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ABSTRACT

Comparative evaluation of virtual screening methods requires a rigorous benchmarking procedure on
diverse, realistic, and unbiased datasets. Recent investigations from numerous research groups
unambiguously demonstrate that artificially constructed ligand sets classically used by the community
(e.g. DUD, DUD-E, MUV) are unfortunately biased by both obvious and hidden chemical biases,
therefore overestimating the true accuracy of virtual screening methods. We herewith present a novel
dataset (LIT-PCBA) specifically designed for virtual screening and machine learning. LIT-PCBA relies on
149 dose-response PubChem bioassays that were additionally processed to remove false positives,
assay artifacts, and keep active and inactive compounds within similar molecular property ranges. To
ascertain that the dataset is suited to both ligand-based and structure-based virtual screening, target
sets were restricted to single protein targets for which at least one X-ray structure is available in
complex with ligands of the same phenotype (e.g. inhibitor, inverse agonist) as that of the PubChem
active compounds. Preliminary virtual screening on the 21 remaining target sets with state-of-the-art
orthogonal methods (2D fingerprint similarity, 3D shape similarity, molecular docking) enabled us to
select 15 target sets for which at least one of the three screening methods is able to enrich the top 1%-
ranked compounds in true actives by at least a factor of two. The corresponding ligand sets (training,
validation) were finally unbiased by the recently described asymmetric validation embedding (AVE)
procedure to afford the LIT-PCBA dataset, consisting in 15 targets, 7844 confirmed active and 407381
confirmed inactive compounds. The dataset mimics experimental screening decks in terms of hit rate
(ratio of active to inactive compounds) and potency distribution. It is available online at
http://drugdesign.unistra.fr/LIT-PCBA for download and for benchmarking novel virtual screening

methods, notably those relying on machine learning.



INTRODUCTION

Virtual screening (VS) of compound libraries has established itself, notably in academic settings, as a
fast and cost-efficient alternative to high-throughput screening (HTS) for identifying preliminary hits
of pharmaceutically interesting targets.'® Because of the availability of hundreds of virtual screening
tools,* choosing the right method for a specific project often relies on benchmarking studies designed
to delineate the context-specific advantages and drawbacks of each method. Many target-specific

>10 3nd statistical evaluation protocols!'™® have been reported in the last decade, to

ligand sets
pinpoint the ability of a VS method to prioritize, for purchase and validation, the shortest possible hit
list with an optimal enrichment in true actives. In the early 2000s, such datasets were limited in size
due to the paucity of available experimental data. Inactive compounds were notably randomly chosen
among drug-like compound databases.> *'°> Very soon, it appeared that random selection of
presumably inactive compounds (decoys) led to artificially high enrichment values, because of a bias
in molecular property ranges (e.g. molecular weight) that often differed between active and inactive
sets.!® A first attempt to design a docking-dedicated benchmark set led to the DUD dataset,® which
gathers 2950 ligands of 40 different targets from literature, seeded among property-matched decoys
(36 decoys for each active) from the ZINC archive of commercially available ligands.!” In DUD, decoys
were specifically designed to share physicochemical properties with actives but with a different
chemical topology. Despite the caution given to the selection of decoys, independent groups rapidly
noticed three major biases for both DUD active and decoy sets: (i) actives tend to spread over a few
dominant scaffolds (so-called "analog bias"),*® (ii) decoys exhibited molecular net charges different
from those of actives,® (iii) decoys were too similar to true actives and likely false negatives.2 The DUD
set was upgraded to a revised version (DUD-E)* describing an enhanced and more diverse target space
(102 targets), containing 22886 clustered true actives with known experimental data from the ChEMBL
database,?° removing all above-cited biases, and enhancing the proportion of decoys (50 decoys for
each active). The debate on the best protocol to select decoys has led to many contributions®® 2! to

design alternative decoy sets to that proposed by DUD-E. As an alternative to DUD-E, other sources of



active compounds (e.g. PubChem BioAssay??) have also been utilized. Noteworthy is the MUV’
database that provides many advantages: (i) the dataset (target, ligand, assay conditions) is publicly
available, (ii) compound collections are drug-like, (iii) many experimental data were utilized to remove
false positives and assay artifacts, (iv) ligands are selected by a nearest neighbor analysis to permit a
spatially unbiased distribution of actives and decoys. Consequently, the MUV dataset is considered

more challenging than DUD-E.

