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Abstract Depending on environmental demands, humans can learn and exploit multiple

concurrent sets of stimulus-response associations. Mechanisms underlying the learning of such task-

sets remain unknown. Here we investigate the hypothesis that task-set learning relies on

unsupervised chunking of stimulus-response associations that occur in temporal proximity. We

examine behavioral and neural data from a task-set learning experiment using a network model.

We first show that task-set learning can be achieved provided the timescale of chunking is slower

than the timescale of stimulus-response learning. Fitting the model to behavioral data on a subject-

by-subject basis confirmed this expectation and led to specific predictions linking chunking and

task-set retrieval that were borne out by behavioral performance and reaction times. Comparing

the model activity with BOLD signal allowed us to identify neural correlates of task-set retrieval in a

functional network involving ventral and dorsal prefrontal cortex, with the dorsal system

preferentially engaged when retrievals are used to improve performance.

Introduction
When engaged in a given task, humans are capable of learning and exploiting multiple concurrent

strategies depending on environmental demands. For instance, in the classical Stroop task

(Stroop, 1935; MacLeod, 1991), an identical stimulus like a colored word leads to different

responses depending on whether the current requirement is to read the word or identify its color.

Human subjects are able to learn to flexibly switch between these two different stimulus-response

associations, often called task-sets (Sakai, 2008). Studies of task-set learning predominantly rely on

models that describe behavioral learning without direct biological constraints (Daw et al., 2005;

Dayan and Daw, 2008; Botvinick et al., 2009; Daw et al., 2011; Alexander and Brown, 2011;

Russek et al., 2017; Franklin and Frank, 2018). While these models are able to capture computa-

tional aspects of behavior, and correlate them with physiological measurements (Koechlin and Hya-

fil, 2007; Niv, 2009; Daw et al., 2011; Wilson et al., 2014; Alexander and Brown, 2011),

understanding the underlying biologically-inspired mechanisms is an open issue, which requires an

intermediate level of description that bridges between biology and behavior (Wang, 2002;

Rougier et al., 2005; Soltani and Wang, 2006; Wong and Wang, 2006; Fusi et al., 2007;

Frank and Badre, 2012; Collins and Frank, 2013; Bathellier et al., 2013; Kuchibhotla et al.,

2019).

One hypothesis (Rigotti et al., 2010b) states that learning task-sets, and more generally rule-

based behavior, relies on unsupervised learning of temporal contiguity between events. Events that

occur repeatedly after each other are automatically associated as demonstrated in classical condi-

tioning experiments (Rescorla and Wagner, 1972; Hawkins et al., 1983; Rescorla, 1988; Sakai and

Miyashita, 1991; Kahana, 1996; Yakovlev et al., 1998). If one thinks of individual stimulus-
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response associations as abstracted events, temporally chunking two or more such events effectively

corresponds to learning a simple task-set or association rule. Hebbian synaptic plasticity

(Hebb, 1949) can naturally lead to such unsupervised learning of temporal contiguity between

events (Földiák, 1991; Wallis et al., 1993; Griniasty et al., 1993; Fusi, 2002; Soltani and Wang,

2006; Blumenfeld et al., 2006; Fusi et al., 2007; Preminger et al., 2009; Li and DiCarlo, 2010;

Ostojic and Fusi, 2013), and therefore provides a simple biological mechanism for learning task-sets

(Rigotti et al., 2010b) and more generally model-based planning (Gershman et al., 2012;

Russek et al., 2017).

Here we use an abstracted network model to examine the hypothesis that task-sets are learnt

through simple Hebbian plasticity based on temporal contiguity between different stimulus-response

associations. We test this model on a specific experimental task where human subjects had to

acquire multiple sets of stimulus-action pairs (Collins and Koechlin, 2012). We first show that the

model is able to learn correct task-sets if the plasticity leading to chunking between stimulus-action

pairs is slower than the learning of individual stimulus-action associations. Fitting the network model

to behavior on a subject-by-subject basis then allowed us to examine specific predictions based on

the hypothesis that task-set learning relies on temporal chunking of events. One prediction pertains

to the case when a task-set is retrieved correctly, and a second one to the case when this retrieval is

maladaptive. We show that both predictions are borne-out by the behavioral data at the level of

individual subjects. Moreover, we show that the time-series of the inference signal predicting task-

set retrieval in the model correlates with blood oxygen level dependent (BOLD) signal recorded

from fMRI (Donoso et al., 2014) in a functional network engaging medial and dorsal prefrontal cor-

tex. Altogether, our results demonstrate that a simple mechanism based on Hebbian association of

temporally contiguous events is able to parsimoniously explain the learning of complex, rule-based

behavior.

Results

Behavioral evidence for task-set-driven behavior
To investigate the mechanisms for task-set learning, we examined a specific experiment performed

by 22 human subjects (Experiment 1 [Collins and Koechlin, 2012], see Materials and methods). In

each trial, the subjects had to associate a visual stimulus with a motor response (Figure 1a). The sub-

jects needed to learn the correct associations based on a feedback signal, which was misleading in

10% of the trials. The set of correct stimulus-response associations, which we will denote as task-set

in the following, was fixed during a block of trials of random length (called an episode), and changed

repeatedly to a non-overlapping set without explicit indication. As the feedback was not fully reli-

able, the subjects could not directly infer the task-set changes from the feedback on a single trial,

but needed to integrate information.

The subjects’ behavior was compared between an open-ended session, in which the valid task-set

was different in each episode, and a recurrent session in which only three task-sets appeared repeat-

edly. In the open-ended session, as each task-set was seen only once, a correct response to one

stimulus bore only minimal information about the correct responses to the other stimuli (the

responses to the three stimuli had to be different). In contrast, in the recurrent session, a correct

response to a given stimulus fully predicted the correct responses to the other stimuli. Learning full

task-sets rather than individual associations therefore allowed subjects to increase their

performance.

Behavioral data indicated that beyond individual stimulus-response associations, subjects indeed

learned task-sets in the recurrent session (Collins and Koechlin, 2012). Additional evidence in that

direction is displayed in Figure 1b, where we show the proportion of correct responses to stimuli

seen for the first time after the first correct response in an episode. This quantity was determined for

the last third of the session, when the subjects had already experienced several times the three re-

occurring task-sets within the recurrent session. If the subjects had perfectly learned the task-sets,

they could directly infer the correct response to the newly seen stimulus from a single correct

response to another stimulus. The data shows that indeed some subjects perfectly learned full task-

sets, so that their performance was maximal after the first correct trial. The performance averaged

over all subjects was significantly higher in the recurrent session compared to the open-ended
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session (T-test on related samples, second stimulus: 0.53 ± 0.05 vs 0.39 ± 0.04, t = 2.1, p=0.049;

third stimulus: 0.65 ± 0.05 vs 0.46 ± 0.03, t = 3.1, p=0.0049), demonstrating that subjects exploited

information from the correct response to a given stimulus to infer the correct response to other stim-

uli. An important variability was however observed among subjects, as most of them did not learn

task-sets perfectly, and some not at all (a point we return to later).

Figure 1. Task-set learning experiment and subject behavior. (a) Schematic of the behavioral task. Subjects had to learn associations between visual

stimuli (represented here as {1, 3, 5}) and motor responses (represented here as {d, f, j, k}). The set of correct stimulus-response associations, denoted

as task-set, was fixed during a block of trials of random length. The schematic shows the three task-sets used in the recurrent session. The task-sets are

non-overlapping from one episode to another in both the recurrent and the open-ended session, meaning that an episode switch produces a change

of correct responses for all stimuli. (b) Proportion of correct responses to stimuli seen for the first time after the first correct response in an episode,

during the last third of each experimental session. These newly seen stimuli are labeled second or third according to their order of appearance. Dots

display the average for each subject. Violin plots display the shape of each distribution over subjects (Scott’s rule). The black lines outline the mean ± s.

e.m. (c) Performance preceding and following a trial with misleading feedback (non-rewarded correct response), at the end of episodes, averaged over

all subjects (± s.e.m.). The subjects’ performance did not change after a misleading feedback if it occured at the end of an episode, after being trained

on the current task-set. (d) Illustration of the network model. The associative network (AN) is composed of a set of stimulus-selective populations and a

set of action-selective populations. The synaptic weights between the two sets of populations are modified through a reward-modulated, activity-

dependent Hebbian plasticity rule. At each trial, an action is selected via a soft and noisy winner-take-all mechanism with respect to the current set of

synaptic weights. The task-set network (TN) is composed of neural populations selective to conjunctions of one stimulus and one action. Its activity is

driven by the associative network’s activity. The sequential activation of neural populations in the task-set network induces the potentiation of the

synapses between them. An inference signal from the task-set network to the associative network biases the response to the stimulus on the next trial.

(e) Illustration of the perfect, fully chunked encoding in the task-set network of the three non-overlapping task-sets from the recurrent session.

