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S U M M A R Y
We revisit the hypocentre–velocity problem, which is of interest in different fields as for exam-
ple microseismics and seismology. We develop a formulation based on kinematic migration
of two picked kinematic attributes in the 2-D case, the traveltime and the slope (horizontal
component of the slowness vector), from which we are able to retrieve the location and sub-
sequently the origin time correction and the subsurface parameters mainly velocity. We show
how, through a variable projection, the optimization problem boils down to a physically con-
sistent and parsimonious form where the location estimation is projected into the subsurface
parameter problem. We present in this study a proof of concept validated by a toy test in two
dimensions and a synthetic case study on the Marmousi model. The method presented in this
study is extendible to three dimensions by incorporating the crossline slope or the backazimuth
as a supplementary attribute.

Key words: Inverse theory; Tomography; Earthquake source observations; Seismic tomog-
raphy.

1 I N T RO D U C T I O N

The hypocentre–velocity problem has been a challenging topic of interest in geophysics with its main purpose being the localization of seismic
events. The source location problem by itself has been extensively researched for different applications and purposes. On a macro scale,
locating the origin of earthquakes is crucial to investigate the geology and dynamics of active margins (Roecker 1982), while at a smaller
scale for reservoir monitoring and characterization purposes using arrays (Grechka et al. 2010; Deflandre 2016) or borehole recordings (Jones
et al. 2013). Since the pioneering work of Geiger (1912), the source location is often approximated in a least-squares inversion sense and
grid-search methods (Lomax et al. 2009). Many variants of traveltime-based localization methods emerged. Some approaches differ in terms
of optimization, as an example graphical methods like the master event method (Zhou 1994) and the maximum intersection method (Font
et al. 2004) versus direct nonlinear location algorithms (Lomax et al. 2000), while others differ in the manner of handling the data in terms
of acquisition or attributes. The primary physical attribute, picked arrival times, are often supplemented by other attributes like the slowness
and the azimuth in order to perceive the wave arrival azimuthal plane and incidence angle. Differential attributes are often extracted from the
data through array-based processing techniques (Rost & Thomas 2002) like beamforming (Krüger et al. 1993; Verdon et al. 2017), double-
difference (Waldhauser & Ellsworth 2000) or polarization analysis, which is also utilized in single-station location techniques (Frohlich &
Pulliam 1999).

Using directional attributes like the slowness and the backazimuth is crucial to better constrain the location problem. Indeed, knowing the
emergence angle and the plane of arrival restrain the grid-search space for optimal location candidates whatever is the technique employed.
The latter notion is not only factual for traveltime-based techniques but also finite-frequency waveform-based methods. Most waveform-
based techniques are based on time-reversal (McMechan 1982; Fink 1993; Rietbrock & Scherbaum 1994), which consists of propagating
backwards in time the recordings of all receivers and eventually refocusing the energy at its point of origination in both space and time.
Time-reversal techniques are of interest compared to traveltime-based approaches since they naturally utilize the full-waveform data without
the need of picking or labelling arrivals (Gajewski & Tessmer 2005; Larmat et al. 2006). Artman et al. (2010) proposed an improved imaging
condition based on the cross-correlation of P and S wavefield components, valid beyond the acoustic approximation. In order to control the
focusing of the weighted backprojected recording, the location problem was also recast in a seismic migration sense, employing for example
interferometry-based (Schuster et al. 2004; Li et al. 2015) or Kirchhoff-like imaging conditions (Baker et al. 2005). We refer the reader to
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Li et al. (2020) for a comprehensive review on waveform-based source location techniques. In all aforementioned localization approaches,
the energy of the backpropagated wavefield would smear around the source location depending on the acquisition spread, the robustness of
the imaging condition, the inaccuracy of the subsurface parameters mainly velocity and of course the physics governing the wave equation
employed during the modelling. As a remedy, in the same manner as for traveltime-based approaches, array-based processing is introduced
like for example Gaussian-beam migration (Rentsch et al. 2007), time-domain local stacking (Ishii et al. 2007) and slowness-backazimuth
weighted migration (Kito et al. 2007; Kito & Korenaga 2010).

We now look back at the main problem addressed in this paper: the hypocentre–velocity problem. The success of all localization methods
depends on the accuracy of the subsurface-parameter models. The opposite is also true, inverting for the velocity structure using wrong
source locations would lead to inaccurate velocity updates. In addition, if the subsurface parameters are wrong, the origin time needs to be
constrained too since the time-reversed data do not intersect at their origin time. Even if the main objective of a study is retrieving the location
of a seismic event at any scale, the subsurface parameters should be updated in order to account for the inaccuracies of the model. Indeed,
the coupling between the source location, the origin time of the event and the subsurface parameters makes the hypocentre–velocity problem
challenging (Thurber 1992). We focus for the rest of our discussion solely on the velocity as subsurface parameter since it is the primary
parameter of interest. A possible strategy for the hypocentre–velocity problem would be to ignore the event position and velocity structure
coupling and proceed with two alternating-direction monoparameter optimizations for velocity and event location (Monteiller et al. 2005).
Relaxing the original fully coupled problem could be inefficient in terms of optimization and is not even guaranteed to converge (Roecker
et al. 2006, their appendix A). Jointly inverting for the source parameters and the subsurface parameters is inevitable as shown by Pavlis &
Booker (1980) and Spencer & Gubbins (1980). Recently, in accordance with the developments around full-waveform inversion (Tarantola
1984; Virieux & Operto 2009; Fichtner 2010) and the increasing computational capabilities, the hypocentre–velocity problem has been recast
as a full-waveform source-focusing problem (Kamei & Lumley 2014; Song et al. 2019; Aghamiry et al. 2020).

Before introducing our framework, we could imagine a scenario that draws an analogy between seismological arrays and dense seismic
acquisitions like towed-streamer acquisition. A scenario where both source and receiver arrays are available at the Earth’s surface with a
suitable geometry that allows for the extraction of both the initiation and arrival directional attributes of single-scattered phases beyond locally
plane wave approximated transmission arrivals. As an example, double beam imaging (DBI; Scherbaum et al. 1997) is closely related to
seismic tomography methods like controlled directional reception (Riabinkin 1957) and stereotomography (Lambaré 2008). The latter being
a reflection tomography method where the slope (horizontal component of the slowness vector) is locally measured at every part of the array
on the source and receiver sides in order to constrain the scattering or reflection points during the velocity model building. Of course, DBI
and slope tomography have completely different purposes since DBI is used as a relocation imaging technique, while slope tomography is
a velocity model building technique where the inverted scattering positions serve as a proxy to attain the sought velocity structures. The
similarity lies in the fact that both utilize the local coherency of neighbouring recordings at the surface in order to constrain the scattering
positions in depth. Indeed, rays honouring the slope at the source and the receiver respectively would intersect at the scattering location if the
velocity model is accurate, while in DBI the energy of the beams is maximized at the intersect around the scattering locations. Finding the
intersection of the traveltime isochrone and the ray honouring the slope at the receiver is in fact a kinematic migration, which is utilized for
example in the context of migration-based velocity analysis (Chauris et al. 2002) and parsimonious slope tomography (Sambolian et al. 2019;
Fig. 1a). In the latter methods, the scattering location is not an optimization variable (as the subsurface parameters) but a state variable which
is projected in the velocity estimation problem through a set of focusing (state) equations, this variable elimination being generally referred
to as a variable projection (Golub & Pereyra 2003). This reduction of the model space also shrinks the data space as satisfying the focusing
equations amounts to match a subset of observables from the current subsurface model. Put simply, this amounts to make the scattering
positions kinematically (or physically) consistent with the available subsurface model.

We show subsequently how the recipe of parsimonious slope tomography (Sambolian et al. 2019), a variant of slope tomography that
tackles the velocity–position coupling efficiently, could be recast as a hypocentre–velocity method. Indeed, the hypocentre–velocity coupling
draws a clear parallel with the ill-famed velocity–position or velocity–depth ambiguity faced in seismic reflection tomography (Stork &
Clayton 1986). We refer the reader to Sambolian et al. (2019) in order to get further insights on why creating a physical consistency between
scattering location and the velocity parameter is advantageous compared to a joint inversion strategy. We note that wave-front tomography
(Duveneck 2004; Bauer et al. 2017) has been recast into a joint velocity and source location method (Schwarz et al. 2016; Diekmann et al.
2019). The difference between the latter and our proposed approach goes beyond the comparison between slope tomography and wave-front
tomography (Dummong et al. 2008) or the framework chosen for solving the forward problem and the gradient calculation. Indeed, since the
key difference and main focus of this paper being tackling the velocity–position coupling through a variable projection method.