For many years, the DUD-E has been considered as a gold standard for benchmarking VS and machine

2427 wwarned the community on both obvious and hidden biases

learning methods, until recent reports
in its design. First, Chaput et al.?* noticed that differences in key molecular properties (polar surface
area, hydrogen bond donor count, embranchment count) remain between DUD-E actives and decoys.
Moreover, a chemical bias is still present in actives that tend to resemble target-bound PDB ligands,
thereby overestimating the real discriminatory accuracy of standard docking methods.?* Wallach et al.
described the asymmetric validation embedding (AVE) method? to quantify the bias in ligand sets and
optimally design training and validation sets. When applied to ligand-based VS methods, all standard
benchmark sets (e.g. DUD, DUD-E, MUV) were shown to be massively biased, rewarding memorization
rather than learning.?’> The latter danger is even higher for currently popular artificial intelligence
methods (e.g. machine learning, deep neural networks)?® that are hardly interpretable and tightly
dependent on the quality of the input data and the way they are split to train and test a model. Two

2627 jyst reported hidden biases in the DUD-E dataset when applying deep neural

different groups
networks (DNNs) to either predict binding affinities or classify complexes as active/inactive from X-ray
structures or docking poses. Intriguingly, DNNs trained with rigorous cross-validation procedures on
simple ligand descriptors were almost as accurate as those trained on protein-ligand attributes,
evidencing that deep learning did not learn anything about the physics of protein-ligand interactions.

Strikingly, the literature is full of overoptimistic reports describing machine-learning models?*3! with

near to perfect performances on the above-described datasets although true VS practitioners have



known for long that such an accuracy level does not mirror the proportion of experimentally confirmed

hits in real prospective VS experiments.

There is more than ever an urgent need to design an unbiased and realistic dataset specifically

dedicated to virtual screening and machine learning.?” We herewith present our contribution based on

the following seven principles:

(i)

(ii)

(i)

(vii)

(viii)

The dataset should mimic "real-life" screening decks and guide VS methods to discriminate
moderately potent actives (primary hits) from inactive compounds;

The potency of all compounds (actives, inactives) for a particular target should have been
determined experimentally in homogeneous conditions;

The ratio of actives to inactives should reflect hit rates typically observed in HTS campaigns
against targets of pharmaceutical interest;*?

Actives should be filtered to remove false positives, frequent hitters, assay artifacts and
truly undruggable compounds. In addition, dose-response curves should be available for
all actives;

Active and inactive compounds should span common molecular property ranges;
Potency distribution of confirmed actives should not be biased towards too high affinities
and should ideally mimic that observed in HTS decks;

The dataset should be applicable to both ligand-based and structure-based virtual
screening;

Unbiased training and validation sets should be available for machine learning.

We therefore decided to choose the PubChem BioAssay database (PCBA)? as the source of

experimental bioactivity data. PCBA is an open-access archive hosted by the National Center for

Biotechnology Information (NCBI), National Library of Medicine (NLM) and National Institute of

Health (NIH). At the time of writing this manuscript, the database stores over 1 million assay



records, out of which 134000 are annotated by activity type (ICso, ECso, K, Ki). It covers about 7200
HTS projects from 80 sources (academic, governmental, pharmaceutical companies) on a chemical
repertoire of 2.2 million compounds. The database can be easily queried according to numerous
filters and is a premier source of bioactivity data for computer-aided drug discovery.®

We hereby describe a workflow for retrieving assays of interest and filtering compounds and
targets for bioactivity data acquisition. The retrieved target sets were then utilized for state-of-
the-art virtual screening experiments in order to ascertain their suitability. The final dataset (LIT-
PCBA) contains 15 targets, 7844 actives and 407381 inactive compounds; with ready-to-use input
files (ligands, targets) that have been unbiased for machine learning applications. It is available for

download at http://drugdesign.unistra.fr/LIT-PCBA.



COMPUTATIONAL METHODS

Dataset. Bioactivity data were retrieved from the PubChem BioAssay database,?? where all information
on true active and true inactive substances for a protein target is provided based on experimental
results from confirmatory dose-response bioactivity assays, whose related details including assay
principles, general protocols and other remarks are also given. All data were updated as of December
31st, 2018. The “limits” search engine (https://www.ncbi.nlm.nih.gov/pcassay/limits) was used to
filter the PubChem BioAssays resource by various options, with “Activity Outcome” set as “Active”,
“Substance Type” set as “Chemical”, “Screening Stage” defined as “Confirmatory, Dose-Response”.
149 assays targeting a single protein target, operated on at least 10,000 substances, and leading to at
least 50 confirmed actives were first retained. The experimental screening data were kept if the target
was characterized by at least one Protein Data Bank (PDB)** entry, in complex with a ligand of the same
phenotype (i.e. inhibitor, agonist, or antagonist) as that of the tested active substances of the
corresponding bioactivity assay. Altogether, 21 raw HTS data tables were directly retrieved as csv files
from the PubChem BioAssay website as well as actives and inactives in separate sd files. The PDB
resource was then browsed by Uniprot identifier (Uniprot ID)*® to retrieve the corresponding PDB

entries in the suitable ligand-bound form.