Bouchacourt et al. eLife 2020;9:e50469. DOI: https://doi.org/10.7554/eLife.50469 3 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.50469


An additional observation consistent with task-set learning was that subjects do not modify their

behavior following a misleading noisy feedback occurring late in an episode (Figure 1c, recurrent

session: 0.94 ± 0.01 before misleading feedback, 0.94 ± 0.01 after misleading feedback, t = 0.25,

p=0.80 ; open-ended session 0.94 ± 0.01 before, 0.93 ± 0.01 after, t = 0.68, p=0.50). An isolated

misleading negative feedback after extensive learning in an episode should be ignored because

inconsistent with the current task-set. A switch to another task-set or simply a change in a single

stimulus-response association would be detrimental to performance. This negative feedback is

indeed ignored by the subjects, indicating again they learn sets rather than individual stimulus-

response associations.

A network model for learning task-sets by chunking stimulus-response
pairs
To examine the hypothesis that task-set-driven behavior emerges from unsupervised chunking of

stimulus-response pairs, we studied an abstracted neural network model (Figure 1d), that built on

previous modeling studies of a trace conditioning task in monkeys (Fusi et al., 2007; Rigotti et al.,

2010b). While the model included some basic biological constraints, it was purposefully simplified

to allow for straightforward fitting to human behavioral data on a subject-by-subject basis. The

model consisted of two subnetworks, which we refer to as the Associative Network (AN) and the

Task-set Network (TN). The associative network is a simplified version of a neural decision-making

network (Wang, 2002; Wong and Wang, 2006; Fusi et al., 2007). It consists of a set of stimulus-

selective populations and a set of action-selective populations, the activity in each population being

for simplicity binary (active or inactive). The stimulus-action associations are learned through reward-

modulated plasticity on the synapses between the two sets of populations (Fusi et al., 2007).

The task-set network consists of neural populations that display mixed-selectivity to all conjunc-

tions of stimuli and actions (Rigotti et al., 2010b; Rigotti et al., 2013). For instance, if the associa-

tive network generates the action A2 in response to the stimulus S1, the corresponding population

S1A2 is activated in the task-set network. Such mixed-selectivity response can be implemented

through random projections from the associative network to the task-set network (Rigotti et al.,

2010a; Lindsay et al., 2017), which for simplicity we don’t explicitly include in the model. Synapses

between neural populations in the task-set network undergo temporal Hebbian learning, that is they

are modified based on the successions of stimulus-response pairs produced by the associative net-

work (Rigotti et al., 2010b; Ostojic and Fusi, 2013). If two stimulus-response pairs are produced

often after each other, the synapses between the corresponding mixed-selectivity populations in the

task-set network are potentiated. When this potentiation exceeds a threshold (modeling in a simpli-

fied way recurrent inhibition), the two populations are chunked together. As a result, they are sys-

tematically co-activated when one of the two stimulus-response associations occurs. Thus, by means

of temporal chunking, this subnetwork implements a task-set as a merged pattern of co-activated

populations. This co-activation is communicated to the associative network, where it biases the stim-

ulus-action associations at the next trial towards those encoded by the active populations in the

task-set network. This effective inference signal helps the associative network determine the correct

response to a stimulus different from the one in the current trial, and therefore implements task-set

retrieval in the network model. To keep the model easy to fit and analyze, this inference signal is

implemented in a simplified manner, by directly modifying the synaptic weights in the associative

network (see Discussion for more realistic physiological implementations). The synaptic weights in

the AN are therefore modified by a combination of sudden changes due to the inference signal and

more gradual updates. The relative contribution of these two mechanisms is determined by a param-

eter that represents the strength of task-set retrieval (if it is zero, there is no retrieval). We will show

that this specific parameter plays a key role in accounting for the variability in the subjects’ behavior.

Task-set encoding in the network model enables task-set driven
behavior
The task-set network is in principle able to chunk together stimulus-response pairs that occur often

after each other. We first show how it enables task-set-driven behavior. Consider an idealized situa-

tion at the end of the recurrent session of the experiment where full chunking has taken place, and

the pattern of connectivity in the task-set network directly represents the three task-sets (Figure 1e).
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Due to the inference signal from the task-set network to the associative network, this pattern of con-

nectivity will directly influence the responses to incoming stimuli.

The impact of this inference signal is the strongest at an episode change, when the correct set of

stimulus-response associations suddenly shifts (Figure 2a,d,g). The associative network always needs

to discover the first correct association progressively by trial and error, by first depressing the set of

stimulus-response synapses in the associative network corresponding to the previous task-set, and

then progressively potentiating the synapses corresponding the new set of associations (Figure 2a).

In the absence of task-set inference, this learning process happens gradually and independently for

each stimulus (Figure 2b). In the presence of the idealized task-set network described above, once

the first correct response is made, the task-set network produces the inference signal allowing the

associative network to immediately modify its synaptic weight and recover the other two correct

associations in the new episode (Figure 2g,h). As a consequence, the overall performance is

increased (Figure 2d) due to a sudden increase in performance following the first correct response

(Figure 2e).

A second situation in which the task-set inference strongly manifests itself is the case of noisy,

misleading feedback late in an episode. At that point, the associative network haresoursecs fully

learned the correct set of stimulus-response associations, and the performance has reached asymp-

totic levels. The network therefore produces mainly correct responses, but as on 10% of trials the

feedback is misleading, it still occasionally receives negative reinforcement. In the absence of the

task-set network, this negative feedback necessarily depresses the synapses that correspond to cor-

rect associations, leading to a decrease in performance on the following trials (Figure 2c,f). In con-

trast, in the presence of the idealized task-set network, the inference signal that biases the behavior

towards the correct task-set is present despite the occasional negative feedback, and therefore

allows the network to ignore it (Figure 2c,f,i). The encoding of task-sets in the task-set network pat-

tern of connectivity therefore prevents the transient drop in performance, as seen in the experimen-

tal data (Figure 1c).

Speed-accuracy trade-off for learning task-sets in the network model
The idealized encoding described above requires that the task-set network effectively and autono-

mously learns the correct pattern of connections corresponding to the actual task-sets. We therefore

next examined under which conditions synaptic plasticity in the task-set network leads to correct

learning, that is correct temporal chunking.

Figure 3a,c,e,g shows a simulation for a parameter set for which learning of task-sets proceeds

successfully. At the beginning of the session, all populations within the task-set network are indepen-

dent as all synaptic weights are below threshold for chunking. As the associative network starts pro-

ducing correct responses by trial and error, the weights in the task-set network that connect correct

stimulus-response pairs get progressively potentiated. While a fraction of them crosses threshold

and leads to chunking during the first episode (and therefore starts producing the task-set inference

signal), the majority does not, reflecting the fact that the first task-set is not fully learned at the end

of the first episode. First, two stimulus-action associations are chunked together, then the third one

is eventually added to the emerging cluster (Figure 3—figure supplement 1). The potentiation in

the task-set network continues over several episodes, and the weights in the task-set network that

correspond to co-occurring stimulus-response pairs eventually saturate to an equilibrium value. This

equilibrium value is an increasing function of the probability that two stimulus-response pairs follow

each other, and of the potentiation rate in the task-set network (see Materials and methods). The

equilibrium synaptic weights in the task-set network therefore directly reflect the temporal contiguity

between stimulus-response pairs (Ostojic and Fusi, 2013) and thus encode the task-sets. If the equi-

librium value is larger than the inhibition threshold in the task-set network, this encoding will lead to

the chunking of the activity of different populations and generate the inference signal from the task-

set network to the associative network.

Learning in the task-set network is however strongly susceptible to noise and need not necessarily

converge to the correct representation of task-sets. One important source of noise is the exploratory

period following an episode switch, during which the associative network produces a large number

of incorrect responses while searching for the correct one. If the potentiation rate in the task-set net-

work is too high, the synaptic weights in the task-set network may track too fast the fluctuating and

incorrect stimulus-response associations produced by the associative network, and quickly chunk
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Figure 2. Task-set driven behavior in the network model with an idealized, perfect encoding of task-sets. The

behavior of the model is compared in presence (red lines) and in absence (blue lines) of the inference signal from

the task-set network, that allows task-set retrieval. (a,d,g) Model dynamics following an episode switch (at trial

zero, the correct task-set shifts without explicit indication). (a) Strengths of synapses in the associative network

between neural populations representing the new task-set (solid lines) and the previous task-set (dashed lines). (d)

Performance (proportion of correct responses). (g) Mean change <JINC � ð1� JANÞ> in the AN synaptic weights due

to the inference signal from the TN. Here the inference strength JINC is one, so that the weights in the AN reach

their maximal values as soon as the network makes a first correct choice, and do not change afterwards. The first

correct choice takes place randomly on different trials in different episodes leading to a spread over the first trials

in the episodes and vanishing changes towards the end of the episode. (b,e,h) Task-set retrieval: same quantities

as in (a,d,g), but aligned at the time of the first correct response. (c,f,i) Effect of misleading feedback: same

Figure 2 continued on next page
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together pairs of events that do not correspond to a correct task-set (Figure 3b). Once these events

are chunked together, the task-set network sends an incorrect inference signal to the associative net-

work, and generates further incorrect associations (Figure 3f,h). As the network learns in an unsuper-

vised fashion from its own activity, this in turn leads to more incorrect associations in the task-set

network. In such a situation, the presence of the task-set network is at best useless and at worse det-

rimental to the performance of the network as a whole.

