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A given neural network in the brain is involved in many different tasks. This implies that, when considering a
specific task, the network’s connectivity contains a component which is related to the task and another component
which can be considered random. Understanding the interplay between the structured and random components
and their effect on network dynamics and functionality is an important open question. Recent studies addressed
the coexistence of random and structured connectivity but considered the two parts to be uncorrelated. This
constraint limits the dynamics and leaves the random connectivity nonfunctional. Algorithms that train networks
to perform specific tasks typically generate correlations between structure and random connectivity. Here we
study nonlinear networks with correlated structured and random components, assuming the structure to have a
low rank. We develop an analytic framework to establish the precise effect of the correlations on the eigenvalue
spectrum of the joint connectivity. We find that the spectrum consists of a bulk and multiple outliers, whose
location is predicted by our theory. Using mean-field theory, we show that these outliers directly determine both
the fixed points of the system and their stability. Taken together, our analysis elucidates how correlations allow
structured and random connectivity to synergistically extend the range of computations available to networks.

DOI: 10.1103/PhysRevResearch.2.013111

I. INTRODUCTION

One of the central paradigms of neuroscience is that com-
putational function determines connectivity structure: if a neu-
ral network is involved in a given task, its connectivity must
be related to this task. However, a given circuit’s connectivity
also depends on development and the learning of a multitude
of tasks [1,2]. Accordingly, connectivity has often been de-
picted as containing a sum of random and structured com-
ponents [3–7]. Given that structure emerges through adaptive
processes on top of existing random connectivity, one would
intuitively expect correlations between the two components.
Nevertheless, the functional effects of the interplay between
the random and the structured components have not been fully
elucidated.

Networks designed to solve specific tasks often use purely
structured connectivity [8–10] that has been analytically dis-
sected [11]. The dynamics of networks with purely random
connectivity were also thoroughly explored, charting the tran-
sitions between chaotic and ordered activity regimes [12–17].
Adding uncorrelated random connectivity to a structured one
was shown to generate the activity statistics originating from
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the random component while retaining the functional aspects
of the structured one [4–6,18].

A specific setting in which correlations between random
and structured components arise is the training of initially
random networks to perform tasks. One class of training
algorithms, reservoir computing, only modifies a feedback
loop on top of the initial random connectivity [19–21]. These
algorithms can be used to obtain a wide range of computations
[22,23]. Recently, a specific instance of a network trained to
exhibit multiple fixed points was analytically examined [3].
It was shown that the dependence between the feedback loop
and the initial connectivity is essential to obtain the desired
functionality, but the explicit form of the correlations and
the manner in which they determine functionality remained
elusive.

Thus there is no general theory linking the correlations
between random and structured components to network dy-
namics. Here we address this issue by examining the nonlinear
dynamics of networks with such correlations. Because the
dynamics of nonlinear systems vary between different areas of
phase space, we focus on linearized dynamics around different
fixed points. To facilitate the analysis, we consider low-rank
structured components which were shown to allow for a wide
range of functionalities [4].

We develop a mean-field theory that takes into account
correlations between the random connectivity and the low-
rank part. Our theory directly links these correlations to the
spectrum of the connectivity matrix. We show how a corre-
lated rank-one perturbation can lead to multiple spectral out-
liers and fixed points, a phenomenon that requires high-rank
perturbations in the uncorrelated case [4]. We analytically
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study dynamics around nontrivial fixed points, revealing a
surprising connection between the spectrum, the fixed points
and their stability. Taken together, we show how correlations
between the low-rank structure and the random connectivity
extend the computations of the joint network beyond the sum
of its parts.

II. NETWORK MODEL

We examine the dynamics of recurrent neural networks
with correlated random and structured components in their
connectivity. The structured component P is a low-rank matrix
and the random component J is a full-rank matrix. Network
dynamics with such a connectivity structure have been ana-
lyzed for P being independent of the random connectivity [4].
The learning frameworks of echo state networks and FORCE
also have such connectivity structure [20,21]. There, however,
the structure P is trained such that the full network performs a
desired computation, possibly correlating P to J .

For most of this study, we set the rank of P to one and write
it as the outer product

P = mnT (1)

of the two structure vectors m and n. The matrix J and vector
m are drawn independently from normal distributions, Ji j ∼
N (0, g2/N ) and mi ∼ N (0, 1), where N is the network size
and g controls the strength of the random part [12]. The second
vector n is defined in terms of J and m. In this sense, n carries
the correlation between J and P. This is in line with the echo
state and FORCE models, where n corresponds to the readout
vector which is trained and therefore becomes correlated to
J and m. In contrast to these models, however, we constrain
the statistics of n to be Gaussian. This allows for an analytical
treatment and thus for a transparent understanding of how the
correlations affect the network dynamics.

The details of the construction of n are described later on.
At this point, we merely state that the entries of n scale with
the network size as 1/N . The structure P is hence considered
as a perturbation to the random connectivity J whose entries
scale as 1/

√
N . All our results are valid in the limit of

infinitely large networks, N → ∞. Throughout the work, we
compare the theoretical predictions with samples from finite
networks.

The network dynamics are given by standard rate equa-
tions. Neurons are characterized by their internal states xi and
interact with each other via firing rates φ(xi ). The nonlinear
transformation from state to firing rate is taken to be the
hyperbolic tangent, φ = tanh. The entire network dynamics
are written as

ẋ(t ) = −x(t ) + (J + P)φ(x(t )), (2)

with the state vector x ∈ RN and the nonlinearity applied ele-
mentwise. The derivation of our results, Appendix E, further
includes a constant external input I. The results in the main
text, however, only consider the autonomous network.

III. LINEAR DYNAMICS AROUND THE ORIGIN

The origin x = 0 is a fixed point, since φ(0) = 0. It is
stable if the real parts of all the eigenvalues of the Jacobian

are smaller than one. Since φ′(0) = 1, the Jacobian is simply
the connectivity matrix J + mnT itself. Here we examine the
spectral properties of this matrix.

A. Eigenvalues

The spectrum of the Gaussian random matrix J converges
to a uniform distribution on a disk with radius g and centered
at the origin for N → ∞ [24]. Previous studies have explored
the effect of independent low-rank perturbations like in our
model [25,26]. They found that the limiting distribution of
the remaining eigenvalues, referred to as the bulk, does not
change. Additionally, the spectrum contains outliers corre-
sponding to the eigenvalues of the low-rank perturbation
itself. In this sense, the spectra of the random matrix J and the
low-rank perturbation decouple (although the precise location
of each eigenvalue is affected by the perturbation). To our
knowledge, the effect of correlated low-rank perturbations,
which we explore below, has not been considered before.

To determine the spectrum, we apply the matrix determi-
nant lemma [27]:

det(A + mnT ) = (1 + nTA−1m) det(A), (3)

where A ∈ CN×N is an invertible matrix. For a complex
number z that is not an eigenvalue of J , the matrix J − 1z
is invertible, resulting in

det((J + mnT ) − 1z)

= (1 + nT(J − 1z)−1m) det(J − 1z). (4)

The roots of this equation are the eigenvalues of J + mnT .
Since the determinant on the right-hand side is nonzero, we
get the scalar equation

z = nT

(
1 − J

z

)−1

m. (5)

As long as the entire spectrum is affected by the rank 1 pertur-
bation, this equation determines all eigenvalues of J + mnT .
We are interested in outliers of the spectrum: eigenvalues of
J + mnT larger than the spectral radius of J (which in the
limit of N → ∞ is given by g). For such an outlier, denoted
by λ, the inverse in Eq. (5) can be written as a series, and we
have

λ =
∞∑

k=0

θk

λk
, (6)

with the overlaps

θk = nTJkm. (7)

Although this equation is a polynomial of infinite degree,
there can be at most proper N solutions (those outside of the
bulk; see Appendix A).

