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Ah! Mais ch’est èn Anguiais enco en pu c’t’affaire?

(Normand du centre Manche)
Marie-Thérèse Gouesmel, ma grand-mère, en

découvrant la langue de ce manuscrit.
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humaines incroyables à l’IPR, et je te dois beaucoup pour cela. J’ai eu les encouragements, les
ressources, la présence et l’espace qu’il faut pour m’approprier les notions et les codes nécessaires
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Merci à Emmanuel Schaub, ingénieur de recherche au département matière-molle. Cela a été
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aide et votre présence à toutes et tous :)
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vie plus douce.



iv
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instants en dehors du labo et à ton mariage. Cette année passée ensemble m’a beaucoup apporté.
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Résumé en Français
Les travaux de cette thèse portent sur les écoulements dans le plan de films de savon. C’est un
point de vue d’hydrodynamicien qui vise à aider à mieux comprendre la rhéologie et le vieillissement
des mousses liquides en s’attaquant à des échelles locales: le film de savon unique et la mousse
liquide élémentaire, c’est à dire trois films reliés entre eux à 120o par un ménisque.

Dans l’introduction, je présente l’état de l’art sur la physique des films de savon et des mousses
liquides élémentaires. Le lecteur y trouvera en premier lieu des définitions de quantités thermo-
dynamiques importantes pour coupler la rhéologie d’une interface gas-liquide aux écoulements
dans la phase liquide, puis une mise en équation pour les mouvements dans le plan des films de
savon, qui représentent un cas extrême de confinement entre deux de ces interfaces. Cela fait
poser et calculer quelques ordres de grandeurs nécessaires pour la suite en discutant notamment
les échelles spatiales et temporelles pertinentes, ainsi que les propriétés physico-chimiques des
solutions savonneuses (choix et propriétés des surfactants, viscosités etc...).

Ensuite, il est question de regarder plus spécifiquement la zone de jonction entre ces films
plats et un ménisque courbé. Des régimes stationnaires et instationnaires d’évolution du profil
d’épaisseur dans le film sont discutés selon l’écoulement imposé côté film.

Enfin, j’expose un état de l’art sur les mousses liquides élémentaires sous déformation im-
posée. Deux expériences précédentes (par Durand & Stone [1] et Besson & Debrégeas [2]) et
des simulations numériques récentes (Titta [3]) ont montré la pertinence de cette échelle locale
des mousses, que ce soit pour mieux comprendre la mécanique globale de ces matériaux, ou pour
sonder la rhéologie de surface des interfaces qui les composent. Dans tous les cas, la réponse
mécanique de la mousse élémentaire est montrée comme étant notamment déterminée par les
quantités de surfactants échangées entre films, et entre les films et le ménisque. Ces échanges
font systématiquement l’objet d’hypothèses fortes dans ces modèles, et tenter de les estimer par
le calcul confronte la communauté à des variables physico-chimiques pas ou mal connues. Les
connâıtre permettrait de résoudre le champ de vitesse dans la mousse élémentaire, pour lequel un
modèle existe (Bussonnière & Cantat [4]), et de donner des lois rhéologiques locales physiques
pour la rhéologie des mousses liquides.

La principale problématique de cette thèse est ainsi posée: peut-on quantifier ces échanges
de surfactants entre films et entre films et le ménisque?

Le plan du manuscrit est construit avec un Chapitre 1 portant sur l’élasticité individuelle d’un
film de savon, un Chapitre 2 sur une description théorique et une mesure d’une tension de ligne
d’origine purement capillaire dans les films, et la modélisation des écoulements qu’elle génère
dans le plan du film, et un Chapitre 3 portant sur la quantification des échanges de surfactants
au sein d’une mousse liquide élémentaire entre films et entre les films et le ménisque.

Le Chapitre 1 commence par présenter un modèle d’élasticité de film de savon (Prins et al. [5])
qui résout complètement le couplage entre étirement et échanges volume-interface de surfactants
pour des régimes sous-micellaires. Ce modèle est validé par des expériences faites à l’époque, et
également présentées dans le manuscrit.

Mon apport est ici d’étendre ce modèle au régime micellaire grâce à des résolutions numériques,
et de prédire les courbes de charge ∆σ = f(ϵ), les variation de tension de surface ∆σ en fonction
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de la déformation ϵ selon les axes du plan du film. L’élasticité d’un film est quantifié en prenant la
pente à l’origine de ces courbes. Notamment, il apparâıt ici qu’étant données les hypothèses du
modèle, les surfactants en régime micellaire ne contribuent pas à cette élasticité. On attend donc
à être dominé principalement par les contributions soit des impuretés, soit d’un co-surfactant peu
soluble de la solution.

Figure 1: Courbes de charge: (A) pour différentes vitesses de déformation à chimie donnée
[DOH] = 35 mg/L (U = 5 et 10 mm/s resp. en rouge et noir) ; (B) Pour différentes chimies
à vitesse U = 10 mm/s (de rouge à noir, [DOH] = 0, 15, 35, 50 mg/L)

Enfin, je compare ce modèle étendu à des expériences menées avant le début de ma thèse
avec des solutions micellaires de SDS auxquelles du dodécanol est ajouté comme co-surfactant.
Ces dernières ont permis de tracer expérimentalement les courbes des charges et d’effectuer la
comparaison avec le modèle. Un bon accord quantitatif est trouvé si on ajuste sur la quantité
de dodécanol ajoutée plutôt que de rentrer la valeur nominale des solutions. Cela laisse supposer
que les impuretés ont un rôle non-négligeable, et que les différentes variables physico-chimiques
les caractérisant sont mal connues. Le modèle et ses résultats ont fait l’objet d’une publication
dans Soft Matter [6] en 2022.

Le Chapitre 2 porte sur une tension de ligne dans les films de savon comportant des hétérogénéités
d’épaisseurs. J’y établis en premier lieu l’expression d’un tenseur des contraintes capillaire 2D
pour un élément de film comprenant un gradient d’épaisseur.

Grâce à ce dernier, il est possible d’effectuer un bilan des forces dans une zone séparant deux
régions du film de savon qui ont des épaisseurs différentes. De par l’anisotropie des forces en
jeu, on montre qu’un excès de contrainte est stocké dans cette zone de transition d’une épaisseur
à l’autre. En prenant la limite d’un largeur de transition nulle, on construit ainsi un contour
contenu dans le plan du film de savon le long duquel une tension de ligne est présente. Cette
dernière pourrait être impliquée dans les écoulements dans le plan des films de savon dès lors que
ceux-ci sont d’épaisseur non-uniforme, et il devient donc intéressant de la quantifier.

La suite du chapitre porte sur un montage expérimental où cette tension de ligne est mise
en évidence. Il s’agit d’un film de savon à l’horizontale que l’on crée fin (∼ 200 nm) sur un
cadre rectangulaire déformable au rapport d’aspect initial très allongé. En étendant le rectangle
brusquement en largeur, on extrait du film épais (∼ 10 µm) des ménisques du cadre vers le
plan du film pré-existant. On crée ainsi une situation où un film de savon possède deux régions
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d’épaisseurs différentes, et l’arène de film fin initialement allongée relaxe vers une forme de cercle
sous l’effet de la tension de ligne à sa frontière.

Figure 2: Timelapse de l’expérience de relaxation d’un patch de film fin (coloré) au sein d’un
film plus épais (gris). Une tension de ligne T est présente le long du contour séparant les
deux régions.

La tension de ligne est mesurée grâce à une caméra spectrale qui donne accès au profil
d’épaisseur le long d’un segment perpendiculaire à la ligne de tension. En intégrant les gradients
des profils d’épaisseurs, on obtient une mesure à 30% de la tension de ligne qui est de l’ordre de
T ∼ 1010N.

Afin de valider cette mesure, nous avons modélisé les écoulements, dont la tension de ligne
est la force motrice. Connaissant la force de friction opposée à cette dernière, la friction sur l’air
au-dessus et au-dessous du film, nous regardons la vitesse à laquelle l’arène relaxe vers un cercle.
Un accord quantitatif entre mobilité prédite et mesurée valident notre mesure de la force motrice,
et donc de la valeur de tension de ligne trouvée.

Le Chapitre 3 détaille la réponse expérimentale à la problématique principale de ma thèse.
J’y rappelle d’abord la situation physique: nous nous intéressons à un système comportant trois
films de savon reliés entre eux par un ménisque libre, où on impose des écoulements bouchons
loin de ce dernier.

Un modèle décrivant le champ de vitesse dans les films, près du ménisque, a été développé
avant le début de ma thèse par Bussonnière & Cantat [4]. Ses principaux éléments sont rappelés:
des écoulements bouchon (sans cisaillement) sont imposés loin du ménisque, mais la présence de
points d’arrêts aux interfaces dus à la symétrie de déformation impliquent l’existence de zones
cisaillées au voisinage du ménisque. Dans ces zones, un cisaillement simple est attendu, dont
la pente et la longueur sur laquelle il se développe dépendent directement de variables physico-
chimiques et de la capacité du ménisque à échanger des surfactants avec les films. En effet,
les points d’arrêt imposant des destructions/créations d’interface, connâıtre ces flux d’échange
détermine la contrainte de Marangoni le long des films, et donc les cisaillements qu’ils subissent.

Le challenge expérimental qui se pose alors est de pouvoir mesurer simultanément ces quantités
d’interface Lin et Lout. Cela est rendu possible par un montage commencé avant le début
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de ma thèse et complété pour répondre à cette exigence. Je détaille donc dans une section
l’ensemble de caméras utilisées pour permettre cette mesure: Trois caméras en fluorescence, une
regardant le film comprimé, une sur un film étiré, une sur le côté du ménisque, et trois caméras
spectrales regardant les profils d’épaisseur de chaque film. A cela s’ajoute un montage laser
pour le photoblanchiement de l’agent fluorescent placé dans nos solutions pour pouvoir créer des
traceurs passifs dans les films. Je détaille ensuite le protocole expérimental (vitesses des moteurs,
temps de préparation, de déformation des films etc...). Une autre section décrit les traitements
numériques relatifs à chaque caméra ainsi que les tracking de taille et position du ménisque, des
films extraits lors des déformations et des points photoblanchis.

Avec ces informations, une nouvelle section décrit comment nous remontons aux quantités
d’interface échangées et à la différence de tension entre les films. Cette dernière est trouvée
principalement grâce à la position du ménisque, qui est une information qui reste délicate à
trouver étant donnée la présence de glissements aux temps initiaux des déformations imposées.
Ensuite, pour estimer les quantités d’interface Lin et Lout, l’information la plus délicate à trouver
est l’état de compression des films. En effet, les longueurs recherchées sont proportionnelles
aux quantités de surfactant qu’elles portent, et il faut donc corriger les longueurs directement
mesurées par des facteurs de déformation ϵ estimés pour chaque film (étiré ou comprimé). Cela
se fait en estimant pour chaque film la différence de longueur par rapport au cas initial, avec
quelques subtilités quant à localiser précisément un système fermé pour chacun d’entre eux.

Figure 3: Quantités d’interface échangées mesurées simultanément. Le facteur 1/2 corre-
spond au cas de l’absence d’échanges entre le ménisque et les films.

Une fois que ces déformations sont connues, Lin et Lout le sont également. Il apparâıt
alors clairement que pour toute les gammes de vitesses de déformations et de concentration
en dodécanol utilisées (V = 10 − 50 mm/s, [DOH] = 15 − 50 mg/L), le cas Lout = 1

2Lin

correspondant à l’absence d’échanges ménisque-film est atteint. Cela suggère donc que pour des
gammes de taux de déformation autour de γ̇ = 1 − 10 Hz et de chimies similaires (un ordre
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de grandeur d’élasticité de film balayé avec le dodécanol), l’hypothèse de nullité pour ce flux
peut être faite, ouvrant la voie pour clore le modèle théorique qui prédit la viscosité effective des
mousses liquides élémentaires.

Enfin et avant de conclure, j’expose également dans ma thèse comment cette expérience de
déformation de mousses liquides élémentaires permet de retrouver les élasticités de film définies
et mesurées dans le Chapitre 1, et montre l’accord entre les deux mesures. D’autres déformations
sont également montrées, et servent à discuter les différence attendues pour d’autres régimes et
symétries, ou la place des recirculations gravitaires dans les mécanismes d’échange.

En conclusion, je récapitule ces différents chapitres et discute les développements expérimentaux
et théoriques attendues après ces travaux.
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0
Introduction

Here is a liquid foam

Figure 1: A dry liquid foam. Credits to S. Cohen-Addad, R.M. Guillermic & A. Saint-
Jalmes [7].

What we see is a network of flat liquid films separating faceted bubbles. This is essentially
a close look at what is in a sink while doing the dishes, or what we hold in our hands while
shampooing! And we all know the recipe: a liquid, water most of the time, in which we add a

1
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surfactant, soap most of the time, and some mechanical work to incorporate some air into
the liquid. This creates a suspension of gas in a liquid, as we are accustomed to in everyday life,
whether it is for washing, cooking, or simply enjoying the view of bubbles.

For an engineer, predicting the overall mechanical properties of these structures is a complex
problem — whether it involves guiding their flow from point A to B... or preventing their formation
in the first place.

Let us first have an even closer look, zooming on one single film with Fig.2A.

Figure 2: A: single flat foam film on a supporting frame. The interference colours correspond
each to a thickness of film in the range ∼ 200 − 800nm. Thicker pieces appear grey, thinner
appear black. Credits to Eric Sorensen2. B: At the typical time scale of a foam film lifetime,
each tiny coloured patch mentally cut out of it can be seen as a closed system which is
advected in the plane of the film. Describing the in-plane motions of a foam film is a sliding
puzzle game!

This is a flat film of liquid supported by a solid rectangular frame. The thickness of liquid
varies from a few hundreds of nanometers to a few microns, around one hundred times thinner
than a human hair!

Also, what remains hidden in the picture is the meniscus, which is a curved liquid beading
at the edges present either on the supporting solid frame for our single film, or at the junctions
between the films in the liquid foam. What we can see on the other hand are the heterogeneities
of thickness in the film itself, evidenced by the (delightfully) colourful patterns at the surface. All
of these factors contribute to the inherent complexity of this system even at this scale.

A first important piece of knowledge for instance, is that if we track by eye a tiny piece of
film in the coloured patterns, it is a closed system which does not exchange any matter with its
neighbours. This is true on the typical time scales ∼ 1 − 10 s at which we witness these colours
moving, even if the said patch of film runs through the whole film!

As a child, I saw bright and wiggling colours in my bath. As an undergrad hydrodynamicist,
I thought it was about the inner flows of a fluid sandwich made of two liquid-gas interfaces. As

2A beautiful zoology of foam films by Eric Sorensen at http://esorensen.com/
soap-film-photography/. Many thanks to him.

http://esorensen.com/soap-film-photography/
http://esorensen.com/soap-film-photography/
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a Ph.D student, I see now that it is all about a sliding puzzle game with patches of foam films
(Fig.2B). A puzzle game with many mysteries yet to be solved: What forces set the pieces of
film in motion within their own plane? How does a patch of film behave close to the meniscus?
Can neighbouring films exchange patches if we deform them? With whom do they exchange?
With the meniscus or with other films?