To determine under which conditions the plasticity in the task-set network leads to the correct

learning of task-sets, we systematically varied the associative and task-set networks learning rates

and compared the performance in the models with and without the inference signal from the task-

set network. Our results show that the presence of task-set inference improves the network perfor-

mance when the task-set network learning rate is slower than the associative network learning rate

(red area in Figure 4a). As illustrated in Figure 3b,d,f,h, when learning in the task-set network is too

fast, the network tracks noisy associations produced by the associative network, because of noise in

the experimental feedback or because of errors made at the transition between episodes (blue area

in Figure 4a). In contrast, slow learning allows the task-set network to integrate information over a

longer timescale. While in principle it would be advantageous to learn the task-set structure as

quickly as possible, the requirement to average-out fluctuations due to erroneous feedback sets an

upper-bound on the learning rate in the task-set network. This is an instance of the classical speed-

accuracy trade-off.

The correct learning of task-sets also depends on the strength of the inference signal. While

strong inference leads to strong task-set retrieval and potentially large performance improvement, it

also makes the network more sensitive to incorrect chunking in the task-set network. Our simulation

show that larger inference strengths need to be compensated for by lower learning rates in the task-

set network to produce an improvement in the performance (Figure 4b). This is another manifesta-

tion of the speed-accuracy trade-off.

Fitting the model to behavioral data
Having described the dynamics in the model, we next proceeded to fit the model parameters to the

subjects’ behavioral data. In the full network model, we varied only five free parameters, which we

determined independently for each subject by maximizing the likelihood of producing the same

sequence of responses. To determine the importance of task-set retrieval, we compared the fit

obtained from two versions of the model : the full model (associative network connected to the task-

set network, five parameters), versus the associative network model alone, without the inference sig-

nal that allows for task-set retrieval (three parameters). In the open-ended session, in which a given

task-set never reoccurs between episodes, the two models provided indistinguishable fits. In the

recurrent session, the full model with task-set inference however provided a significantly better fit

than the model without task-set inference (Figure 5a, Bayesian Information Criterion (BIC), T-test on

related samples t ¼ 14, p ¼ 4:3 � 10�12; see also Figure 5—figure supplement 1 for additional detail).

In particular, the full model captured well the behavior at an episode change, where the subjects’

performance exhibited a sudden increase following task-set retrieval at the first correct trial, com-

bined with more gradual changes (Figure 5c).

Note that the models were fitted separately on the recurrent and open-ended sessions. Fitting

the two sessions together led to a small but significant degradation of fitting performance (Fig-

ure 5—figure supplement 3a). More importantly, the models fitted simultaneously on both sessions

were not able to capture the sudden increase in performance revealing task-set retrieval after the

first correct trial (Figure 5—figure supplement 3c). This failure can be traced back to the need to

adapt the learning rate in the task-set network between the two sessions, as previously observed for

changes in task statistics (Behrens et al., 2007). Indeed, when the two sessions are fitted separately,

the values of this learning rate strongly differ (QP ¼ 0:17 for the recurrent session versus QP ¼ 0:44

for the open-ended session, Figure 5—source data 1). In the recurrent session, on average over

Figure 2 continued

quantities as in (a,d,g), aligned on a misleadingly non-rewarded correct trial at the end of episodes. Average of

5000 sessions of 25 episodes, with 10% of noisy trials. Network parameter values: a ¼ 0:4, b ¼ 7, � ¼ 0, JINC ¼ 1.
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Figure 3. Dynamics of task-set learning. Left column: slow learning rate in the task-set network (TN) (QP ¼ 0:17); right column: fast learning rate in the

task-set network (QP ¼ 0:4). (a,b) Activation of neural populations in the task-set network as a function of time during one session. In (a), learning

dynamics proceed correctly and lead to the chunking of populations that correspond to the same task-set. As a result, the activation of one stimulus-

response association causes the co-activation of the other two in the same task-set. In contrast, in (b) learning does not proceed correctly and chunking

does not take place. (c,d) Average values of task-set network synaptic strengths between neural populations corresponding to each of the three correct

task-sets, as well as ‘spurious’ synaptic strengths between neural populations from different task-sets or that do not correspond to any task-set at all. (e,

f) Average value of the inference signal from the task-set network to the associative network connectivity. (g,h) Performance of the network. Task-sets

presentation is periodic for illustration purposes. (a,b) corresponds to 1 run of the recurrent session. (c,d,e,f,g,h) corresponds to the average over 500

runs of the recurrent session. The values of parameters other than QP were a ¼ 0:4, b ¼ 7, � ¼ 0, and JINC ¼ 0:7. .

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The chunking of 3 stimulus-action associations into a single task-set is gradual.

Figure supplement 2. Learning overlapping task-sets.
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subjects, the learning rate in the task-set network (QP ¼ 0:17, s ¼ 0:0070) is half of the learning rate

in the associative network (a ¼ 0:35, s ¼ 0:0073), which is consistent with our initial prediction that

the learning rate in the task-set network needs to be slower than in the associative network.

As mentioned earlier, an important behavioral variability was present among subjects. This vari-

ability was particularly apparent in the performance following an episode switch, where some sub-

jects increased their performance much faster than others in the recurrent session, compared to the

open-ended session (Figure 1b). Inspecting the parameter values obtained for different subjects

revealed that the most variable model parameter between subjects (Figure 5—source data 1) was

the strength of the inference signal for task-set retrieval in the model (Figure 5b, T-test on related

samples t ¼ 14:8, p ¼ 1:5 � 10�12). This parameter directly quantifies the strength of the sudden

change in performance corresponding to task-set retrieval at the start of an episode. The value of

this parameter appeared to directly account for the inter-subject variability, as it correlated with the

difference between BIC values obtained for models with and without task-set inference (linear

regression r2 ¼ 0:81, p ¼ 1:4 � 10�8, Figure 5d) as well as with the subjects’ performance following

the first correct trial in an episode (linear regression r2 ¼ 0:60, p ¼ 2:5 � 10�5, Figure 5e). These find-

ings further suggest the variability in that parameter is directly linked with the subject’s ability to

recover task-sets. This was confirmed by examining the results of a behaviorally-independent post-

test debriefing used in the original study to classify subjects as either exploiting task-set structure

(‘exploiting’ subjects) or not (‘exploring’ subjects) (see Materials and methods and Figure 5d,e).

Exploiting subjects systematically corresponded to higher performance on trials following a correct

response (T-test t ¼ 4:9, p ¼ 9:7 � 10�5) and higher values of the inference parameter in the model (T-

test t ¼ 2:9, p ¼ 9:1 � 10�3, see also Figure 6—figure supplement 3).

Figure 4. Slow versus fast learning: conditions for correct encoding of task-sets in the network model. (a)

Difference in the performance of the network model with or without task-set inference, plotted as a function of the

associative network learning rate a and the task-set network learning rate QP, (with b ¼ 7 and inference strength

JINC ¼ 0:7). (b) Same difference in performance but plotted as a function of the inference strength JINC and the

task-set network learning rate QP, (with b ¼ 7 and associative network learning rate a ¼ 0:4). We computed the

performance averaged over the five first correct responses for a stimulus, in the last third of the session, on an

average of 200 runs of the recurrent session and with 10% noisy trials. The dashed black lines mark the diagonal.

The dashed yellow lines correspond to a ¼ 0:4 and JINC ¼ 0:7 respectively, and relate (a) to (b).
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Testing model predictions for task-set retrieval
We next examined a specific subset of experimental trials where task-set retrieval is expected to

take place. In the model, how quickly two stimulus-response pairs are chunked together depends on

how often they co-occur, as well as on the value of the learning rate in the task-set network. Once

Figure 5. Fitting the model to experimental data: the model with inference (AN-TN) captures the statistical structure of the data, and accounts for the

variability between subjects. (a) Model comparison for the recurrent session. Bayesian Information Criterion (see Materials and methods) for the models

with and without task-set inference. The model provides a significantly better fit with inference than without. (b) Estimate of the inference strength JINC

from the task-set network to the associative network connectivity in the model with task-set inference, for both sessions. (c) Proportion correct around

the first correct trial, averaged over episodes and over subjects, for the recurrent session. (d) Subject by subject difference between BIC values

obtained for models with and without task-set inference, as a function of the inference strength parameter, for the recurrent session. Subjects are

classified as ‘exploiting’ or ‘exploring’ from a post-test debriefing. The grey line displays a least-squares regression. (e) Subject by subject performance

following the first correct trial in an episode, as a function of the inference strength parameter, for the recurrent session. The performance was

computed by considering the 10 trials following the first correct trial of each episode. The grey line displays a least-squares regression. .