Template Structure Preparations for Each Target Set. Protein-ligand complexes (in pdb file format)
corresponding to the chosen target sets were processed as follows. For each PDB entry, explicit
hydrogen atoms were added with Protoss®® to any molecule (protein, co-factor, prosthetic group, ion,
ligand, water). The output pdb file was then visualized in Sybyl-X 2.1.1.3” A water molecule was kept
under two conditions: (i) it was found at the binding site of the ligand, i.e., the distance between the
oxygen atom of the water molecule and at least one heavy atom of the co-crystallized ligand was not
greater than 5 A; and (ii) it engaged in no fewer than three hydrogen bonds with the protein and/or
the ligand, at least two of which were with the protein. Hydrogen bonds must satisfy the following

criteria: the donor—acceptor distance must not exceed 3.5 A; the angle formed by the donor, the



hydrogen atom and the acceptor (the vertex of the angle was positioned at the hydrogen atom) must
be higher than 120 deg. The protonated ligand and protein (including all remaining bound water
molecules, co-factors, prosthetic groups and ions) were saved separately in mol2 file format with

Sybyl-X 2.1.1.%

In case more than 20 ligand-bound protein entries were available for each target, all protein-ligand
structures were clustered according to the diversity of observed protein-ligand interaction patterns.
Protein-ligand interaction patterns were computed as graphs with IChem? as previously described,*
and targets-specific interaction pattern similarity matrices were computed using the GRIMscore
metric.3® Each matrix was then used as input for an agglomerative nesting clustering using the agnes
function in R v.3.5.2, the Ward clustering method, a Euclidean distance matrix and a total number of
clusters fixed to 15. For each cluster, the PDB entry with the highest resolution was chosen as protein-

ligand PDB template for the corresponding target set.

Determination of Filtering Rules for True Active and True Inactive Substances of Each Target Set.
Metadata on each substance (true active and true inactive) included in each selected target set were
collected directly from the website of the PubChem BioAssay database including: the substance
identifier (SID), the activity label (active or inactive), the phenotype (inhibitor, agonist, or antagonist),
the potency (ECso or ICsg, in uM), and the Hill slope for the dose-response curve of each true active.
The frequency of hits (FoH) for each true active was computed as the ratio of the number of PubChem
bioassays in which a substance was confirmed as a true active to the number of assays in which it was
tested. Additional molecular properties (molecular weight, AlogP, total formal charge, number of
rotatable bonds, number of hydrogen bond donors and acceptors) were computed in Pipeline Pilot

v.19.1.0.1964.%°

For each target set, all true actives and true inactives were then filtered according to four steps:

- Step 1: Organic compound filter. Molecules bearing at least one atom other thanH,C, N, O, P, S, F,

Cl, Br, and | were removed.



- Step 2: False positives filter (this particular step was applied only to true active substances).

e Step 2a: 0.5 < Hill slope h < 2.0;

e Step 2b: FoH < 0.26;’

e Step 2c: aggregator/autofluorescence, luciferase filter: All true actives reported as actives
in PubChem aggregation (actives in AID 585 or AID 485341 but not in AID 584 and AID
485294), luciferase inhibition (AID 411) or autofluorescence (AID 587, AID 588, AID 590,

AID 591, AID 592, AID 593, AID 594) bioassays were eliminated.

- Step 3: Molecular property range filter. Remaining actives and inactives were kept if

150 < Molecular weight < 800 Da;

e -3.0<AlogP<5.0;

e Number of rotatable bonds < 15;

e H-bond acceptor count < 10, H-bond donor count < 10;

e -2.0<total formal charge < +2.0

- Step 4: 3D conversion and normalization filter. The two-dimensional (2D) sd files of the remaining
compounds (actives, inactives) were converted into 3D sd file format using default settings of Corina

v. 3.4.*1 Last, compounds were standardized and ionized at physiological pH with Filter 2.5.1.4.%2

2D Similarity Search. Extended-connectivity circular ECFP4 fingerprints*® were computed for PubChem
compounds and PDB ligands in PipelinePilot. Pairwise similarity of PubChem compounds to PDB ligands
was estimated by the Tanimoto coefficient (Tc), thereby leading to a PDB ligand-specific hit list sorted
by decreasing Tc value. The areas under the ROC (receiver operating characteristic)!* and BEDROC
(Boltzmann-enhanced discrimination of ROC)*? curves (a=20) along with the enrichment in true actives

at a constant 1% false positive rate over random picking (EF1%) were calculated for each separate hit



list. The same procedure was applied by fusing all lists and keeping the maximal Tc value for each

compound.