The method presented in this study is based on the idea that the location problem can be straightforwardly solved for each event in a
given model by a one-to-one mapping of two kinematic attributes (traveltime and slope at the station) to the coordinates of the event. For each
station, the position found by migration is kinematically consistent with the given model and we seek to collapse all the mapped locations at
one position by improving the accuracy of the velocity model. As a result, the velocity model estimation serves only as a proxy to collapse the
positions migrated from each station at the true source position. We develop our framework using eikonal solvers as a forward solver (Fomel
et al. 2009; Tavakoli F. et al. 2015) and the adjoint-state method for the gradient computation (Plessix 2006). The presented approach handles
tilted transverse isotropy and can be easily extended to three dimensions by incorporating the crossline slope or the backazimuth as an extra
attribute. We note that, as any ray-based approach employing picked attributes, our approach is sensitive to the picking process. The arrival time
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(a)

(b)

(c)

Figure 1. (a) Focusing a locally coherent associated with a reflection in the depth migrated domain through the focusing equations. The two-way traveltime
and the slope at the receiver are fitted by construction while the slope at the source is used as objective measure during the inversion (Sambolian et al. 2019).
(b) Migrating the direct arrival of an event from different receivers by fitting the traveltime and the slope at receivers. Different virtual event locations are
obtained due to the inaccuracy of the velocity model. (c) Same as (b) but evaluating the data misfit at every receiver for all virtual events. The solid lines are
rays describing the migration of a virtual event, while dashed lines describe rays connecting the virtual event migrated from a receiver ri to a receiver rj.

is straightforwardly extracted from the data while keeping in mind the discrepancy between the frequency-dependent nature of the picks and
their use under infinite frequency approximation. In practice, the slope estimation is more challenging in seismological contexts, depending
on the density of the receiver arrays and the validity of a local plane wave approximation. Nevertheless, the slope is more and more accessible
due to the deployment of array groups, sparsity-constrained attributes inversion (Hu et al. 2018) and the developments around rotational
seismology (Sollberger et al. 2018). We validate our proof of concept on a simple toy test, we assess the trade-off between the subsurface
parameters and the introduced origin time correction parameter. We finally benchmark our method against the complex Marmousi model.

2 M E T H O D

In the following, we extend the logic behind the earlier recapped notions of kinematic migration to the hypocentre–velocity problem. First
point, trivial since it is the basis of all time-reversal-based techniques but important to raise: knowing the traveltime and the slope at the
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(a)

(b)

Figure 2. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). Kinematically migrated picks in the case
of the true velocity model (a). Note the focusing of events migrated by all receivers to the true location (a) and the spread caused by the velocity anomaly (b).

receiver for an event (2-D case), we are able to shoot back a ray in a subsurface model using the slope as an initial condition (take-off angle)
and the traveltime as its boundary condition (stoppage time; Fig. 1b). If the origin time used in the traveltime estimation is precise and
the velocity model accurately represents the subsurface, the ray would stop exactly at the location of the source. Contrarily, in case of an
inaccurate velocity model, the ray would reach a different position shifted from the true position depending on the magnitude of the error in
the velocity model (Fig. 1b). We emphasize on the notion that the location problem, solved using a receiver array, for a given velocity model
is a strictly overdetermined problem. Any attempt at finding a unique solution in a wrong velocity model would lead at best to some best-fit
solution, which is of course wrong and shifted from the sought solution. Furthermore, the location found does not honour the attributes
migrated in the velocity model, it is hence physically inconsistent. Solving the hypocentre–velocity problem using an approximation or an
initialized version of the location aggravates the ill-posedness of the problem, creating a trade-off pattern between both parameters that will
impact the whole course of a local optimization scheme especially in the absence of a good approximate Hessian.

Extending the logic of the first point by looking at the recordings of the same event by different stations/receivers, we can conclude that
if the subsurface parameters are accurate, the rays shot from all receivers (with their corresponding travel time and slope) would all stop at the
same point which is the exact location. The latter notion is illustrated in Fig. 2(a) through a toy test case study, which will be presented later
in this paper. We note that, even if the origin time is not accurate, the rays would intersect at the true location of the source without enforcing
the stoppage time. On the other hand, in case of an inaccurate velocity model (Fig. 2b), the rays would not end at the same coordinate as they
should. In fact, we have at hand as many location solutions (virtual events) as the number of stations/receivers used (Fig. 1b).

The nature of the problem revolving around the focusing of all virtual events makes it easy to constrain through that information. Indeed,
it is straightforward to develop a framework where the subsurface parameters are updated to collapse the virtual events to a unique solution.
Of course, we remind the reader that the explicit optimization parameters, being the subsurface parameters and the origin time correction,
serve merely as a proxy to find the true event location.

We present, in the Appendix, a literal implementation of the aforementioned notion of collapsing all virtual events to a unique location in
a constrained time-reversal sense. Literal in the sense that the inversion will seek better parameter estimates by reducing the distance between
the virtual events in space, which are solution of the localization problem but serve also as objective measure in the optimization (Fig. 1b).
The core of the paper revolves around a more tomographic implementation where the virtual events are used as anchor points to evaluate the
data misfit at all other receivers (Fig. 1c) compared to the earlier strategy where the subsurface parameters are only constrained along the
transmission paths connecting a receiver to its associated virtual event (Fig. 1b). Indeed, coupling the measurements at the receivers through
the different combinations of virtual events and receivers (Fig. 1c) exploits better the redundancy in the data, hence in turn producing an
enriched inversion kernel by linking the receiver to virtual events located by other receivers.

2.1 The consistent tomographic framework for tackling the hypocentre–velocity problem

Before proceeding with the development of our formulation, we remind the reader that the traveltime and slope at a receiver are fitted by
construction to locate its associated virtual event via the focusing equations but are not fitted when considering the paths connecting this
receiver to the virtual events migrated by other receivers (since they are not at the same position due to the inaccuracy of the velocity model).
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1960 S. Sambolian et al.

We seek to optimize the fit of the traveltimes and slopes at all receivers for each virtual event (Fig. 1c). As a result, we define the
following nonlinear constrained minimization problem with the aim of retrieving the minimizer m, gathering the subsurface parameters and
an origin time correction parameter,

min
m

C(m) = min
m

1

2σ 2
Te,r,r ′

Ne∑
e=1

Nr∑
r=1

Nr∑
r ′=1,r ′ �=r

(Te,r,r ′ (m) − T ∗
e,r ′ )2

+ 1

2σ 2
pe,r,r ′

Ne∑
e=1

Nr∑
r=1

Nr∑
r ′=1,r ′ �=r

(pe,r,r ′ (m) − p∗
e,r ′ )2 subject to F(u, m) = 0, (1)

where Ne and Nr denote the number of events and receivers, respectively. The observed data are the traveltime T ∗
e,r ′ and the slope p∗

e,r ′ measured
at receivers r′, namely receivers other than the one denoted by the subscript r. Accordingly, the simulated data, denoted by Te,r,r ′ and pe,r,r ′ ,
are the traveltime and the slope at receiver r′ evaluated from the virtual event located by kinematic migration of T ∗

e,r and p∗
e,r of receiver r

(see the dash lines in Fig. 1c for the corresponding ray paths). Coefficients σ 2
Te,r,r ′ and σ 2

pe,r,r ′ serve as weighting quantities to make the data
space dimensionless. The latter can serve also as the inverse of a diagonal covariance matrix in order to weight the relative contribution of
every measurement (Tarantola 1987). The nonlinear forward problem operator F gathers the forward problem equations related to the data
simulation through eikonal-resolved traveltime maps and the focusing equations (Chauris et al. 2002). We solve the constrained problem
(eq. 1) under a Lagrangian formalism following the adjoint-state method recipe (Haber et al. 2000; Plessix 2006). The augmented functional
L in compact form is rewritten as

L(m, u, ū) = J (u) −
〈
ū | F(u, m)