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. The table summarizes the full network (AN-TN, with inference) and the associative network alone (AN, without inference) models fitting

performances and average parameters.

Figure supplement 1. Model comparison for the recurrent session.

Figure supplement 2. Learning task-sets with a lower ratio of potentiation versus depression in the task-set network (QP=QM ¼ 5) by refitting the

model, while either fixing gI ¼ 0:5 or gI ¼ 0:2.

Figure supplement 3. Model fit for both sessions together.
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two pairs are chunked together, the correct response to the stimulus corresponding to one of the

pairs leads to the retrieval of the task-set and biases the response to the stimulus from the second

pair. When the pairs are not chunked together, the responses to the two stimuli are instead indepen-

dent. The basic prediction is therefore that the responses to the stimulus from the second pair

should differ between trials when chunking has or has not taken place, depending on the learning

progress.

We first tested this prediction in a situation where chunking should lead to the retrieval of the cor-

rect task-set. We focused on one trial in each episode, the trial that followed the first correct

response (Figure 6a), for a different stimulus. Running our model on the full sequence of preceding

experimental events (on a subject-by-subject basis, using parameters fitted to each subject and

actual sequences of stimuli and responses) produced a prediction for whether chunking had

occurred for this trial (chunked or independent, Figure 6a, orange and grey respectively). The model

with inference predicted that the proportion of correct responses on chunked trials should be higher

than on independent trials due to the inference signal implementing task-set retrieval. In the model

without inference where the associative network is independent of the task-set network, the perfor-

mance on the two types of trials is instead indistinguishable. Comparing the proportion of correct

responses on experimental trials classified in the two categories showed a significant increase for

chunked trials compared to independent trials (Figure 6b: (i) model without inference t ¼ 0:64,

p ¼ 0:53, (ii) model with inference t ¼ 6:9, p ¼ 1:4 � 10�7, (iii) subjects t ¼ 2:8, p ¼ 8:8 � 10�3, (iv)

chunked trials, model without inference versus model with inference t ¼ 11, p ¼ 6:3 � 10�10, (v)

chunked trials, model without inference versus subjects t ¼ 5:9, p ¼ 2:3 � 10�5), so that the model pre-

diction with inference was directly borne out by experimental data. The task-set retrieval predicted

by the model therefore led to a clear increase of subjects’ performance. Moreover, reaction times

on chunked trials were significantly lower than on independent trials, showing that the inference

helped subjects to be faster at responding (Figure 6c, t ¼ 8:7, p ¼ 1:7 � 10�9). This provides a supple-

mentary validation, as the model was not fitted on reaction times. The model additionally predicted

a sudden switch in behavior after two stimulus-response associations were chunked together. Split-

ting the data of Figure 6 as a function of episode number revealed a pattern consistent with such a

switch (Figure 6—figure supplement 2). Note that a potential confound could be induced if the

chunked trials appeared on average later in an episode than independent trials. A direct comparison

however showed that the distributions of chunked and independent trials were indistinguishable

(Figure 6—figure supplement 1a, ks ¼ 0:085, p ¼ 0:62).

We next tested the predictions of the model on trials where chunking leads to the retrieval of an

incorrect task-set. Such a situation happens because of the presence of 10% of trials with misleading

feedback, which may indicate to the subject that the produced response was correct although it was

not. Our model predicted that in this case incorrect task-set retrieval leads to a decrease of the per-

formance on the next trial. To test this prediction, we first detected the misleading trials, and then

used the model to classify each of them as either chunked or independent (Figure 6d). Comparing

in the experimental data the responses on chunked trials with the performance of the model without

task-set inference showed that indeed the subjects’ performance was significantly reduced when the

model predicted an incorrect task-set retrieval (Figure 6e: (i) chunked trials, model without inference

versus model with inference t ¼ 5:8, p ¼ 1:0 � 10�5, (ii) chunked trials, model without inference versus

subjects t ¼ 5:2, p ¼ 2:2 � 10�5).

The two behaviors described above (retrieval of a correct task-set after the first correct response,

and retrieval of an incorrect task-set after a misleading feedback) cannot be predicted by the model

without inference: we thus assessed the generative performance of our chunking mechanism and fal-

sified the model without inference (Palminteri et al., 2017).

Neural correlates of task-set inference
Using the model fitted to individual subjects, we next aimed to identify the neural correlates of task-

set inference based on blood-oxygen-level-dependent (BOLD) signal recorded from functional mag-

netic resonance imaging (40 subjects, Experiment 2 [Donoso et al., 2014], see Figure 5—figure

supplement 1a for model fits on this dataset). We specifically examined the correlations between

the task-set inference and the BOLD signal at the time of feedback, while controlling for trial diffi-

culty and prediction error (see Materials and methods). In the recurrent session (Figure 7—source
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Figure 6. Testing the predictions of the temporal chunking mechanism on specific trials. (a) Schematic of the prediction for correct task-set retrieval.

For each episode switch, and subject by subject, we compute the probability of making a correct choice after the first correct trial, for a different

stimulus. Trials are classified from a model-based criterium as ‘chunked’ or ‘independent’, respectively depending on the presence or absence of an

inference from the task-set network to the associative network. (b) Because of task-set inference, the model predicts a significant increase of

performance on chunked trials compared to independent trials. This is not predicted by the associative network alone (‘Model without inference’).

Subjects’ performance on these trials matches the model with inference. The error bars are larger for the independent trials because this category

contains half the amount of data, as shown in Figure 6—figure supplement 1. (c) Log of subjects’ reaction times in seconds, for trials classified as

chunked or independent. (d) Schematic of the prediction for task-set retrieval following misleading rewarded trials. After each episode switch, the

subject makes incorrect choices. On 10% of these trials the feedback is misleadingly rewarded (e.g. 3f , which corresponds to a correct association for

the previous task-set, but not for the current task-set). Because of the inference from the task-set network, the previous task-set can be incorrectly

inferred by the model from the misleading reward. (e) Probability of a correct association after a misleadingly rewarded noisy trial classified as a

chunked trial by the model. The model with inference predicts an incorrect association at the next trial, producing a decrease in performance. This

decrease is not predicted by the associative network alone (‘Model without inference’). Subject’s performance on these trials matches the model with

inference. Violin plots display the shape of each distribution (Scott’s rule). Dots display the average for each subject. The black lines outline the mean ±

s.e.m. .

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Task-set retrieval prediction.

Figure supplement 2. Testing the predictions of the temporal chunking mechanism as learning evolves.

Figure supplement 3. Histograms over subjects of the difference of performance after five first consecutive correct trials, between the recurrent session

and the open-ended session.
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data 1, bottom), BOLD activity correlated positively with the inference signal strength in dorsolateral

prefrontal cortex, dorsal anterior cingulate cortex and anterior supplementary motor area; and nega-

tively in ventromedial prefrontal cortex. In contrast, in the open-ended session, we found no signifi-

cant positive or negative effect in frontal lobes corresponding to this parametric modulator.

To further investigate the difference between the recurrent and open-ended sessions, we focused

on a specific set of regions of interest (ROIs), defined based on significant BOLD activations in both

sessions for the task-set inference signal (see Table 1 and Materials and methods). These ROIs con-

sisted of voxels in the ventromedial, dorsomedial and dorsolateral prefrontal cortex (respectively

left, middle, and right columns of Figure 7a). As they were defined based on the activity in both ses-

sions considered together, these ROIs did not promote differences between the two sessions. How-

ever, we found that the correlation of the task-set inference signal with BOLD activity in dorsomedial

and dorsolateral prefrontal cortex was significantly stronger in the recurrent session than in the

open-ended session (dmPFC: t ¼ 3:0, p ¼ 3:2 � 10�3 ; and dlPFC: t ¼ 4:6, p ¼ 1:6 � 10�5), while activa-

tions in ventromedial prefrontal cortex did not discriminate significantly between the two sessions

(t ¼ 0:16, p ¼ 0:87). This analysis showed a difference of neural activity in the dorsal system corre-

sponding to the necessity of learning and using (recurrent session) or not (open-ended session) the

model of the task. Additional controls were performed using ROIs selected from several meta-analy-

ses (Lancaster et al., 1997; Yarkoni et al., 2011; Shirer et al., 2012; Glasser et al., 2016, see

Materials and methods and Figure 7—source data 2). Altogether, they confirmed dorsolateral and

dorsomedial prefrontal cortex were specifically recruited in the recurrent session and correlated with

task-set inference.