3D Similarity Search. For each target set, a maximal number of 200 conformers were generated for
every PubChem compound with standard settings of Omega2 v.2.5.1.4.** All conformers were then
compared to the query (PDB ligand) with ROCS v.3.2.0.4.*° The best matching conformer was selected
for every ligand according to the TanimotoCombo similarity score,*® and all molecules of each target
set were sorted based on this same value in descending order. ROC AUC, BEDROC AUC and EF1% values

were calculated as described above.

Molecular Docking. Starting from the mol2 structure of a fully processed template protein (including
remaining bound water molecules after preparation) and that of its co-crystallized ligand, a protomol
representing the ligand-binding site was generated from protein-bound ligand atomic coordinates
using default settings of Surflex-Dock v.3066.%® All molecules in the relevant target set were docked
into the protomol with the "—pgeom" option of the docking engine. The best-ranked pose according
to docking scores (pKq values) was retained for each molecule, and all ligands of the set were then
sorted based on this value in descending order. ROC AUC, BEDROC AUC and EF1% values were

calculated as described above.

Target Set Unbiasing. For each target set, unbiasing of the training and validation sets was done using
the previously described asymmetric validation embedding (AVE) method,?® which systematically
measures pairwise distance in chemical space between molecules belonging to four sets of compounds
(training actives, training inactives, validation actives, validation inactives). Using circular ECFP4
fingerprints* as chemical descriptors and a training to validation ratio of 3, a maximal number of 300
iteration steps of the AVE genetic algorithm were run to select training and validation molecules while
minimizing the overall bias B (B € [0, 1]) of the target set. Convergence was reached when the bias

value B was lower than 0.01. To enable the script processing large sets of compounds, the bias
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removing script (remove_AVE_bias.py) originally proposed by Wallach et al.?® was modified to enable

a faster calculation on multiple cores.

RESULTS AND DISCUSSION

The aim of the present study is to design an unbiased dataset dedicated to virtual screening as well as

machine learning, along four main ideas:

(1)

3)

Experimental binding data should be available for all compounds, including inactives. Each true
active should have been confirmed by a full dose-response curve.

The target should be a single protein, for which a high-resolution X-ray structure is available in
the PDB. Moreover, the target should have been crystallized at least once, with a ligand
exhibiting a phenotype (e.g. inhibitor, full agonist, neutral antagonist) identical to that of active
compounds in the corresponding bioassay.

PubChem target sets should be suitable for virtual screening. Performance of three non-
orthogonal VS methods (2D fingerprint similarity, 3D shape similarity, molecular docking) was
assessed to select target sets for which at least one of the three VS methods achieves an
enrichment in true positives higher than 2, in other words, twice better than random picking.
The finally selected target sets should be as unbiased as possible, when comparing true actives
to true inactives in chemical space, as well as by splitting the data in training and validation

sets.

To this end, we designed a computational workflow (Figure 1) that will be presented and discussed,

step-by-step in the following sections.
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Figure 1. Workflow for setting up the LIT-PCBA dataset. 1) Data retrieval from the PubChem BioAssay
database according to user-defined filters (activity outcome: active, count of tested substances >
10000, count of active substances > 50, substance type: chemical, screening stage: confirmatory, dose-
response, target: single, target type: protein target); 2) Data cleaning: removal of inorganic
compounds, false positives, frequent hitters, assay artifacts and compounds with extreme molecular
properties. Selection of target sets for which the target has a representative structure in the Protein
Data Bank, co-crystallized with a ligand of the same phenotype (e.g. inhibitor, agonist, antagonist) as
that of active compounds in the corresponding bioassay; 3) Virtual screening (VS) of cleaned HTS target
sets with three methods (2D similarity, 3D shape similarity, docking); 4) Performance assessment of
the 3 VS methods on all cleaned target sets (ROC, BEDROC, EF1%); 5) Selection of target sets for which
at least one VS method achieved an enrichment in true positives higher than 2.0. AVE? unbiasing of
the corresponding ligand sets and definition of training and validation sets for machine learning.
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HTS Data Extraction. PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for
information on 91 million chemical substances and 268 million biological activities, launched in 2004
as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health
(NIH). The PubChem BioAssay resource?? was queried to retrieve 149 assays according to multiple
queries (see Dataset section of Computational methods). To ascertain that the dataset will be further
suitable for either ligand-based or structure-based VS, we checked that each single protein target not
only had a representative structure in the PDB, but was also co-crystallized with a ligand sharing the
same phenotype or function with the true actives. This sanity check enables the selection of the right
activation state (e.g. for G-protein coupled receptors) and the right binding site for docking. Of course,
we cannot ensure at this step that all true actives share the same binding site with all PDB ligand
templates. However, it enables a first filter to avoid comparing ligands with known opposite or
different functions. To control the bioactivity of each compound, only confirmatory dose-reponse
screening assays were kept. A total of 21 assays (Table 1) performed on isolated enzymes (n=6), soluble
protein-protein interactions (n=4) and target-expressing cells (n=11); using four different readouts
(fluorescence intensity, fluorescence polarisation, luminescence, alpha screen) were finally saved.
Except for five screens for which only 10000 compounds have been tested, most assays have been run
on a large number of compounds (from 200000 to 400000). Importantly, each assay has already been
analyzed in detail, notably regarding the activity threshold qualifying a compound as active, that we
did not modify and that is target-dependent. Moreover, compounds whose activity outcome was