Part of these questions have had their answers in the literature, but an even bigger part is
still open!

This thesis is about the adventure of such a 2D patch of foam film, a piece of a sliding puzzle:
We are going to apply forces on it, advect it, stretch it and even try to shear it in its own plane.
In the end, it will be allowed to deliver the surfactants it carries from one film to another in a
foam, thus representing a transport mechanism relevant for foam rheology (Fig.3).

Figure 3: A local scale of a liquid foam such as shown above. Deforming the films (red)
sets in motion patches of film. Some of them will even leave their plane (dark blue), thus
representing a surfactant transport mechanism. These exchanges are of the utmost impor-
tance for the sake of describing the flows in the system.

0.1 The fluid dynamics around a surfactant-laden in-
terface

As stated earlier in the very basic description of a bubble or a foam film, we are dealing with a very
thin gas-liquid-gas sandwich. The major ingredient to add in order to stabilise this structure is the
presence of surfactant molecules at the interface. But how do they organise for one interface first?
What tools do we need to properly describe the features of an interface containing surfactants?
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0.1.1 Surfactants
First, let us define what a surfactant is. A very usual example given at school is soap, often
with the simplified chemical representation of a polar round head with an elongated non-polar
carbon tail. Heads like water which is polar, tails prefer air which is non-polar. They ease the
formation of bubbles and liquid foams by going at the liquid-air interfaces and lowering surface
tension, denoted γ, which is usually presented as “the energy per unit area” it takes to create
some interface.

Usual species of surfactants encountered in daily life can have many different origins. A lot
of proteins are efficient surfactants: dairy and egg proteins are rather good examples, as both
milk and beaten eggs foam well. Surfactants in cleaning agents also have many different origins,
from the traditional savon de Marseille made with oleic acid from olive oil to “sulfates” (or SAS
for secondary alkanesulfonates) used in shampoos and dishwashing liquids, which are petroleum
derivatives.

In research, quite a wide range of surfactants is also utilised: TERGITOL’s, Triton X-100,
the CnTAB family (for TrimethylAmmonium Bromide, exist with carbon chains from n = 10
to 16) and the sodium sulfate families. In the frame of this thesis work, we will focus on a
surfactant from this last family, maybe the most widely used in soft-matter: SDS for Sodium
Dodecyl Sulfate. Its structure is represented in Fig.4A. It is an anionic surfactant synthesised
from dodecanol (hereafter DOH) shown in Fig.4B.

Figure 4: Structure of the two surfactants used in the frame of our work: A: SDS (for
Sodium Dodecyl Sulfate) is a very soluble anionic surfactant (forms micelles in water C)
and B: DOH for Dodecanol (poorly soluble, is the electrolysis product of SDS, hides in SDS
micelles D)

SDS is a very soluble surfactant in water thanks to its very polar head. When its concen-
tration reaches a critical value called Critical Micellar Concentration CMC = 8.1 mmol/L, SDS
molecules start forming spherical structures called micelles, of which a schematic view is shown
in Fig.4C and which represent an actual new phase in the system. Thus, above the CMC, the
monomeric concentration of SDS in water remains capped at CMC = 8.1 mmol/L and the
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molecules in excess form micelles. On the other hand, DOH is a poorly soluble surfactant, having
a solubility in pure water of s = 2.2 × 10−5mol/L. When solubilised in a micellar SDS solution
however, DOH can take refuge in the micelles, as shown in Fig.4D, and its overall solubility can
go up to s ∼ 10−3mol/L.

As for this choice of surfactant, it is very important to note that a tiny amount of DOH is
still present in commercial SDS powders. The manufacturer only gives the global purity which is
> 99%. Later estimations made in the frame of our work (cf. chapter 1 subsection 1.2.1) tend
to show that DOH represents approximately ∼ 0.1 − 0.2% of the SDS-DOH population. It is a
crucial factor as these tiny amounts of DOH drastically change the properties of the foam films
and thus represent a control parameter in the following when we will be adding DOH ourselves
to the solutions.

0.1.2 Definitions and generalities about interfaces and surface ten-
sion γ

God made the bulk; surfaces were invented by the devil

Wolfgang Pauli

Surface tension γ defined as an energy

Now that we have defined what our surfactants are and how they organise in the bulk liquid,
which is always water in the frame of this work, let us see what happens when our solutions are
put in contact with a gas interface, which is always air here. Thus, a first naive/schematic view
of such an interface is given by Fig.5A, which can be imagined with or without the surfactants
covering it: a discrete jump from one phase to the other, a 2D object which can possibly be
populated by surfactants.

Most importantly, this description is associated with the definition of a central physical quan-
tity that is the surface tension γ, first introduced by Gibbs [8, 9] and classically defined as the
energy per unit area required to create some interface:

γ = ∂F

∂A

∣∣∣∣∣
T,V,N

(1)

Where F is the free energy, to be switched with any other thermodynamic potential depending
on the variables of the problem (e.g. T ,V ,N the entropy, volume and quantity of matter), and
A the interface area. The canonical molecular interpretation of this energy cost is to imagine a
single molecule near the discrete interface and how the attractive interactions acting on it vanish
in the direction of the interface, as air is very dilute (or similarly how they diminish in this direction
for liquid-liquid interfaces). This results in an energy frustration of any molecule at the surface,
meaning there is an energy cost per unit area to create the interface.
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What is hidden in an interface?

However, the molecular reality is in fact more complicated than that. How does it make sense to
speak of distance from the interface for a single molecule when these molecules define what the
interface is? Part of the answer can be found if we dare opening the Pandora box of “what is
hidden in an interface in a 3D world?”. Let us do so gently, opening it ajar only, just to be sure
at least of the sizes we are dealing with.

Figure 5: A liquid-gas interface wide open. A: Schematic view as a 2D object. B: Schematic
view of the real 3D world as we open the interface. The typical thickness over which we
jump from one phase to the other is of the order of ∼ 3 − 5 rM molecular sizes. ρl, ρg and
ρs are respectively normalised densities of liquid, gas and surfactants.

Pauli warned us already: these are tricky objects to think about and describe. Let us have a
closer look. In Fig.5B, in the case where there are no surfactants (meaning we temporarily forget
about the red curve), the density of water molecules varies from a constant value, which is the
bulk value, to zero over a width ∼ 1 − 10 nm which is the size of several water molecules. This
remains much thinner than regular foam films as we recall their typical thickness h ∼ 1 µm. The
interface itself z = 0 is here defined as the origin of a step function jumping from ρ = 0 to ρl,bulk

that makes the two grey excess areas have equal surfaces.
What is surface tension in this 3D description? This is a matter of molecular dynamics: we

would need to describe the potential of interaction between the molecules, draw the profile of
density of energy of interactions across the interface and integrate it along z. The excess of
energy compared with bulk liquid would be γ. We won’t risk writing it in math mode though.

Now let us consider surfactants. We add the red curve to Fig.5B alongside the blue one. In
the vicinity of z = 0, the surfactants are much more concentrated. When we will get back to a
2D description, this local excess of molecules will be called surface excess (meant by comparison
to the bulk value ρs,bulk). The existence of a surface excess for a species is the definition of what
we have called so far a surfactant.

NB 1: This definition of “surfactant” is canonical in physical chemistry. For other communi-
ties in chemistry, a species also need to be soluble enough to form micelles in order to be called
surfactant, and for example dodecanol would not be called surfactant, but rather “co-surfactant”
as it relies on SDS to ensure its solubility. For hydrodynamicists like us, a surfactant would
be anything changing our boundary conditions at the interface, which is more in line with the
definition of the physical chemists.
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The contribution of the surface excess of surfactant to the aforementioned energy integral of
γ is negative, and thus adding surfactants results in a lower surface tension.

NB 2: This decrease of γ is very often proposed as an explanation for the foaming properties
of soapy solutions. “Creating water-air interfaces costs less, thus allowing foams to exist”. This is
utterly wrong. A lot of pure liquids with surface tensions close to soapy solutions such as regular
oils do not foam at all! Allowing a foam film to exist is not about how much it costs to create it,
but rather giving its surface tension a law of evolution γ(ϵ, ϵ̇) under a certain deformation of the
interface ϵ to resist gravity and capillary forces. Describing these laws is a big part of this thesis
work, as we will later see.

Adding a surfactant also raises the question of the evolution of the typical width lz where
we start deviating from the bulk properties, and to see to what extent the interface remains thin
enough to be considered 2D. In our specific case of an ionic surfactant such as SDS, the typical
width of the interface is the Debye length λs as predicted and experimentally shown by Bergeron
et al. [10, 11] with DLVO theory [12, 13]. We can write it and estimate it in our case using our
typical bulk concentration of surfactant (which is lower than the concentration in the interface):

lz ∼ λs =
√
ϵ0ϵrkBT

ρsNAz2
se

2 ∼ 10 nm (2)

Where ϵ0ϵr = 6.9 × 10−10 F m−1 is the electric permittivity of water, kBT = 4.1 × 10−21 J
is the thermal energy, e = 1.6 × 10−19 C is the elementary charge, zs = 1 is the ionic valence
of SDS, NA = 6.64 × 1023 mol−1 is the Avogadro constant and ρs > ρs,bulk = 1 mol/m3 is an
order of magnitude for the concentration of SDS.

This is the order of magnitude of the range at which our interface can interact. Thus, this
allows us to distinguish what is called a black film (so thin that it appears black), the world of
physical chemists with h < 100 nm, from regular “thick” films, our world as hydrodynamicists
with h > 100 nm. Below this limit, with black films, an important ingredient to add is disjoining
pressure, a key physical quantity to study the stability of these systems which is directly linked
to the ageing of liquid foams [14–16]. Above this limit h > 100 nm, which will always be
the case from now on, we are allowed to close the box of the 3D interface and get back to our
surface tension γ defined properly along a 2D interface.

Surface tension γ as a force per unit length and how to measure it

All these clarifications about interfaces being made, we can have a look at what happens depend-
ing on their geometries. In fact, as we implied earlier, our interfaces are going to be curved as
the foam films have heterogeneous thicknesses and are connected to menisci at the edges. This
is where surface tension comes into play, but rather as a force per unit length this time. The
beauty is that although it is defined only in the 2D interface, its contributions are both on the
normal and tangential constraints of the surface!

The stress at the interface can be written (neglecting surface viscosities for now):

σ.n = ∇sγ + κγ n (3)
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Where σ is the stress tensor in the liquid, κ = κx + κy is the local mean curvature, n is the
normal vector of the interface (oriented toward the gas) and the s indices account either for the
evaluation of quantities at the interface or in the local basis of the interface. The first term on
the right hand side is the Marangoni stress, that is the gradient of surface tension in the local
basis of the interface. The second term is a normal force to the interface which is related to the
curvature of the surface.

Figure 6: Jump of pressure ∆p = pi − p0 across a curved interface subject to surface tension
γ. Rx and Ry are the local radii of curvature along both axis x and y. dθx and dθy are the
angular apertures of the interface element along x and y.

For an interface at equilibrium, the Marangoni stress disappears on the right hand-side of eq.3
and on the left hand-side the normal stress is only balanced by the difference of pressure between
the two fluids:

(σ.n)eq = κγn = ∆pn (4)
Where ∆p = pgas − pliq is called the Laplace pressure jump. In Fig.6, we give a more

geometrical view of the different forces acting along the edges of an element of interface. Rx

and Ry are the radii of curvature along the two directions of the interface and dθx, dθy are the
angular apertures of the element along the same axis. The norms of the elementary forces can
directly be written: Fx,1 = Fx,2 = γRydθy and Fy,1 = Fy,2 = γRxdθx. By projecting all the
forces in the normal direction of the interface and writing the balance, the difference of pressure
compensating for the curvature is given by the Laplace law:

∆p = γ
( 1
Rx

+ 1
Ry

)
(5)

Note that for a spherical interface, both radii of curvature are equal and we have a factor 2:
∆p = 2γ

R
.

This pressure jump is an important ingredient as many experimental measurement methods
for γ rely on a Laplace pressure measurement. In Fig.7, we display an overview of six different
measurement methods for surface tension [17]:

• Wilhelmy plate: Relies on a direct measurement of the vertical component of the capillary
force Fcap = 2γl cos θc. The main difficulties are to know θc accurately and to wet the
plate properly.
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• Maximum bubble pressure: The goal is to blow a bubble at the tip of a capillary by
imposing an air flow rate and to measure the pressure in the gas plug. At earlier times
when less than half a sphere is out, the radius at the end of the gas plug decreases until
a hemispherical bubble is created of radius R the radius of the capillary. After this time,
as more air comes in, the radius of the bubble increases until the bubble detaches from
the capillary. A minimum of radius is attained with the hemispherical bubble, and thus a
maximum of pressure, which is measured. The Laplace law gives γ as both R and ∆p are
known.

• Spinning drop: An elongated plug of air is entrapped in the liquid in a horizontal spinning
cylinder. The evolution of the length of the plug is a balance between the centrifugal
forces applied on the bubble and its surface tension. Writing both energies, we have
the relationship: γ = ρlω

2

4 R3 with ρl the liquid density and ω the angular velocity. By
monitoring R, a precise measurement of γ can be done. This method is particularly useful
for low surface tensions and is also often used with two immiscible liquids, replacing the
fluid density by the difference of densities in the relationship above.

• Du Noüy ring: This method is very close to the Wilhelmy plate except the force is exerted
on the interior and exterior of a circular ring of radius R. The extracted film takes shape
of a catenoid, and a precise tedious calculation yields a relationship between the measured
force and surface tension, knowing the geometry of the ring.

• Capillary rise: By dipping a cylindrical capillary of known interior radius, we see the rise
of a liquid column above the surface of the bath which reaches an equilibrium quite rapidly.
This is the historical experiment of Jurin, and a very academic example to highlight the
presence of surface tension. The vertical liquid column balances the pressure drop due to
the curvature of the wetting meniscus in the capillary. Knowing the interior radius of the
capillary rc, the height h and density ρ of the liquid column and the wetting angle θ of
the liquid, it is possible to have a measurement of surface tension by writing the balance:
ρgh = 2γ cos θ/rc. This method is unreliable in this form, but can be adapted for porous
media and is well known in soil physics [18]

• Pendant drop: This method consists of creating a drop in air (or another liquid for liquid-
liquid measurements) attached to a capillary of known geometry. The volume injected in
the drop and the density of the liquid are known, and the profile of the drop is measured
by a camera on the side. Fitting the profile, it is possible to determine the wetting angle
precisely and by making the force balance with the weight it is possible to determine the
surface tension. This is a very reliable method for a wide range of liquids. Besides, it
enables dynamic measurements by controlling the amount of liquid pumped in/out of the
drop, probing the surface rheology of the drop interface.