〉
, (2)

where 〈.|.〉 denotes the inner product, u gathers the state variables, ū gathers the adjoint-state variables (or Lagrange multipliers) and
C(m) = J (u∗), where u∗ stands for a realization of the physical constraints. We proceed with the description of the physical (state) equations
gathered by the nonlinear forward problem operator F. We infer the predicted traveltimes and slopes from traveltime maps tr (x) computed
with a finite-difference factored eikonal solver using the receiver positions as injection points (Fomel et al. 2009; Tavakoli F. et al. 2015). A
Dirichlet boundary condition is introduced to zero the traveltime at the receiver positions:

H (x,∇tr (x)) = 0 with tr (xr ) = 0. (3)

The operator H stands for the Hamiltonian representation of the eikonal equation in tilted transversely isotropic (TTI) media (Alkhalifah
1998; Waheed et al. 2014) given by

H (x,∇t(x)) = A(x)((R∇t(x))x )2 + C(x)((R∇t(x))z)
2 + E(x)((R∇t(x))x (R∇t(x))z)

2 − 1, (4)

where R is a standard rotation matrix and A, C, E are coefficients that embed the model parameters we seek to update depending on the
chosen anisotropic parametrization (Alkhalifah & Tsvankin 1995; Plessix & Cao 2011; Gholami et al. 2013). We refer the reader to Tavakoli
F. et al. (2015) and Waheed et al. (2015) for a detailed description on the manner of solving eq. (4) in TTI media using the fast sweeping
method (Zhao 2005; Luo & Qian 2012) as a global solver and a fixed-point iteration algorithm (Kelley 1995) for handling the quartic term.

In order to extract the traveltime solution at the position xe, r of an event e from the traveltime map tr(x) initiated at the receiver r, we
introduce a sampling operator Qe, r implemented with a Kaiser-windowed sinc function (Hicks 2002):

Te,r = tr (xe,r ) = Qe,r tr (x), (5)

while the slope at the receiver r for the event e is obtained in a finite-difference sense

pe,r = ∂Te,r

∂xr
= ∂tr (xe,r )

∂xr
≈ Qe,r (tr+1(x) − tr−1(x))

2�r
. (6)

The computational complexity of the problem scales with O(Nr ) since reciprocity is employed in order to alleviate the computational cost
opposed to solving the eikonal equation from each virtual event with a complexity proportional to O(Ne × Nr ). We note that more precise
strategies for the computation of the slopes exist but would involve solving an additional eikonal-based partial differential equation (Qian
& Symes 2002; Alkhalifah & Fomel 2010). As mentioned earlier, we solve a kinematic migration through the so-called focusing equations
(Chauris et al. 2002) as follows:

Te,r = T ∗
e,r pe,r = p∗

e,r , (7)

the symbol ∗ denoting the observed data. Enforcing the pair of eq. (7) gives the position of each virtual event xe, r. An origin time correction
is mandatory since the estimated origin time contains the bias of the inexact velocity model and in turn contaminates the estimated travel
time. In order to correct for the latter error, we introduce the correction term δe for every event. We do not search for the origin time but we
rather estimate a correction parameter for the error made in the origin time estimation (used as an initial estimate) due to the inaccuracy of
the velocity model or some other reason. We note that we could have introduced a different correction for every measurement or in other
words every event-receiver pair. The strategy of splitting δe into a δe, r could be used to absorb some picking and delay errors but would also
create an artificial coupling between the locations of the same event since they are not all sensitive in the same manner to the origin time
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(depending on location and propagation time). We stick to the first strategy where a correction term is introduced solely for every event and
enforced on all picks related to that event. During this study, we suppose that all picked phases recorded at different stations are associated
with a unique point-source event. The aforementioned splitting strategy would be beneficial for more complex cases where aftershocks are
introduced in the presented framework, especially with the rising interest in unsupervised phase identification and classification algorithms
(Bauer et al. 2019; Ross et al. 2019). The correction parameter δe is introduced in the focusing equation related to traveltime as follows:

Te,r = tr (xe,r ) = Qe,r tr (x) + 1

Nr
δe, (8)

where δe is normalized by Nr to account for the fact that this term is in reality the sum of the same error over all receivers. Enforcing the
focusing equations, eq. (7), leads to the position of each virtual event xe, r. As introduced earlier in the section, we evaluate the misfit between
the observed data recorded at all receivers and the simulated measurements Te,r,r ′ and pe,r,r ′ extracted from the traveltimes maps initiated at
the receivers r

′
. As a result, eqs (8) and (6) lead to

Te,r,r ′ = Qe,r tr ′ (x) + 1

Nr
δe, (9)

and

pe,r,r ′ = ∂t ′
r (xe,r )

∂xrr
≈ Qe,r (tr ′+1(x) − tr ′−1(x))

2�′
r

. (10)

Before proceeding, we note that there is no need to introduce explicitly the equations related to tr ′ (x) since they are already described by the
redundant solutions of tr (x).

Recasting the minimization problem (eq. 1) under a Lagrangian formalism using the state eqs (3), (7), (9) and (10) and associating the
adjoint-state variables ū = (λr , αe,r , βe,r , ξe,r,r ′ , γe,r,r ′ ) to their respective state variables u = (tr (x), xe,r , ze,r , Te,r,r ′ , pe,r,r ′ ) gives

L(m, u, ū) = J (u) −
Ne∑

e=1

Nr∑
r=1

αe,r

(
T ∗

e,r − Qe,r tr (x) − 1

Nr
δe

)
−

Ne∑
e=1

Nr∑
r=1

βe,r

(
p∗

e,r − Qe,r (tr+1(x) − tr−1(x))

2�r

)

−
Ne∑

e=1

Nr∑
r=1

Nr∑
r ′=1,r ′ �=r

γe,r,r ′

(
Te,r,r ′ − Qe,r tr ′ (x) − 1

Nr
δe

)
−

Ne∑
e=1

Nr∑
r=1

Nr∑
r ′=1,r ′ �=r

ξe,r,r ′

(
pe,r,r ′ − Qe,r (tr ′+1(x) − tr ′−1(x))

2�r

)

−1

2

Nr∑
r=1

〈
λr (x) | H (x,∇tr (x))

〉
�
, (11)

where the Lagrangian functional L depends on the subsurface parameters m through the eikonal equation solved in the subsurface domain �.
According to the first-order optimality conditions, namely, the so-called Karush–Kuhn–Tucker (KKT) conditions, a minimizer of an equality
constrained optimization problem is reached at the saddle point of the Lagrangian function (Nocedal & Wright 2006) when the three following
equations are satisfied:⎧⎪⎨
⎪⎩

∂L/∂u = 0,

∂L/∂ū = 0,

∂L/∂m = 0.

(12)

The joint update of the entire system spanned by u, ū and m is avoided due to computational complexity (Akçelik 2002). We thus resort to
the reduced-space approach of the adjoint-state method (Haber et al. 2000; Plessix 2006) based on a sequence of variable projections.

In other words, the first two KKT conditions of eq. (12) are satisfied by solving the state equations ∂L/∂ū = 0 in the starting model mk

of iteration k and we then subsequently deduce the Lagrange multipliers by enforcing ∂L/∂u = 0 in this manner.
Following the aforementioned recipe, we develop now the adjoint-state equations. We proceed by solving for the first two adjoint-state

equations through ∂L/∂e,r,r ′ = 0 and ∂L/∂pe,r,r ′ = 0 which shows that γe,r,r ′ and ξe,r,r ′ gather the scaled data residuals for every combination
of receiver and focused event as follows:

γe,r,r ′ = 1

σ 2
Te,r,r ′

(Te,r,r ′ − Te,r ′ ∗) = �Te,r,r ′

σ 2
Te,r,r ′

(13)

and

ξe,r,r ′ = 1

σ 2
pe,r,r ′

(pe,r,r ′ − pe,r ′ ∗) = �pe,r,r ′

σ 2
pe,r,r ′

. (14)

For each event, ∂L/∂xe,r = 0 gives the following 2 × 2 system of linear equations for αe, r, βe, r:

αe,r
∂ Qe,r

∂xe,r
tr + βe,r

2�r

∂ Qe,r

∂xe,r
(tr+1 − tr−1) = Re,r , (15)

where the right-hand side Re,r = − ∑Nr
r ′=1,r ′ �=r γe,r,r ′ ∂ Qe,r

∂xe,r
tr ′ − ∑Nr

r ′=1,r ′ �=r

ξe,r,r ′

2�r ′
∂ Qe,r
∂xe,r

(tr ′+1 − tr ′−1) gathers the terms depending on the already

solved γe,r,r ′ and ξe,r,r ′ . Solving the latter system through Cramer’s rule leads to the closed form expression of αe, r and βe, r as follows:
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αe,r =
det

∣∣∣ ∂(Re,r , pe,r )
∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣ = ∂ Re,r

∂Te,r
, (16)

βe,r =
det

∣∣∣ ∂(Te,r , Re,r )
∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣ = ∂ Re,r

∂pe,r
. (17)

Injecting expressions of αe, r and βe, r in eq. (15) gives

∂ Re,r

∂Te,r

∂Te,r

∂xe,r
+ ∂ Re,r

∂pe,r

∂pe,r

∂xe,r
= ∂ Re,r

∂xe,r
, (18)

where

∂ Re,r

∂Te,r
=

det
∣∣∣ ∂(Re,r , pe,r )

∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣
∂ Re,r

∂pe,r
=

det
∣∣∣ ∂(Te,r , Re,r )

∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣ . (19)

Knowing that the right-hand sides of the adjoint-state equations contain the partial derivative of J(Re, r) with respect to the states u (Plessix
2006), the chain rule of derivatives (eq. 18) illustrates mathematically how, in the left-hand side of eq. (18), the information carried out by
pe, r and Te, r on the positioning of an event via the focusing equations (eq. 7) is passed onto the optimization measure Re, r via the state
variables xe,r (right-hand side of eq. 18). In simple terms, the resultant adjoint-state variables αe, r and βe, r describe how Re, r evolves when
the coordinates xe,r of an event are altered by a velocity update.

The information held by αe, r and βe, r links the positioning process initiated at the receiver r done through the enforced focusing equations
to the data misfit evaluated at other receivers. In other words, the latter terms contain the quantity needed to minimize the residuals held by
γe,r,r ′ and ξe,r,r ′ (gathered under the variable Re, r) by shifting the position of the event xe, r.

We note that eqs (16) and (17) are only defined for det
∣∣∣ ∂(Te,r , pe,r )

∂(xe,r , ze,r )

∣∣∣ �= 0. The system is always valid since in our case this condition could

never be violated. Zeroing the latter term describes physically a tangent ray to its wave front, while in fact that scenario is impossible to occur
in weak anisotropy assumptions.

Proceeding with the last derivative ∂L/∂tr = 0 in the same manner as Tavakoli F. et al. (2017) in the context of slope tomography, we
obtain the adjoint-state equation satisfied by λr (x). After integrating by parts and enforcing the validity of L in the subsurface domain �, the
derivation leads to

(
∇ · (λr (x) Ur )

)
�

=
Ne∑

e=1

Nr∑
r ′=1,r ′ �=r

(
Qt

e,r ′γe,r ′,r − 1

2�r
Qt

e,r ′+1ξe,r ′+1,r + 1

2�r
Qt

e,r ′−1ξe,r ′−1,r

)

+
Ne∑

e=1

(
Qt

e,rαe,r − 1

2�r
Qt

e,r+1βe,r+1 + 1

2�r
Qt

e,r−1βe,r−1

)
. (20)

The adjoint field λr (x) backprojects the weighted sum of data residuals held by γe,r ′,r and ξe,r ′,r along a ray tube following the group velocity
vector Ur connecting xe,r ′ to xr (Fig. 3a). In addition, the adjoint field of the receiver r backprojects the weighted data residuals held by αe, r

and βe, r along a ray tube following the group velocity vector Ur connecting xe,r to xr (Fig. 3b). The latter information describes how the
receiver r controls the migration of its associated virtual events. As the eikonal equation, the adjoint-state eq. (20) is solved with the fast
sweeping method (Zhao 2005; Taillandier et al. 2009) using a conservative finite-difference scheme as described by Tavakoli F. et al. (2019).

We caution the reader that a switch between r and r′ occurred in eq. (20). The latter describes the adjoint field λr (x) of a receiver r which
is in turn of course the r′ with respect to the other receivers.

From the adjoint-state variables, the gradient of the augmented functional (eq. 11) with respect to the subsurface parameters is
straightforwardly obtained by the weighted summation of the adjoint fields λr :

∇msp(x) J = −1

2

Nr∑
r=1

∂ H (x,∇tr (x))

∂msp(x)
λr (x). (21)

The adjoint field is weighted by the derivative of the forward operator H (x, ∇t(x)) with respect to any subsurface model parameter, the
gradient of J evolves accordingly. We refer the reader to Tavakoli F. et al. (2019, appendix B) for a detailed derivation with respect to every
parameter in TTI media. The gradient for the case presented in Fig. 2 is shown in Fig. 4 and illustrates the focusing of the velocity inclusion
with some smearing inherited from the footprint of the sensitivity kernels connecting the events to the stations. The only equation left to
develop is the gradient of the objective function (eq. 1) with respect to the origin time correction parameter and is written as follows for an
event:

∇mδe
J = 1

Nr

⎛
⎝ Nr∑

r=1

αe,r +
Nr∑

r=1

Nr∑
r ′=1,r ′ �=r

γe,r,r ′

⎞
⎠ . (22)
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(a)

(b)

Figure 3. Triple receiver kernel λr (x) (eq. 20) solved for the case presented in Fig. 1(b). (a) The isolated contributions of γe,r ′,r and ξe,r ′,r backpropagated
from the virtual events migrated by receivers r towards receivers r′. (b) The isolated contributions of αe, r and βe, r backpropagated from the virtual events
migrated by receivers r towards themselves.

Figure 4. Gradient of J (m) (eq. 11) with respect to velocity for the case presented in Fig. 2.

Once the gradient is computed, we proceed with a Newton-based local optimization scheme:

mk+1 = mk + αk

(∂2C(mk)

∂m2

)−1
(

∂C(mk)

∂m

)
, (23)

where the step length αk ∈ IR+ satisfies the Armijo rule and the curvature condition of the Wolfe conditions (Nocedal & Wright 2006). In
practice, for all numerical experiments presented in this study, the inexact line search is managed by the SEISCOPE optimization toolbox
(Métivier & Brossier 2016) and the inverse Hessian is approximated through a limited-memory Broyden–Fletcher–Goldfarb–Shannon
(L-BFGS) algorithm (Byrd et al. 1995).

2.2 Validation with a toy numerical example

We validate step by step our method on a toy test of a constant gradient velocity model defined by v = v0 + a × z, where v0 = 1000 m s−1 and
a = 1, with an added Gaussian ball perturbation (centred at x = 10 km, z = 2.5 km; Fig. 5). The objective of the exercise being the recovery
of the Gaussian ball starting with the gradient model as initial guess while finding the correct source locations for 17 events using a dense
surface array of 51 stations/receivers. We remind the reader that, since the velocity model is inaccurate, the measurements from different
stations/receivers would point at different locations.

2.2.1 The hypocentre–velocity reconstruction

We look first at the case where the exact origin correction times (δte = 0.1 s for all events) are used during the inversion. We note that only
for the sake of validation of our formulation we choose this unrealistic experimental setup. In Fig. 5(a), we can see the spread of the virtual
locations (green cross) around the exact location (black circle) for the 17 events. We note that the pattern of the spread is solely defined by
the inaccuracy of the velocity model since the exact origin corrections times are used for the kinematic migration. Following 73 iterations
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(a)

(b)

Figure 5. Toy test case: inverting for velocity with exact origin correction time as passive parameters. Virtual locations (green cross) of 17 events (black
circle) corresponding to all receivers (yellow asterisk). Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after
73 iterations.

