbog (González-Sampériz et al., 2006; Gil-Romera et al., 2014); 5: Lourdes 1025 
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Lake (Rius et al., 2011); 6: Barranco Pardina (Laborda et al., 2017); 7: Valle Pardina 1026 

(González-Sampériz et al., 2019); 8: Parzán mires; 9: Corotrasito (Clemente et al., 1027 

2016); 10: Puyascada (Baldellou, 1987); 11: Armeña-A294 Ice Cave (Leunda et al., 1028 

2019); 12: Hospital de Benasque (Ona and Calastrenc, 2009); 13: Els Trocs (Rojo et al., 1029 

2013); 14: Bassa Nera (Garcés-Pastor et al., 2017); 15: Estanilles peatbog (Pérez-Obiol 1030 

et al., 2012); 16: Plaus de Bodis-Montarenyo (Cunill et al., 2013); 17: Burg (Pèlachs et 1031 

al., 2011). (b) Topographic (1), Temperature (2) and Precipitation (3) maps of the study 1032 

areas. c) Ortophoto and photography of the MAR Lake and surrounding area. d) 1033 

Ortophoto and photography of BSM and surrounding area (Google, Imagery 2019. 1034 

CNES. Institut Cartografic de Catalunya, Landsat. Copernicus, Maxar Technologies, 1035 

Map data 2019). 1036 

 1037 

 1038 

 1039 

Figure 2. Simplified vegetation transects for Basa de la Mora (left) and Marboré (right) 1040 

sites. 1041 

 1042 

 1043 
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 1044 

 1045 

 1046 

 1047 

Table 1 1048 

Summary of main features of Marboré and Basa de la Mora Lakes. MAP: mean annual 1049 

precipitation; SP: summer precipitation; WP: winter precipitation; MAT: mean annual 1050 

temperature; SMMT: summer mean maximum temperature. Climatic data have been 1051 

extracted from Ninyerola et al. (2005) and Batalla et al. (2018). 1052 

 Basa de la Mora (BSM) Marboré (MAR) 

   

Coordinates 42°32′N, 0°19′E 42°41′N, 0°2′E 

Altitude (m a. s. l.) 1914 2612 

Lake type and dimensions · Holomictic lake · Cold Dimictic lake 

 · ~300 m length · ~500 m length 

 · ~100 m across · ~200 m across 

Lake basin characteristics 

· Maximum water depth of 4.5 m · Maximum water depth of 30 m 

· Shallow glacial lake · Alpine glacial lake 

 

·Glacial over-deepened basin enclosed 

by a frontal 

·Glacial over-deepened basin within a 

glacial cirque at the border 

 

moraine, surrounded by steep limestone 

walls 

between the northern and the southern 

slopes of the Pyrenees 

 

·Catchment consists of Mesozoic 

limestones and sandy 

·Sandy limestones and fine-grain sandstones 

cemented by a carbonatic 

MAP 

limestones matrix 

1500 mm 2000 mm 
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SP ca. 180 mm ca. 230 mm 

WP ca. 150 mm ca. 200 mm 

MAT 5 °C 0 °C 

SMMT 15 °C 10 °C 

Vegetation belt Sub-alpine Alpine 

Treeline altitude in the 

valley (m a.s.l.) 2000–2200 2000–2100 

Timberline altitude in the 

valley (m 1700–1900 1700–1900 

a.s.l.) Treeline ecotone: P. uncinata together 

with J. communis, 

Patches of annual and perennial herbs such 

as Silene acaulis, Linaria Local vegetation 

 R. ferrugineum and sub-alpine pastures alpina and Crepis pygmaea 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 
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Figure 3. Holocene depth-age models for both sequences based on Pérez-Sanz et al. 1066 

(2013) and Leunda et al. (2017). 1067 

 1068 

 1069 
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 1070 
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Figure 4. Comparison of different indicators from both MAR and BSM lake se-1071 

quences: (a) and (g) Microcharcoal z-scores from MAR and BSM sequences (the red 1072 

shade indicate values above 0 in the z-scores standardized values), selected pollen taxa 1073 

from MAR: (b) Pinus, (c) Abies, (d) Betula, (e) Corylus, and (f) Herbs (Leunda et al., 1074 

2017), selected pollen taxa from BSM: (h) Pinus, (i) Abies, (j) Betula, (k) Corylus, (l) 1075 

Deciduous Quercus and (m) Herbs (Pérez-Sanz et al., 2013), (n) Chironomid-based 1076 

Holocene summer temperature reconstruction from BSM (Tarrats et al., 2018) and (o) 1077 

distribution and probability sum of calibrated radiocarbon dates of archaeological 1078 

settlements (in red) and pa-laeofire layers, referring to layers in a soil, paleosoil, 1079 

stratified scree or ravine which contain abundant charcoal particles of past fires (in blue) 1080 

in the Central Pyrenees. Palaeofires: Las Blancas, Abrigo Valle Pardina; Plandániz, 1081 

Aragüés (González-Sampériz et al., 2019). Archaeological settlements: Hospital de Be-1082 

nasque (Ona and Calastrenc, 2009), Barranco Pardina (Laborda et al., 2017), Coro 1083 

Trasito (Clemente et al., 2016), Puyascada (Baldellou, 1987) Els Trocs (Rojo et al., 1084 

2013). HTM: Holocene Thermal Maximum. LIA: Little Ice Age. (See above-mentioned 1085 

references for further information.) 1086 

 1087 
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 1088 

Figure 5. Conditional inference trees for selected taxa in both MAR and BSM 1089 

sequences: (a) PAR Abies in MAR, (b) PAR Corylus in MAR, (c) PAR Abies in BSM, 1090 

(d) PAR Pinus in BSM, (e) PAR Betula in BSM and (f) PAR Quercus in BSM. At the 1091 

top of each regression tree, the initial PAR values for each taxa are indicated. Each of 1092 

the circles (with a number e.g. 1,2,3) show the best explanatory variable (with the 1093 

corresponding p value) from all the considered variables (CHAR, CHAR.antecedent or 1094 
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PAR.antecedent) for the initial PAR values for each taxa. The boxplots, represent mean 1095 

values of each PAR series classified according to the explanatory variables. 1096 

 1097 

 1098 

Figure 6. Microcharcoal influx in MAR for the last 1000 years (left side) with a zoom 1099 

over the last 300 years and compared it with Pb element profile (Oliva-Urcia et al., 1100 

2018) in MAR (right side). 1101 
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 1103 