0.1.3 Coupling the bulk to the interface
For a single interface

As suggested earlier, the surface tension is a function of the surface excesses of the surfactant
species dwelling at the interface. Let us give the notation Γi for the surface excess of a species
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Figure 7: Various experimental techniques commonly used to characterise surface tension.
Credits to Berry et al. [17].

i (usually expressed in mol/m2). Surface tension can be written as an unambiguous function of
Γi using the thermodynamic identity (later detailed in chapter 1):

dγ = −
∑

i

Γidµi (6)

Where µi are the chemical potentials of the different species.
Thus, our problem is now to describe the evolution of these Γi as the population at the

interface is coupled through diffusion to the population ci in the bulk (the concentration of species
i in mol/m3). Note that for now we speak of an infinite bulk, thus not limiting the
depth at which we probe it by diffusion. This coupling is rather difficult to establish though,
as it depends on the evolution of the area of the interface, the time of diffusion, of convection,
the competition with other species etc... resulting in a complex function Γi = f(ci, A,Γj, t, ...)
which is hard to describe in a general case. Even for a single species on an interface at rest in
contact with an infinite bulk, the proper description of the diffusion problem is not trivial, as
suggests the work of Ward, Tordai [19].

If we now want to capture the physics of these processes with scaling laws, we need to define
several quantities. First the diffusion coefficient Di (m2/s) giving the time τ for a species i
to diffuse through a width l by: τ = l2/Di. Second, what we will call the reservoir length
hΓ,i = Γi/ci which is a length giving an estimate of how deep we need to go in the bulk to gather
enough surfactants to populate the interface. For surfactant molecules, this length is actually a
good indicator of their solubility: soluble surfactants have a big population in the bulk, and we
do not need to go “that far” to populate the interface (hΓ −→ 0), insoluble surfactants are all
the interface, and are barely present in the bulk (hΓ −→ ∞).

These two limits, with SDS closer to the soluble limit and DOH closer to the insoluble limit,
change drastically the physics of the interface if we want to deform it. This is well illustrated in
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the Fig.8 from Manikantan et al. [20]. For a pure liquid (case A), the creation of an amount ∆A
of interface has an energy cost given by the definition ∆F = γ0∆A. For a soluble surfactant
(case B), creating the same amount of interface requires to bring surfactants from the bulk to
the interface, which is ensured by the vast amounts of surfactants present there, and the cost
is ∆F = γeq∆A with γeq a surface tension of equilibrium for a given population c of surfactant
in the bulk. For a perfectly insoluble surfactant (case C), the population at the interface is
fixed and no exchange with the bulk is authorised, meaning that the surface tension γ varies
as the interface is deformed leading to a complex energy contribution ∆F =

∫
γ(Γ)dA (NB:

We took the example of the creation of an interface, meaning a deformation in extension of it,
but the same reasoning goes for a compression, a destruction of interface requiring to evacuate
surfactants towards the bulk).

Figure 8: Energy cost of the creation of interface in the case of A: Pure liquid B: Soluble
surfactants C: Insoluble surfactants. Credits to Manikantan et al. [20].

Any surfactant is between these two limits. Besides, even in the case of an infinite bulk, these
limits are time dependent as it depends on the time it takes for the exchanges of surfactant to
take place. In theory, any interface deformed fast enough can be considered to be loaded with
insoluble surfactants. For regular surfactants such as SDS or DOH, which have approximately
the same molecular sizes Rhydro ∼ 1 nm, the diffusion coefficients can be estimated as:

D = kBT

6πηRhydro

∼ 10−10 m2/s (7)

Where kBT = 4.1×10−21 J is the thermal energy, η = 10−3 Pa · s is the dynamic viscosity of
water and Rhydro the aforementioned hydrodynamic radius of the molecule. With such a diffusion
coefficient, probing one millimetre takes approximately τmm ∼ 104 s and one micron τµm ∼
10−2 s, for examples. Below these times, which depend on the depth of depletion/evacuation, we
cannot consider the interface to be at equilibrium, even though the surfactants are very soluble.
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Furthermore, another ingredient very common with surfactant and present in our case is the
presence of micelles. They fix the monomeric concentration of surfactants at the CMC, which
is an important change in the diffusion field. In our specific case of SDS in micellar regime with
DOH, it also represents a new time of diffusion in the system, as bulk-DOH is mainly stored in
the micelles.

During the beginning of my Ph.D, a campaign of pendant drop measurements was performed
with our foaming solutions in order to precisely know the equilibrium surface tensions for all our
SDS/DOH mixtures. The results are shown in Fig.9. To fix ideas, the surface tension of pure
water at T = 20 ◦C is γ0 = 72.8 mN/m.

Figure 9: Surface tension of SDS/DOH mixtures measured by the pendant drop method.
Left: Micellar regime [SDS] = 2.4 CMC for different concentration in DOH, increasing
from top to bottom: 0 (red), 15 mg/L (orange), 30 mg/L (green), 50 mg/L (cyan). Right:
Sub-micellar regime [SDS] = 0.75 CMC for different concentration in DOH, increasing from
top to bottom: 0 (red), 5 mg/L (orange), 10 mg/L (green), 20 mg/L (cyan).

It has first to be noted that this method was performed at constant volume for the drop,
thus injecting continuously liquid to compensate for the loss by evaporation. This may tend to
concentrate the bulk in surfactant as time goes by. In the sub-micellar regime (Fig.9 Right), the
equilibrium is essentially not attained. Whether or not DOH is present, the interface requires to
probe deep in the drop to stabilise its population. For a drop of size r ∼ 1 mm, we computed that
it can go up to waiting for τ ∼ 104s which is not incompatible. Note that at a high concentration
of [DOH] = 20 mg/L, we start to see what appears to be a phase transition in the form of an
angular point for γ(t). This could be related to the formation of highly concentrated regions in
dodecanol at the surface (see Lu et al. [21], Fainerman et al. [22]).

In the micellar regime, surface tension stabilises over a few tens of seconds, as SDS is more
concentrated overall. The remaining changes in surface tension are due to DOH and impurities,
which are expected to be stored in the micelles in the bulk, enhancing their effective solubility.
In the following, for most of our solutions, we work at at least twice the CMC in SDS where a
γeq is very well defined.

All the parameters at stake here, micelle concentration, fraction of insoluble surfactants in
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the micelles, reservoir lengths, diffusion distances, are all interdependent and represent a complex
coupling between bulk and interface.

However, we have to bear in mind that all these interdependencies we just highlighted were
meant in the case where our interface is in contact with an infinite homogeneous bulk. Thus we
anticipate that because of the specific geometry of foam films, some of the exchange mechanisms
will be blocked, and we will later see how it plays a role in the problem.

Now that we know more about the story and dependencies of γ, we need to build a proper
constitutive law for the rheology of our interface, which involves other ingredients besides γ:
surface viscosities.

0.1.4 Constitutive equation and 2D stress tensor σs
Let us provide our interface with a constitutive equation for a proper 2D stress tensor. It must
take into account surface tension γ as well as what is called intrinsic viscosities ηs and κs. This
description is known as a Boussinesq-Scriven model for the interface [23, 24], which has been
thoroughly described by Lopez et al. [25] and Manikantan et al. [20]. In Appendix 1, we also
address the construction of this tensor and the momentum conservation associated to it. It can
be written:

σs =
(
γ + (κs − ηs)∇s · vs

)
Is + ηs

(
∇svs +t ∇svs

)
(8)

Where γ is the surface tension, vs the velocity at the interface, ηs the intrinsic surface shear
viscosity, κs the intrisinc dilatational viscosity, ∇s the nabla operator in the basis of the interface,
and Is is the identity tensor in the same basis.

NB: we do not add any shear elastic response for the interface. With proteins or gels forming
structures at the interface, this is a relevant ingredient though (see for example [26, 27]).

This constitutive equation is a complete 2D analogue of a 3D viscous compressible fluid. We
can now write the stress balance for the interface:

0 = fext + ∇s · σs (9)

Where fext are the exterior forces applied to the interface (such as friction with the bulk liquid
and bulk gas for instance) and will be treated more thoroughly in chapter 1. If we develop the
term with the stress tensor, which is done in detail in Appendix 1, the projection in the plane of
the interface is [28–30]:

0 = fext,s + ∇sγ + κs∇s(∇s · vs) + ηs∆svs (10)

Where fext,s is now the projection of the exterior forces in the plane of the interface. This
expression eq.10 will be made explicit when needed only in the simple case of a quasi-plane
interface.

Let us now focus on the second term of the right-hand side ∇sγ, which is the Marangoni
stress at the interface. This is actually where a lot of the physical richness lies in this equation,
and we need to treat it carefully. All variations of surface tension ultimately have one origin in
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the frame of our problem class: a variation of surface excess of surfactants Γ. The link between
these variations is called the Marangoni modulus EM [20, 28,31] defined as:

EM = −Γdγ
dΓ (11)

This is a thermodynamic quantity which can be computed using eq.6 and of which a model
will be proposed for foam films throughout chapter 1.

Figure 10: Ingredients for the interfacial rheology of a surfactant-laden interface: A: Let us
look at the interface of a piece of film, and see the ingredients of the constitutive law (Credits
to Eric Sorensen4). B: The interface element has a purely viscous response to shear, with a
surface shear viscosity ηs. C: Under stretch, the film has both an intrinsinc viscous response
(with κs the dilatational surface viscosity) and a response of surface tension dγ

dA
that includes

an elastic part and an extrinsic viscous contribution. NB: For the sake of representation,
here we take a piece of film big enough to encompass quite a large thickness variation. This
has to be avoided in practice and a typical local scale in the following will be chosen below
these scales. Also,we need to bear in mind that we use a foam film to illustrate the ingredients
of a constitutive law which is valid in the more general case of a single interface in contact
with a bulk of infinite size.

When a piece of interface A is deformed, its surface excess of surfactants Γ = f(A) may vary.
This also leads to a variation of surface tension with the area dγ

dA
which is taken into account in

the ∇sγ term. Fig.10 summarises all the different contributions to the rheology of the interface,
both under shear or dilation.

Notably, we can look at two limits. With insoluble surfactants, the population N at the
interface is constant, leading to a linearly varying Γ = N/A with dΓ = −NdA/A2. With soluble
surfactants, the bulk population compensates for the change in Γ during/after the deformation,
leading to no change in surface excess and thus no change in surface tension. Thus, this is also
a matter of how fast the deformation occurs, as soluble surfactants need time to restore their
population through diffusion. This could be summarised by “any surfactant is insoluble for fast
enough deformations of the interface”.

4http://esorensen.com/soap-film-photography/

http://esorensen.com/soap-film-photography/
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In the purely insoluble regime, the variations of γ are a conservative contribution and the
deformed interface reacts with an elastic behaviour of surface elasticity EM = A dγ

dA

∣∣∣
insoluble

.
In the soluble regime, deforming the interface leads to a variation of surface tension dγ

dA
= f(ϵ̇)

depending on the deformation rate, which is the signature of a net loss of energy, i.e. an extrinsic
dilatational surface viscosity.

This latter is not to be confused with the intrinsic viscosities ηs and κs which are features
of the interface itself. The extrinsic dilatational viscosity originates from the bulk, whose role
as a surfactant reservoir is to smooth out the surface variations of surfactant population by
adsorption/desorption.

Having an experimental access to all these quantities is also very hard, and subject to a vast
and perilous literature [32–36]!

Using a Langmuir-Blodgett apparatus (a quite ancient method [37, 38] which has had a
century of technological improvements) can be relevant for specific cases such as the Marangoni
modulus of very insoluble surfactants deposited from the gas phase [32], or complex molecules
such as proteins or polymers which have very long diffusion dynamics (e.g. Renault et al. [39]).
However, measuring the surface intrinsic viscosities with this apparatus poses first the problem
of an unfortunate coupling between shear and compression because of the 1D stretching, and
second a coupling with the extrinsic viscosity. In a classical Langmuir configuration, we end up
measuring an effective viscosity which is a combination ηs,eff = ηs + κs +EMτ , with τ a typical
time of adsorption/desorption [20].

Last but not least, the surface viscosity of a wide range of surfactants, notably soluble sur-
factants, are now known to be poorly measured, as bulk friction with the gas or liquid have been
overlooked. This is the observation made by Zell et al. [36], who set an upper bound for the
surface shear viscosity of soluble surfactants ηs,max = 4 × 10−9 Pa m s which is below or of the
order of the majority of measurements found in the literature.

We have encountered this problem of bulk friction in the frame of this work as well, and this
will be subject to extensive discussions and modelling in chapter 2.

0.2 2D hydrodynamics and rheology of a foam film
Now that we have provided a proper rheological description of a single interface, let us look at
the particular case this thesis work is all about: foam films. These systems are peculiar because
of the extreme aspect ratios between the thickness separating two interfaces (h ∼ 10−6m) and
the typical length scales in the tangential directions to the interfaces (ℓ ∼ 10−4 − 10−2m). This
has a lot of consequences on the viscoelastic response of the interfaces under deformation, as the
total quantity of surfactants present at the interfaces can easily be of the order of/much greater
than the quantities contained in the thin bulk separating them.

0.2.1 Foam films only have plug flows far from the meniscus
A first important piece of knowledge about foam films is that their Poiseuille flows due to local
pressure gradients are very slow. The direct consequence is the uniformity of the velocity field
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along the thickness of the film: a plug flow. Thus, a moving piece of interface carries its bulk all
along its way! This is the sliding puzzle dynamics.

Let us put some numbers on the Poiseuille component of the flow. Using the geometry of
Fig.11 for an element of film, we get the typical difference of pressure: ∆p ∼ γ0h/ℓ

2. This leads
to the typical Poiseuille velocity vp between the interfaces:

vp ∼ h2∆p
ηℓ

∼ γ0h
3

ηl3
∼ 10 µm/s (12)

Where η ∼ 10−3Pa · s is the viscosity of water and γ0 ∼ 10−2N/m the equilibrium surface
tension of the foamy solution. This velocity will be small compared to any other velocity
seen in our foam films. Only block movements of both interfaces and the bulk they
sandwich are enabled. This notably allows the existence of localised gradients of
thickness in the film for times much longer than our typical time of experiments
τdef ∼ 1 s.

0.2.2 Thin bulk means fast chemical equilibrium
Following up on the constitutive law for one interface eq.8, and the stress balance attached to
it, what we need is an equation for γ in order to get a proper set of 2D Navier-Stokes equations.
However, we just saw in subsection 0.1.4 that the coupling with an infinite bulk makes it very
difficult to describe. To further advance, we need to start not speaking of one single
interface anymore, but rather look at our specific case of foam films where the bulk is
thin enough for its surfactant reservoir to display finite size effects.

As mentioned in subsection 0.1.4, the surface tension of a deformed interface is a function
of time tending towards an equilibrium value imposed by the chemical equilibrium with the bulk.
Let us have a look at the typical times of exchanges in a foam film. The geometry is shown in
Fig.11.

Here, the thickness of the foam film h ∼ 1 µm imposes a confinement in the vertical direction.
Also, we anticipate that the dynamics we will be looking at take place at the order of τdef ∼ 1 s,
and that all typical sizes in the tangential directions of film will be greater than/of the order of
ℓ ∼ 100 µm.