The series representation Eq. (6) is the main result of this
section. It indicates that the overlaps θk between m and n
after passing through J for k times determine the eigenvalues
of the perturbed matrix. It is hence useful to characterize the
correlations between J and the rank-one perturbation in terms
of these overlaps.

The description up to this point is general and does not
depend on details of the matrix J . For our model, where J is a
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FIG. 1. Spectral outliers via low-rank perturbations. Spectrum of J + mnT with (a) no correlations, (b) exponential overlaps, and
(c) truncated overlaps, Eq. (11). See Eq. (B1) for details on the construction of n. The values of nonzero θ̂k are displayed in each plot. Orange
circles and stars indicate the theoretical prediction, dots refer to the spectra of the finite-size connectivity matrices, computed numerically.
(d) Overlaps θk = nTJkm for the cases above. The dashed line are the target overlaps θ̂k for the exponential correlation. Parameters: N = 2000
and g = 0.8.

random matrix, the scalar products θk over N entries are self-
averaging: for N → ∞, θk converges to its ensemble average
E[θk], with variance decaying as 1/N . We rely on this property
and compute quantities for single realization of large networks
instead of ensemble averages.

A random matrix J has the effect of decorrelating inde-
pendent vectors: if the vectors m and n are uncorrelated to
J , a single pass through the network already annihilates any
overlap between n and Jm. In Appendix B, we formally show
that the self-averaging indeed yields nTJkm = 0 for k � 1.
We can apply this to Eq. (6): if θk = 0 for any k � 1, then

λ = θ0 = nTm. (8)

Thus an independent rank-one perturbation yields a single
outlier positioned at the eigenvalue of the rank-one matrix
itself [Fig. 1(a)], in accordance with known results [25,26].

If mnT is correlated to J , the θk will not vanish for nonzero
k. We analyze two special cases.

(i) If θk = 0 for any k � 2, then there are two outliers

λ± = θ0

2
±

√(
θ0

2

)2

+ θ1. (9)

This can give rise to complex conjugate outliers, as displayed
in Fig. 1(b). More generally, K nonzero overlaps lead to K
outliers via a polynomial equation [Eq. (C1)].

(ii) A second case is one of a converging series in Eq. (6).
The simplest assumption is an exponential scaling, θk = θ0bk

with base b. Inserting into the eigenvalue equation (6) yields
a single solution

λ = θ0 + b. (10)

Remarkably, we see that correlation between the random
matrix J and the rank-one perturbation does not necessarily

lead to more than one outlier. This is shown in Fig. 1(c).
The observation generalizes to correlations expressible as a
sum of K exponentially decaying terms, leading to K outliers
[Eq. (C3)].

We can apply this understanding to construct a network
with a set of outliers and either one of the underlying correla-
tion structures. One way is to define the vector n explicitly in
terms of m and J . For example, if we set

n = 1

N

(
θ̂0 m + θ̂1

g2
Jm

)
, (11)

then the overlaps will self-average to E[θk] = θ̂k for k ∈
{0, 1} and E[θk] = 0 for any k � 2, with variance scaling as
1/N . This is shown formally and generalized to higher θk in
Appendix B. The details of the construction for a set of target
outliers is further detailed in Appendix C. The discrepancy
between numerical and target outliers in Fig. 1 is due to finite
size effects, which decay with 1/

√
N (verified numerically,

and in accordance with Ref. [4]).
The simulations further show that the remaining eigenval-

ues span the same circle as without the perturbation. While
all eigenvalues change, visual inspection does not reveal any
changes in the statistics.

B. Implementation of multiple outliers

So far we analyzed the outliers for given correlations
between J and mnT as quantified by the overlaps θk . We now
change the perspective and ask about the properties of the
rank-one perturbation given a set of outliers. We saw that in
principle a given set of outliers may have multiple underlying
correlation structures, e.g., through a truncated set of nonzero
overlaps or a combination of exponentially decaying terms.
Regardless of the correlation structure, however, we observe
that the norm of n grows fast with the number of outliers
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FIG. 2. Scaling of the norm of the rank-one perturbation with
number of induced outliers. The vector n is the least square solution
to implementing a set of outliers � = {λ1, . . . , λK }, with λk =
1.25 + 0.25k, see Appendix D. (a) Log-linear plot of the Frobenius
norm of J and mnT as a function of the number of outliers. The
dashed line is the theoretical prediction. (b) Spectrum of J + mnT

for K = 9 outliers. Parameters: N = 1000 and g = 0.8.

introduced, implying that strong perturbations are needed to
generate a large number of outliers.

To understand analytically the origin of this phenomenon,
we focus on a method to determine the least square n given
J , m, and the set of target outliers �. The resulting n
can be formulated using the pseudoinverse, as detailed in
Appendix D. The main result of this analysis is the scaling
of the Frobenius norm of the rank-one matrix mnT with the
number of outliers. The asymptotic behavior is given by

||mnT || ∼ g
∏
λ∈�

|λ|
g

, (12)

that is, exponentially growing with the number of outliers. In
comparison, the Frobenius norm of J is given by ||J|| = g

√
N .

This means that if one aims to place more than a handful of
outliers, the perturbation mnT becomes the dominating term
(for a fixed network size N). We illustrate this in Fig. 2 by
plotting ||mnT || for sets of outliers �K = {λ1, . . . , λK} with
growing number K . The outliers λk were placed on the real
line. Further tests including complex eigenvalues gave similar
results (not shown). A similar method of deriving n from the
pseudoinverse has been described in Ref. [28].

The scaling (12) shows another important point: the bulk
radius g critically determines the norm of the rank-one pertur-
bation. Indeed, the contribution of each outlier λk is relative
to the radius. Even for a single outlier, where

||mnT || =
√

λ2 − g2, (13)

an increase in g leads to decreasing norm. This observation
suggests that a large random connectivity facilitates the con-
trol of the spectrum by a rank-one perturbation.

IV. NONTRIVIAL FIXED POINTS

We now turn to the nontrivial fixed points of the network.
At these, the internal states x obey the equation

x = Jφ + κm. (14)

Here we defined the scalar feedback strength κ = nTφ, using
the vector notation φ = φ(x).

The fixed points of related models have been analyzed in
previous works. For infinitely large networks, the unperturbed
system (P = 0) has a single fixed point at the origin if g < 1
[15]. For g > 1, the system exhibits chaotic dynamics [12].
In this regime, the number of (unstable) fixed points scales
exponentially with the network size N [15]. Here we only
focus on networks in the nonchaotic regime, where either
g < 1 or the perturbation P suppresses chaos [4].

A. Fixed point manifold

Following Rivkind and Barak [3], the perturbed system
with fixed points (14) can be understood using a surrogate
system in which the feedback κ is replaced with a fixed scalar
κ̂ . For g < 1, every such value κ̂ corresponds to a unique fixed
point

x̂ = Jφ(x̂) + κ̂m. (15)

This equation defines the one-dimensional nonlinear manifold

M = {x̂ | κ̂ ∈ R}. (16)

The manifold M can be understood by looking
at the asymptotics. For large input κ̂ , the nonlinear-
ity saturates and the manifold becomes approximately
linear:

x̂∼ = c + κ̂m, (17)

with c = J sign(m). Around the origin, we linearize and ob-
tain

x̂ = κ̂ a + O(κ̂2), (18)

with a = (1 − J )−1m.
Applying orthonormalization to the triplet (m, c, a), we

obtain a three-dimensional basis. We observe that, for N →
∞, the vectors m and c are orthogonal and that the vector a
becomes orthogonal to the other two in the limit g → 1. Ac-
cordingly, we name the coefficients of the basis (ym, yc, ya ).
The projection of the manifold M on this basis is shown in
Fig. 3(c) for three different values of g. Numerical evaluation
of the reconstruction error shows that these three dimensions
reconstruct the manifold very well albeit with decreasing
accuracy for increasing g (not shown).