qualified as inconclusive were removed from the final hit list.

Corresponding targets are single proteins representing 11 families of pharmaceutical interest,
including nuclear hormone receptors (n=5), protein kinases (n=3), and G protein-coupled receptors
(n=3). Most target sets describe compounds tested for an inhibitory activity against a protein target

(13 target sets). Overall, 162 structures of protein-ligand complexes in pdb format were chosen as

13



templates for the 21 target sets (Table 1). More information on each selected PubChem BioAssay (brief

assay description, readout, format, PDB templates) can be found in Table S1.

Table 1. List of 21 selected PubChem bioassays

Target Assay Substances® PDB
ID Name AID? Tested Actives Phenotype entries
ADRB2 Beta2 adrenergic receptor 492947 331108 80 Agonist 8
ALDH1 Aldehyde dehydrogenase 1 1030 220402 16117 Inhibitor 8
ARO1 Aromatase 743083 10486 905 Inhibitor 3
ESR1_ago Estrogen receptor alpha 743075 10486 589 Agonist 15
ESR1_ant  Estrogen receptor alpha 743080 10486 477 Antagonist 15
FEN1 Flap endonuclease 1 588795 391275 1368 Inhibitor 1
GBA Glucocerebrosidase 2101 326770 299 Inhibitor

GLP1R Glucagon-like peptide-1 receptor 624417 408352 6432 Inverse agonist 2
GLS Glutaminase 624170 409400 846 Inhibitor 11
IDH1 Isocitrate dehydrogenase 602179 390606 365 Inhibitor 14
KAT2A Histone acetyltransferase KAT2A 504327 387485 817 Inhibitor 3

L3MBTL1  Lethal(3)malignant brain tumor-like 485360 225505 1495 Inhibitor
protein isoform |

MAPK1 Mitogen-activated protein kinase 1 995 72004 711 Inhibitor 15

MTORC1 Mechanistic target of rapamycin 493208 43989 342 Inhibitor 11

OPRK1 Kappa opioid receptor 1777 284220 51 Agonist 1

PKM2 Pyruvate kinase muscle isoform 2 1631 264516 892 Agonist 9

PPARG Peroxisome proliferator-activated 743094 10486 78 Agonist 15
receptor gamma

RORC Retinoic acid-related orphan 2551 309031 16824 Inhibitor 15
receptor gamma

THRB Thyroid hormone receptor 1469 282587 183 Inhibitor 1

TP53 Cellular tumor antigen p53 651631 10488 602 Agonist 6

VDR Vitamin D receptor 504847 401452 3735 Antagonist 2

2 Full details for each assay are available at https://pubchem.ncbi.nlm.nih.gov/bioassay/AID

®Structures deposited by individual data contributors. Unique chemical structures are called compounds.

HTS Data Cleaning. All active and inactive compounds were next submitted to a series of filters (see
Computational methods) aimed at removing inorganic compounds (step 1), frequent hitters and assay
artifacts (step 2),” compounds exhibiting molecular properties outside pre-defined ranges (step 3), and
last, molecules for which either 2D to 3D conversion and ionisation at pH 7.4 failed (Step 4). It can be
observed that nearly 60% of true active substances were removed during the filtering steps (see Table
S2, S3 for exhaustive statistics), with step 2a eliminating the most true actives (Figure 2). This step is

aimed at ruling out actives exhibiting very strong binding cooperativity and multiple binding sites.*
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True inactive substances, on the other hand, were not subjected to the three filtering sub-steps 2a, 2b
and 2c, thus lost much fewer members than the true actives, with over 90% of substances still

remaining in the end.
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8 4500004 [ [
© - m
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D:_j 10000
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0 1 2a 2b 2c 3 4

Filtering steps

Figure 2. Total number of actives and inactives remaining after each filtering step was applied to the
21 selected target sets from PubChem bioassays: step 1, inorganic molecules; step 2a, compounds with
Hill number ngy < 0.5 or ny > 2; step 2b, frequency of hits FoH > 0.26; step 2c, assay artifacts interfering
with the readout (10,892 substances classified as aggregators or autofluorescent molecules or
luciferase inhibitors); step 3, compounds with extreme molecular properties; step 4, 3D conversion
and ionization failures. Steps 2a, 2b and 2c were not applied to true inactives.