Given these orders of magnitude, it is now possible to compute the time it takes for the
interface to equilibrate with the bulk. In the case of a fresh interface in contact with a bulk very
limited in depth, the main adsorption mechanism for times t < τdef is diffusion [22, 40]. In this
case, the time it takes for the chemical equilibrium to be established is τd,⊥ = h2/D ∼ 10−2 s
with D ∼ 10−10 m2/s from eq.7. This time is much lower than the typical time of deformation,
and we thus consider the chemical equilibrium between the bulk and the interfaces to
be instantaneous.

In the tangential direction, all typical sizes are greater than 100 µm meaning that the transport
by diffusion is here a matter of τd,∥ = ℓ2/D ∼ 102 s. Also, we need to evaluate the bulk advection
transport due to the Poiseuille flows computed in subsection 0.2.1 with its velocity vp ∼ 10 µm/s
and thus to a typical time of transport over ℓ:
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Figure 11: Side view of an elementary piece of film (a slab of the sliding puzzle game). For
typical dimensions ℓ ∼ 100 µm in the tangential directions of the film, the typical times
of transport by diffusion and Poiseuille flow τd,∥ and τp,∥ are long compared to the time of
dynamics τdef ∼ 1 s, whereas in the normal direction, the thickness h ∼ 1 µm make diffusion
be almost instantaneous with τd,⊥ ∼ 10−2 s.

τp,∥ ∼ ℓ

vp

∼ 10 s (13)

Meaning that we have in both cases τp,∥, τd,∥ ≫ τdef and we can consider the film element
to be a closed system with respect to surfactant conservation far enough from the
meniscus (where the thickness rapidly increases).

0.2.3 First model for film elasticity and its physical origin
Let us consider a piece of film of the same dimensions as described in Fig.11 with a single
surfactant in the micellar regime (we discuss qualitatively the case of micellar SDS/DOH mixtures
at the end of this subsection and quantitatively with the full chapter 1 dedicated to it). As
demonstrated earlier in subsection 0.2.2, it can be considered as a closed system whose interfaces
are at equilibrium with the bulk for deformations in the typical time range τ ∼ 10−2 − 10 s. This
piece of bulk at rest is shown in Fig.12 Left, where the surface excess of surfactants Γ = Γeq and
the bulk concentration c = ceq are at equilibrium.

We want to impose a deformation ϵ in the direction tangential to the film, meaning the lengths
in this direction become L∥ = L∥,0(1+ϵ) and in the direction normal to the film L⊥ = L⊥,0/(1+ϵ).
The deformation remains of the order of ϵ = 1 at most. Here we implicitly use a 2D model
invariant by translation in the direction normal to the plane of the figure.

When we impose the deformation, the piece of film is stretched, and both areas A0 of the
interfaces are extended by the same factor A = A0(1 + ϵ). Their surface excesses Γ remain
the same for both interfaces at all times. Volume is conserved V = Ah = A0h0 imposing
h = h0/(1 + ϵ). This leads to the conservation of the total population of surfactants:

2ΓeqA0 + ceqA0h0 = 2ΓA+ cAh (14)
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Figure 12: Elastic response of a single surfactant in the sub-micellar regime due to finite size
effects of the bulk. Stretching a piece of film by a factor (1 + ϵ) leads an increase of the area,
thus diluting the surface excess Γeq of surfactants present at the interface. This dilution
is compensated by the population present in the bulk, as the equilibrium is instantaneous
given the small thickness of a foam film (cf. subsection 0.2.2). Because of the tiny volume,
the bulk population of surfactants ceq undergoes a significant drop, down to a value c < ceq,
thus balancing a decreased population Γ < Γeq at the interface. This decrease of Γ leads to
a reversible increase of surface tension γ > γeq. The same reasoning goes for a compression
of the film (ϵ < 0).

We can now reintroduce the reservoir length hΓ = Γ/c which is considered here as a constant
of the chemical equilibrium linking the surface and bulk populations of surfactants (this is the
simplest model for the chemical equilibrium, and it already captures the physical origin of foam
film elasticity, chapter 1 shows a more accurate one based on Langmuir isotherms). This allows
us to rewrite the equilibrium as:

Γ
(
1 + ϵ+ h0

2hΓ

)
= Γ0

(
1 + h0

2hΓ

)
(15)

Thus, deforming the piece of foam film results in a change of both the concentration and
the surface excess of surfactants if the term h0/hΓ remains of the same order of magnitude as
(1 + ϵ). That is if the film is thin enough for its bulk to be significantly depleted by a change of
surface of the interfaces. With a change of surface excess, the surface tension of the interfaces
γtop/bot = γ also changes at first order through the Marangoni elastic modulus defined by eq.11.
Thus, a simplified expression for γ can be written:

γ = γeq + EM
ϵ

1 + ϵ+ h0
2hΓ

(16)

This is the physical origin of foam film elasticity [8, 9], and it is not a dynamic
process due to a sorption time, but a finite size effect of the bulk acting as a reservoir.
This completely blocks the extrinsic dissipation originating from the bulk. Also, it has
to be noted that this analytical expression relies on two bold approximations: that
the surface excess is given by Γ = chΓ and that γ varies linearly with Γ at first order.
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Chapter 1 provides a more accurate model for film elasticity that I developed, taking
into account the non-linear couplings between γ and Γ, and Γ and c, as well as the
presence of micelles.

This elastic behaviour is thus conditioned by the reservoir length hΓ which needs to be of
the order of or greater than the typical thickness of the film h0 ∼ 1 µm. This is especially true
for poorly soluble surfactants such as DOH where we estimate hΓ,DOH > 5 µm in Bussonnière
et al. [4] based on the works of Fang et al. [41, 42]. Micellar SDS is much more concentrated
in the bulk, and a first estimation using ΓSDS ∼ 10−6 mol/m2 [42], cSDS ∼ 10 mol/m3 yields
hΓ,SDS ∼ 0.1 µm meaning the h0/2hΓ,SDS term dominates and the elastic contribution of micellar
SDS can be neglected a priori.

Also, this elasticity and the expression eq.16 for the surface tension remain valid as far as the
piece of film can be considered to be a closed system at chemical equilibrium. That is at times
τ ≫ 10−2s long enough for the bulk-interface equilibrium to be reached, and τ ≪ 102s short
enough for surfactant exchanges with neighbouring pieces of films to be neglected.

Lastly, the time evolution of γ due to the dissipation intrinsic to the interface is discarded
here (i.e. the response of γ to ϵ̇ through ηs and κs). In the range of attainable strain rates ϵ̇,
EM dominates [4].

0.2.4 Far from the meniscus, film tension is uniform
Now that we have clarified the physical origin of foam film elasticity, we need to look at the
tension balance in the film in order to describe the mechanics of not only a piece of film (size
ℓ ∼ 100 µm), but of the foam film as a whole (size L ∼ 1 cm). To do so, let us introduce the
film tension σf , which is the total action of a piece of film (black dotted rectangle in Fig.13) on
its neighbour. This σf includes the capillary stress in the bulk, as well as the surface
tension of both interfaces (and the surface elastic and viscous contributions this latter
contains). At rest and for symmetric flat interfaces, we simply have σf

eq = 2γeq.

We also define a 2D model for a foam film of length L, of local coordinates (s, ζ) as shown
in Fig.13, and invariant by translation along the third axis normal to the figure. The velocity in
the liquid bulk is written v = u es + w eζ and the thickness of the film h(s) depends on the
local abscissa s in the general case.

We start by writing the conservation of momentum projected along the s direction for a piece
of film whose boundaries are set between the local abscissa s and s+ ds and with ordinates ζ so
that they include both interfaces (black dotted rectangle in Fig.13). It can be expressed as an
integral over the liquid bulk ζ ∈ [0, h]:

∫ h

0
ρ

(∂u
∂t

+ u
∂u

∂s
+ w

∂u

∂ζ

)
dζ = ∂σf

∂s
+ ρgsh+ fg (17)

Where gs is gravity projected along s, fg is the friction of the piece of film with the gas phase.

Expressing the conservation of volume with the invariance by translation along the normal to
Osζ, we have ∂w

∂ζ
= −∂u

∂s
and after a few integrations in eq.17:
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Figure 13: Force balance on a film element of Fig.11 (a slab of the sliding puzzle, in case
the reader had forgotten our beloved analogy). A typical length for a foam film is given
L ∼ 10−2 m (which is among the longest lengths of film encountered with real macroscopic
liquid foams).

ρ
(∂(h⟨u⟩)

∂t
+ ∂(h⟨u2⟩)

∂s

)
= ∂σf

∂s
+ ρgsh+ fg (18)

Where the brackets stand for the mean value over ζ ∈ [0, h].
This is where we need to put some orders of magnitude to further advance and estimate each

term. To do so, we take the typical scales:

• τdef ∼ 1 s the typical time scale

• L ∼ 10−2 m the typical length scale along s, yielding U ∼ L
τdef

∼ 10−2 m/s

• h ∼ 10−6 m the typical length scale along ζ

• ρ = 103 kg/m3 the bulk density (water in most cases, including ours)

• gs ∼ 10 m/s2 the projected gravity

Inertial terms scale both as ρh
τ2

def
∼ 10−5 Pa and weight scales as ρgsh ∼ 10−2 Pa.

The air friction scales as fg ∼ ηg
U
δ
, where ηg ∼ 10−5 Pa s is the gas viscosity and δ is

a Blasius length over which momentum diffuses in the neighbouring gas. We estimate δ ∼√
ηgτdef

ρg
∼ 10−3 m with ρg = 1 kg/m3 the air density and we get fg ∼ 10−4 Pa.

The gradient of film tension is estimated by estimating the value of the film elasticity Ef ≃
2EM , which is of the order of Ef ∼ 10−2 N m−1 [4, 6], yielding the scaling ∂σf

∂s
∼ Ef ϵ

L
∼ 1 Pa

with ϵ ∼ 1 which is very large compared to any other term. Note that this can be seen as a lower
estimate, as the intrinsic viscosities of the interfaces or the capillary stress may also contribute
to film tension (we will later see that they do not far from the edges of the foam film).
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We can thus conclude that for a typical deformation of more than ϵmin = 10−2, no other
force can balance the tension gradient, and thus film tension σf is uniform in a foam film,
far from its edges. This is the limit of high elasticities, which will essentially be always valid in
the frame of our study, as well as for a very wide range of foams.

However, it has to be noted that in other situations, gravity can be important [43], or inertia
for film rupture [44–46].

0.2.5 The incompressible interface limit
Since Mysels, Frankel and Shinoda [47–49] and the first actual measurements of foam film
elasticities Ef by Prins et al. [5,50], a first key observation is that foam films are hard to stretch.
This means that the cost Ef to pay is high.

Most of the time, we assume incompressible interfaces, meaning we close the problem impos-
ing:

∇s · vs = 0 (19)

This is a robust assumption for a wide range of problems [51–53] which we will later use in
chapter 2. This hypothesis only finds its limits when the films are stretched or compressed by
imposing a significant change of area as we will later see in chapters 1 and 3. In Appendix 2, we
propose a general framework for compressible interfaces in the limit of high elasticities.

0.3 Flows in foam films at a junction with a meniscus
Since the beginning of this manuscript, I have been carrying the metaphor of the sliding puzzle
for a foam film to establish the idea that pieces of films are advected patches interacting with
one another not through bulk Poiseuille flows, but rather with their surface rheology. This is
a faithful representation up to a certain extent, and this section proposes to see the situations
where it is not anymore. That happens notably for times much longer than our typical τdef ∼ 1 s,
or at the edges of a foam film where it is put in contact with a meniscus. The typical dimensions
for a meniscus (and its radius of curvature) is of the order of rm ∼ 100 µm, which is two orders
of magnitude above the typical thickness of a film!

All the following subsections correspond each to a phenomenon which will be observed in my
experiments. Some of them are used to our advantage (Frankel film extraction), others hinder
my measurements (Marginal regeneration, Rayleigh-Taylor instability...). And all need a proper
description.

0.3.1 Lubrication equations in a foam film
We aim here at establishing a general set of equations for the thickness profile of two symmetrical
incompressible interfaces set in motion. In the bulk of a foam film, the liquid flow is governed by
the Stokes equations:
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η ∆v − ∇p = 0
∇ · v = 0

(20)

Where η is the bulk viscosity and p the pressure in the liquid.
Given the geometry of millimetric/centimetric foam films (the same aspect ratio as if a paper

sheet was 10 to 100 times thinner), the bulk flows are described using the lubrication equations.
We will use the notations of Fig.14, with the Oxz plane being the medium plane of the foam film,
and y = h(x) the ordinate locating the position of the interface. For now we consider the 2D
problem of two symmetrical incompressible interfaces. They are described by any semi-thickness
field h(x) varying slowly enough to remain in the frame of the lubrication approximation, and
with an imposed velocity vx(x, h(x)) = U which is uniform along the interface as this latter is
incompressible.

The lubrication equations can be written as follows (established in [54,55]):
η∂yyvx − ∂xp = 0
∂yp = 0
∂xvx = −∂yvy

vx(x, h(x)) = U

(21)

Where lines 3 and 4 are respectively the conservation of volume and of the area of interface.
The pressure field is only depending on x, and as the curvature of the interfaces remains small,
we can write p as the Laplace pressure jump: p = γ0∂xxh, where γ0 is the surface tension of
the interfaces. Given the independence of the pressure gradient with y, the boundary condition
vx(x, h(x)) = U and the geometry of the problem, the velocity field can be integrated as:

vx(x, y) = U + 1
2
γ0

η
∂xxxh (y2 − h2) = vad + vcap (22)

This velocity field can be integrated to get the flow rate:

Q =
∫ h

−h
vx(x, y)dy = 2Uh− 2

3
γ0

η
h3∂xxxh (23)

Whose conservation law (line 3 of eq.21) yields the equation for h:

∂th+ U∂xh− 1
3
γ0

η
∂x(h3∂xxxh) = 0 (24)

This is the generic equation for the evolution of a profile h(x, t) given the velocity U which
can be a function of time, negative or positive, but must remain uniform at the interfaces because
of the surface incompressiblity condition.

This equation opens up pathways to the solutions of problems where bulk transport in foam
films matter. This happens for instance near the edges of a foam film, where the flat film is
connected to a meniscus, and we propose to see two examples in the following: the Frankel
problem and the Aradian problem.
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0.3.2 Steady state film extraction: the Frankel problem
To close the problem of eq.24, we either need to get an initial profile for h(x, t = 0) or to look
at its steady solutions, as well as getting more spatial conditions for h.

Here, we look at the problem of a steady film extraction from a meniscus as shown in Fig.14.
It is called the Frankel’s problem and has been extensively studied, both experimentally and
theoretically [47, 51, 52, 56]. We take the steady state of eq.24 where we impose a given U
chosen positive along +x for now, and a limit of constant curvature ∂xxh −→ 1/rm when
x → −∞ in the meniscus.

Figure 14: Notations for the Frankel problem. A flat film is connected to a meniscus along
the x axis. A steady plug flow U is imposed far from the meniscus, and this latter has a
constant curvature ∂xxh = 1/rm in x → −∞. The steady flow at the junction (called the
dynamic meniscus) is the sum of an outward plug flow vad and an inward capillary flow vcap.