Since our model predicted the specific trial at the beginning of an episode where task-set infer-

ence should be maximal, we finally compared the BOLD activity on that trial with two trials immedi-

ately before and after it. Using the same ROIs as defined above, we found that they did not exhibit

a response in the trials immediately preceding the predicted task-set retrieval. In contrast, dorsome-

dial responses were significant at task-set retrieval, and ventromedial and dorsolateral responses

were significant from this trial onwards (Figure 7b). The specific trial predicted by the model for

task-set retrieval in each episode was thus confirmed both behaviorally (Figure 6) and neurally

(Figure 7).

Discussion
In this study, we tested a model in which task sets emerged through unsupervised temporal chunk-

ing of stimulus-action associations that occurred in temporal contiguity. When repeated, a task-set

could be retrieved from a single stimulus-action association by reactivation of the whole chunk. This

retrieval then biased the following stimulus-response association through an inference signal to the

decision-making circuit. The model predicted abrupt changes in behavioral responses on specific tri-

als in a task-set learning experiment (Collins and Koechlin, 2012; Donoso et al., 2014). Testing

these predictions, we showed that the retrieval of a task-set had both adaptive (reduction of explo-

ration) and sometimes maladaptive effects (retrieval of an incorrect task-set) on the following trial

performance. Our analysis of BOLD activity established a functional network engaging ventromedial,

dorsomedial, and dorsolateral prefrontal cortex that correlated with the inference signal for task-set

Table 1. One-way ANOVA defining the regions of interest used for the analysis of BOLD correlates of the task-set inference signal.

The ROIs are defined from activations from the parametric modulator corresponding to the TN inference signal, in both sessions (con-

trasts REC+OE and -REC-OE, FWE p ¼ 0:05). dlPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC:

ventromedial prefrontal cortex; [x y z] are MNI coordinates; REC: Recurrent session; OE: Open-Ended session.

Contrast Label [x y z] Brodmann areas Glasser parcellation t-value Cluster size

REC+OE right dlPFC [32 12 60] 6,8,9,10,11,44,45,46 6sma, 8av, 8C, p9-46v, 46, a9-56v, 9-46d, 9a, i6-8, s6-8 9.25 519

left dlPFC [�48 4 36] 6,8,9 8Av, 8 c 6.27 25

dmPFC [4 24 48] 6,8,9,32 SFL, SCEF, p32pr, d32, 8BM, 8BL, a32pr 7.86 73

Negative(REC+OE) vmPFC [�12 48–4] 9,10,11,32 a24, d32, p32, 10 r, 9 m, 9 p, 9a, 10 v, 25, s32, p24 7.64 225
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Figure 7. ROI analyses of the neural correlates of task-set inference. The areas in blue represent the regions of

interest identified in the previous analysis (Table 1) using a significant threshold of FWE p ¼ 0:05. (a) Correlations

between the BOLD signal at the onset feedback and the parametric modulators of the time series of Wchosen,

positive rewards, and the inference signal. (b) Comparison of BOLD activity on the first chunked trial of the model

Figure 7 continued on next page
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retrieval. The dorsal system was engaged preferentially in the situation where the retrieval of a task-

set was used to improve performance.

Previous computational models of task-set-based behavior fall into two broad categories

(Frank and Badre, 2012). On the one hand, behavioral and task-set learning are modeled on an

abstract, psychological level (Botvinick et al., 2009; Collins and Koechlin, 2012; Donoso et al.,

2014 ). Models of this type can be directly used to fit subjects’ behavior and correlate abstract varia-

bles with BOLD activity, however they do not address the underlying biological mechanisms. On the

other hand, task-set-based behavior and learning have been modeled using detailed, biologically-

inspired networks (O’Reilly, 1998; O’Reilly and Munakata, 2000; Durstewitz et al., 2000;

O’Reilly, 2006; O’Reilly and Frank, 2006; Frank and Badre, 2012; Collins and Frank, 2013). These

models typically include a large number of free parameters, and are difficult to fit to the available

data, so that directly testing the underlying biological mechanisms is challenging. Here we adopted

an approach that interpolates between these two extremes, and used an intermediate-level model,

which was based on biologically constrained models, but highly abstracted to allow for direct com-

parison with human behavioral data. This model was moreover developed to test a specific hypothe-

sis, namely that task-set learning relies on Hebbian chunking of individual stimulus-response

associations.

Biologically plausibility of the temporal chunking mechanism
While the network dynamics and plasticity mechanisms in the network model were highly abstracted,

they nevertheless included some basic biological constraints present in more detailed models. The

reward-dependent Hebbian learning and winner-take-all mechanisms in the associative network

were based on previous studies in the field of conditional associative learning (Williams, 1992;

Wang, 2002; Wong and Wang, 2006; Fusi et al., 2007; Soltani and Wang, 2010; Soltani et al.,

2017; Hertz, 2018; Sutton and Barto, 2018). The temporal chunking mechanism in the task-set

network was based on Hebbian plasticity at behavioral timescales, and can be generated for

instance through sustained neural activity and extended STDP (van Rossum et al., 2000;

Compte et al., 2000; Miller and Cohen, 2001; Rougier et al., 2005; Drew and Abbott, 2006;

Curtis and Lee, 2010; Murray et al., 2017). The required mixed-selectivity can be obtained from

randomly connected neurons receiving feed-forward inputs coming from sensory and motor areas

and has been widely observed in the prefrontal cortex (Asaad et al., 1998; Wallis et al., 2001;

Genovesio et al., 2005; Rigotti et al., 2013).

Despite the basic biological plausibility of the underlying mechanisms, implementing task-set

learning in a more detailed model with heterogeneous connectivity and continuous-valued, or spik-

ing neurons driving ongoing plasticity would remain a challenge (see e.g. [Zenke et al., 2015]). A

particularly difficult point lies in implementing the inference signal for task-set retrieval, which essen-

tially solves an exclusive-or gating problem, as different task-sets map from the same set of stimuli

onto different actions (Rigotti et al., 2010a). In our model, we have used a highly simplified imple-

mentation where the inference directly gates the synaptic weights in the associative network. An

alternative approach could be to include additional intermediate layers of neurons, and gate the

activity of neural populations in these intermediate layers. Previous works have relied either on

Figure 7 continued

behavioral predictions (per episode, if it existed from sufficient learning, Figure 6a,b,c) with two trials immediately

before and after it (see Materials and methods). Effect sizes in arbitrary units for the recurrent and the open-ended

session. Error bars correspond to the standard error of the mean over the 40 subjects. dlPFC: dorsolateral

prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex .

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Neural correlates of the synaptic strength in the associative network, and of the inference from the

task-set network to the associative network.

Source data 2. Control independent ROI analysis: neural correlates of the inference signal from the task-set net-

work to the associative network, at the onset feedback.

Figure supplement 1. ROI analysis in the hippocampus.

Figure supplement 2. TN inference parametric regressor for four selected subjects, for the recurrent session (left)

and the open-ended session (right).

Bouchacourt et al. eLife 2020;9:e50469. DOI: https://doi.org/10.7554/eLife.50469 15 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.50469


highly structured layers representing different brain regions (Frank and Badre, 2012; Collins and

Frank, 2013) or on randomly connected layers of non-linear mixed selective cells (Rigotti et al.,

2013; Fusi et al., 2016). Other possibilities include implementing contextual gating in a single,

recurrent network through mixed, low-rank connectivity (Mastrogiuseppe and Ostojic, 2018), or

specialized neural sub-populations (Yang et al., 2019; Dubreuil et al., 2019). Ultimately, a biologi-

cally plausible instantiation of this gating remains an open question, as the currently available physio-

logical data does not provide sufficient constraints.

Neural correlates of task-set retrieval
Consistent with the literature on the neural correlates of goal-directed behavior, we found that the

inference signal for task-set retrieval correlated specifically with BOLD activity in ventromedial, dor-

somedial and dorsolateral prefrontal networks. In particular, the ventromedial prefrontal cortex cor-

related negatively with the inference signal, that is positively with the compatibility between

encoding in the two subnetworks when a reward was received (as a prediction error-like signal). This

is potentially in accordance with the role of ventromedial prefrontal cortex in monitoring the Bayes-

ian actor reliability in this experiment (Donoso et al., 2014). The dorsal prefrontal cortex was prefer-

entially engaged when the model of the task (i.e., the task-sets) is useful and integrates into the

behavioral policy (recurrent versus open-ended sessions, while controlling for trial perceived diffi-

culty, as implemented by reaction times [Shenhav et al., 2013; Shenhav et al., 2014]). Dorsolateral

prefrontal cortex is known to be specifically engaged for temporally integrating and organizing mul-

timodal information (Miller, 2000; Duncan, 2001; Sakai, 2008; Kim et al., 2008; O’Reilly, 2010;

Ma et al., 2014). Previous work showed that neurons in the anterior cingulate cortex monitor the

allocation and the intensity of control (Dosenbach et al., 2006; Behrens et al., 2007;

Rushworth et al., 2007; Shenhav et al., 2013; Khamassi et al., 2013; Enel et al., 2016). In this spe-

cific experiment, using a Bayesian framework, the dorsal anterior cingulate cortex was shown to be

specifically selective to switch-in events (Donoso et al., 2014).