The filtering steps highlight the importance of removing assay artifacts in the composition of active
substances. These steps not only prevented false positives that could affect subsequent screening
performances, but also significantly reduced the number of true actives in comparison with true
inactives, thus bringing hit rates closer to that typically observed in experimental screening decks,*
but lower (in 15/21 cases) than that of artificially constructed datasets routinely used in

cheminformatics (Figure 3A).
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Figure 3. Properties of LIT-PCBA and standard datasets. A) Confirmed hit rates for the LIT-PCBA data
set (red bars), standard cheminformatics datasets (DUD,® DUD-E,’® MUV;’ blue bars), and a
representative sample of 10 high-throughput screens from a major pharmaceutical company (green).??
B) Potency distribution of actives in the LIT-PCBA (red) and DUD-E (green) datasets. Potency is
expressed as plCso, pPECso, pKi or pKg.

We next looked at the potency distribution of true actives (Figure 3B) in our dataset with respect to
that of the DUD-E and ChEMBL.?’ We can observe different potency distribution for DUD-E actives (n
= 67,659; median potency = 7.46 + 0.96) and for LIT-PCBA actives (n = 19,985; median potency = 5.22
+ 0.54). The micromolar potencies observed for most LIT-PCBA actives reflect affinities typically

observed in HTS campaigns. Conversely, DUD-E actives tend to be much more potent (submicromolar
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in most cases) and consequently easier to be picked, thereby overestimating the real benefit of VS
methods. At the individual target set level, the same trend applies when comparing the potencies of
LIT-PCBA and ChEMBL ligands for 19 common target sets (Figure S1). Importantly, we believe that the

enhanced difficulty proposed by our dataset may enable a better discrimination of VS methodologies.

Virtual Screening and Performance Assessment. The suitability of the 21 fully processed target sets
for virtual screening was next assessed by three standard methodologies: 2D fingerprint similarity, 3D
shape similarity and molecular docking. The aim of the computational experiment was not to compare
the virtual screening accuracies of all methods but to check which of the 21 target sets may be
unsuitable for virtual screening purpose. Hence, there is no guaranty that PubChem and PDB template
ligands are strictly comparable (e.g. share the same binding site and molecular mechanism of action).
Ligand-based VS will rapidly assess whether obvious biases are present in the ligand sets in terms of
either 2D or 3D topologies. In addition, docking will ascertain if PubChem ligands share binding sites
and interaction patterns with PDB templates. In each VS, all available PDB ligand or PDB target
templates were iteratively used as reference, thereby generating as many hit lists as the available 162
templates. This exhaustive approach, albeit cumbersome, enables the selection of all references and
takes into account the known chemical diversity of target-bound ligands (ligand-based VS) or the
known conformational space accessible to the target of interest (docking). In addition, a target-based
"max-pooling" approach was followed by merging all VS data related to any LIT-PCBA ligand, whatever
the corresponding template, and retaining the highest value (2D similarity, 3D similarity, docking score)

per ligand .
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Figure 4. Performance of three different virtual screening methods (2D: ECFP4 fingerprint similarity,
3D: 3D shape similarity, SD: molecular docking with Surflex-Dock) on 21 fully processed target sets.
The graphs represent the distribution of EF1% values (enrichment in true actives at a constant 1% false
positive rate over random picking) obtained after screening. The boxes delimit the 1°t and 3™ quartiles,
and the whiskers delimit the minimum and the maximum values. The median and the mean values are
indicated by a green vertical line and a red dot located in each box, respectively. In cases where there
is only one PDB template for a target set, or all templates gave the same EF1% value, the boxes are
shrunk down into a single line. The purple crosses represent the EF1% values obtained by the max-
pooling approach.
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Statistical analyses of the data were primarily focused on enrichment factors in true actives at a
constant 1% false positive rate (EF1%) as it mirrors the expectation of prospective VS practices. In
addition, areas under the ROC curves have also been calculated and are given in Supplementary Tables

$4-S6.