The equations of the problem thus write:
U∂xh− 1

3
γ0
η
∂x(h3∂xxxh) = 0

∂xxh(x → −∞) = 1/rm

vx(x → +∞, y) = U

(25)

Which can be solved either numerically or with scaling laws. Let us proceed with the latter.
As we impose a constant velocity far from the meniscus, mass conservation imposes the existence
of the limit h(x → +∞) = h∞, giving us a typical scale for h of which we want to make the
scaling explicit.

The meniscus imposes ∂xxh = 1/rm, meaning the typical scale ℓx over which h varies is given
by ℓx ∼

√
h∞rm. By injecting this in eq.25 (line 1), it comes:

h∞ ∼ rmCa
2/3 (26)

Where Ca = ηU
γ0

is a capillary number comparing viscous and interfacial forces. Numerical
calculations give the prefactor which is ≃ 1.34.
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This law means that the faster a foam film is extracted from a meniscus, the thicker are the
newly created pieces of film with a power law 2/3 with the velocity of extraction. In practice
when it comes to stretching a foam film at a given velocity, it is qualitatively very useful, as it
allows us to extract films quite uniform in thickness in a very repeatable way. This is what we
will call a Frankel film, and we will have an extensive use of this name.

Also, it has to be noted that although the interface is kept incompressible, it is subject
to a difference of surface tension ∆γout between the meniscus and the flat film. This is no
contradiction, but the fact that the incompressible limit is equivalent to taking Ef → ∞ and
the deformation ϵ → 0 with their product being constant and equals to the difference of tension
∆γout ∼ Efϵ. It can be numerically computed and is [48]:

∆γout = 3.84γ0 Ca
2/3 (27)

The main use of the Frankel’s problem we make in practice is when we stretch a foam
film. Initially, the foam film is of thickness hinit and is linked to a meniscus. Stretching it
means imposing a plug flow in the initial film, because of the arguments developed in subsection
0.2.1. The steady response of the system described by the Frankel’s law leads to the
situation shown in Fig.15: some film is extracted at the same steady velocity U than
the preexisting film, but with a thickness h∞ set by the law 26. Both films exist in the
same plane, with a thickness jump between them. This thickness heterogeneity is stable, and
would tend to smooth out at much longer times τ ≫ 1 s with a dynamics given in [57]. Thus,
the frontier between the two films is a material point whose tracking will be useful
many times in this manuscript. Also, in practice, even for small imposed velocities,
the Frankel films are generally thicker than the preexisting films.

Figure 15: Extraction of a Frankel film at a steady velocity U . In the general case, the
preexisting flat film set in motion has a thickness hinit ̸= h∞. In practice, we often have
h∞ > hinit.

Now a complete other range of problems: what about taking a negative value for U? The
problem is actually solved in a completely different way, as h∞ has to be provided besides U ,
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and is not a mere consequence of the balance between viscous and capillary forces. The resulting
tension in this case writes [48]:

∆γin = γ0 (3Ca)2/3
(
2.55α1/3 − 2.68) (28)

Where α = (h∞/rm) (3Ca)−2/3.
This is an important result. Tension has a unique value in the film (as seen in subsection

0.2.4), and a unique value in the meniscus. The gap between these two values can be filled either
by a ∆γin or a ∆γout with respectively a negative or positive U and for different thicknesses h∞
(the nullity of U is no practical case when a film is being deformed). This leads to an instability
which spontaneously breaks the symmetry along the dimension parallel to the meniscus: this is
called marginal regeneration, and we will describe it later in subsection 0.3.4.

Important remark: The problem of taking into account the visco-elasticity of the interfaces
(meaning we have U(x) no longer uniform) is quite a recent theoretical advance, and can be
found in Seiwert et al. [51, 52].

0.3.3 Capillary suction near the meniscus: Aradian’s marginal
pinching

Let us look now at the instationary problem of a flat film at rest (U = 0) put into contact with
the meniscus. We will call this problem the Aradian problem [58]. It has the same configuration
as previously, but now we keep the time varying term of eq.24 and discard the convection term:

∂th− 1
3

γ0
η
∂x(h3∂xxxh) = 0

∂xxh(x → −∞) = 1/rm

vx(x → +∞, y) = 0
h(x → +∞) = h∞

(29)

It describes what happens to a film at rest when put into contact with a meniscus. As the
film is flat (at air pressure) and the meniscus is curved with a negative pressure, the meniscus
sucks back fluid from the film, which is what has already been called capillary drainage in this
manuscript. However, the film does not drain uniformly along x, and we rather see the formation
of a depleted zone near the meniscus whose geometry includes different lengths, as shown in
Fig.16.

The main problem leading to such a multiplicity of lengths is that although the draining
Poiseuille flow develops over a large length W , the majority of the gradient of curvature ∂xxxh
linking the meniscus to the flat film, and which is the main driving force, develops over a very
localised zone w. All that means the problem needs a careful handling, and a mathematical
treatment which involves an asymptotic matching between the two scales. If we now want to find
the main results using scaling laws, we also need to do it carefully, by considering the following:

• h∞ and W are the typical scales for large x. h∞ is a given parameter from the initial
conditions, W is a variable of which we seek the scaling. They are linked by the conservation
of flow rate (line 1 of eq.29), leading to: W ∼ h∞

(
γ

ηh∞

)1/4
t1/4.
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Figure 16: Notations for the Aradian problem. A flat film of thickness h∞ is connected in
x → −∞ to a meniscus of constant curvature ∂xxh = 1/rm. The flat film is immobile in
x → +∞ and we look now at the unsteady problem of the time evolution of the film at the
junction. Because of capillary suction acting alone, the initial flat film locally thins out with
a non-trivial multi-scale dynamics.

• hp and w are the typical scales for small x around the position of minimal h ∼ hp. Both
of them are sought variables, linked by the curvature condition of the meniscus (line 2 of
eq.29), leading to: hp/w2 ∼ 1/rm.

• The matched asymptotic expansion linking the two scales, developed in [58], imposes to
match the slopes so that: hp/w ∼ h∞/W .

We thus have three equations for three variables of which we write the scalings:
W ∼ h∞

(
γ

ηh∞

)1/4
t1/4

w ∼ rm

(
γ

ηh∞

)−1/4
t−1/4

hp ∼ rm

(
γ

ηh∞

)−1/2
t−1/2

(30)

These scalings reveal a complex dynamics (whose complete calculation is full of subtleties)
which is at the origin of the dimple observed in thin film balance or AFM experiments [59–62].

This process is directly linked to the ability of the interface to create tension gradients. If we
remove this from the interface, theoretical arguments show that no pinching occurs [63].

0.3.4 Marginal regeneration
Marginal regeneration is a phenomenon occurring at the junction between a foam film and its
bordering menisci where we observe simultaneously thin patches of film going out of the meniscus
and thicker ones going in the meniscus through channels separating the thin patches. It has been
first observed and named by Mysels et. al [47] in 1959. It appears spontaneously in vertical
foam films where it was first observed, in which gravity set patches of film in motion, producing
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mushroom-shaped contrasts of colours in foam films and bubbles with the right lighting (the
coupling between gravity and the thickness of foam films and the existence of a Raleigh-Taylor-
like instability is discussed in subsection 0.3.5). Since then, it has been mostly studied in vertical
situations [46,64,65].

However, it is actually best observed with horizontal foam films undergoing a uni-axial com-
pression, as illustrated in Fig.17. This is an experiment conducted by Trégouët et al. [66]. Pictures
A-D are a timelaspe of a deformed foam film with marginal regeneration seen with fluorescence
imaging (the brighter the thicker).

Figure 17: Foam film undergoing an initial uniaxial compression (scale of the film: 6.5 cm
large in the horizontal dimension) with a growing marginal regeneration instability (times
from A to D: t = 0, 2, 4, 7s). The film is observed under fluorescence imaging (the brighter
the thicker): A-B: The film is being compressed (white arrows) and small semicircular
patches of thin film starts going out. C-D: Ripening of the patches, as they grow by more
thin film extraction and coalescence of adjacent patches. E: Zoom at a local scale of D,
white upward arrows bordering the meniscus (white horizontal fringe at the bottom) are the
direction of thin film extraction. Blue downward arrows are for the ingoing thick patches
channelled between the thin patches.

A and B show the film being compressed, thus forcing either the contraction of the foam
film, or the evacuation of patches of film toward the edges at the menisci. Because film elasticity
Ef is high (cf. subsection 0.2.4), the drop in tension is significant enough to ensure that the
foam film does not withstand the whole compression with a global thickening of the pre-existing
film, but rather by evacuating some film toward the menisci.

In pictures B-D, we see the formation of circular thin patches at the edges perpendicular to
the axis of deformation. As time goes by, they grow and even coalesce.

Picture E is a zoom at one of these edges: it shows how some thick film goes in the meniscus
(which is the white fringe at the bottom) following the blue arrows, and how some thin film
goes out of it following the white arrows. The thick ingoing film is the film pre-existing the
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deformation, prepared like so before the experiment, imposing a hthick to the system. The thin
film goes out of the meniscus spontaneously with their own thickness and velocity.

It is puzzling to see this spontaneous symmetry breaking along the pushed menisci, all the
more when it involves the extraction of patches of film in the plane of an already-compressed foam
film. This weird behaviour can be rationalised by considering the Frankel’s problems identifiable
in this situation. In fact, in subsection 0.3.2, we describe the 2D problem of an advected flat
foam film connected to a meniscus depending on a virtually imposed velocity U , which can be
either positive (outgoing film) or negative (ingoing film). Two points must be raised with respect
to the experiment of Fig.17: the Frankel’s model is 2D, supposing an invariance by translation
along the meniscus, while in practice we cannot impose U but rather a difference of tension ∆γ
with the menisci by compressing the film.

Thus, the advection velocity toward the menisci is actually an experimentally free parameter
that has to adapt to the imposed tension ∆γ (which must be uniform in the film cf. 0.2.4), and
it can do it in multiple ways, possibly choosing different ones for different positions along the
meniscus! As long as the area conservation is preserved.

Depending on the sign of U , the tension admits two different expressions: eq.27 ∆γout for
positive U (extraction of film), eq.28 ∆γin for negative U (evacuation of film). The two tensions
can have the same values for different velocities U and thicknesses h∞ and it is possible to find
a working point where ∆γout(U out) = ∆γin(U in, hin

∞) = ∆γ (Note that here hout
∞ is completely

determined by U out, and hin
∞ = hthick depends on the initial film undergoing compression).

However, the existence of this working point is obviously not the whole story, as the thin
patches develop with regular patterns: semicircular growing shapes that coalesce as they get
closer to one another. The initialisation of this dynamics is still a work in progress, a solid
lead being to start from an Aradian’s marginal pinching profile (see subsection 0.3.3) invariant
by translation along the meniscus, which is unstable and destabilises with the forcing imposed
by the compression. The ripening dynamics of these patches on the other hand is already well
understood, as the width of the thin patches, the width of the thick film channels and the
ingoing/outgoing velocities must obey surface conservation and the uniformity of film tension at
all times. This last point is developed in [66].

Finally, and to motivate why I elaborate so much about marginal regeneration, I have to say
that later on this instability will be quite a recurrent limiting factor for my measurements. In fact,
it eventually always appears whenever a film is being compressed. The whole chapter 3, that
is the core of the experimental work of my thesis, is about how deformed foam films can relax
by exchanging pieces of interface through their meniscus. In this regard, marginal regeneration
will be close to my worst enemy as it breaks the main translational symmetry our models rely
on. Thus, the general goal from now on is to keep the experimental conditions so that we work
before the initialisation of this instability (by trial and error mostly).

Important Remark: The semicircular shape of the thin patches is the signature that a line
tension exists at the border with the thicker film. Chapter 2 is dedicated to this line tension, of
which a theoretical description and a measurement are detailed.
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0.3.5 Rayleigh-Taylor-like instability with thickness heterogeneities
and gravity

When marginal regeneration was first described [47], the thin patches were observed not as
growing semicircular patterns near the border (where they are produced as discussed in subsection
0.3.4), but rather as rising mushroom-shaped pieces of film. This is not a feature of marginal
regeneration itself, although it is often what comes to mind when we use this term, but of the
in-plane rearrangements of the patches of film depending on their thickness in order to minimise
the gravity potential energy of the foam film.

The mushroom shapes are in fact a feature of a Rayleigh-Taylor-like instability happening at
the border between a thick piece of film that is on top of a thinner one. This instability is well
known in the context of thin patches moving up in a film, and contributing to drainage [46, 67]
but is easier to quantify with a more controlled initial thickness distribution. Such a controlled
experiment from Shabalina et al. [68] is represented in Fig.18 A-D, showing such patterns. A
foam film is stretched from top to bottom (the white arrows indicate the position of the moving
bottom of the film). What we see in the coloured film is that the thin patches produced by
marginal regeneration before the stretching rise to the top (e.g. with C, the yellow mushrooms
are thinner than the purple film in which they rise, the latter being thinner than the grey Frankel
films extracted at the top and bottom edges). In the same way, the thick grey film at the top in
D (highlighted by the red rectangle) starts destabilising with an identifiable wavelength.

Figure 18: Stretching of a vertical film (width of (a)-(d): 10.3 mm). A 2D Rayleigh-Taylor
instability occurs where thicker films are on top of thinner ones. The white arrows show the
bottom of the film being stretched from (a) to (d) (resp. (a) 0 ms, (b) 67 ms, (c) 83 ms and
(d) 167 ms
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This instability can really be thought as a 2D analogue of the 3D Rayleigh-Taylor instability,
swapping fluid density ρ for thickness of film h, pressure p for film tension σ, and bulk viscosity
η for ηs a surface shear viscosity. One more exotic ingredient to add which has already been
introduced in subsection 0.3.4 is the line tension T existing at the border between the two
films because of the thickness jump (a full theoretical description followed by an experimental
measurement is developed in chapter 2). Here, it holds the same role as surface tension in the
3D instability, as it tends to hinder the existence of the small spatial wavelengths for the border.

A linear stability analysis can give the spatial wavelength λc maximising the growth rate n of
the instability. The latter is dominated by inertia at low λ and by viscous forces at high ones:nµs ∼ λ

nin ∼ λ−1/2 (31)

These two limits imply the existence of an optimal growth rate nc at a given critical λc

that can be computed with the full calculation of the linear stability analysis and which is in
quantitative agreement with the wavelength measured in Fig.18(e).

This instability occurs quite rapidly at our typical time scale τdef ∼ 1 s (cf. time scales
Fig.18), meaning that stretching a vertical film can be a problem depending on where we are
looking at. As a Frankel film is most of the time thicker than the stretched film pulling it out of
the meniscus, it will not be possible to measure properly the outgoing quantities of films
at a meniscus located on top of a vertical stretched film. This will be another limitation
for our experiments later on.

0.3.6 Evaporation
Speaking of important flows for the sake of describing our experiments, we need not to forget
the influence of evaporation, which tends to uniformly thin out our foam films. As unconditioned
air is never at water saturation, it remains a mechanism of great importance. The experimental
work of the present thesis is taking place in this context.