(Fig. 5b), the points collapse around the true position. We can see that some smearing and inversion artefacts occur below the retrieved ball.
The latter is expected using surface acquisition since we have an asymmetric illumination of the medium. We also see that the smearing
impacts slightly the focusing for the event directly below the ball. The logs presented in Fig. 6 illustrate the magnitude of the smearing
around the recovered perturbation and serve as validation in terms of perturbation amplitude recovery. The results are overall satisfactory
and validate our approach for this simple case where we assume that there is no origin time correction needed. We invite the reader to check
the animated graphics (i) of the Supporting Information for a look on the evolution of the inverted parameters through the iterations with
an insight on the misfit value. An interesting point to raise before proceeding to a more complex test case is the necessity of fitting both
traveltime and slope attributes (eq. 1). We remind the reader that both attributes are crucial to perform the kinematic migration (in two
dimensions) but fitting traveltimes could be enough especially in dense arrays settings. Undoubtedly, constraining the emergence angle of the
trajectory receiver-event by fitting the slopes makes the problem better posed in complex settings or sparse acquisition cases. We present in
the Supporting Information (animated graphics ii and iii) the inversion results for the same case as the one presented in Fig. 5 but when fitting
slopes and traveltimes, respectively. The results are satisfactory for both cases but more artefacts are built around the retrieved Gaussian ball
through fitting traveltimes only. The inversion stopped after 78 iterations when fitting traveltimes and 86 iterations when fitting slopes. The
faster convergence in the inversion presented earlier where both attributes are used illustrates the complementary nature of the attributes.
Furthermore, we note the fact that the traveltime misfit at the final iteration is worse when they are solely fitted.

2.2.2 The origin time and location–velocity problem

We look closely in this section on the importance of the origin time correction and its induced trade-off with the subsurface parameters via the
kinematic migration. The first question would revolve around the impact of ignoring the origin time correction. We examine in the following
the ill-posedness of the problem in the case of a wrong estimated origin time. In order to illustrate the answer of the latter question, we repeat
the previous test but we introduce an error of 100 ms for all events as if an origin time correction of 100 ms is needed. The error is significant
since, depending on the picks, it represents a shift of 3–16 per cent of the observed propagation time (keep in mind that we are using a slow
top layer velocity and not very large event-receiver distances so the traveltimes are small). We note that we first assign the same error to all
events in order to illustrate the pathology but we will then follow with a different error for each event.

Contrarily to the previous section, we would expect a spread of the locations in the initial model to be defined not only by the inaccuracy
of the velocity model but also the error in origin time (Fig. 7a). The inverted model after 118 iterations contains the sought perturbation but
is also contaminated by a nearly homogeneous negative velocity perturbation, which balances the overestimation of the origin time (Fig. 7b).
The latter trend is produced during the inversion in order to compensate the systematic error introduced on the origin time (which is the same
for all events in this case) and enforce the focusing of the virtual locations at one coordinate. This pathology points out perfectly the ill-posed
nature of the problem at hand. Indeed, the origin time and the velocity parameter are coupled through the positioning process. We invite the
reader to check the animated graphics (iv) of the Supporting Information for a look on the evolution of the inverted parameters through the
iterations with an insight on the misfit value.

We repeat the test but we examine now the more realistic case where the origin time error is different for each event. In Fig. 8(a), we note
the more complicated patterns drawn by the virtual locations due to the different errors in origin time for each event. Following 47 iterations,
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(a)

(b)

Figure 6. Toy test case: inverting for velocity with exact origin time. (a) Vertical and (b) horizontal comparative velocity perturbation logs. Black and red lines
denote the exact and reconstructed perturbations, respectively. The positions of the logs are provided in the figure.

the inversion stopped due to a line search failure. The reconstructed model contains more artefacts than the previous case and in a more
heterogeneous manner as one would expect since different origin times are associated with each event. The interesting point compared to the
previous result is the fact that the inversion process stopped at a local minimum where the focusing is far from being achieved. The different
origin times’ errors cannot be compensated by a simple velocity perturbation as the previous test. We invite the reader to check the animated
graphics (v) of the Supporting Information for a look on the evolution of the inverted parameters through the iterations with an insight on the
misfit value and the values related to the origin time parameter.

In this section, we have highlighted the repercussions of ignoring the origin time parameter and the necessity of accounting for its
correction during the inversion. Before proceeding with a multiparameter inversion test, we validate the gradient with respect to the origin
time correction parameter. We proceed by doing two inversions in which the velocity is a passive parameter, while we try to invert for the
origin time mismatch. In the first test, the true velocity model is used as passive model, while the background velocity gradient model will
be used in the second test. We note that, for this validation, we repeat the tests where the same origin time correction is needed for all events.
For the first test, we note that the pattern of the spread is solely defined by the origin time mismatch and is systematic for all events since
they have the same error in the propagation time (due to the origin time mismatch) and the exact velocity model was used for the kinematic
migration (Fig. 9a). Following nine iterations, the correct origin time correction is recovered for all events and the events collapse on the exact
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(a)

(b)

Figure 7. Toy test case: inverting for velocity with wrong origin times (uniform) as passive parameters. Virtual locations (green cross) of 17 events (black
circle) corresponding to all receivers (yellow asterisk). Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after
118 iterations.

(a)

(b)

Figure 8. Toy test case: inverting for velocity with wrong origin times (different for every event) as passive parameters. Virtual locations (green cross) of 17
events (black circle) corresponding to all receivers (yellow asterisk). Focused locations in the case of (a) the initial velocity model and (b) the updated velocity
model after 47 iterations (bottom).

locations (Fig. 9b). We invite the reader to check the animated graphics (vi) of the Supporting Information for a look on the evolution of the
inverted origin time correction parameter through the iterations with an insight on the misfit value.

During the second test, we repeat the same inversion but using the gradient velocity model as a passive quantity during the inversion
process. The final result of this inversion will serve as a direct comparison to the initial stage of the case where we inverted for the velocity
model while using the exact origin time (Fig. 5a). At the starting point of the inversion (Fig. 10a), the pattern of the spread is as expected more
significant compared to Fig. 5(a) since it is generated by both inaccurate origin correction times and an inaccurate velocity model. Following
six iterations, the correct origin time correction is recovered for all events and their spreading pattern is identical to the one seen at the initial
step of the case where we tried to invert for velocity using the true origin times (Fig. 10b versus Fig. 5a). The fact that we recover the true
origin times without retrieving the true positions highlights the necessity of a multiparameter inversion due to the coupling between the origin
time and the velocity. We invite the reader to check the animated graphics (vii) of the Supporting Information for a look on the evolution
of the inverted origin time correction parameter through the iterations with an insight on the misfit value. We note that, at the reached local
minimum, the positions could not be further optimized due to a leakage between the velocity and the origin time parameter. Indeed, we could
have imagined a scenario where the final inverted origin times are wrong but the event coordinates collapse around the same position. We
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(a)

(b)

Figure 9. Toy test case: inverting for the origin time correction parameter using the true velocity model as passive parameter. Virtual locations (green cross)
of 17 events (black circle) corresponding to all receivers (yellow asterisk). Focused locations using (a) the initial origin time corrections and (b) the final origin
time corrections updated after nine iterations.

(a)

(b)

(c)

Figure 10. Toy test case: inverting for the origin time correction parameter using the initial velocity model of Fig. 5. Virtual locations (green cross) of 17
events (black circle) corresponding to all receivers (yellow asterisk). Focused locations at (a) the initial stage of the inversion, (b) final stage after 6 iterations
where velocity is passive parameter and (c) the joint update result after 83 iterations. The focused locations at the final stage where velocity is passive in the
inversion exhibit the same spread as the initial stage of the case where the velocity was inverted using the true origin time (Fig. 5a).
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(a)

(b)

Figure 11. Toy test case: multiparameter inversion (different origin time mismatch for every event). Virtual locations (green cross) of 17 events (black circle)
corresponding to all receivers (yellow asterisk). Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 76
iterations (bottom).

remind the reader that in a scenario presented previously where we inverted for velocity using the wrong origin time (Fig. 7b), we were able
to collapse all positions at one coordinate. The latter was possible since the exercise is a bit simple (same origin time error), the velocity
updates compensated for the erroneous origin time but as we have seen for the opposite experiment the result is different.