Fixed points of the full system are obtained by determining
κ self-consistently. They necessarily lie on the manifold M.
One consequence is a strong correlation between pairs of
fixed points, especially if both lie close to the origin or in the
saturating regime. In Figs. 3(b)–3(d), we numerically evaluate
this correlation for three different randomness strengths g. On
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FIG. 3. Manifold M, Eq. (16) constraining fixed points, Eq. (15). (a) Projection of M for three networks with different strength of
randomness g (see main text for the three-dimensional basis). The negative side for κ̂ < 0 is symmetric and not shown. The squares on the
manifolds indicate the inputs κ̂ = (1, 2). The straight lines in the plane ya = 0 are the asymptotic directions x̂∼ for the manifolds. [(b)–(d)]
Correlation ρ12 between two points x̂(κ̂i ) on M for two different inputs κ̂1, κ̂2 ∈ [0, 3]. (b), (c), and (d) correspond to the random connectivity
strengths g = 0.1, 0.5, and 0.9, respectively. Note the different scales on the color bars.

can observe that for g � 0.5, correlation does not drop below
90%. Even for g = 0.9, the correlation is low only if one fixed
point is very close to the origin and the other one is far out.

So far we only considered the case g < 1. For g > 1,
there is a minimal κ̂min for which the dynamics are stabi-
lized and a unique stable fixed point emerges [4]. Here, the
manifold M is unconnected and now reads M = {x̂ | κ̂ ∈
R \ (−κ̂min, κ̂min)}.

Finally we note that the constraints of a one-dimensional
manifold are general and do not depend on the details of
the vector n, especially not on its Gaussian statistics. This
is particularly important for learning algorithms like the echo
state framework or FORCE, which by construction only allow
for the adaptation of the vector n [20,21]. Accordingly, fixed
points in these cases are also strongly correlated, which may
lead to catastrophic forgetting when trying to learn multiple
fixed points sequentially [29].

B. Mean-field theory

For nontrivial fixed points of the full network, Eq. (14), the
scalar feedback κ needs to be consistent with the firing rates
φ(x). Similar to prior works, we compute κ using a mean-
field theory [4]. The central idea of the mean-field theory is
to replace the input to each variable xi by a stochastic variable
with statistics matching the original system. The statistics of
the resulting stochastic processes xi are then computed self-
consistently.

Because our model includes correlations between the ran-
dom part J and the low-rank structure P, the correlations in the
activity do not vanish as dynamics unfold. This phenomenon
prevents the application of previous theories [4]. We hence de-
velop a new theory. The details are elaborated in Appendix E.
Here we give an outline of the analysis.

The starting point is the scalar feedback κ . The Gaussian
statistics of n and the fixed point x allow to factor out the

effect of the nonlinearity via partial integration. We have

κ = nTφ = 〈φ′〉 nTx, (19)

with the average slope 〈φ′〉 evaluated at the fixed point:

〈φ′〉 =
∫

Dz φ′(
√

�0z), (20)

where Dz is the standard Gaussian measure. �0 is the variance
of x, which from the fixed point equation (14) is given by

�0 = g2〈φ2〉 + κ2. (21)

The quantities 〈φ′〉, �0, and κ are determined self-
consistently. To that end, we further evaluate κ in Eq. (19).
Inserting the fixed point equation (14) yields

nTx = nTJφ + κnTm. (22)

The first term on the right-hand side vanished in previous
studies with no correlation between P and J [4]. In our case,
there are correlations, and we proceed to analyze this term.
We first interpret JT n as a Gaussian vector and use partial
integration to replace φ with x:

nTx = 〈φ′〉nTJx + κnTm. (23)

We now insert the fixed point equation (14) into the new
first term of the right-hand side. We can apply this scheme
recursively and arrive at an equation linear in κ on both sides:

κ = κ〈φ′〉
∞∑

k=0

〈φ′〉k θk, (24)

with overlaps as defined above, Eq. (7). We are looking at a
nontrivial fixed point, so we can divide by the nonzero κ to
obtain

1

〈φ′〉 =
∞∑

k=0

〈φ′〉k θk. (25)
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FIG. 4. Two fixed points induced by rank-one perturbation correlated to the random connectivity J . (a) Spectrum of J + mnT . The squares
indicate the corresponding averaged slopes at the fixed points, as predicted by Eq. (26). [(b) and (c)] Eigenvalues of the Jacobian at the two
fixed points x(1) (b) and x(2) (c). Stars indicate the theoretical predictions for exceptional stability eigenvalues (only meaningful outside the
bulk). (d) Fixed points and manifold M. The colored lines indicate trajectories starting from the two fixed points (blue and orange), a point on
the manifold M (green) and the origin. All trajectories converge on x(1) or its negative counterpart. At each point, 50 different initial conditions
are obtained by adding Gaussian noise (SD = 0.5). The fixed point correlation is indicated by ρ12. Parameters: g = 0.8 and N = 1000. The
rank-one perturbation is obtained by the least-squared n, see Appendix D.

A comparison with Eq. (6) shows that the two equations are
identical if

λ = 1/〈φ′〉. (26)

This is a remarkable relationship between the outliers and
autonomously generated fixed points: each nontrivial fixed
point x(i) must be associated with a real eigenvalue λi such
that the average over the derivative of firing rates at this fixed
point, 〈φ′〉i, fulfills the above condition (26). In the special
case of φ = tanh, the 〈φ′〉i are confined to the interval (0, 1],
so the corresponding eigenvalues must be real and larger than
one. One may hence look at the spectrum of the connectivity
matrix alone and determine how many nontrivial fixed points
there are. An instance of this phenomenon is illustrated in
Fig. 4. The spectrum at the origin contains two outliers λi,
i = 1, 2, each real and larger than one. The dynamics have
two corresponding fixed points x(i) located on the manifold
M. In accordance with Eq. (26), the average slopes at these
fixed points, 1/〈φ′〉i, agree with the outliers up to deviations
due to the finite network size.

C. Stability of fixed points

The stability of each fixed point is determined by the
spectrum of its Jacobian. The associated stability matrix (the
Jacobian shifted by −1) is

S = (J + mn)R′, (27)

with the diagonal matrix of slopes R′
i j = δi jφ

′
i . Previous work

([4]) has found that the spectrum of S, too, consists of a
bulk and a small number of exceptional eigenvalues: in the
case of an uncorrelated rank-one perturbation, there are two
nonzero eigenvalues obtained via mean-field theory, only one
of which has been found outside the random bulk. The radius
of the bulk shrinks to g

√
〈φ′2〉 due to the saturation of the

nonlinearity [4]. We find numerically that the bulk behaves
alike in our model, too. For the rest of this section, however,

we focus on exceptional eigenvalues of the stability matrix S,
denoted by γ .

Similar to the trivial fixed point, one can apply the matrix
determinant lemma to derive an equation for the stability
eigenvalues:

γ = nTR′
(
1 − JR′

γ

)−1

m. (28)

We can apply the mean-field theory introduced above to
evaluate the right-hand side. The details of this calculation
are deferred to Appendix F. It turns out that the resulting
γ are surprisingly compact. We now describe these stability
eigenvalues.

Consider the fixed point x(i). According to Eq. (26), this
fixed point corresponds to the eigenvalue λi. Eq. (28) always
has two solutions γ± determined by a quadratic equation.
These are only dependent on the outlier λi and the statistics
of the fixed point x(i), but entirely independent of the remain-
ing spectrum or other fixed points. Their precise values are
detailed in Eq. (G2). It turns out that γ+ and γ− always have
a real part smaller than one. They hence do not destabilize
the fixed point. Additionally, at least one of the two is always
hidden within the bulk of the eigenvalues, as observed before
for the case of no correlation [4]. In Figs. 4(b) and 4(c), the
spectra of the Jacobian at two fixed points are compared with
the theoretical predictions. In both cases, γ± correspond to
the two stars within the bulk. In Fig. 5(b), the bulk is smaller
(g = 0.6) and γ+ is visible.