In the literature, the dynamics of evaporation-induced ruptures are well rationalised for a single
film [67,69], yielding the order of magnitude for the thinning of ∼ 20 nm/s in normal conditions
of temperature and average humidity (rH ∼ 30−70%). However, the exact mechanism triggering
the rupture of the thinned film is still only conjectured to be a fast local loss of mass in the film
due to evaporation becoming important compared to film drainage. This is supposed to take
place in a short amount of time which depends on the relative humidity.

With regard to our foam films, evaporation is important in the sense that their lifespan was
seen to be highly dependent on the relative humidity, which was kept at a minimum threshold of
rH = 55% using an air humidifier. Living in Brittany also helped out.

0.4 Elementary liquid foams
Now that we have discussed what happens with a foam film and what occurs when we connect
it to a meniscus, we will take a bottom-up approach towards liquid foams by looking at one scale
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above: elementary liquid foams. These are arrangements of several foam films connected by
menisci, defining a mesoscopic scale between the individual film and the liquid foam. Chapters
1 and 3 concern this scale. Thus, our goal is now to look at the hydrodynamics of these
systems by probing their mechanical response around their equilibrium state.

All the following subsections constitute a state of the art for elementary liquid foams. Notably,
I detail them in a chronological way, so that it is possible to see how the hypotheses
made on the surfactant exchanges in the system have gotten more and more refined
over the last 20 years. The following papers represent important milestones for the
problem we address in chapter 3.

0.4.1 Plateau’s laws: the local equilibrium state for the shape of
liquid foams

Dry liquid foams are by no means at thermodynamic equilibrium. In fact, if we wait long enough,
evaporation, gravity or capillary drainage will force rearrangements to occur. However, for inter-
mediate times, the local structures they adopt obey several rules dictated by a local mechanical
equilibrium. These are the Plateau’s laws, stated by Joseph Plateau in 1873 [70] and demon-
strated by Almgren & Taylor in 1976 [71]:

• Foam films have a uniform mean curvature, meaning the gas volumes they separate have
each a uniform pressure given by Laplace’s law (eq.5).

• Menisci are where three foam films intersect, and they do so with an angle of 120 o which
minimises the resulting interface.

• Vertices are where three bubbles meet, or equivalently where four menisci intersect. They
do so with a tetrahedral symmetry, with angles of 109.47 o.

These laws hold as long as we keep the foam as ideal as possible, that is very dry, at a global
mechanical equilibrium, with a uniform surface tension. In the following most of the dynamics we
will be looking at are variations around this mechanical equilibrium state with respect to normal
motions of the film. These variations are small, and usually are deviations of the order of 1 o

around the 120 o of the second law.
Lastly, mechanically stressing an elementary foam out of the Plateau’s law induces some

dissipation, as it relaxes back to another state also prescribed by these laws [72,73]. Rationalising
and predicting this is what requires the biggest efforts from our community, and what represents
a pathway towards better rationalising the effective viscosities of liquid foams.

0.4.2 T1 events and the Durand-Stone experiment
If a liquid foam respecting Plateau’s law undergoes shear or compression at a global scale, bubbles
are rearranging at the local scale. This is the scale of elementary liquid foams. Notably, a singular
event at this scale is what is called a T1 event [74–77] of which an illustration is shown in Fig.19.
It consists of a local change of rules for the neighbourhood of bubbles, which are prescribed by
the Plateau’s laws again. For a 2D monodisperse hexagonal foam, it is a displacement of one
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line of bubbles with respect to another one with an amplitude of one bubble. This results in the
full compression of the central film of an elementary assembly of five films (represented in red
in Fig.19), the temporary merging of the two menisci at its edges, and the stretching of a new
film separating the two new bubble neighbours (in yellow). This is the most elementary event of
rearrangement involving the merging and splitting of entire menisci (NB: T2 events also exist,
consisting of a bubble disappearing and creating a vertex).

Figure 19: T1 rearrangement in a 2D foam. Credits to Titta et al. [3]

Thus, both the starting and ending points of this T1 process represent a local minimum of
energy for the system, respecting Plateau’s laws. The goal now is to probe how to pass from
one state to another, and if we can get some rheological information about the foam films by
doing so. The idea is that the dynamics takes place in two steps: first we load elastically the
system by compressing the central film until it disappears, putting the system in the unstable
configuration of four films connected by one meniscus. At this point, we stop adding work to the
system, which relaxes on its own towards a similar configuration as its initial state, at a lower
energy. Quantifying the time of this relaxation was the missing key to get a proper loss modulus
for the system.

This has been done by Durand et al. [1] in 2006 by looking with a high speed camera at a
2D liquid foam inducing rearrangements by pumping air against it. The notations are shown in
Fig.20.

I will detail their approach a bit, as it is full of problems and ideas we will later face again for
our own experiments and models.

They look at the dynamics of relaxation of xB(t), writing the force balance at both menisci:

2γsides(t) cosα(t) − γcentral(t) − (µs + κs)
∂U

∂x

∣∣∣∣∣
x=xB

= 0 (32)

Where γsides is the surface tension of the four films at the edges, γcentral the surface tension
of the central film and U is the interface velocity in the central film. The third term combines
both the shear and dilatational viscous constributions of the interfaces, which take this form in
this 1D model. To further advance, the authors have to make a few important assumptions:
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Figure 20: Notations used by the authors to describe the T1 experiment. Credits to Durand
et al. [1]

• Bulk viscosities (air and liquid frictions) were discarded right off.

• Surface tension responds to deformation with its Marangoni modulus EM (eqs. 11). It
means we suppose here that we are in the insoluble limit.

• The four vertical films on the sides will be supposed at rest at all times, meaning the we
impose γsides(t) = γeq. That means that we virtually fix the surface tension somewhere in
the system so that the side films get rid of as many interface as they need as L(t) decreases
to enforce this condition. It thus also sets the interface velocity U at x = xB. This is
a bold guess, but a necessary one here, which seems reasonable as the central film is the
one undergoing the biggest deformation in the process. However, it is artificial, and the
next models will not make this assumption (including the one used in chapter 3 detailed in
0.4.5), and the experiments will show that it could not be made.

Solving the problem like so, they end up with two quantities both deductible from xB(t) and
ẋB(t) linked by an affine relationship whose coefficients give EM and µs +κs. They thus make an
estimate of both the surface elasticity and viscosities for SDS solutions and a mixture of polymer
and proteins (bovine serum albumine and propylene glycol alginate):EM,SDS = 32 ± 8 mN/m ; (µs + κs)|SDS = 1.3 ± 0.7 mPa · m · s

EM,mix = 65 ± 12 mN/m ; (µs + κs)|mix = 31 ± 12 mPa · m · s
(33)

These first measurements of the Marangoni modulus and the surface viscosities is a valuable
lesson. They all are very high values compared to the existing literature at the time, and to more
recent measurements [6, 36,78].
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Notably, more recent and refined models do not make the assumption γsides(t) = γeq for
the vertical films. This sets artificially the quantity of interface exchanged by them towards the
central film. This raises a problem however: the two interfaces of each vertical film do
not undergo the same dynamics at all. In fact, as seen in Fig.20, the top and bottom
interfaces are free to slide from the vertical films to the central film, but the right and
left interfaces have a stopping point at the menisci by symmetry. Although it is taken
into account that each vertical film feeds the central film with only half the quantity of interface
it gives up, the lost half is implicitly completely ditched into the bulk of the meniscus if we want
to ensure that the tensions in the vertical films remain the same. This is a hidden hypothesis
whose validation/invalidation is at the core of the main chapter of this thesis, chapter 3.

0.4.3 Axisymmetric elementary liquid foam under small deforma-
tion: the Besson-Debrégeas experiment

The experiment by Besson et al. [78] described in this subsection examines a configuration similar
to the previously observed T1, but in an axisymmetric geometry. Unlike in Durand et al. [1], where
the setup solely allows us to explore the dynamics between two static states, we have here the
ability to control the deformation of the central film, compression or stretching, by observing an
oscillatory regime.

Figure 21: Besson-Debrégeas experimental setup: (a) Two identical bubbles being slowly
brought into contact. (b) The contact is made and the radius of the flat film rises. (c-d)
Notations used to describe the geometry of the problem. Credits to Besson et al. [78]
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In this configuration and in the theoretical model developed with it, different time regimes
exist where the surface tensions of the vertical films are now not artificially kept equal to the
equilibrium value but are rather time varying variables, which are decoupled between the outer
and inner interfaces. This is a very important point as it allows to take into account regimes
where we expect interfaces of the same foam film to have a relative motion, meaning there is a
bulk shear to take into account for the effective loss modulus of the elementary foam! This will
be a key ingredient for this thesis work, as this paper from Besson et al. [78] is the first
to consider a refined model for the surfactant exchanges between the three different
interfaces neighbouring a meniscus, unveiling the existence of dissipative phenomena
in elementary liquid foams that are not due to the surface rheology of single interfaces
alone. Also, this paper brings novelty in terms of experimental access to these differences of
tensions, by measuring the angle deviation from the Plateau’s law.

To achieve this, the authors create two bubbles with the same diameters of 2R = 7 mm,
facing each other, and mobile along a common vertical axis. This configuration is depicted in
Fig.21. The pressure in the bubbles is determined by the Laplace’s law, and they gradually bring
them into contact. As a result, they create a contact zone, a third flat film connected to the
two bubbles by a circular meniscus (see Fig.21B). Since the pressures of the bubbles remain the
same and identical, Laplace’s law dictates that the surfaces of revolution for each bubble have
principal curvatures that satisfy κ1 + κ2 = 2/R, and the central film between them must be flat.

Figure 22: (a) Contact radius rc(t) as a function of time for a typical experiment. (b)
Contact angle θ(t) as a function of time. Credits to Besson et al. [78] (Pardon their french
for the axis names)

Once the contact is made, the system undergoes rapid changes, akin to a T1 relaxation with
a contact radius rc for the central film growing over time, and the outer contact angle θ opening
up. Fig.22 illustrates a typical experiment. After approximately 10 s, they reach mechanical
equilibrium: θ plateaus, and rc reaches its maximum before decreasing at longer times because
of bubble ageing through gas escaping due to the inner overpressure. This typical time scale
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is governed by surface rheology, surfactant exchanges through the meniscus, and possibly other
damping forces (inertia, air friction).

Figure 23: Static and dynamic measurements: (a) Experimental static angle θ∞ plotted
against the static angle θstat predicted by the decorated meniscus model of Fortes et al. [79].
Credits to Besson et al. [78]

The transient regimes towards mechanical equilibrium shown in Fig.22 are not the main objects
of study of this paper however, as they are mainly used to define the static state around which the
system will be dynamically probed. To achieve this, the bubbles are brought closer together and
moved apart, varying the pulsation ω ∈ [10−1, 102] rad/s while keeping the amplitude constant.
This makes rc and θ vary as:

rc(t) = rc,0 + ∆rc(ω) cos(ωt)
θ(t) = θ0 + ∆θ(ω) cos(ωtϕ(ω))

(34)

Where the equilibrium angle θ0(t) depends on time in all generality as rc(t) varies. A typical
measurement is shown in Fig.23. The phase shift between the two signals allows us to define the
elastic and loss moduli A∗ = A′(ω) + iA′′(ω):

A′(ω) = − ∆θ
∆rc

rc,0 cos(ϕ(ω))
A′′(ω) = − ∆θ

∆rc
rc,0 sin(ϕ(ω))

(35)

Which are plotted in Fig.24(b). It is very important to note that these are not the moduli
associated with the elasticity and viscosities of a single film! In order to estimate the latter,
the authors also perform experiments on a single bubble which undergoes sinusoidal volume
variation using half of their setup. In a similar way as previously, the phase shift between the
recorded bubble volume and the measured inner pressure allows the authors to define an interface
dilatational modulus E∗(ω) = E ′(ω) + iE ′′(ω). They link this modulus to the evolution of the
surface tension of a single interface undergoing a deformation ∆S of its initial surface S0 as:
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γ(t) = γ0 + E ′(ω)∆S
S0

cos(ωt) + E ′′(ω)∆S
S0

sin(ωt) (36)

In this configuration E ′′ is the signature of the intrinsic and extrinsic viscosities of a single
interface deformed with a spherical dilation. E ′ and E ′′ are plotted in Fig.24(a). The goal is now
to link the modulus of the elementary foam A∗ to the dilatational modulus of a single interface
E∗. Both of them differ because of in-plane exchanges of interface at the meniscus, from one
film to another. This difference is what makes the rheology of elementary liquid foams
a bridge between the surface rheology of single foam films and the rheology of liquid
foams, the former being not sufficient to describe the latter.

Figure 24: (a) Dilatational moduli of a single interface as function the pulsation. Closed
squares for the elastic modulus E ′, open squares for the viscous modulus E ′′. The line is a
model by Lucassen [80]. (b) Elastic and loss moduli of the elementary liquid foam. Closed
circles for A′, open circles for A′′. Credits to Besson et al. [78]

The authors thus develop a model based on the conservation of surfactants of the three
different interfaces present in the system denoted 1, 2 and 3 and represented in Fig.25. The key
ingredient here is the flux Js, which takes into account the surfactant exchanges between the
films, which is coupled to the transverse exchanges Jv between the two interfaces of a same film.
They can be expressed as: Js = Ds

Γ2−Γ3
L

2πrc

Jv = S dΓ
dt

(
1 − E0

E∗

) (37)

Where L is an unpredicted typical length over which the gradient of surface excess between
Γ2 and Γ3 is developed, Ds a surface diffusion coefficient and E0 the Marangoni modulus of the
interfaces (i.e. the surface elasticity of the interface in the insoluble limit, see eq.11).

NB: Durand et al. [1] also have this Js with their model where it is a slave parameter Γeq ×U
ensuring Γ2(t) = Γeq. With Besson et al. [78] both Js and Γ2 are allowed to vary, and the fate
of the surfactants of S1 is also taken into account through Jv1 .
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Figure 25: Notations used by the authors for the three interfaces in the problem. Credits to
Besson et al. [78]

The next step is thus to write the surfactant conservation for the three interfaces and to relate
it to the expression of the surface tension, which is linked to the change of surfaces through eq.36.
This yields the three variations ∆γi(ω), giving access to the variations of angle with:

∆θ = 1√
3γ0

(∆γ1 + ∆γ2 − 2∆γ3) (38)

This allows to finally write the expression of the modulus A∗ as defined by eq.35:

A∗ = 2E∗
√

3πγ0

( iE0ωτ

E∗ + iE0ωτ

4R2

2R2 − r2
c,0

+ E∗

E∗ + iE0ωτ

r2
c,0

2R2 − r2
c,0

)
(39)

Where τ =
(
2π rc,0

L
Ds

S2,0+S3,0
S2,0S3,0

)−1
is a typical time of equilibrium through surface diffusion

between interfaces 2 and 3 (mind the missing factor 1/π in the eq.25 of the original paper [78]).
This typical time sets two different regimes for A∗: ωτ ≪ 1 where interfaces 2 and 3

are at equilibrium and their total surface S2 + S3 is conserved so that only S1 undergoes the
compression/stretching cycles; ωτ ≫ 1 the three interfaces withstand the compression/stretching
cycles independently from one another. These two limits are plotted in Fig.24(b) as the bottom
dashed line (ωτ ≪ 1) and the top dash-dotted line (ωτ ≫ 1). Two fits with the full equation 39
are also plotted, fitting with τ = 3 × 10−4 s. There is a quantitative match at low frequencies,
whereas it starts deviating for frequencies higher than ω > 1 rad/s.