Predictions for experiments with overlapping task sets
In the experiments we modeled, the different task-sets in the recurrent session consisted of fully dis-

tinct sets of stimulus-action associations. In a more complex situation, two different task-sets could

partly overlap by sharing a common association. Our model makes interesting predictions for this

setup. We studied two cases: the case where a newly introduced task-set partly overlaps with a pre-

viously learned one, and the case where two task-sets partially overlap from the beginning of learn-

ing. In both cases, our model predicts that the overlapping association induces a decrease in

performance on the following trial. In the first case, this decrease is transient, while in the second

case it is permanent..

For the first case (Figure 3—figure supplement 2a,b,c,d,e), we simulated the recurrent session

till episode 25, as in Figure 3a,c,e,g. After episode 25, we introduced a fourth task-set (task-set 4,

see Figure 3—figure supplement 2a) that had one overlapping stimulus-action association with

task-set 1 (association [5 j]). When this new task-set is introduced, in the task-set network the over-

lapping association [5 j] is chunked with stimulus-response associations corresponding to task-set 1.

In consequence, any trial on which stimulus five is shown leads to an incorrect retrieval of task-set 1,

and therefore errors on the next trial (Figure 3—figure supplement 2b). This is analogous to mal-

adaptive retrieval examined in Figure 6d,e. Synaptic depression in the task-set network eventually

breaks away the association [5 j] from the cluster corresponding to task-set 1, and chunks it with

task-set 4, at which the performance on the trials following stimulus five increases.

For the second case, we considered (in Figure 3—figure supplement 2f,g) a session with three

task-sets, among which two shared the same stimulus-response association (task-set one and task-

set 3, for the association [5 j], see Figure 3—figure supplement 2f). In the model, the shared associ-

ation becomes either chunked with both task-sets, or with neither of the two, but is in either case

uninformative on the correct task-set. The model therefore predicts a decrease of performance on

the trial following the shared association, in particular at the beginning of an episode (Figure 3—fig-

ure supplement 2g).
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Stability/flexibility trade-off from the unsupervised temporal chunking
mechanism
Our model builds on an attractor chunking mechanism (Rigotti et al., 2010b) while being simplified:

we don’t make the hypothesis of the existence of fixed attractors. Instead, the synaptic weights are

modified immediately from the start and continuously. Thus, the task-set network can learn from its

own activity, combining prior statistical information to future learning, crucial in non-stationary prob-

lems. In order for this mechanism to be stable when learning concurrent task-sets, learning has to be

slower as the representational complexity increases.

This mechanism also enables the encoding of a synaptic trace of any sequence of events, even

incorrect, as a transition probability (weak but non-zero) between chunks or with an isolated neural

population. The brain relies on estimates of uncertainty within and between task-sets (Yu and

Dayan, 2005; Courville et al., 2006; Collins and Koechlin, 2012; Rushworth and Behrens, 2008;

Gershman et al., 2012; Kepecs and Mainen, 2012; Donoso et al., 2014; Soltani and Izquierdo,

2019). More specifically, Collins and Koechlin (2012) have shown that the Bayesian likelihood (‘reli-

ability’) of each task-set in memory is evaluated. Inferences on the current and alternative task-sets

have been found to occur in medial and lateral prefrontal cortices respectively Donoso et al. (2014).

The coupling between these two tracks permits hypothesis testing for optimal behavior. Future work

could investigate how an estimate of uncertainty (or reliability over task-sets) is retrieved from the

synaptic weights of our model.

Temporal chunking as a mechanism for hierarchical learning, multi-step
transition maps and generalization
The model used in this study relies on two network layers that operate on separate timescales, with

the task-set network learning the statistics of the associative network on a slower timescale. More

generally, cognitive control and learning depend on a succession of hierarchical representations in

the brain (Badre, 2008; Badre et al., 2009; Badre et al., 2010). Plasticity and chunking between

mixed-selective cells may therefore create a conjunctive code seeding a flexible ‘representational

medium’ (Miller, 2000; Duncan, 2001; Ma et al., 2014; Manohar et al., 2019). Temporal Hebbian

learning on a hierarchy of different timescales may create chunks combining states, action, rewards,

or more abstract ‘task-sets’ to create hierarchically more complex representations. Moreover, this

type of plasticity provides a potential mechanism for learning transition probabilities on this complex

state-space, and therefore suggests a candidate implementation the successor representation (with

the augmentation of eligibility traces, [Gershman and Niv, 2012; Russek et al., 2017]) and multi-

step transitions maps (Kahana, 1996).

This mechanism can also lead to generalization. Augmenting our network with a generalization

layer composed of neurons selective to the combination of three stimuli and three actions could pro-

duce faster learning of a new task-set by biasing lower cortical structures. In this simplistic scheme,

generalization is a top-down, gating-like mechanism solving exclusive-or problems between layers of

cells of decreasing complexity. Caching multi-steps transitions in a single value (model-free) or not

(model-based) would then be equivalent to learning at slower timescales in an increasingly complex

hierarchy of cortex layers (Murray et al., 2014).

Materials and methods

Experimental procedures
The experimental task
We modeled a specific human experiment for concurrent task-set monitoring, previously reported in

Collins and Koechlin (2012); Donoso et al. (2014). The detail of the experimental procedures can

be found in the original papers, here we provide only a summary. Data from Collins and Koechlin

(2012) are called Experiment 1. Data from Donoso et al. (2014) are called Experiment 2. The exper-

imental designs are identical. Experiment one is a behavioral experiment including 22 subjects.

Experiment 2 involves 40 subjects, with fMRI acquisition.

Subjects had to search for implicit associations between 3 digits and four letters by trial and error.

In each trial, a visual stimulus (a digit on the screen in {1, 3, 5} or {2, 4, 6}) was presented to the sub-

ject (Figure 1a). The subject had to take an action by pressing a letter on a keyboard in {d, f, j, k}.
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The outcome (reward or no reward) was announced with a visual and auditory feedback. A visual

measure of the cumulative collected profit was displayed on the screen. For each trial of Experiment

1, the subject had 1.5 s to reply during the presentation of the stimulus. The average length of a trial

was 2.9 s. For Experiment 2, the mean of a trial was either 6 s or 3.6 s, depending on whether BOLD

activity is acquired or not. MRI trials were longer, introducing jitters at stimulus or reward onsets for

signal decorrelation.

A correct association between the stimulus and the action led to positive reward with a probabil-

ity 90%. An incorrect association between the stimulus and the action led to a null reward with a

probability 90%. 10% of (pseudo-randomized) trials were misleading noisy trials, yielding to a posi-

tive reward for an incorrect association, and vice-versa. Thus, a null feedback could be produced

either by a behavioral error, by a change in correct associations, or by noise. The introduction of mis-

leading feedback prevented subjects from inferring a change in correct associations from a single

unrewarded trial.

The correct set of responses to stimuli remained unchanged over a block of 36 to 54 trials. Such a

block is called an episode. The transition from one episode to another is called an episode switch

and was not explicitly cued. This transition imposes a change of correct responses from all stimuli, so

a change of task-set. Task-sets were always non-overlapping from one episode to the other, that is

each and every of the three stimulus-response associations differ after an episode switch. Within a

given set, two stimuli were never associated with the same action.

An experimental session was a succession of 25 episodes for Experiment 1, and 24 episodes for

Experiment 2. BOLD activity was acquired only during the 16 last episodes of Experiment 2.

In each experiment, subjects performed two distinct sessions: an open-ended and a recurrent ses-

sion. In the open-ended session, task-sets were different in each episode, so there was no possibility

for the subject to retrieve and reuse a formerly learned one. In the recurrent session, only 3 task-sets

reoccurred across episodes (Figure 1a), and subjects could reuse previously learned task-sets. Sub-

jects were not informed about the distinction between the two sessions. The order of the sessions

was changed between subjects to counteract for potential session-ordering effect. Different digits

were used from one session to the other.

Having to manipulate at least 3 different task-sets was crucial: indeed when there are only 2 of

them, the second one could be inferred from the first one by elimination. With 3 task-sets, and after

an episode switch, some exploration is required to find the next mapping to use. More possible

actions than the number of stimuli were used to avoid learning the third stimulus-response associa-

tion by simple elimination when two associations were already known.

Debriefing
After each session, subjects performed a post-test debriefing. They were presented with 6 task-sets

and rated them depending on their confidence in having seen them or not during the experiment.

For the recurrent session, 3 out of the 6 task-sets were actually presented during the experiment.

For the open-ended session, the 6 task-sets were all part of the experiment. From the debriefing of

the recurrent session, subjects were classified in two different groups. Exploiting subjects ranked

higher confidence for the 3 seen task-sets, compared to the 3 unseen task-sets. Exploring subjects,

on the contrary, ranked at least 1 unseen task-set with more confidence than one of the 3 seen task-

sets.