If λi = λ1 is the only outlier, then γ± are the only two
solutions of Eq. (28), and the fixed point x(1) as well as
its mirror −x(1) will be stable. However, if there are K �
2 outliers {λ1, . . . , λK}, we find an additional set of K − 1
stability eigenvalues

γ j = λ j

λi
for all j ∈ {1, . . . , K}, j 
= i. (29)

This expression indicates a remarkable relationship between
different fixed points: the existence of a fixed point x( j) with
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FIG. 5. Limit cycle induced by oscillatory instability. (a) Spectrum of the connectivity matrix. The outlier λ3 is real-valued and larger than
one, so there is a corresponding fixed point x3. (b) The spectrum at the fixed point. The predicted stability eigenvalue γ− lies inside the bulk
and is not labeled. (c) Fixed point and dynamics as in Fig. 4. Trajectories start at the fixed point (blue), a point on the manifold M (orange) and
the origin (green). (d) Scalar feedback κ (t ) for the different initial conditions. Parameters: g = 0.6 and N = 1000. The rank-one perturbation
is obtained by the least-squared n, see Appendix D.

outlier λ j > λi will always destabilize the fixed point x(i)

corresponding to λi. Conversely, if there are no outliers with
real part larger than that of λi, then x(i) will be stable. Since
λ = 1/〈φ′〉 implies that larger λ corresponds to larger fixed
point variance �0, one can say that only the largest fixed point
can be stable, Such an interaction between two fixed points
is illustrated in Figs. 4(b) and 4(c). The stars outside of the
bulk correspond to the predicted eigenvalue γ2 or γ1. Com-
parison between the theoretical prediction (29) and numerical
calculation for a sampled network shows good agreement for
both fixed points. Furthermore, a simulation of the dynamics
in Fig. 4(d) shows that indeed all trajectories converge to the
larger fixed point x(1) or its negative counterpart.

Finally, note that a complex outlier λ j also destabilizes a
fixed point x(i) if the real part of λ j is larger than that of
λi. Complex outliers do not have corresponding fixed points,
since Eq. (26) is real. An example of such a case is shown in
Fig. 5. There is only one real eigenvalue larger than one, and
hence only a single nontrivial fixed point x(3). Nonetheless,
the two complex outliers λ1 = λ∗

2 destabilize the fixed point
by virtue of Eq. (29), since the real parts are larger than
the outlier corresponding to the fixed point, �λ1 = �λ2 >

λ3. Numerical simulations indicate that in such a case, the
dynamics converge on a limit cycle.

V. RANK-TWO PERTURBATIONS

The previous section demonstrated two properties of net-
works with multiple nontrivial fixed points: they are highly
correlated due to the confinement on the manifold M
[Figs. 3(b)–3(d) and 4(d)], and their stability properties inter-
act [Eq. (29)]. We asked whether the latter is a result of the for-
mer. To approach this question, we extend the model to a rank-
two perturbation which allows for uncorrelated fixed points.

The rank-two connectivity structure is defined by

P = mnT + uvT . (30)

We assume J , m and u to be drawn independently. Similar to
the rank-one case, the entries of both m and u are drawn from

standard normal distributions while n and v are Gaussian and
dependent on J, m and u.

The outliers λ of the perturbed matrix J + mnT + uvT

are calculated similarly to the rank-one case. Applying the
matrix determinant lemma twice, we arrive at an equation of
quadratic form:

0 = λ2 − λTrQλ + det(Qλ). (31)

In other words, λ is an eigenvalue of the matrix

Qλ =
[

nTMλm nTMλu
vTMλm vTMλu

]
, (32)

which depends on λ through

Mλ =
(
1 − J

λ

)−1

. (33)

In general there are more than two solutions, but if the
rank-two perturbation is uncorrelated to J , the matrix Mλ

disappears in Qλ. The solution is then in agreement with
previous results [4].

Nontrivial fixed points of the network dynamics (2) with a
rank-two perturbation (30) obey the equation

x = Jφ + κ1m + κ2u, (34)

with κ1 = nTφ and κ2 = vTφ. Similar to the rank-one case, we
can apply the recursive insertion of the fixed point and partial
integration, Eqs. (19) and (22), to compute the two-component
vector κ = (κ1, κ2). We arrive at

Qλκ = 1

〈φ′〉κ. (35)

This equation has two consequences: First, we find that
λ = 1/〈φ′〉, because both sides are eigenvalues of Qλ, see
Eq. (31). Second, the feedback vector κ is the corresponding
eigenvector. This gives rise to three situations.

(i) If Qλ has two distinct eigenvalues, one of them is equal
to λ. The corresponding eigenvector determines the direction
of κ.
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FIG. 6. Fixed points and dynamics for a rank-two perturbation with structures mnT and uvT drawn independently of each other as well as
of J . [(a)–(c)] Spectra of the Jacobian at the origin (a) and at the two fixed points x(1) (b) and x(2) (c). Stars denote the predictions for infinite
size networks. (d) Projection of fixed points on vectors m and u, and trajectories starting around x(1) (blue), x(2) (orange), x(1) + x(2) (green)
and 0 (red). The correlation between the two fixed points is indicated by ρ12. Other parameters as in Fig. 4.

In the case of degeneracy, the geometric multiplicity, that
is, the number of eigenvectors, determines the situation.

(ii) If there is only one eigenvector, the direction of κ is
determined uniquely.

(iii) If λ has two corresponding eigenvectors, any direction
is a solution. The length of κ is determined below, Eq. (36),
and we obtain a ring attractor [4]. This situation arises in the
case of precise symmetry, Qλ = λ1.

Finally, the length of κ is determined by the variance �0 =
xTx/N of the fixed point, which obeys

�0 = g2〈φ2〉 + κ2
1 + κ2

2 . (36)

The fixed point stability is calculated based on the tech-
niques introduced above; details can be found in Appendix H.
The result is the same as that in the rank-one case: the stability
eigenvalues obey the same equations as before. Namely, if
the spectrum of J + mnT + uvT has the outliers {λ1, . . . , λK},
there are always two stability eigenvalues γ±, both with real
parts smaller than one. At a fixed point x(i), there are K − 1
additional outliers γ j = λ j/λi for j 
= i. This implies that
linear dynamics around a fixed point is completely determined
by its statistics and the spectrum of the connectivity matrix:
as long as the outliers are the same, the stability eigenvalues
are independent of the rank of the perturbation P or its
correlations to J .

This also answers our question about whether the corre-
lation between fixed points is responsible for the strong influ-
ence on each other. The rank-two case, too, can be analyzed by
replacing the feedback κ1, κ2 with two constant scalars. The
corresponding manifold is now two-dimensional, and fixed
points can be arbitrarily uncorrelated. In Fig. 6, we show an
example: plotting the projection of the fixed points along the
vectors m and u shows that the fixed points are almost orthog-
onal. Yet, the spectra at the origin and at each fixed point are
identical to the corresponding rank-one case (compare with
Fig. 4). The correlation between fixed points is hence not
important for the mutual influence of different fixed points.

VI. DISCUSSION

Given a network with connectivity consisting of a random
and a structured part, we examined the effects of correlations

between the two. We found that such correlations enrich
the functional repertoire of the network. This is reflected
in the number of trivial fixed points and the spectrum of
the connectivity matrix. We analyzed precisely which as-
pects of the correlations determine the fixed points and
eigenvalues.

In our model, the overlaps θk = nT Jkn quantify the corre-
lations between random connectivity J and structured, low-
rank connectivity mnT . For uncorrelated networks, only θ0 is
nonzero, and the spectrum of the joint connectivity matrix has
only a single outlier [25,26]. We showed that in correlated
networks with θk nonzero for higher k, multiple outliers can
exist, and that with such, multiple fixed points induced by a
random plus rank-one connectivity structure become possible.
The correlations between random part and rank-one structure
hence enrich the dynamical repertoire in contrast to networks
with uncorrelated rank-one structures, which can only induce
a single fixed point [4]. Note, however, that our assumption of
Gaussian connectivity limits the resulting dynamics to a single
stable fixed point (discussed below).