This paper concentrates most of the ideas at the foundation of the main contribution of this
thesis, that is presented in chapter 3. As developed at the end of the last subsection 0.4.2,
the main problem we face when we build a rheological model for an elementary foam, that is
here three interfaces around a meniscus, is solving properly the surfactant exchanges occuring
between the interfaces, the film bulks, and the meniscus bulk. Both papers from Durand et
al. [1] and Besson et al. [78] make two completely different assumptions regarding the role of the
meniscus: the former authors implicitly use it to get rid of an excess of surfactants to enforce
their equilibrium condition for the side films, the latter do not write any surfactant transfers
towards/from it, artificially blocking bulk surfactant diffusion from this region.
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To focus on Besson’s paper again, where the description of the surfactant field is more
exhaustive, a few points can be raised:

• The model is geometry dependent, and it does not describe the local flow fields in the films
and the meniscus, meaning it is hard to predict the robustness of it if R is taken much
bigger or much shorter.

• The amplitude of the mechanical solicitations is small, with deformation of the order of
ϵ ∼ 5 × 10−2, allowing the authors to neglect the potential exchanges of interface with
the two bubble supports. For bigger amplitudes of deformation, which locally exist in a
macroscopic foam even for small global deformations (during a T1 event for instance), this
assumption cannot be made.

• The ad hoc time τ hides the variables L, which is unpredicted, making the problem free of
the local detail (i.e. the flow field and the surfactant field in the vicinity of the meniscus).
However, if L starts being of the order of R for instance, it adds some geometry-dependence
to the problem. Besides, L might very well be a function of the pulsation L(ω) in all
generality, making it a possible candidate to explain the high frequency discrepancy observed
by the authors.

All these pieces of evidence tend to show there is a need for a local model of the flow and
surfactant fields near the meniscus. Notably, the length L added by the authors would require a
proper description, which is provided by Bussonnière et al. [4] and detailed a bit later in 0.4.5.

0.4.4 Recent numerical advances
Simulating elementary foams is a numerical challenge on its own, as it requires to predict flow
and surfactant fields in menisci and foam films, whose geometries evolve in time and which have
very different aspect ratios. Titta et al. [3] (2018) have performed an exhaustive simulation of
an elementary foam-like configuration illustrated in Fig.26, undergoing a global shear imposed by
setting the relative velocity U of the two supporting plates. The aspect ratio of the simulation is
the one shown in the figure.

The bulk flow is described using the momentum conservation:

∇ · u = 0 (40)

ρ
(∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + γ κ δΓn + (∇sγ)δΓ (41)

Where u is the velocity, σ = −pI + η(∇u +t ∇u) is the bulk stress tensor, γ is the surface
tension, κ the local curvature of the interface, ∇s the del operator projected on the interface,
which has a normal vector n and is localised by the Dirac function δΓ. The first term on the
right-hand side accounts for the bulk stress, the second term for the Laplace pressure jump at
the interface and the third one for the Marangoni stress at the interface.

That accounts for the flow field, which is directly dependent of γ of which we need a law
to close the problem. This is solved by giving a conservation law for surfactants (i.e. for bulk
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Figure 26: Notations and geometry of the elementary foam studied in [3] (faithful aspect
ratios). (a) Initial state of the foam at the beginning of the simple shear (of imposed strain
rate ϵ̇ = U/H). (b) The elementary foam under shear between two T1 events. Credits to
Titta et al. [3]

concentration c and surface concentration Γ), associated with an isotherm model giving the
relation γ = f(Γ). The bulk and surface conservations of surfactants, as well as the Langmuir
isotherm chosen for the simulation write:

∂c

∂t
+ ∇ · (uc) = Dc∆c (42)

∂Γ
∂t

+ ∇s · (uΓ) = DΓ∆Γ + j (43)

γ = γ0 +RTΓ∞ ln
(
1 − Γ

Γ∞

)
(44)

Where Dc and DΓ are the bulk and surface diffusion coefficients for the surfactant, j is a
surfactant flux from the bulk given by the Langmuir isotherm, RT is the molar thermal energy
and Γ∞ a saturating surface excess. I will elaborate more on the Langmuir isotherm model later
in chapter 1.

These equations are solved given the initial geometry shown in Fig.26(a) and using a level-
set function locating the interface over time (adding one more numerical transport law to the
physical problem). This gives access to the force exerted by the fluid on the plates (Fig.27(a)) in
a transient regime and in steady state. Thus, the authors are allowed to compute the initial elastic
loading of the system followed by force oscillations. Past the transient regime, it is possible to
compute the dissipated power of both the bulk and of the interface, and to see how the injected
power is shared between both contributions (Fig.27(b)).

In Fig.27(a), the black line is the sum of all the forces exerted on the plate as a function
of time when the velocity U is turned on (orange the capillary forces, red the viscous forces in
the liquid, blue in the air). After a transient regime, the oscillations correspond to a series of
T1 events occurring in the system. The dissipated energy during this process is computed and
plotted in Fig.27(b). The squares correspond to the injected energy of a cycle, which is totally
dissipated over one period of oscillations, either by viscous bulk forces (red circles) or surface
dissipation (the difference between the two). The latter contribution is due here to the sole
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Figure 27: (a) Forces applied by the foam on the plates, Black is the sum of all the others:
orange are the capillary forces, red to viscous forces in the liquid and blue to viscous forces
in the gas. (b) Time-averaged injected (black) and dissipated (red) powers over a cycle.
Credits to Titta et al. [3]

extrinsic viscosity of the interfaces, as no dilatational or shear viscosities have been added to the
surface rheology. The abscissa is the Péclet number of the system, which is defined as:

Pe = UH

Dc

= UH

DΓ
(45)

Whose second equality is a hypothesis of the authors.
What we see is that as the velocity of the mechanical solicitation increases, the contribution of

the interface for the dissipation increases until it Plateaus. This means that the ratio ⟨D̃s⟩/⟨D̃v⟩
peaks at around Pe ≃ 1, where the extrinsic viscosity yields its maximal dissipation. This is not
intuitive, but already predicted by a model from Lucassen et al. [81].

This is the state of the art in terms of numerics for a local description. The problem of
dealing with the real aspect ratio of the films and menisci is still a problem today, but these toy
2D foam models seem to already capture a lot of the mechanical response of the elementary liquid
foams. In that respect, numerical models for foams and foam films with more complex structures
are fed with unphysical local models [82, 83]. Also, building the bridge towards a full model
for macroscopic liquid foam rheology is a whole field of research, on which I will not elaborate.
Efforts from our community in this direction have been made in particular by Besson et al. [2]
and Denkov et al. [84], as well as in Cohen-Addad’s and Höhler’s groups [85–87].

0.4.5 Rheology of an elementary liquid foam: state of the art in
Isabelle Cantat’s group at the beginning of my Ph.D

Adrien Bussonnière, Emmanuel Schaub and Isabelle Cantat developed an experimental setup
[4] allowing the large deformation of an elementary liquid foam which resembles the Besson-
Debrégeas setup [78] but with an invariance by translation symmetry instead of the axisymmetry.
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This foam is shown schematically in Fig.28(a). It is 4.2 cm wide in the z direction, and the four
edges parallel to z are mobile edges imposing a deformation at the four peripheral films.

Figure 28: Deformation of an elementary liquid foam with 5 films. (a) The mobile sides are
the four external edges of the vertical films, they impose deformations ±ϵmot of opposite signs
on the right/left sides. (b-d) Schematic view of the time evolution of the films throughout
the deformation, where the coloured dots are elementary material systems at the interface
which are followed along their trajectories: compressed films thicken and give up interface
to the central film, stretched films thin out and extract interface from the central film. (e-
f) Local view of the compression/stretching of the films. (g) Local view of the flow fields
responsible for the interface exchanges, that is plug flows far from the menisci and local
shears near them. Credits to Adrien Bussonnière et al. [4].

Doing so results in the scenario detailed in Fig.28(b-d): The coloured dots represent elemen-
tary material systems at the interface which are followed along their trajectories, thus illustrating
film compression/extension as well as interface transfers from one film to the other. Compressed
films thicken and relax through giving up some interface, while the stretched films get thinner
and accept some new extracted film in their plane.

Under deformation, this system remains invariant by translation along z for a time long enough
(this is later discussed in chapter 3) to allow us to define everything in terms of 2D deformations in
each films. Thus, each film undergoes a certain deformation ϵ which is defined using the notations
in Fig.28(e-f) as ϵ = ds/ds0−1 = h0/h−1 which is uniform in the film because of the uniformity
of tension far from a meniscus, as discussed in subsection 0.2.4. These deformations are defined
for each film by looking at the pieces of films already present in the plane before the deformation
(when their size ds0 is defined). Because of the interface transfers, these deformations are thus
distinguishable from the imposed deformations ϵmot = Lm/Lm(t = 0) − 1, which are defined for
each motor with the distance Lm between the motor and the rest positions of the neighbouring
free meniscus.

On the other hand, it is possible to get a measurement of the difference of tensions ∆σ between
the deformed films based on the same principle as in the Besson-Debrégeas experiment [78], that
is by looking at the angles around the menisci and their deviations from the Plateau’s laws. The
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principle of this measurement is more detailed in chapter 3. Thus, by monitoring the difference
of tensions ∆σ between the films, the deformations ϵ of the films, and knowing the imposed
deformations ϵmot to the system, we are able to draw the graphs of Fig.29.

In A, blue is the global deformation imposed to the whole elementary foam, and we show
here a ramp experiment imposed in 0.1 s, thus corresponding to a strain rate of 10 Hz. Red is the
response of the system with a difference of tension ∆σ normalised by the equilibrium tension σ0
known with our pendant drop campaign. This response is that of a Maxwell fluid: elastic
at shorter times, viscous at longer times.

In B, we still plot the difference of tension ∆σ, but this time against the deformation ϵ
measured in the films. The blue curve is obtained during the ramp of deformation, and the
purple one is obtained during the relaxation process. The collapse of both curves means that
the viscous dissipation is not located in the pieces of film far from the meniscus, which react as
non-linear springs. This elastic behaviour is well understood and characterised, and is the topic
of chapter 1 where measurements are rationalised with a thermochemical model.

Figure 29: Rheological curves of an elementary liquid foam. A Blue: ramp of deformation
imposed by the motors; Red: response of the system in terms of difference of tension between
the stretched and compressed films. It is the response of a Maxwell fluid. B Stress-strain
curve of the system computing the deformation ϵ of the films (i.e. far from the meniscus),
we have a non-linear elastic response from the spring component of our Maxwell fluid.

The more mysterious part of this dynamics is the relaxation through viscous dissipation. If
not for the compressed/stretched films, where is it located? How can we describe it? This is
what Bussonnière et al. [4] addressed in a paper published right at the beginning of my thesis
work: the viscous dissipation is expected to be located in a very localised zone at the junction
with the menisci, in the form of a simple shear flow in the thickness of the films. Its existence is
driven by a coupling with a difference of Marangoni stresses between both interfaces, arising as
the moving interfaces meet at the meniscus.

These interfaces must be supplied in/get rid of surfactants as they are deformed, and the
exchange mechanisms between the interfaces and with the meniscus were left in the model with
adjustment parameters. The aim of chapter 3, is about quantifying those exchanges in order to
close the model. We will do so by looking at an even more elementary liquid foams: 3 films
connected by a single free meniscus.
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In the three articles we discussed [1, 4, 78], the amount of surfactant flowing from one film
to its neighbour is a crucial parameter, unknown and required to close the model. In the three
cases, it is used as an adjustable parameter.

The prediction of this surfactant transfer is made difficult because the role of the meniscus
in the process is an open question : does it play, or not, a role of surfactant reservoir for the
adjacent films ?

The main result of chapter 3 will be a direct measure of this transfer, leading to the
conclusion that the meniscus does not provide or absorb surfactant during the process.

0.5 Spontaneous evolution of foams and films : some
other physical processes

0.5.1 Normal motion of the films
When it comes to compare the physics this manuscript is about to macroscopic foam and single
bubble physics, it is worth keeping in mind that a first line we draw here is that we do not address
the problem of normal motions of foam films. This is because the shape of our elementary foam
is always very close to its equilibrium shape. The normal motions are much better known than
the tangential ones addressed in this manuscript, but important questions are still investigated.

For instance, these motions are especially important in liquid foams to explain their acoustics
[88], as the speed of sound can be resolved only taking into account the normal oscillations to
the films. They also are important in the case of film burst, where the film actually retracts with
a violent normal flapping motion [89] ! This last peculiar dynamics could even be relevant for
the matter of salt microparticles projection from the sea to the atmosphere, which is important
for cloud formation.

Back to rheology, unless the strain rate becomes too high [90], the structure stays close to its
equilibrium shape most of the time, as in our setup. Just after T1 however, the shape is far from
equilibrium and fast normal motions are observed, which can not be reproduced with our set-up.

0.5.2 Gravity drainage
Both elementary and disordered macroscopic liquid foams undergo drainage at longer times. That
includes gravity drainage, which makes the liquid fraction increase at the bottom of the foam (or
equivalently makes the bottom films thicker in elementary foams), as well as capillary drainage
(cf. 0.3.3) responsible for the thinning of foam films near their edges.

Gravity drainage leads to a very heterogeneous ageing, as shown in Fig.30, with thinner films,
bigger bubbles on top and thicker films, smaller bubbles at the bottom. This can make the global
mechanical properties difficult to predict, and the rheology hard to characterise as it becomes
time-dependent. In the frame of this manuscript, with the elementary liquid foams we study here,
gravity can also become a problem as it leads to thicker films at the bottom compared to the
top ones and induces flows in the meniscus which are not horizontal. However, the time scales
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we address are shorter than the typical time scale of the gravitational drainage, thus allowing us
to neglect its influence.

Figure 30: A liquid foam ageing through gravity drainage. Top is dry, bottom is wet. Credits
to S. Cohen-Addad, R.M. Guillermic & A. Saint-Jalmes [7].

0.5.3 Coarsening of liquid foams
In the frame of foam physics, coarsening is how the foam tends to have a decreasing number of
bubbles over time, and an increasing mean size for them. This is due to two main mechanisms:
film rupture, leading to the destruction of two bubbles and the creation of a bigger one, and Ost-
wald ripening, when small bubbles with bigger pressures empty themselves in larger ones through
gas diffusion across foam films. Our elementary foam has bubbles opened to the atmosphere, and
we consider only cases without ruptures. So these ageing processes do not occur in our situation.

Film ruptures occur mainly due to the drainage mechanisms discussed before. These events
lead to bubble rearrangements as the menisci supporting broken films move to a new equilibrium
position, and often cause T1 events in their vicinity. Thus, even without exterior solicitations,
the study of elastic and dissipative phenomena at stake in the deformation of elementary foams
is still relevant.