As to be expected, inspection of observed enrichment in true actives for all 21 target sets clearly shows
that the EF1% values may vary quite significantly according to the chosen template. In many instances,
enrichment close to or even poorer than that obtained by random picking (EF1% = 1.0) is observed
(Figure 4). We considered as acceptable any VS protocol yielding an EF1% value higher than 2, in other
words, at least twice better than random picking. At this threshold, ligand-based methods clearly
outperform docking (Figure 4). Interestingly, only five out the 63 VS assays, all concerning ligand-based
approaches, led to enrichment higher than 10. This result highlights the particular challenge of
screening the current dataset that we attribute to two main reasons: (i) the apparent absence of
obvious biases in the distribution of PubChem actives with respect to PDB templates in ligand space,

(ii) the potency distribution of PubChem actives centered on micromolar hits.

Final Target Set Selection and Unbiasing. In order to facilitate the analysis, we will from hereon discuss
the results obtained by fusing, for each VS method, all data across all available target-specific
templates ("max-pooling" approach). This strategy was supported by two main reasons: (i) the fused
approach provides enrichments usually close to that obtained with the best possible template (Tables
$4-S6), (ii) it enables the definition of a single hit list for each VS run while considering all templates.
15 out of the initial 21 target sets can be considered to be suited (EF1% > 2) for at least one of the

three VS method (Figure 5).
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Figure 5. Comparative performance of three VS protocols (2D: ECFP4 fingerprint similarity search, 3D:
shape similarity search, SD: molecular docking) for the 21 target sets, processed by a max-pooling
approach. A) Venn diagram of target sets for which an EF1% higher than 2.0 is observed, B) Heatmap
representing fused values of EF1% obtained for each of 21 fully processed target sets by the three
virtual screening methods. Abbreviations of target sets are indicated above the heat map.

The current VS exercise suggests that six target sets (GLS, GLP1R, ARO1, THRB, RORC, L3MBTL1) are
not adequate for VS purpose since none of the three VS methods is able to clearly distinguish
confirmed actives from inactive compounds when the max-pooling approach was applied (EF1% < 2.0)
(Figures 4-5). Moreover, for five target sets among them (GLS as the only exception), the template-
based scoring approach did not give any EF1% value above 2.0 either. Reasons for failures in screening
these targets were: (i) the promiscuity of the binding site towards many low-affinity chemotypes (e.g.
ARO1), (ii) the presence of non-overlapping binding sites (orthosteric vs. allosteric) for PDB templates
and PubChem actives (e.g. GLP1R, GLS, RORC), (iii) the availabililty of a single PDB template (e.g.

L3MBTL1, THRB).

Two target sets (ADRB2, PPARG) seem easier to handle since any of the three VS methods could
successfully retrieve true actives with enrichments higher than 5. In four cases (GBA, OPRK1, PKM2,

ESR1_ago), two VS methods succeeded. Last, only one VS method was able to perform correctly for 9
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sets (ALDH, IDH1, VDR, MTORC1, MAPK1, ESR1_ant, TP53, FEN1, KAT2A; Figure 5). This result is in

agreement with many previous studies*>°

suggesting that VS methodologies are orthogonal, and is
reassuring as it highlights the absence of obvious biases in either 2D molecular graph or 3D shape of
LIT-PCBA compounds. It can therefore be implied that the remaining true actives (beside the ADRB2
and PPARG sets) do not resemble their corresponding PDB template ligands in both 2D and 3D shapes;

meaning similarities between them, if there were any, did not significantly contribute to improving

virtual screening performances, notably in early enrichment of true actives.

For each of the remaining 15 target sets, we ensured that the chemical diversity of PDB template
ligands was not biasing our analysis. A first comparison of the number of Bemis-Murcko frameworks>!
to the total number of templates indicates that a wide variety of chemotypes are indeed available
among the chosen PDB template ligands (Table S7). A self-similarity plot of templates (Tanimoto
coefficient on MDL public keys) confirms this observation and shows, for most of the target sets

(MTORC1 being an exception), a large chemical diversity (Figure S2).

The 15 target sets were last unbiased by the AVE method?® to propose optimal training and validation
sets for machine learning applications. In brief, a genetic algorithm (GA) is used to select four subsets
of active and inactive compounds for training and validation sets, based on pairwise distance in
chemical space (ECFP4 circular fingerprints) between the above-described 4 ligand subsets. The
objective function of the GA (bias value) gears the splitting procedure to select training and validation
sets for which distances in chemical space are homogenously distributed when comparing training
actives, validation actives, training inactives and validation inactives. For 14 out of 15 target sets, just
a few iterations (< 100) of the GA were necessary to unbias the corresponding target sets with low bias
values (Table 2). Interestingly, an optimal splitting was achieved without removing a single compound
from 13 out of the 15 initial PubChem compound collections, thereby suggesting that the latter input
did not exhibit major biases. The final AVE-unbiased LIT-PCBA dataset covers 15 target sets, 7844