Apart from multiple fixed points, the correlated rank-one
structure can also lead to a pair of complex conjugate outliers,
which in turn yield oscillatory dynamics on a limit cycle. In
absence of correlations, such dynamics need the perturbation
to be at least of rank two [4]. Finally, we found that corre-
lations amplify the perturbation due to the structured compo-
nents: the norm of a correlated rank-one structure inducing a
fixed point decreases with increasing variance of the random
part, pointing towards possible benefits of large initial random
connectivity.

Constraining the model to Gaussian connectivity allowed
us to analytically understand the mechanisms of correlations
in a nonlinear network. We established a remarkable one-to-
one correspondence between the outliers of the connectivity
matrix and fixed points of the nonlinear dynamics: each real
outlier larger than one induces a single fixed point. Surpris-
ingly, the stability of the fixed points is governed by a simple
set of equations and also only depend on the outliers of the
spectrum at the origin. Through these results, we were able to
look at the system at one point in phase space (the origin) and
determine its dynamics at a different part of the phase space.
It remains an open question to which degree these insights
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extend to non-Gaussian connectivity. Interesting other con-
nectivity models might include sparse connectivity [30–32],
different neuron types [33], or networks of binary neurons
such as the Hopfield model [9].

Our approach allows us to gain mechanistic insight into
the computations underlying echo state and FORCE learn-
ing models which have the same connectivity structure as
our model [20,21]. Here, the readout vector n is trained,
which leads to correlations to the random part J [3,34]. Our
results on multiple fixed points and oscillations show that
these correlations are crucial for the rich functional repertoire.
However, constraining our theory to Gaussian connectivity
limits the insights, since the learning frameworks do not
have this constraint. One study analyzing such non-Gaussian
rank-one connectivity in the echo state framework shows that,
like in our study, each fixed point had one corresponding
outlier in the connectivity matrix [3]. However, multiple
stable fixed points were observed, which is in contrast to
our model where the Gaussian connectivity only permits
the fixed point with largest variance to be stable. It would
thus be interesting to extend our model beyond the Gaussian
statistics.

We pointed out a general limitation of networks with ran-
dom plus rank-one connectivity: the restriction of fixed points
to a one-dimensional manifold. This insight is independent
of the Gaussian assumption and leads to high correlations
between fixed points. Such correlations have been found
to impede sequential learning of multiple fixed points [29].
An extension to rank-two structures allows for uncorrelated
fixed points. Surprisingly, however, the strong influence of
the largest outliers on the stability of fixed points still exists
for Gaussian rank-two connectivity. Indeed, the fixed point
statistics and their stability is determined solely by the spectral
outliers of the connectivity matrix, independently of how
these outliers were generated. Since these relations do not
hold in the non-Gaussian case, [3], we conclude that the
Gaussian assumption poses a severe limitation to the space
of solutions.

Further in accordance with the echo state and FORCE
learning frameworks [20,21], we model the correlations to
be induced by one of the two vectors forming the rank-one
structure. Some of the results, such as the overlaps θk , are
symmetric under the exchange of the two vectors and should
hence be unaffected. The result on the strongly increasing
norm of the perturbation when placing multiple outliers, on
the other hand, may depend on this assumption [28]. To which
degree our results or the capabilities of trained networks are
limited by this constraint is not clear.

Our choice to model the structured part as a low-rank
matrix was in part motivated by the computational models
discussed above. Besides these, the existence of such struc-
tures may also be inspired by a biological perspective. Any
feedback loop from a high-dimensional network through an
effector with a small number of degrees of freedom may be
considered as a low-rank perturbation to the high-dimensional
network. Similarly, feedback loops from cortex through basal
ganglia have been modeled as low-rank connectivity [28].
Even without such explicit loops, networks may effectively
have such structure if their connectivity is scale-free or con-
tains hubs [35]. Finally, low-rank connectivity also appears

outside of neuroscience, for example in an evolutionary set-
ting [36]. Whether low-rank matrices arise in general in learn-
ing networks, and to which degree such structure is correlated
with the initially present connectivity are interesting future
questions to be approached with the theory we developed
here.
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APPENDIX A: FINITE NUMBER OF SOLUTIONS
FOR OUTLIERS

Equation (6) in the main text is a polynomial of infinite
degree. It may thus seem that there are infinite solutions for
the outlying eigenvalues, even in the case of a finite network
of size N . We now show why this is not the case. Note that
the equation was only valid for outliers (enabling the series
expansion). Denote the eigenvalues of J by λ̂i, 1 � i � N . If
we diagonalize J = LT �̂R with �̂ = diag(λ̂1, . . . , λ̂N ), and
write n̂ = Ln and m̂ = Rm, then the series becomes

λ =
∞∑

k=0

∑N
i=1 n̂iλ̂

k
i m̂i

λk
=

N∑
i=1

n̂im̂i

1 − λ̂i
λ

, (A1)

which is a polynomial equation of degree N .

APPENDIX B: CONSTRUCTION OF THE VECTOR n

In our model, J and m are drawn independently from
Gaussian distributions. We construct n from the these two
quantities for a target set of overlaps θ̂k . Specifically, we set

n = 1

N

∞∑
k=0

θ̂k

g2k
Jkm. (B1)

Below we show that with this definition the actual overlaps
θk converge to the targets θ̂k with increasing network size
N . Note that the scaling by 1/N renders the θk order one
quantities.

We start by analyzing the uncorrelated case, for which θ̂k =
0 for any k � 1, and

n = θ̂0

N
m. (B2)

We need to show that θ0 converges to θ̂0 as N → ∞. To this
end, we will show that the expected value has this limit and
that the variance vanishes. We calculate the scalar product

θ0 = nTm = θ̂0
mTm

N
. (B3)
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The expected value of mTm/N is one, so we observe that,
indeed, E[θ0] = θ̂0. For the variance we have

var

(
mTm

N

)
= 1

N2

∑
i j

E
[
m2

i m2
j

] − 1

= 1

N2

∑
i j

E
[
m2

i

]
E

[
m2

j

] − 1

+ 1

N2

(∑
i

E
[
m4

i

] −
∑

i

E
[
m2

i

]2

)

= O
(

1

N

)
. (B4)

The term in the second line vanishes, and the one in line
three is of order O(1/N ) since the fourth moment does not
depend on the network size. The scalar product hence has
a self-averaging quality in the sense that it converges to its
expected value with deviations on the order O(1/

√
N ).

The next overlap is treated similarly:

θ1 = nTJm = θ̂0

N

∑
i j

miJi jm j . (B5)

Here, the expected value is equal to zero because of the
independence between J and m. The variance decays with N
as before:

var(θ1) =
(

θ̂0

N

)2 ∑
i jkl

E[miJi jm j mkJkl ml ]

=
(

θ̂0

N

)2 ∑
i j

E
[
m2

i J2
i jm

2
j

]

=
(

θ̂0

N

)2 ∑
i j

E
[
m2

i m2
j

] g2

N

= θ2
0 g2

(
1

N
+ 2

N2

)

= θ2
0 g2

N
+ O

(
g2

N2

)
. (B6)

The off-diagonal terms in the first line disappear since entries
with different indices are independent. Similar calculations
can be done for any of the higher order overlaps θk , and one
finds that the variance of these terms is

var(θk ) = θ2
0 g2k

N
+ O

(
g2k

N2

)
. (B7)

We now turn to the correlated case. Here, the terms θ̂k may
be nonzero. We only discuss the simplest case with θ̂k = 0 for
any k � 2, since all other cases can be treated similarly. We
write

n = 1

N

(
θ̂0m + θ̂1

g2
Jm

)
, (B8)

and calculate the zeroth overlap

θ0 = θ̂0
mTm

N
+ θ̂1

g2 �
�
��mTJm

N
. (B9)

The crossed-out term self-averages to zero due to the indepen-
dence between J and m, so that E[θ0] = θ̂0.