2.2.3 Multiparameter inversion for wave speeds and origin times

Having presented our formulation and validated the gradient with respect to each parameter, we proceed in this section with the inversion
tests in a multiparameter setup. We note that a scaling is applied on the parameters in order to make them dimensionless, hence granting
equal contribution in the direction of descent. The scaling factor is kept constant since in the course of the inversion the L-BFGS approximate
Hessian is expected to handle the scaling intrinsically. We first look at the simpler version of the previous test where the origin time error
is the same for all events (Fig. 10a). In Fig. 10(c), the inversion result after 83 iterations is very satisfactory since it is very similar to the
case where we inverted for velocity, while using the exact origin time (Fig. 5b). More smearing is present around the ball but nevertheless
the perturbation is well recovered to the same extent while the origin time correction parameter has been correctly estimated leading to a
near-perfect focusing of the events. We invite the reader to check the animated graphics (viii) of the Supporting Information for a look on the
evolution of the inverted origin time correction parameter through the iterations with an insight on the misfit value. We now proceed with the
final inversion where we invert all parameters but for the case where the origin time mismatch for each event is different (Fig. 11a). Following
76 iterations, the result is very similar to the previous case even-though very different origin time errors were introduced (both negative and
positive with very different magnitudes; Fig. 11b). We invite the reader to check the animated graphics (ix) of the Supporting Information
for a look on the evolution of the inverted origin time correction parameter (and the exact value for each event) through the iterations with an
insight on the misfit value.

3 F U RT H E R N U M E R I C A L VA L I DAT I O N O N T H E M A R M O U S I B E N C H M A R K

We benchmark the method on the Marmousi model (Bourgeois et al. 1991; Fig. 12a). The latter is a well-known benchmark for exploration
scale tomographic methods. The complexity of the structures and the abrupt contrasts are challenging to recover even for tomography
techniques (Audebert et al. 1997). The following test is evidently more nonlinear than the toy test case presented previously in this study.
We remind the reader that the purpose of the approach is the recovery of the events locations while ‘absorbing’ the errors originating from
an erroneous velocity model. In fact, it would be unrealistic to expect a tomographic recovery of the Marmousi model or to invert for the
locations starting from crude initial models using few sparse events.

The experimental setup mimics a dense surface acquisition consisting of 227 receivers spaced 40 m apart recording 2 distinct events at
(x = 4560 m, z = 1380 m) and (x = 5000 m, z = 1040 m). We note that the acquisition design does not represent the sparsity of receivers
encountered at all scales and we reiterate on the fact that only two events are used in two dimensions, hence the added challenge of resolving
the subsurface parameters structures. We simulate the data set using a smoother version of the original model (Fig. 12b) in order to ensure
the validity of the single-arrival assumption while preserving the kinematic properties.

The initial model used during this numerical test is presented in Fig. 13(a). Even though the initial model is a low-frequency representation
of the true model, the kinematically migrated virtual events have a significant spreading pattern (Fig. 13a, black circles). The latter is
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(a)

(b)

Figure 12. Marmousi case: (a) the true blocky velocity model and (b) the model used for generating the data. Locations of event number one (x = 5000 m, z
= 1040 m) and event number two (x = 4560 m, z = 1380 m) are denoted by a black circle.

(a)

(b)

Figure 13. Marmousi case: (a) the initial velocity model and (b) its corresponding velocity perturbations with respect to the true tomographic model. Virtual
event locations are denoted by a black circle (using true origin time).

unsurprising since the perturbations missing from the model have a magnitude up to 2000 m s−1 (Fig. 13b). The rays in Figs 14(a) and 15(a)
reveal the channelling of the rays occurring in the true tomography model along the high velocity layers. On the other hand, the rays shot in
the initial model exhibit less channelling due to the smoothing in comparison to the true model (Figs 14b and 15b).

3.1 Can we constrain the subsurface parameters using few events?

3.1.1 All-at-once inversion

As a first test, we invert for the velocity with the objective of finding the event location using the true origin times as passive parameters. The
unrealistic experimental setup of this test is chosen in order to assess the difficulty in recovering the main parameters without the bias of the
origin time error. The initial velocity model and the virtual events located in this model by kinematic migration are reminded in Fig. 16(a). We
first invert the full data set in one go (namely, using the full array of stations). The velocity perturbations and the position of the virtual events
after 20 inversion iterations are shown in Fig. 16(b). The result shows that the inversion stopped at a local minimum where a line search failure
occurred. In fact, through the iterations, the virtual events tied to the near receivers were collapsing towards the true location especially for
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Figure 14. Marmousi case: (a) the true tomographic and (b) the initial models. Virtual event locations are denoted by a solid white circle and black lines are
the rays connecting each virtual event related to event number one (x = 5000 m, z = 1040 m) to its receiver (using true origin time).

Figure 15. Marmousi case: (a) the true tomographic and (b) the initial models. Virtual events locations are denoted by a solid white circle and black lines are
the rays connecting each virtual event related to event number two (x = 4560 m, z = 1380 m) to its receiver (using true origin time).

the virtual events associated with the rightmost event. On the other hand, for both events, the virtual events tied to the far receivers at 0–1 km
and 7–9 km in distance cannot be moved. Looking back at the rays computed in the true velocity model (Figs 14a and 15a), we can see that
all the rays connecting the far receivers to the true position of the event are channelled along the high velocity layer (leftmost part) and the
dipping high velocity structures (5.5–8 km) at z = 1.75 km. We stress that the missing perturbations in these structures are of the order of
700 m s−1, which is significant (Fig. 13b). The latter discrepancy leads to quite different ray trajectories in the true and the starting models
(Figs 14 and 15), hence making the tomographic problem highly nonlinear (Hole 1992). Starting from the smooth initial model, the inversion
failed to reconstruct such high velocity layer due to insufficient ray-path illumination and remained stuck into a local minimum. In order to
further back up the previous statement, we present the traveltime and slope residuals in Figs 17 and 18. The initial stage of the inversion
(panels a and e of Figs 17 and 18) generates the highest misfit that is partially reduced at the local minimum at the end of the inversion (panels
b and f of Figs 17 and 18). We invite the reader to check the animated graphics (x) of the Supporting Information for a look on the evolution
of the inverted parameters through the iterations with a special look on how the virtual events migrated by the central receivers evolved much
faster towards a good solution, while the inversion struggled with the virtual events tied to the distant receivers.
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(b)

(a)

Figure 16. Marmousi case: inverting for velocity with exact origin time. Virtual locations (black cross) of the two events (black circle) migrated from all
receiver positions (black asterisk). Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model. In (b), the velocity
perturbations are shown after 20 iterations. The inversion remained stuck in a local minimum and failed to collapse the virtual positions at the true positions
of the two events.

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 17. Marmousi case: (a–d) traveltime and (e–h) slope absolute misfit of the event number one at the initial stage (a,e), the final stage of the full acquisition
setup (b,f), the first stage of the offset continuation setup (c,g) and the final stage of the offset continuation setup (d,h), respectively. The green squares denote
the limited number of receivers used during the offset continuation setup.

3.1.2 Multi-acquisition inversion through offset continuation

Along this line of thought, a possible recipe would be to perform the inversion with a more restrained lateral extension of the acquisition (e.g.
considering only stations between 2 and 6 km in distance). The latter strategy could resolve our problem related to the nonlinearity generated
by distant stations. However, restraining the angular illumination would also aggravate the velocity–position ambiguity.

Therefore, an improved strategy would be to restrain the acquisition in the earlier steps of the inversion as above-mentioned and then
feed the inversion with more picks along the way by involving more distance stations in the inversion. We now present the results of this
offset-continuation strategy. During the first stage of the multi-offset inversion, we restrain the acquisition by considering stations located
between 2 and 6 km in distance. With this setup, the inversion starts with a more compact spread of the virtual event locations due to the
limited acquisition illumination (Fig. 19a). Following 45 iterations, the virtual events spread is fairly minimal and located near the true
location but with a slight consistent shift (Fig. 19b). The velocity updates in the well covered zone at the centre are consistent with the dip
of the structures, which validates further the obtained result at this stage of the inversion. In addition, the traveltime and slope misfits in the
area covered by the restricted station array nearly vanished as illustrated in Panels c and g of Figs 17 and 18, green squares. Following the
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(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 18. Marmousi case: same as Fig. 17 for event two.