Network model
The network model is based on Rigotti et al. (2010a). It is composed of two interacting subnet-

works, the associative and task-set networks, illustrated in (Figure 1d). In contrast to Rigotti et al.

(2010b), we do not explicitly model temporal dynamics within a trial, but instead use simplified,

instantaneous dynamics between populations replacing many mixed-selective neurons (Fusi et al.,

2016). Moreover, the feedback from the task-set network to the associative network is implemented

in a simplified manner. Full details of the model implementation are given below.

The associative network
The associative network (AN) is based on Fusi et al. (2007). This subnetwork implements in a simpli-

fied fashion the associations between input stimuli and output actions performed by a classical
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winner-take-all decision network (Brunel and Wang, 2001; Wang, 2002; Fusi et al., 2007;

Hertz, 2018).

The associative network is composed of neural populations selective to a single task-related

aspect, either a stimulus or an action. Each population is either active or inactive in any trial, so that

the activity n is modeled as being binary. If Si is the neural population selective to the presented

stimulus, and Aj is the neural population selective to the chosen action:

nðSÞ ¼
1 if S¼ Si

0 otherwise

�

(1)

nðAÞ ¼
1 ifA¼ Aj

0 otherwise

�

(2)

Any stimulus-selective neural population fSigi¼1::3 projects excitatory synapses to all response-

selective neural population fAjgi¼1::4. The corresponding synaptic strength, noted JANSi!Aj
, takes values

between and 1. The behavioral output in response to a stimulus is determined based on these syn-

aptic strengths, which moreover plastically change depending on the outcome of the trial (reward or

no reward).

Action selection in the associative network
In any given trial, following the presentation of a stimulus Si, the associative network stochastically

selects an action based on the strengths of the synapses from the population nðSiÞ ¼ 1 to the popu-

lations that encode actions. Specifically, the action Aj is selected with the probability

PðAjjSiÞ ¼
�

nA
þð1� �Þ

expðbJANSi!Aj
Þ

P

nA

k¼1

expðbJANSi!Ak
Þ

(3)

where nA is the number of possible actions, 1=b is the strength of decision noise and � accounts for

undirected exploration, that is random lapses. The associative network therefore effectively imple-

ments a soft and noisy winner-take-all mechanism: all actions are equiprobable for high decision

noise, whereas the probability of the action with the largest synaptic strength tends to 1 for low

decision noise.

Synaptic plasticity in the associative network
The learning of the basic stimulus-action associations is implemented through plastic modifications

of the synaptic strengths in the associative network. Following an action, the synaptic strengths are

updated according to a reward-modulated, activity-dependent learning rule:

JANSi!Aj
 JANSi!Aj

þaþðr;nðSiÞ;nðAjÞÞ � ð1� JANSi!Aj
Þ�a�ðr;nðSiÞ;nðAjÞÞ � J

AN
Si!Aj

(4)

where r is the obtained reward (r¼ 0 or 1), and aþ and a� are respectively the rates of potentiation

and depression which depend on the reward as well as the activity of pre- and post-synaptic popula-

tions. Note that the update rule implements soft bounds on synaptic strengths, and ensures biologi-

cal plausible saturation of neural activity, as well as forgetfulness (Amit and Fusi, 1994; Fusi, 2002;

Fusi et al., 2007; Ostojic and Fusi, 2013).

The synaptic plasticity is local, so that only synapses corresponding to the active pre-synaptic

population Si are updated (nðSiÞ ¼ 1). Moreover, for simplicity, all non-zero potentiation and depres-

sion rates are equal and given by a parameter a. We therefore have

aþðr¼ 1;nðSiÞ ¼ 1;nðAjÞ ¼ 1Þ ¼ a�ðr¼ 1;nðSiÞ ¼ 1;nðAjÞ ¼ 0Þ ¼ a (5)

if the reward is positive, and

aþðr¼ 0;nðSiÞ ¼ 1;nðAjÞ ¼ 0Þ ¼ a�ðr¼ 0;nðSiÞ ¼ 1;nðAjÞ ¼ 1Þ ¼ a (6)

if the reward is null. All other potentiation and depression rates are zero.
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The simplest implementation of the associative network therefore has three free parameters: the

learning rate a and noise parameters b and �. When fitting the model to human behavior, we have

examined the possibility of adding complexity by distinguishing the learning rates corresponding to

distinct reward and pre/post- synaptic events. The presented results on model fits, model dynamics

and model predictions concerning the recurrent session are not modified by this extension.

The task-set network
The task-set network (TN) is composed of mixed-selective neural populations, which are selective to

conjunctions SiAj of one stimulus and one action. As in the associative network, the activity n of each

population in the task-set network is represented as binary (either active or inactive, nðSiAjÞ 2 f0; 1g).

The task-set network is fully connected: any neural population SiAj projects excitatory synapses to all

other neural populations SkAl, with strength JTNSiAj!SkAl
2 ½0; 1�. The strengths of these synapses are

plastically updated, and determine the co-activation of populations in the task-set network. This co-

activation effectively encodes task-sets. Full details of the model implementation are given below.

Activation of populations in the task-set network
At each trial, a stimulus Si is presented and the associative network selects an action Aj. In the task-

set network, this leads to the activation of the population SiAj :

nðSiAjÞ ¼ 1 (7)

Depending on the synaptic strengths, this may in turn lead to the co-activation of other popula-

tions in the task-set network. Specifically, if the synaptic strength JTNSiAj!SkAl
is greater than the param-

eter gI , the population SkAl is immediately activated.

For all ðSk;AlÞ with (k 6¼ i or l 6¼ j) :

nðSkAlÞ ¼
1 if JTNSiAj!SkAl

� gI

0 otherwise

�

(8)

This step is iterated until no additional population gets activated. Here the parameter gI repre-

sents an inhibitory threshold equivalent to a constant negative coupling between all populations in

the task-set network, and implements in a simplified way a competition between excitatory neural

populations through recurrent feedback inhibition.

These activation dynamics are assumed to be fast on the timescale of a trial, and therefore imple-

mented as instantaneous.

Synaptic plasticity in the task-set network
The synapses in the task-set network are updated following an unsupervised, Hebbian plasticity rule.

This update is driven by the sequential activation of neural populations in the task-set network, and

thus by the associative network dynamics (Figure 1d). When two populations in the task-set network

are activated on two consecutive trials, the synapses connecting them are potentiated. Noting

StAt the task-set network neural population at trial t, and Stþ1Atþ1 the neural population at trial t þ 1,

this potentiation is given by

JTNStAt!Stþ1Atþ1
 JTNStAt!Stþ1Atþ1

þQP � ð1� JTNStAt!Stþ1Atþ1
Þ � nðStAtÞ � nðStþ1Atþ1Þ (9)

where the parameter QP represents the learning rate for potentiation.

Moreover, at each trial, all the synapses from the active neural population nðStAtÞ ¼ 1 are

depressed (pre-activated depression [Ostojic and Fusi, 2013]), implementing an effective homeo-

static control. This depression is given by

JTNStAt!SkAl
 JTNStAt!SkAl

�QM � J
TN
StAt!SkAl

� nðStAtÞ (10)

where QM is the rate of depression.

The ratio QP=QM between the potentiation and the depression rates determines the asymptotic

values of the synaptic strengths (Ostojic and Fusi, 2013). To produce co-activation of populations in

the task-set network and therefore the learning of task-sets, this asymptotic value needs to be higher
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than the inhibition threshold gI . To avoid any redundancy between the parameters we fixed gI to 0.5

and QM ¼ QP=10, so that QP is the only free parameter. Using different sets of values for gI and

QP=QM did not modify the fits and the results as long as gI was large enough to filter out the fluctua-

tions of non-task-set synaptic weights (Figure 5—figure supplement 2).

Interaction between associative network and task-set network
To implement the effect of learning in the task-set network on the output of the model, the pattern

of activity in the task-set network needs to influence the activation in the associative network. In our

model this interaction is implemented in a simplified fashion.

If the current trial was rewarded, the activation in the associative network on the next trial is

biased towards the stimulus-action combinations that correspond to activated populations in the

task-set network. This effective inference signal is implemented by modulating the strength of synap-

ses in the associative network. Specifically, if r ¼ 1 and nðSkAlÞ ¼ 1 in the task-set network on the pre-

vious trial, the synaptic strength from Sk to Al in the associative network is increased.

JANSk!Al
 JANSk!Al

þ JINC � ð1� JANSk!Al
Þ � nðSkAlÞ (11)

where the parameter JINC specifies the strength of the inference signal.

The strength of the inference signal thus corresponds to the discrepancy between the task-set

network prediction and the associative network encoding when a reward is received (or its negative

counterpart, the compatibility).