Similar reasoning applies to the first overlap:

θ1 = θ̂1
�
�
��mTJT m

N
+ θ̂1

g2

mTJT Jm
N

. (B10)

Now, however, it is the first term that vanishes. The second
one remains order O(1):

E

[
mTJT Jm

N

]
= 1

N

∑
i jk

E[miJjiJjkmk]

= 1

N

∑
i j

E
[
m2

i

]
E

[
J2

ji

]
= g2, (B11)

and hence E[θ1] = θ̂1. Similar calculations show that

var

(
mTJT Jm

N

)
= 2g4

N
+ O

(
g4

N2

)
, (B12)

where the factor 2 is of combinatorial nature, counting how
many index combinations yield nonzero expectations.

The last calculations explain the scaling by 1/g2k in the
definition of n, Eq. (B1). It also points to a general feature of
the algebra of scalar products: products of the sort a(JT )kJl b
for vectors a and b independent of J yield the expected value

E[aT(JT )kJlb] =
{

g2kaTb if k = l,

0 else.
(B13)

Applying this algebra, we see that for the construction of n
according to Eq. (B1) one indeed obtains E[θk] = θ̂k , valid in
expectation and with variances on the order O(Ckg2k/N ), with
a combinatorial factor Ck .

APPENDIX C: CONSTRUCTION OF OUTLIERS

Here we detail how to construct a rank-one perturbation
mnT such that the joint matrix J + mnT has a set � =
{λ1, . . . , λK} of K outliers. Applying Eq. (B1) for n, the
question reduces to finding the coefficients θ̂k .

The procedure of determining the θ̂k from the λi allows
some choices. We start by choosing whether the θ̂k should
form a truncated series or decay exponentially. For the trun-
cated case with θ̂k = 0 for all k � K , the equation follows
directly from outlier equation (6):

0 = λK −
K−1∑
k=0

θ̂kλ
K−1−k . (C1)

To obtain K outliers from a nontruncated series, one can write
the θ̂k as sums of exponentially decaying terms

θ̂k =
K∑

α=1

aαbk
α, (C2)

with coefficients aα and bases bα . Evaluating the geometric
series leads to the polynomial equation

1 =
K∑

α=1

aα

λ − bα

. (C3)
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Either choice hence yields a polynomial of degree K , the roots
of which need to be the target outliers λi. The coefficients
of this polynomial can hence be obtained from a comparison
with the coefficients of the polynomial p(λ) = ∏K

i=1(λ − λi ).
For example, in the case of a truncated series, the coefficients
θ̂k are determined by

θ̂k = (−1)k
∑

π∈S( K
k+1)

(∏
i∈π

λi

)
, (C4)

where S(K
k ) denotes the possible choices of k different indices

from the K available ones. Note that the indices for θk run
from zero to K − 1, whereas those of λi run from 1 to K .

In the case of exponentially decaying series, one can derive
a similar equation from Eq. (C3). However, there are 2K
parameters aα and bα–there is the freedom to choose K of
them, as long as bα < g.

APPENDIX D: LEAST SQUARE VECTOR n

Here we introduce another method of constructing multiple
outliers. Assume that J , m are given and we want to find the
least square vector n such that we have the set of outliers
{λ1, . . . λK}. We apply the matrix determinant lemma, Eq. (4),
and obtain

nT (λα1 − J )−1m = 1 ∀ α ∈ {1, . . . , K}. (D1)

This can be read as an underconstrained linear system An = 1,
with the vector of ones 1 and the matrix A ∈ CK×N defined by
its rows

AT
α = 1

λα

wλα
, (D2)

with wλ = (1 − J
λ

)
−1

m. Since K < N , the matrix A is singu-
lar. The least square solution to the system is given by

n = A+1, (D3)

with the pseudoinverse of A denoted by A+ = AT (AAT )−1 ∈
CN×K .

We express the vector wλ by the series expansion

wλ =
∑

k

(
J

λ

)k

m, (D4)

and insert this into the term AAT . Applying the algebra (B13)
developed above yields

(AAT )αβ =
N∑

i=1

AαiAβi

= 1

λαλβ

∑
k,l

mT

(
JT

λα

)k( J

λβ

)l

m

= 1

λαλβ

∑
k

(
g2

λαλβ

)k

mTm

= N

λαλβ − g2
. (D5)

Inserting this into Eq. (D3), we can finally write

n = 1

N

K∑
α=1

aαwλα
, (D6)

where the coefficients aα are determined by solving the linear
equation

1 =
K∑

β=1

aβ

λα − g2/λβ

∀ α ∈ {1, . . . , K}. (D7)

Connecting to the above schemes of constructing n with
deliberate overlaps θk = nTJkm, we compute these for the
least square solution found here. We find that overlaps decay
exponentially as in Eq. (C2), namely,

θk =
K∑

α=1

aα

(
g2

λα

)k

. (D8)

We observed numerically that for a large number of outliers
K the rank-one perturbation became the dominant term in the
matrix J + mnT . To understand this, we look at its Frobenius
norm, given by

||mnT ||2 = Tr((mnT )T mnT ) = NnTn. (D9)

The squared norm of n can be obtained from the pseudoin-
verse defined above:

nTn = 1T (A+)T A+1 = 1T (AAT )−11. (D10)

To arrive at a general expression for this quantity, we calcu-
lated Eq. (D5) explicitly for the cases K = 1 and 2 and per-
formed thorough numerical checks for larger K (see Fig. 2).
The resulting equation is

nTn = g2

N

(
K∏

α=1

λ2
α

g2
− 1

)
. (D11)

For an increasing number of outliers, the offset by minus one
becomes negligible, and we arrive at the result stated in the
main text, Eq. (12).

APPENDIX E: MEAN-FIELD THEORY
WITH CORRELATIONS

We analyze fixed points of the form

x = Jφ + κm + I. (E1)

We extend the setting in the main text by allowing for a
constant input vector I. Like the other vectors, we assume I
to be Gaussian and uncorrelated to J .

We want to compute κ = nTφ(x). The mean-field assump-
tion is that x is a Gaussian variable. That is, its entries xi are
drawn from a normal distribution with zero mean and variance
�0. The variance �0 is determined self-consistently below.
Since the entries of the vector follow the same statistics, we
look at a representative xi and drop the index i:

x =
√

�0zx, (E2)

with the standard Gaussian random variable zx ∼ N (0, 1). By
the model assumption, the vector n is also a Gaussian. One
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can express n explicitly in relation to x by defining

n = 1

N
(σn

√
1 − ρ zn + σnρ zx ), (E3)

with a second, independent standard Gaussian random vari-
able zn. The parameters σ 2

n and ρ encode the variance of n
and its correlation to x. The self-averaging quality of the scalar
product allows us to write

nTx = N E[nx] =
√

�0σnρ. (E4)

Computing κ can then be achieved by exchanging between
the scalar product nTφ and the corresponding Gaussian inte-
gral:

κ = nTφ

=
∫
Dzx

∫
Dzn(σn

√
1 − ρ zn + σnρ zx )φ(

√
�0 zx )

=
√

�0σnρ

∫
Dzxφ

′(
√

�0 zx )

= nTx 〈φ′〉, (E5)

where Dz is the standard Gaussian measure. In the second
line, the term σn

√
1 − ρzn vanishes with the integration over

zn. For the second summand, the integrating over zn evaluates
to 1. The step from second to third line involves partial
integration: for some function f and the Gaussian variable
z ∼ N (0, 1), we have

∫
Dy z f (z) = ∫

Dz f ′(z). This is also
known as Stein’s lemma [4]. Finally, the angled brackets 〈·〉
indicate the average over the fixed point statistics,

〈φ′〉 =
∫

Dz φ′(
√

�0z). (E6)

Such explicit representations of pairs of correlated Gaus-
sian variables have been applied before [3,4]. Below, however,
we encounter a multitude of such Gaussian vectors, so such a
framework would become increasingly cumbersome. We thus
introduce a new formalism which allows us to model arbitrary
many Gaussian vectors. Let a and b be two such vectors of
interest. Like before, we are interested in the statistics of a
representative entry, namely a and b. We define these as

a = Ba · X, b = Bb · X. (E7)

Here, Ba, Bb ∈ RK are a set of real-valued coefficients and
X is a K-dimensional standard normal Gaussian variable
with mutually independent entries Xα ∼ N (0, 1). The K-
dimensional dot product is defined as Ba · X = ∑K

α=1(Ba)αXα .
Any additional vectors c, d, . . . are added by defining corre-
sponding coefficients Bc, Bd , . . . One just needs to choose the
dimension K of the embedding to be sufficiently large.