(b)

(c)

(d)

(a)

Figure 19. Marmousi case: inverting for velocity with exact origin time. Virtual locations (black cross) of the two events (circle) migrated from all receivers
(black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after 45 iterations and
its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers and (d) the velocity perturbations added to the
initial model after 71 iterations using extended lateral receiver coverage.
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Figure 20. Marmousi case: virtual events and rays computed in the velocity model shown in Fig. 19(c). Virtual event locations denoted by a solid white circle
and black lines are the rays connecting each virtual event to their corresponding receivers. Panels (a) and (b) correspond to events 1 and 2, respectively.

offset-continuation strategy, we push further the inversion by injecting more data (1 km on each side; Fig. 19c). We remind the reader that the
spreading pattern seen in Fig. 19(c) is coming from the fact that the newly introduced data were not fitted at the earlier stage. The final result
shows a slightly bigger spreading pattern due to the larger number of virtual events in the process but their mean position is close to the true
position (Fig. 19d). The velocity update reflects the impact of the new injected data since perturbations on both sides of the acquisition have
been introduced to the model. The final trajectories of the rays traced between the receivers and their associated events are shown in Fig. 20.
The velocity perturbations added at 1.5 km depth between 3 and 4 km (Fig. 19d) sharpened and extended the high velocity contrast, hence
permitting the bending of the rays and in turn the focusing of the virtual events at their final location (Fig. 20). Similarly, the updates in the
shallow part of the velocity model (4–6 km distances) favoured the channelling of the rays leading to a better kinematically migrated events.
As a further quality control, the misfit maps in Figs 17(d)–(h) and 18(d)–(h) reveal that the newly introduced data were properly fitted. We
invite the reader to check the animated graphics (xi) of the Supporting Information for a look on the evolution of the inverted parameters
through the iterations with a special look on how the inversion reacts to the injection of the extended acquisition in terms of velocity updates
and mean position (red cross).

3.2 Multi-parameter inversion for wave speeds and origin times

The final numerical test presented in this report is the joint inversion of the subsurface parameters (namely velocity here) and the origin time
correction parameters. We remind the reader again that the main objective is the recovery of the event locations. We introduce an error in the
data associated with the origin time corresponding to an overestimation of 0.0712 s and an underestimation of 0.0527 s for events one and two,
respectively. The order of magnitude of these mismatches is significant for some receivers since some virtual events have a traveltime as low
as 0.3 s. We employ the same multi-acquisition strategy as that presented in the previous test with the sole difference being the need of proper
parameter scaling during the different stages of the inversion. At the initial stage of the inversion, the spread of the virtual locations (Fig. 21a)
is different compared to the previous case (Fig. 19a) due to the introduced origin time mismatch. The results presented in Fig. 21 show that, at
the intermediate and final stages of the inversion, the result is comparable to the mono-parameter inversion case (compare Figs 21b and c &
19b and c). The result is overall satisfying with a slight final mismatch in the origin time correction parameter (the final values were −0.0798
and 0.0498 s). The latter issue could be resolved with better scaling strategies or a more accurate Hessian, which naturally balances the weight
of each parameter during the optimization. We invite the reader to check the animated graphics (xii) of the Supporting Information for a look
on the evolution of the inverted parameters through the iterations with a special look on how the origin time parameter values evolve during
the iterations.

4 D I S C U S S I O N

We have proposed in this study a consistent formulation of the hypocentre–velocity problem under a framework based on eikonal solvers and
the adjoint-state method.
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(a)

(b)

(c)

(d)

Figure 21. Marmousi case: inverting for velocity and origin time corrections. Virtual locations (black cross) of the two events (circle) migrated from all
receivers (black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after 49
iterations and its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers and (d) the velocity perturbations
added to the initial model after 77 iterations using extended lateral receiver coverage.

4.1 A parsimonious variable-projection approach

Our method differs from the vast majority of previous studies in the sense that the unknown positions of the events are not processed
as parameters of a least-squares (overdetermined) optimization problem where velocities are either passive quantities or another class of
variables. Instead, these positions are eliminated from the optimization problem by tying them to the velocities via the kinematic migration
of the observables (traveltime and slope). This implies that the position of the events are computed explicitly at each iteration as part of
the forward problem (i.e. as state variables) by solving a pair of focusing (state) equations whose right-hand sides are the observables. In
this framework, the only optimization variables to update are the wave speeds leading to a better-posed optimization problem under this
parsimonious parametrization. We also tackle the origin time issue through a correction parameter and we discussed its importance in the
inversion.

4.2 Time-reversal migration versus tomographic approaches

With this time-reversal migration-based logic, the position of an event is indeed seen differently by each receiver if the velocities are inaccurate.
We propose in the Appendix an alternative formulation which relies on the intuitive idea of collapsing the virtual positions migrated from all
the receivers to the true event location by updating velocities. In this formulation, the position of each virtual event is successively processed
as an observable to be matched by the positions of the other virtual events, the latter being processed as state variables. The drawback of this
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formulation is related to its sensitivity kernel that provides a sub-optimal illumination of the subsurface in the sense that it connects each
virtual event to the sole receiver from which it was migrated along a transmitted one-way path (similar to the subkernel shown in Fig. 3b).

To overcome the limit of this formulation inspired by time-reversal migration-based methods, we have developed a formulation with a
more reflection-tomography oriented logic inspired by Sambolian et al. (2019) in the sense that the observables are the traveltimes and slopes
at the receivers other than the one used to position the virtual event by kinematic migration. The mismatches between these observables
and the attributes simulated from the virtual event position are minimized to update the wave speeds and the origin times with as a direct
consequence the collapsing of the smeared positions of the virtual events to their true position. This approach enriches the one-way path
kernel of the previous formulation connecting the receiver to the virtual event with multiple paths connecting the virtual event to the other
receivers, hence mimicking the two-way paths of reflected waves (Fig. 3a).

4.3 Forthcoming improvements of the method

The Marmousi case revealed however some shortcomings of the method. As any tomographic method, the approach is sensitive to the subsurface
illumination, which is itself controlled by the distribution in depth of the events to be located. The optimization problem is extremely ill-posed
when the number of events is limited. Moreover, the Marmousi case revealed the non linearity of the relocation/tomograpic problem when
sharp contrasts lack in the initial velocity model. These sharp contrasts behave as refractors, which channel the rays connecting the events
to far receivers. This prevents uniform ray-path coverage of the subsurface and makes the ray trajectories in the true and initial models quite
different, hence violating the ray-stationarity assumption underlying the linearization of nonlinear traveltime tomography (Hole 1992). We
have shown that this nonlinearity combined with non-uniform ray coverage can trap the localization problem into a local minimum. To bypass
this nonlinearity issue without increasing the number of events, we have proposed a pragmatical solution in our application by using an offset
(i.e., the horizontal distance between the event and the station) continuation strategy. The introduction of the restrained lateral extent data set
in early stages of the inversion guided the inversion towards reconstructing progressively the missing perturbations in the well covered area.
The injection of distant receivers in the late stages of the inversion was guided, through the kinematic migration, by the already recovered
solution of the subsurface parameters. By following this offset continuation, we aggravated the velocity–position coupling during the early
stage of the inversion (manifested by a consistent shift in position of the virtual events) since we restrained the illumination but we mitigated
the non linearity of the tomography, as supported by convergence of the inversion towards far better-focused positions.

The need to mitigate the nonlinearity of the inverse problem generated by inaccurate initial subsurface model together with its ill-
posedness generated by uneven illumination may prompt us to implement at the beginning of the inversion a relaxation of the focusing
equations governing the kinematic migration. This relaxation will re-extend the search space of the inversion, which was restricted by making
the relocation problem consistent with the subsurface parameters through the variable projection. Indeed, the migration of the kinematic
attributes for event relocation gives no leeway to the inversion to explore solutions where the virtual events are forced to collapse while the
focusing equations are not strictly satisfied. We stress that we don’t suggest to go back to strategies where the focusing equations are relaxed
without any control over their satisfaction at the sought solution. Instead, strategies that reconcile the relaxation of the focusing equations with
more freedom to constrain the distance between virtual events early-on in the inversion while controlling their satisfaction at the convergence
point may be implemented with augmented Lagrangian method (or method of multiplier), a versatile method to solve constrained optimization
problem by combining a Lagrangian method and a penalty method (for example the spatial spread between the virtual events (eq. A2) could
serve as an additional constraint or penalty function). We refer the reader to Nocedal & Wright (2006, their Chapter 17) for a review and
Delbos et al. (2006) for a tomography oriented example.