unique actives and 407381 unique inactives (Table 2).
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For two target sets (ALDH1, VDR), the high number of true actives forced us to reduce by 25% the size
of the dataset in order to reach completion of the GA search. In both cases, care was taken to keep the
hit rate unchanged after data reduction. A 1-nearest neighbour (knn1) binary classification of the 15
validation sets, still using ECFP4 fingerprints as descriptor, led to ROC area under the curve values close
to random (0.500) and thereby supports the bona fide debiasing of all corresponding target sets.
Analyses of the three baseline VS experiments for the AVE validation sets only (Table S8) confirm the
very challenging nature of the dataset as the performance drops for many target sets, notably those
with a low number of actives (e.g. ADRB2, IDH1) or few PDB template ligands (e.g. OPRK1). As
previously indicated, the baseline VS protocol was just intended to remove PubChem HTS data
unsuitable for virtual screening applications, and is not indicative of the performance of modern
machine learning approaches. We however recommend the application of such methods to target sets

exhibiting enough true actives to train on (ALDH1, FEN1, GBA, KAT2A, MAPK1,PKM2, VDR; Table 2)
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Table 2. Final list of 15 targets sets of the LIT-PCBA database

Target Target name AVE Actives Inactives Knn1?
Bias Iterations Validation Training Validation Training ROC AUC

ADRB2 Beta2 adrenergic receptor 0.003 2 4 13 78120 234363 0.500
ALDH1?  Aldehyde dehydrogenase 1 0.092 195 1344 4032 25868 77606 0.556
ESR1_ago Estrogen receptor alpha 0.001 1 3 10 1395 4188 0.499
ESR1_ant Estrogen receptor alpha 0.006 9 25 77 1237 3711 0.517
FEN1 Flap endonuclease 1 0.076 39 92 277 88850 266552 0.499
GBA Glucocerebrosidase 0.005 9 41 125 74013 222039 0.524
IDH1 Isocitrate dehydrogenase 0.001 4 9 30 90512 271537 0.500
KAT2A Histone acetyltransferase KAT2A 0.001 5 48 146 87137 261411 0.500
MAPK1 Mitogen-activated protein kinase 1 0.000 8 77 231 15657 46972 0.505
MTORC1 Mechanistic target of rapamycin 0.001 7 24 73 8243 24729 0.499
OPRK1 Kappa opioid receptor 0.000 3 6 18 67454 202362 0.500
PKM2 Pyruvate kinase muscle isoform 2 0.009 28 136 410 61380 184143 0.507
PPARG Peroxisome proliferator-activated receptory  0.000 4 6 21 1302 3909 0.500
TP53 Cellular tumor antigen p53 0.008 29 19 60 1042 3126 0.491
VDRP Vitamin D receptor 0.044 62 165 498 66635 199906 0.499

2 Area under the ROC curve for a binary classification of validation compounds (active, inactive) based on a one nearest-neighbor similarity search (ECFP4
fingeprints) model trained on target-specific training sets.
b The size of the target set was reduced by 25% at the unbiasing stage due to the large number of remaining true actives.



CONCLUSION

A rigorous ligand dataset preparation is necessary to benchmark virtual screening and/or machine
learning methods. Since the body of known experimental data is continuously increasing, such
benchmark datasets need periodical revisions to remove both obvious and hidden biases that are
inherent to human decision making. Otherwise, errors are propagated across the literature and
prevent a true comparison of novel methodological developments. Several recent reports*?’
unambiguously demonstrated that the cheminformatics community is currently facing this situation,
leading notably to overoptimistic reports on the real benefit of artificial intelligence methods (e.g. deep
neural networks) when applied to structure-based ligand design. We herewith present LIT-PCBA as a
novel generation of virtual screening benchmarking datasets, specifically designed to reveal the true
potential of computational methods in virtual screening exercises. The dataset has been designed from
dose-response PubChem bioassays for which active and inactive compounds are unambiguously
defined. Importantly, a careful examination of metadata enabled the removal of assay artifacts,
frequent hitters and false positives. LIT-PCBA consists in 15 target sets covering a wide diversity of
ligands and target proteins. Preliminary virtual screening attempts with state-of-the-art methods (2D
similarity, 3D shape matching, docking) suggest that the dataset is very challenging, notably because
potency distribution biases among labelled active compounds are absent. Last, a recently described
unbiasing procedure?® was applied to LIT-PCBA to enable an optimal distribution of training and
validation compounds for machine learning. We do believe that the particular challenge brought by
this dataset will enable a clearer appreciation of modern artificial intelligence methods in structure-
based virtual screening scenarios. The LIT-PCBA dataset is freely accessible at

http://drugdesign.unistra.fr/LIT-PCBA.
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