Since scalar products in the N-dimensional physical space
are self-averaging, we can write

1

N
aTb = 1

N

N∑
i=1

aibi = Ba · Bb. (E8)

In line with the previous sections, the equality sign is only
valid in the limit N → ∞, and the variance decays like 1/N .
Ultimately, we are interested in such scalar products. This
allows us to use the coefficients Ba merely as placeholders
inside calculations, without ever defining their actual values.

With this notation we return to the computation of κ:

κ = nTφ

= N
∫

DX (Bn · X ) φ(Bx · X )

= NBn · Bx

∫
DX φ′(Bx · X )

= nTx 〈φ′〉, (E9)

where DX is the now standard Gaussian measure in K di-
mensions. The third line is obtained using partial integration
as before. In the last line of Eq. (E9) above, we inserted the
definition of coefficients from above, Eq. (E8), for the scalar
products.

The advantage of the new formalism is that it allows us to
continue the calculation. We insert the fixed point x = Jφ +
κm + I. In the case of structure vectors drawn independently
from J , the term nTJφ vanishes and one recovers the known
result κ = 〈φ′〉 nT(κm + I) [4]. For the general case, we go on
calculating nTJφ. The scalar product allows to pull the random
matrix to the left side, and hence

nTJφ = N
∫

DX (BJTn · X ) φ(Bx · X )

= 〈φ′〉 nTJx. (E10)

Recursively applying this strategy, we arrive at

κ = 〈φ′〉 nT
∑

k

(〈φ′〉J)k
(κm + I)

= 〈φ′〉 nTM(κm + I), (E11)

with

M = (1 − 〈φ′〉J )−1. (E12)

For a driven network with nonzero nTMI, one can compute
κ by resorting:

κ = 〈φ′〉nTMI
1 − 〈φ′〉nTMm

. (E13)

The scalar 〈φ′〉, Eq. (25), is a function of the fixed point
variance �0 = xT x/N . Due to the independence of m and I
from J , the variance obeys the same equation as in previous
studies [4]:

�0 = g2〈φ2〉 + (κm + I)T(κm + I)/N, (E14)

with 〈φ2〉 = ∫
Dz φ2(

√
�0z). The coupled nonlinear

Eqs. (25), (E13), and (E14) can be solved numerically if
the overlaps θk = nTJkm and nTJkI, which respectively enter
nTMm and nTMI, are known.

In the case of no input, I = 0, κ is not directly determined.
Instead, 〈φ′〉 is given directly by the outliers via Eq. (26), as
discussed in the main text. The mean-field equations can be
closed by numerically solving Eq. (E6) for �0. The corre-
sponding κ is determined up to the sign by

�0 = g2〈φ2〉 + κ2. (E15)
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APPENDIX F: STABILITY EIGENVALUES

The matrix JR′ − 1γ with the diagonal matrix R′
i j = δi jφ

′
i

is invertible as long as γ ∈ C is not within the spectrum of
JR′. We apply the matrix determinant lemma to compute the
characteristic polynomial,

det(JR′ − 1γ ) = (1 + nTR′(JR′ − 1γ )−1m) det(JR′ − 1γ ).

(F1)

The first bracket has to vanish, so that we arrive at

γ = nTR′
(
1 − JR′

γ

)−1

m =
∑

k

nTR′(JR′)km
γ k

, (F2)

for a nonzero γ .
We calculate the terms nTR′(JR′)km applying the Gaussian

mean-field theory introduced above. For brevity we use induc-
tion. The hypothesis to be proven is

nT R′(JR′)km = nT Jkm〈φ′〉k+1 + xT m
N

〈φ′′′〉

×
k∑

l=0

ql nT (〈φ′〉J )k−l x, (F3)

where x denotes the fixed point and we define

q = g2〈φ′′φ + φ′2〉. (F4)

We start the induction by calculating the Gaussian integral

nTR′m = N
∫

DX (Bn · X ) φ′(Bx · X ) Bm · X

= nTm 〈φ′〉 + nTx
xTm
N

〈φ′′′〉.
(F5)

We used partial differentiation twice, which yields the third
derivative of the nonlinearity. The steps above did not depend
the specific vectors m and n so we will apply the same step
below without explicitly mentioning the Gaussian integrals.
The entire deviation furthermore does not depend on the
vector n. We make use of this independence in the induction
step where we assume the hypothesis (F3) to be true also
after replacing nT with nTJ . This term is identified by square
brackets in the below calculation:

nTR′(JR′)km

= nT

(
〈φ′〉 + xxT

N
〈φ′′′〉

)
(JR′)km

= [nTJ]R′(JR′)k−1m 〈φ′〉 + nTx
1

N
xT(JR′)km 〈φ′′′〉

= [nTJ]Jk−1m 〈φ′〉k〈φ′〉 + xTm
N

〈φ′′′〉

×
k−1∑
l=0

ql [nTJ](〈φ′〉J )k−1−l x〈φ′〉 + nTx
xTm
N

qk 〈φ′′′〉.

(F6)

The first step is to replace m with (JR′)km in Eq. (F5).
The step from second to third line involves the induction
hypothesis for k − 1, and including the last term in the sum

completes the induction. The last term needs to be calculated
separately. We show that

xT(JR′)km = xTm qk (F7)

in a separate induction. The start is trivial. For the induction
step at k � 1, we insert the fixed point equation x = Jφ +
κm + I.

xT (JR′)km = φT JT (JR′)km +��������
(κm + I)T (JR′)km

= φT JT J[R′(JR′)k−1m]

= g2φT [R′(JR′)k−1m]

= q xT (JR′)k−1m. (F8)

Inserting the induction hypothesis for k − 1 proves the state-
ment. A few comments on the steps of the calculation. (1)
The crossed-out term in the first line vanishes because m and
I are drawn independently of J . Showing this formally is a
matter of applying the same techniques as introduced above
recursively. (2) The step from line two to three involves the
vector algebra (B13) introduced above, according to which
aTJTJb = g2aTb for two vectors a, b independent of J . (3) The
fourth line is obtained by applying partial integration. For an
arbitrary Gaussian vector a, we have

φTR′a = N
∫
DX φ(Bx · X ) φ′(Bx · X ) Ba · X

= xTa〈φ′′φ + φ′2〉.
(F9)

We go back to the eigenvalue equation (F2) and insert
Eq. (F3), which yields

γ =
∑

k

nTR′(JR′)km
γ k

= 〈φ′〉
∑

k

( 〈φ′〉
γ

)k

nTJkm

+ xTm
N

〈φ′′′〉
∑

k

(
q

γ

)k k∑
l=0

( 〈φ′〉
q

)l

nTJlx. (F10)

Note that we swap the order of summation in the second sum.
This sum evaluates to

∑
k

(
q

γ

)k k∑
l=0

( 〈φ′〉
q

J

)l

=
∑

k

(
q

γ

)k(
1 − 〈φ′〉

q
J

)−1
[
1 −

( 〈φ′〉
q

J

)k+1
]

=
(
1 − 〈φ′〉

q
J

)−1
[

1

1 − q
γ

− 〈φ′〉
q

J

(
1 − 〈φ′〉

γ
J

)−1
]

=
(
1 − 〈φ′〉

q
J

)−1
[

1

1 − q
γ

(
1 − 〈φ′〉

γ
J

)−1(
1 − 〈φ′〉

q
J

)]