Model fitting to behavioral data and simulation
The model without task-set inference has three free parameters, and the model with task-set infer-

ence has five free parameters (taking into account that we fixed the parameters gI and QP=QM in the

task-set network). The parameter set is composed of the associative network learning rate a, the

task-set network learning rate QP, the parameters of the soft and noisy winner-take-all mechanism

(decision noise 1=b and uncertainty �), and the inference strength JINC from task-set network to asso-

ciative network connectivity. Both models were fitted to behavioral data using the standard maxi-

mum likelihood estimation (MLE). We provide the model with the subject’s set of actions and we

define the model performance on a trial as the model’s likelihood of observing the subject’ response

at the next trial. The Bayesian information criterion (Figure 5a and Figure 5—figure supplement 1)

uses the likelihood computed by MLE but introduces a penalty term for model complexity depend-

ing on the size of the observed sample. Following Figure 2 of Collins and Koechlin (2012), the BIC

was computed as the opposite of equation (4.139) of Bishop (2007). We also compared the AIC

(Akaike information criterion) for both models and reached identical conclusions (see Figure 5—

source data 1). A larger log-likelihood and lower BIC and AIC correspond to best model fits. We

combined a grid search on initial parameters values with a gradient descent algorithm from the SciPy

optimization toolbox. Parameters were estimated subject by subject.

On average over subjects (see Figure 5—source data 1), the learning rate in the associative net-

work (a ¼ 0:35, s ¼ 0:0073) is twice the learning rate in the task-set network (QP ¼ 0:17, s ¼ 0:0070).

The inference strength from the task-set network to the associative network is high in the recurrent

session (JINC ¼ 0:70, s ¼ 0:037), and its value is significantly lower in the open-ended session

(JINC ¼ 0:16, s ¼ 0:0062, see Figure 5b).

We also compared model simulations ex post (model recovery Palminteri et al., 2017), with and

without task-set inference. In a simulation, the model’s actions are random depending on the trial by

trial probability set computed from the winner-take-all mechanism. The model performance is now

the probability predicted by the model for the correct action, at each trial. Model simulation repro-

duced model fits and data, which ensured that we are not overfitting subjects’ data.

fMRI whole brain analysis
The model-based fMRI analysis was performed with SPM 12. The detail of the data acquisition can

be found in Donoso et al. (2014).

All parametric modulators were z-scored to ensure between regressor and between subjects

commensurability (Lebreton et al., 2019; see also Figure 7—figure supplement 2). For each onset,

they were orthogonalized to avoid taking into account their shared variance. fMRI data were
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analyzed using an event-related general linear model. Regressors of non-interest include subjects’

lapses, post-pause trials at the beginning of each scanning run, and movement parameters. Event-

related regressors of interest modeled separately the onset decision (stimulus presentation timing,

covering the decision time window) and the onset feedback (outcome presentation timing). The

regressors were based on the best fitting parameters at the subject level.

At the onset decision, the regressor included orthogonalized parametric modulations following

this order:

. The first modulator was the time-series of reaction times, an index of trial difficulty and a spe-
cific motor preparation-related activity.

. The second modulator was the associative network synaptic strength from the presented stim-
ulus selective neural population to the chosen action selective neural population. We call this
parameter Wchosen and it is also an index of trial difficulty.

At the onset feedback, the regressor included orthogonalized parametric modulations following

this order:

. The first parametric modulator was Wchosen. This control ensures that the correlations observed
are not simply caused by the monitoring of the certainty on the chosen association (prediction
error) or else the trial difficulty.

. The second parametric modulator was the time series of positive rewards.

. The third parametric modulator was the trial-by-trial average value of the inference signal from
the task-set network to the associative network. It was thus the average, over the number of
connections implicated, of the task-set network inference on the update of associative network
synaptic weights. We call it TN inference.

All the mentioned time series were convolved with the hemodynamic response function to

account for the hemodynamic lag effect.

The subject by subject statistical maps were combined to make generalizable inferences about

the population. We used a random effect analysis approach (Holmes and Friston, 1998). We identi-

fied activations using a significance threshold set to p ¼ 0:05 (familywise error FWE corrected for

multiple comparison over the whole brain).

For conciseness, and because mixed-selectivity has been found in prefrontal cortex (Fusi et al.,

2016), we do not report posterior activations (parietal, temporal and occipital lobes).

Note that we did a preliminary control analysis using the link between the associative network

and Q-learning (Watkins and Dayan, 1992) by searching for any correlation between BOLD activity

and the prediction error, that is the difference between the perceived outcome and the associative

network synaptic strength of the trial-by-trial chosen association. As expected from previous studies

(Tanaka et al., 2004; O’Doherty et al., 2004; Daw et al., 2006; Kim et al., 2006; Lebreton et al.,

2009), we found ventromedial prefrontal cortex and striatal activity to correlate positively in the

recurrent and in the open-ended session. The MNI peak coordinates and number of voxels in the

cluster were respectively [�12, 56, 20], T ¼ 11:2, 901 voxels in the recurrent session, and

[�12, 8, �12], T ¼ 14:3 and 1419 voxels in the open-ended session.

We investigated neural correlates of the trial-by-trial synaptic strength of chosen association in

the associative network, at the onset decision (Wchosen, controlling for trial difficulty, through time-

series of reaction times). Results are shown in Figure 7—source data 1. We found positive correla-

tions in striatum and ventromedial prefrontal cortex, and negative correlations in dorsal anterior cin-

gulate cortex, anterior supplementary motor area and lateral prefrontal cortex, in both experimental

sessions. These results are consistent with previous findings in the field of value-based decision mak-

ing (Tanaka et al., 2004; Daw et al., 2006; Lebreton et al., 2009; Chib et al., 2009;

Alexander and Brown, 2011; Donoso et al., 2014; Neubert et al., 2015; Palminteri et al., 2015).

One-way ANOVA and second control ROI analysis
In order to test the hypothesis of a specific effect of task-set retrieval, we extracted the betas from

medial and lateral prefrontal nodes, and compared them from the two conditions: the recurrent and

the open-ended session. This comparison was valid as soon as the region of interest is selected inde-

pendently from the statistical maps of betas (Poldrack, 2007), that is the selected ROI need to be

based on a different contrast than the one currently studied. We defined a functional network by the

co-activations in both sessions, for the trial-by-trial task-set network inference signal to the
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associative network (ANOVA REC+OE for dorsomedial and dorsolateral prefrontal cortex, ANOVA -

REC-OE for ventromedial prefrontal cortex, FWE 0.05, Table 1), which thus did not promote differ-

ences. Our ROI of ventromedial, dorsomedial and dorsolateral prefrontal cortex were selected from

the obtained thresholded maps (FWE p ¼ 0:05) from this ANOVA analysis, and were used to test dif-

ferences between REC and OE (in Figure 7a).

We also looked at the correlations between magnetic resonances responses at feedback onset, in

these ROI, to a similar general linear model where the inference signal had been replaced by five

sparser time-series constituted of only one trial per episode and the corresponding events shifted

one or two trials preceding and following it. This trial was chosen as the first chunked trial of the

model behavioral predictions (per episode, if it existed from sufficient learning, Figure 6a,b,c).

Results are displayed in Figure 7b.

We further controlled our results by running other independent ROI analysis using:

. the Stanford Functional Imaging in Neuropsychiatric Disorders Lab (Shirer et al., 2012)

. the Glasser parcellation (Glasser et al., 2016)

. the Neurosynth meta-analysis (Yarkoni et al., 2011)

. the WFU PickAtlas (Lancaster et al., 1997; Lancaster et al., 2000; Maldjian et al., 2003)

Results are shown in Figure 7—source data 2.

Neural correlates of the inference signal in the hippocampus
We used an ROI of hippocampus from the WFU PickAtlas (Lancaster et al., 2000). Using an ROI

from the Glasser parcellation (Glasser et al., 2016) or the Neurosynth meta-analysis (Yarkoni et al.,

2011) provided comparable results. Only regressors of the synaptic strength of the chosen associa-

tion at the onset decision, and of positive rewards at the onset feedback, showed positive correla-

tions in both sessions, but the difference between sessions was not significant (Figure 7—figure

supplement 1). This is consistent with the general role of the hippocampus in associative binding

(Davachi and DuBrow, 2015). In contrast, there was no significant activation of hippocampus corre-

sponding to the task-set network inference to the associative network, neither in the recurrent nor in

the open-ended session. Note that we are regressing the value of the inference strength from the

task-set network biasing the decision network while learning occurs, as a cognitive control signal

would do. It’s an indirect measure of memory encoding in the task-set network, instead of the actual

value of synaptic weights.

Software
All simulations were done with Python 2.7 (using numpy and scipy, and the scikit-learn package;

Pedregosa et al., 2011). The fMRI analysis was done with Matlab and SPM12 (Ashburner et al.,

2014). Code is available at https://github.com/florapython/

TemporalChunkingTaskSets (Bouchacourt, 2020; copy archived at https://github.com/elifesciences-

publications/TemporalChunkingTaskSets).
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The following datasets were generated:
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