Let’s conclude by clarifying that the method can be straightforwardly extended to 3-D by incorporating the backazimuth or an additional
slope [crossline slope as used by Chalard et al. (2000) for stereotomography at exploration scale] as a supplementary attribute. In this
framework, the ill-posedness and nonlinearity of the localization problem reviewed above should be significantly mitigated by the richer
subsurface illumination provided by areal deployment.

5 C O N C LU S I O N

We revisit the location–velocity problem with a novel angle inspired by slope tomography. We propose our strategy under a framework based
on eikonal solvers and the adjoint-state method. The approach was validated on a simple toy test and benchmarked against the Marmousi case.
We present a proof of concept but the approach should be tested on a more realistic case since the method is extendible to three dimensions
by accounting for the crossline slope or the backazimuth as an extra constraint for the kinematic migration. Future investigations will revolve
around coupling the arrival times of P and S waves under this framework and an extension to reflected arrivals.
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A P P E N D I X : F R A M E W O R K B A S E D O N M I N I M I Z I N G T H E S P R E A D O F
K I N E M AT I C A L LY M I G R AT E D V I RT UA L E V E N T S

In this appendix, we present an alternative formulation of the event location problem inspired by time-reversal migration-based methods.
Accordingly, the objective function aims to directly optimize the focusing of the migrated virtual events rather than indirectly fulfilling this
task by fitting measurements at the stations. We define the following nonlinear constrained minimization problem with the aim of retrieving
the minimizer m, gathering the subsurface parameters and an origin time correction parameter,

min
m

C(m) = min
m

Ne∑
e=1

Nr∑
r=1

�e,r (m) subject to F(u, m) = 0, (A1)

where Ne and Nr denote the number of events and receivers, respectively. The function �e,r (m) evaluates the spread of the virtual events
migrated from each receiver r for a given event e in function of a given model m. In the context of this example, we use the Euclidian distance

�e,r = 1

Nr − 1

Nr∑
r ′=1,r ′ �=r

√
(x∗

e,r − xe,r ′ )2 + (z∗
e,r − ze,r ′ )2, (A2)

which is normalized by Nr − 1 to keep the physical unit of distance. Note that the position of each virtual event is successively processed as
an observable as indicated by the superscript ∗ assigned to the fixed subscript r. In other words, the position of each virtual event is in turn an
observable (when the subscript r is assigned to it) and a state variable (when the running subscript r′ is assigned to it), the associated state
equation being the focusing equations used for kinematic migration. The operator F gathers the forward problem equations related to the data
simulation through eikonal-resolved traveltime maps, the focusing equations (Chauris et al. 2002), and the distance employed in �. We solve
the constrained problem, (eq. A1), under a Lagrangian formalism following the same adjoint-state method employed in Section 2.1 using
the state equations (3), (7) and (A2) and associating the adjoint-state variables ū = (λr (x), αe,r , βe,r , γe,r ) to their respective state variables
u = (tr (x), xe,r , ze,r ,�e,r ) leading to

L(m, u, ū) = J (u) −
Ne∑

e=1

Nr∑
r=1

αe,r

(
T ∗

e,r − Qe,r tr (x) − 1

Nr
δe

)
−

Ne∑
e=1

Nr∑
r=1

βe,r

(
p∗

e,r − Qe,r (tr+1(x) − tr−1(x))

2�r

)

−
Ne∑

e=1

Nr∑
r=1

γe,r

⎛
⎝�e,r − 1

Nr − 1

Nr∑
r ′=1,r ′ �=r

√
(xe,r − xe,r ′ )2 + (ze,r − ze,r ′ )2

⎞
⎠ − 1

2

Nr∑
r=1

〈
λr (x) | H (x,∇tr (x))

〉
�
, (A3)

where the Lagrangian functional L depends on the subsurface parameters m through the eikonal equation solved in the subsurface domain �.
We develop now the adjoint-state equations. Before proceeding with the first adjoint-state equation ∂L/∂�e,r = 0, we remind the reader

that �e, r is an auxiliary variable; the misfit distance could have been explicitly written in C(m). Having said that the first adjoint-state equation
leads to

γe,r = 1. (A4)

For each event, ∂L/∂xe,r = 0. Considering that xe,r gathers xe, r and ze, r (embedded in Qe, r) gives the following 2 × 2 system of linear
equations for αe, r and βe, r:

αe,r
∂ Qe,r

∂xe,r
tr + βe,r

2�r

∂ Qe,r

∂xe,r
(tr+1 − tr−1) = −γe,r

∂�e,r

∂xe,r
. (A5)

Solving this system leads to the closed form expression of αe, r and βe, r as follows:

αe,r = −
det

∣∣∣ ∂(�e,r , pe,r )
∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣ , (A6)

βe,r = −
det

∣∣∣ ∂(Te,r , �e,r )
∂(xe,r , ze,r )

∣∣∣
det

∣∣∣ ∂(Te,r , pe,r )
∂(xe,r , ze,r )

∣∣∣ . (A7)
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Figure A1. Gradient of J (m) (eq. A3) with respect to velocity for the case presented in Fig. 2.

Figure A2. Toy test case: multiparameter inversion (different origin time mismatch for every event) using the time-reversal migration-based formulation. The
figure shows the updated velocity model after 100 iterations.

The resultant adjoint-state variables αe, r and βe, r describe how �e, r evolves when the coordinates xe,r of an event are moved by a velocity
update (refer to Section 2.1 for a more detailed interpretation of the determinants).

We note that eqs (A6) and (A7) are only defined for det
∣∣∣ ∂(Te,r , pe,r )

∂(xe,r , ze,r )

∣∣∣ �= 0. The system is always valid since in our case this condition could

never be violated as already mentioned in Section 2.1. Proceeding with the last derivative ∂L/∂tr = 0, we obtain the adjoint-state equation
satisfied by λr (x). After integrating by parts and enforcing the validity of L in the subsurface domain �, the derivation leads to

(
∇ · (λr (x) Ur )

)
�

=
Ne∑

e=1

(
Qt

e,rαe,r − 1

2�r
Qt

e,r+1βe,r+1 + 1

2�r
Qt

e,r−1βe,r−1

)
. (A8)

The adjoint field λr (x) backprojects the weighted sum of residual distances between a virtual event and all its counterparts held by �e, r along
a ray tube following the group velocity vector Ur connecting xe,r to xr . From the adjoint-state variables, the gradient of the objective function
J (m) (eq. A3) with respect to the subsurface parameters (Fig. A1) is straightforwardly obtained by the weighted summation of the adjoint
fields λr

∇msp(x) J = −1

2

Nr∑
r=1

∂ H (x,∇tr (x))

∂msp(x)
λr (x), (A9)

and the gradient of the objective function (eq. A1) with respect to the origin time correction parameter and is written as follows for an event

∇mδe
J = 1

Nr

Nr∑
r=1

αe,r . (A10)

Comparing the right-hand side of the adjoint-state equation, eq. (A8), with that of the tomography-inspired formulation, eq. (20), shows that
the latter formulation generates a richer kernel through the cross talk between receivers highlighted by the summation over r

′
in the right-hand

side of the adjoint-state equation solved for receiver r. These different kernels indeed result from the fact that one virtual event migrated by
one receiver generates only one observable in the first formulation (Fig. 1b), while this virtual event is processed as an excitation term in the
second formulation to match the surface measurements recorded by receivers other than the one used to migrate the virtual event, and hence
generate as many observables at stations (Fig. 1c).

The Fig. A1 shows the gradient of the objective function, eq. (A1), corresponding to the experiment of Fig. 2. Comparing this gradient
with that computed with the tomography-like formulation (Fig. 4) clearly shows that the enriched kernel of the latter formulation better
focused the velocity inclusion.

The result of the multiparameter inversion of the toy test obtained with the formulation presented in this appendix is shown in Fig. A2.
For this simple test, the results are similar to those obtained with the tomography-like formulation (Fig. 11), although 100 iterations were
necessary to reach the convergence point against 76 iterations for the tomography-like formulation. Moreover, we fail to make the time-
reversal migration-based formulation work on the more challenging Marmousi case study where the ill-posedness resulting from the lack
of illumination induced by the limited number of events was aggravated by the limited coverage provided by the sensitivity kernels of this
formulation.
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