= 1

1 − q
γ

(
1 − 〈φ′〉

γ
J

)−1

. (F11)
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Inserting this into Eq. (F2) for γ , we obtain

γ = nT

(
1 − 〈φ′〉

γ
J

)−1
[
〈φ′〉m + 〈φ′′′〉

1 − q
γ

mTx
N

x

]
. (F12)

One can further simplify this expression by inserting the
fixed point x = Jφ(x) + κm + I and evaluating the Gaussian
statistics. In particular, we have

aTx = aT(1 − 〈φ′〉J )−1(κm + I) (F13)

for any Gaussian vector a. In particular,

nT

(
1 − 〈φ′〉

γ
J

)−1

x = nT

(
1 − 〈φ′〉

γ
J

)−1

× (1 − 〈φ′〉J )−1(κm + I). (F14)

The product of the two inverses can be conveniently split. For
any matrix A and a scalar a, completion of the denominator
yields

1

1 − a
[(1 − A)−1 − a(1 − aA)−1]

= 1

1 − a
[(1 − aA) − a(1 − A)](1 − aA)−1(1 − A)−1

= (1 − aA)−1(1 − A)−1. (F15)

Inserting this into Eq. (F14), we arrive at

γ = 〈φ′〉nT

(
1 − 〈φ′〉

γ
J

)−1

m + 〈φ′′′〉(
1 − q

γ

)(
1 − 1

γ

) mTx
N

×
[

κ

〈φ′〉 − 1

γ
nT

(
1 − 〈φ′〉

γ
J

)−1

(κm + I)

]
. (F16)

We made use of the Eq. (E13) constraining κ , namely

κ

〈φ′〉 = nT (1 − 〈φ′〉J )−1(κm + I). (F17)

Re-sorting terms finally results in[
γ

〈φ′〉 − nT

(
1 − 〈φ′〉

γ
J

)−1

m

]

= 〈φ′′′〉κ (κ + mTI/N )γ

〈φ′〉(γ − q)(γ − 1)

×
[

γ

〈φ′〉 − nT

(
1 − 〈φ′〉

γ
J

)−1(
m + 1

κ
I
)]

. (F18)

Note that we also inserted mTx/N = κ + mTI/N . Without
knowledge about the interaction between n and I, we cannot

further simplify since the term nT(1 − 〈φ′〉
γ

J )
−1

m without I

and the other term including it, nT(1 − 〈φ′〉
γ

J )
−1

(κm + I),
appear in two different parts of the theory: the first one is
a property of the matrix, related to the outlier equation λ =
nT(1 − 1

λ
J )

−1
m, the second one determines κ .

APPENDIX G: STABILITY EIGENVALUES FOR THE
AUTONOMOUS NETWORK

In the autonomous case, I = 0, the square brackets in
Eq. (F18) become identical, and the equation splits into a
quadratic part and one of degree K − 1. By applying the
identity λ = 1/〈φ′〉, we arrive at

0 =
[
λγ − nT

(
1 − J

λγ

)−1

m

][ 〈φ′′′〉κ2λγ

(γ − q)(γ − 1)
− 1

]
.

(G1)

The second bracket is squared in γ and exhibits the roots

γ± = c

2
±

√(
c

2

)2

− q, (G2)

with

c = 1 + q + κ2 〈φ′′′〉
〈φ′〉 , (G3)

and q = g2〈φ′′φ + φ′2〉 as defined above, Eq. (F4). We ob-
serve that γ± is entirely defined by the fixed point statistics.
One can even reduce the problem to two parameters, for
example the outlier λ and the network parameter g which
quantifies the strength of the random connectivity. This allows
to thoroughly scan the numerical values of γ±. The results can
be observed in Fig. 7. The first observation is that both γ+ and
γ− are always smaller than one. They hence do not destabilize
the fixed point. Additionally, we can compare γ± to the radius
of the bulk, which is given by r = g

√
〈φ′2〉 [4]. This shows

that γ− is always within the bulk and hence not observable
numerically.

The roots of the first bracket in Eq. (G1) are identified by
comparing once again with Eq. (5) which defines the outliers λ

of the spectrum at the origin. In fact, the equation is identical,
but now the variable is λγ . Here, λ is the outlier corresponding
to the fixed point under consideration. We hence need to fulfill
λγ = λ′ for some λ′ in the set of outliers. Accordingly, the
solutions are given by Eq. (29) in the main text.

The case λ = λ′ and hence γ = 1 was omitted in the
discussion above. However, one observes from Eq. (F12)
after insertion of λ = 1/〈φ′〉 that γ = 1 would necessitate
nT(1 − J/λ)−2m = 0. According to Eq. (5), the eigenvalues
λ are the roots of the function f (λ) = nT(1λ − J )−1m − 1.
The function has the derivative d f /dλ = −nT(1λ − J )−2m,
which only vanishes if the roots have multiplicity larger than
1. Thus γ = 1 is only a solution if the corresponding λ has
algebraic multiplicity larger than 1.

APPENDIX H: STABILITY FOR RANK-TWO
PERTURBATION

The stability of a fixed point in the case of a rank-two per-
turbation can be evaluated similarly to the rank-one case. One
simply applies the matrix determinant lemma once more on
the stability matrix. Let λ = 1/〈φ′〉 be the outlier correspond-
ing to the fixed point under consideration. All mean-field
quantities will hence implicitly depend on λ, even though we
omit this dependency in the notation. The quadratic equation
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FIG. 7. Stability eigenvalues γ± depend on the outlier λ corresponding to a fixed point. The γ± are solutions to the mean-field equations,
fully determined by the eigenvalue λ and random strength g. (a)–(c) correspond to g = (0.4, 0.8, 1.2), respectively. Orange lines: radius of
the bulk; any eigenvalues with smaller magnitude are not observable, and hence not numerically testable for finite size networks. Where the
absolute values of γ± coincide, the two form a pair of complex conjugates. Note that for g > 1, the minimal λ to stabilize the chaotic activity
is larger than one.

for the stability eigenvalues γ reads

0 = γ 2 − γ TrQ̃γ + det(Q̃γ ), (H1)

with the mean-field form of the stability matrix

Q̃γ =
[

nTM̃γ m nTM̃γ u
vTM̃γ m vTM̃γ u

]
, (H2)

and M̃γ = R′(1 − JR′/γ )−1. As above, Eq. (F12), we have

aTM̃γ b = aT

(
1 − 〈φ′〉

γ
J

)−1
(

〈φ′〉b + 〈φ′′′〉
1 − q

γ

bTx x

)

= 1

λ
aT Mλγ b + 〈φ′′′〉γ

(γ − q)(γ − 1)
bT (κ1m + κ2u)

× aT (γ Mλ − Mλγ )(κ1m + κ2u), (H3)

for two vectors a and b and Mλ = (1 − J/λ)−1 as before,
Eq. (33). The second line is valid in case of an autonomous

fixed point, cf. Eq. (G1). Evaluating the terms appearing in
Q̃γ , we arrive at

Q̃γ = 1

λ
[Qλγ + A �Q κκt ]. (H4)

We abbreviated A = 〈φ′′′〉λγ

(γ−q)(γ−1) and �Q = γ Qλ − Qλγ . The
trace and determinant are then conveniently evaluated as

det(Q̃γ ) = det(Qλγ )

λ2
(1 + Aκt (Qλγ )−1�Qκ), (H5)

Tr(Q̃γ ) = 1

λ
(Tr(Qλγ ) + Aκt�Qκ). (H6)

Inserting these expressions into the stability eigenvalue equa-
tion (H1) and recalling that κ is an eigenvector of Qλ, Eq. (35),
we finally arrive at

0 = [(λγ )2 − λγ Tr(Qλγ ) + det(Qλγ )][1 − Aκtκ]. (H7)

We hence arrive at the same solutions as in the case of a rank-
one perturbation, Eqs. (29) and (G2).
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