The same goes for Ostwald ripening, as a change of bubble size can trigger a T1 event.
Moreover, a recent study from A.Saint-Jalmes & C.Trégouët [91] has shown that a steady shear
slows down the ageing process. The reason behind it was found to be the constant extraction of
Frankel films (cf. subsection 0.3.2) out of the menisci, counterbalancing drainage by renewing
foam films with thick pieces. Thicker films means slower gas diffusion, and thus slower Ostwald
ripening. Here again, the evolution of film thickness induced by bubble deformation, which is at
the core of our study, plays an important role.
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0.5.4 Link to liquid foams in the industry and daily life
This thesis work is about a very simple chemistry in the eye of an engineer. Yet, a mixture of
two species, SDS and DOH (or even three as fluorescein counts as salt cf. chapter 1) is already a
complex problem for hydrodynamicists. In fact, SDS as a soluble surfactant allows the existence
of our foam, while DOH as a poorly soluble one changes drastically the elasticity of the films.
The boundary conditions for our flow describing this chemical reality are full of subtleties already.

Then, what to think of scaling up this work not only for macroscopic foams, but rather actual
foams used in the industry or encountered in daily life? This is where we must be even more
cautious in our approach.

Scaling up our elementary foams: Part of the physics is captured

The use of the physics behind liquid foams in the industry is kept at the scale of classical rheology
and correlations between the surface properties (Marangoni modulus, surface shear viscosity...)
and the effective properties of the macroscopic materials. From there, a wide variety of behaviours
exists and the scale of the elementary foam is relevant for part of it.

As discussed earlier, viscoelastic response of dry foams can be already recovered in elementary
foams, but it has to be noted that real foams also show many other properties not captured/not
rationalised at our local scale: plasticity due to film rupture under shear or repositioning at the
edges of the foam, thixiotropy as the foam ages... Most of these phenomena depend either
on bubble size, liquid fraction, or ageing time. Our elementary foams model huge centimetric
bubbles, so that all the typical length scales are decoupled. This serves the physics best, but
also mean that we will not be able to probe directly all these coupled dynamics depending on the
bubble size or the liquid fraction.

More complex chemistries: even more physical ingredients

The simplest surfactants used broadly in industries such as cosmetics, detergent or food industries
are quite close to SDS and are grouped under the name “sulfates”. They are produced using
byproducts of the oil industry, hence their abundance, and are mixes of molecules with a skeleton
ranging from 8 to 16 carbon atoms with a sulfate group located on a random carbon. SDS (of
which the structure is recalled in Fig.4) is actually a model surfactant for these systems.

Sulfates are used for daily life applications as a foaming agent (dishwashing liquid, shampoo...),
as well as in many industries. Half the global production of surfactants (including sulfates) goes
to the mining industry for what is called froth flotation, in which valuable minerals are separated
from the rest by being put into contact with foams. This separating process relies on the difference
of wetting properties of the materials, and foam are used to exacerbate this differentiation.

For other industries, such as the dairy industry for instance, uncontrolled foaming is a huge
problem. Due to the potentially very high air fraction of these materials (up to 99%), piping
foamy liquids can represent a loss of energy and storage volume.

In all these cases, the effect of chemistry is already well rationalised, and these industries
have many foaming/anti-foaming agents for a wide range of situations. However, some of these
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chemical species endow liquid foams with other physical ingredients which are still to be better
described by physicists!

For example, foam films can become very stiff when made out of protein solutions or gels,
as the molecules can go at the interface where they react and form 2D networks. This has been
observed with bovine serum albumine (BSA) for instance [92]. This leads to enhanced stability,
possibly greater film elasticity... and even the existence of surface shear elasticity [26]!

Another remarkable fact when using such larger molecules is their much bigger diffusion
times. This is expected to play a major role at the local scale of elementary foams already, as
the adsorption/desorption dynamics sets the shear flow described in chapter 3, thus controlling
the mechanical dissipation of the foam.

Knowing all these open questions surrounding surface rheology, elementary and macroscopic
foams, how they relate, how different they are, let us now take a step back. Back to our local
scale. Back to a simpler chemistry.



48 CHAPTER 0. INTRODUCTION



Plan

What follows is the main body of this manuscript, my thesis work.

Chapter 1 is about the elastic response of an elementary liquid foam and how to predict it
with a thermochemical model I developed and solved numerically.

Chapter 2 is about a novel measurement of a line tension caused by the presence of thickness
heterogeneities in a foam film. I present there the experiments I supervised and the theoret-
ical model I used to describe the in-plane motions in the film in order to validate our force
measurement.

Chapter 3 is the core experimental work of my thesis. I first elaborate on the state of the
art by presenting the model describing the flow fields in an elementary liquid foam. This model
raises a question: does a patch of interface exchange any surfactants with the meniscus when it
goes from one film to another ? I answered this question experimentally and present the results
in this chapter.
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1
Elasticity of a single foam film and how to

measure it

In subsection 0.2.3, we introduce the notion of film elasticity, which is directly linked to the
Marangoni modulus of the interfaces sandwiching the bulk. This elastic behaviour arises from a
finite size reservoir-effect of the bulk in the peculiar geometry of a foam film.

In this chapter I show the thermochemical model I developed to predict the elasticity of foam
films, made of a mixture of SDS and dodecanol, which I will use in the whole manuscript. The
originality of this work is to address the non linear regime, due to geometrical and physico-
chemical effects. My theoretical results are confronted to the experimental data obtained by
Raphaël Poryles and Adrien Bussonnière at the IPR before my arrival. These results are published
in Soft Matter [6].
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1.1 Surface and film elasticity measurements in the lit-
erature

1.1.1 SDS/DOH mixtures: a few more comments

The classical methods for measuring surface tension presented in subsection 0.1.2 are key charac-
terisation methods both in the academic and industrial worlds, and have yielded a vast literature
for SDS/DOH alone. We made our own measurements for the equilibrium surface tensions of our
SDS/DOH mixtures, which we presented in Fig.9. The main interest of this surfactant combina-
tion is that it allows to tune quite finely the surface rheology of the foam films with tiny amounts
of DOH, hence allowing us to explore a lot of different regimes.

Interestingly, SDS is a common surfactant, making it a popular troublemaker! It is well known
to host DOH traces, as it is its hydrolysis product, and to be difficult to purify through recrystalli-
sation. Both the amount of theses traces in commercial SDS and the kinetics of the hydrolysis
reaction have been discussed, from the 80’s until quite recently [93, 94]. Besides, as DOH tends
to hide in SDS micelles, new parameters appear when trying to solve the thermochemical prob-
lem of quantifying population of DOH at the interface. This will be taken into account in our
thermochemical model for the mechanical response of foam films made with SDS/DOH mixtures,
and will even allow us to estimate the amount of impurities.

Also, the critical micellar concentration of SDS is a sensible parameter, as it varies with
temperature, pH, the presence of other ionic species, varying from 5 − 10 mmol/L [5, 41, 95–
97] with a convergence towards the value of CMC = 8.1 mmol/L in normal conditions of
temperature and pH [98]. This value is the one we retain in the following.

1.1.2 Film elasticity and model in the submicellar regime: the
Prins experiment

As an introduction to this chapter, we present a historical experiment and model developed by
Prins et al. [5] in 1967 where the elastic response of a foam film is probed with an ingenious
system. The main problem when it comes to deform foam films are the tiny forces at play, making
the system easy to break under disproportionate solicitations. In fact a first order of magnitude
for a deformation ϵ = 1 (i.e. an extension of 100%) is F ∼ EfW ∼ 10−5 N for Ef ∼ 1 mN/m
and a typical width of film W ∼ 1 cm.

Thus, the tour de force introduced by Prins et al. which has become a general idea in this
context, is to counteract these tiny tension forces with... the tension of another foam film. The
authors have designed the experimental setup illustrated in Fig.1.1 (Left) where they create a
vertical film out of a bath of soapy solution. They monitor the vertical thickness profile of the
film using monochromatic light interferences, with a sodium lamp seen in reflection on the film.
Once the initial film is formed, they stretch it vertically a second time, drawing out a Frankel film
in the plane of the preexisting film. The thickness of this new film is also measured as well as
the evolution of the profile of the preexisting one. The former allows them to deduce the weight
imposed at the bottom of the preexisting film, that is the driving force of the deformation, and
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Figure 1.1: Left: Schematic view of the experimental setup. Right: Computed film
elasticities for SDS solutions in sub-micellar (middle column) and micellar (right column)
regimes.

the latter allows them to compute the deformation of the film, as it gets thinner to compensate
for the extension of its area.

Knowing the factor ϵ of deformation, so that the area of the preexisting film is A = A0(1+ ϵ)
and its thickness profile h = h0/(1 + ϵ), where the 0 indices account for the initial values, the
authors define the film elasticity:

Ef = dσf

d lnA (1.1)

This definition coincides with the definition we will use later on in this chapter. Also we must
notice that for a vertical film, the variation of film tension dσf must balance at each altitude
the weight of the pieces of film below it. This last point means that careful integration of the
thickness profile must be performed, as well as a lot of experimental precautions. For instance
the necessary presence of a balancing twin frame, with its own foam film, that plunges into the
bath as the main frame is drawn out to keep constant the total area of interface present at the
surface of the bath.

Also, because the initial film is let to drain for a short while, its thickness distribution is
at mechanical equilibrium, meaning that the thinner parts are on top of the thicker ones. By
monitoring the different ϵ(z) with the interferences, and integrating the thickness profiles to yield
the dσf (z) it is possible to measure different elasticities in the same film for different thicknesses,
as we expect Ef = f(h) to be a function of the thickness of the film.

This allow the authors to compute Ef for a wide range of thicknesses and chemistries. Regard-
ing SDS/DOH mixtures, the authors first report the Table I of Fig.1.1 (Right) for SDS “alone”
at two concentrations corresponding respectively to 0.62 CMC and 1.85 CMC of SDS. For the
same thicknesses (the values of the measurable thicknesses are fixed by the wavelength used) a
factor 20 is observed between the submicellar and micellar regimes! For a given concentration of
SDS, the elasticity of the film decreases with the thickness, with a factor 1/2 for a film 5 times
thicker.
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Figure 1.2: Film elasticity as a function of film thickness in the sub-micellar regime. The
solid line is a fit by adding a concentration of dodecanol supposedly taking into account the
impurities of SDS.

The authors also describe a model for submicellar mixtures giving access to a full expression
for the film elasticity. It is based on a Langmuir isotherm model of adsorption/desorption (which
is presented in details in section 1.2) combined to mass conservation which allows them to get
an analytical formula for Ef . This expression depends on the thickness h0 of the film and the
adsorption/desorption coefficients for SDS/DOH, which are known thanks to prior Langmuir
trough experiments. This model fits the data of Fig.1.2, that is the submicellar column of Table
I of Fig.1.1... if a virtual small quantity of dodecanol is added besides SDS, which is here to take
into account the impurities present in commercial SDS.

However, this model is not adaptable to the micellar regime in an analytic form, as it would
mean taking into account another phase, the micellar phase, which hosts and exchanges both
SDS/DOH with the bulk monomeric phase. This is where the numerics of nowadays can help,
and we will see in section 1.2 how we implement this to our own experiments to predict the
strain-stress curves, both below and above the CMC, and for large deformations in the non-linear
regime.

1.2 Thermochemical models for foam film elasticities
Prins et al. developed an analytical model for submicellar solutions (with a single surfactant or a
mixture), which we will extend to the micellar regime with numerical tools.

The assumptions of our model are (most of them being those of Prins et al. [5]):

• Surface tension is uniform in the foam film, and both its interfaces have the same value
(cf. subsection 0.2.4).

• Chemical equilibrium is reached instantaneously whenever a deformation is applied (cf.
subsection 0.2.2).
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• The piece of film we consider is a closed system (cf. subsection 0.2.2): volume is conserved
and the total quantities of surfactants (SDS and DOH) contained in the interfaces and the
bulk are conserved.

• The bulk monomeric concentration of SDS is capped cm
s = CMC whenever a micellar

phase exists.

• Dodecanol population in the bulk is shared between a monomeric population, and a micellar
concentration proportional to the concentration of micellar SDS.

• The chemical equilibrium between the bulk and the interfaces is modelled with Langmuir
isotherms and concerns the bulk monomeric concentrations of sufactants only.

• SDS is an anionic surfactant, each molecule comes with a sodium counterion Na+ whose
populations will likewise be shared between the bulk, the micelles and the interface.

This is the overview of our model, which will be solved numerically in the end. Let us now
write down the proper system of equations.

1.2.1 Our model for SDS/DOH mixtures
Adsorption laws

We start by writing the population shares of SDS and DOH in the bulk. The former has a surface
excess Γs and a total bulk concentration cs = cm

s +cM
s shared between monomers cm

s and micelles
cM

s so that:

cm
s = cs if cs < CMC and cm

s = CMC otherwise. (1.2)
The total DOH population has a surface excess Γd and a bulk population cd = cm

d + cM
d

that is shared between a monomeric population cm
d and a micellar population cM

d . As micelles
are composed of SDS for an overwhelming majority, we consider that the micellar population of
DOH is simply given by a law of mass action cM

d = Kcm
d c

M
s writing:

cd = cm
d (1 +KcM

s ) (1.3)
Also, the sodium counterion population must be taken into account, as bringing a molecule of

SDS at the interface means bringing a counterion along with it to ensure the electroneutrality of
the interface. This comes with consequences for the statistical presence of SDS at the interface.
Thus, let us denote Γn = Γs the surface excess of Na+, cm

n = cm
s its bulk concentration for the

monomeric SDS phase, and cM
n = cM

s its bulk concentration associated with the SDS micellar
phase.

The chemical equilibria between the interface, the bulk monomeric phase and the bulk micellar
phase are written using a Langmuir isotherm model. This model considers: (i) that the interface
is a set of fixation sites of maximum surface excess Γ∞, (ii) that the probability of desorption
of a species i is proportional to its surface excess Γi, (iii) that its probability of adsorption is
proportional to its bulk monomeric concentration cm

i and to the number of vacant sites Γ∞ −∑
k Γk. This can be written in terms of flux for any species i = {s, d, n}:
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j−
i = k−

i Γi (1.4)
j+

i = k+
i c

m
i

(
Γ∞ −

∑
k

Γk

)
(1.5)

Writing the chemical equilibrium in this case means equating j−
i = j+

i for the three populations
of SDS, DOH and sodium ions. We define Ki = k+

i /k
−
i for each species, and solving these three

equations yields the surface excesses:

Γd = Γ∞
Kdc

m
d

1 + 2Kscm
s +Kdcm

d

(1.6)

Γs = Γn = Γ∞
Ksc

m
s

1 + 2Kscm
s +Kdcm

d

(1.7)

Note that the factor 2 at the denominators is the result of the electroneutrality imposed to
the interface. This has an entropic cost for a counterion to be brought at the interface along
with an SDS molecule.

Mass conservations

As we assume that each piece of deformed film of volume V = hS is a closed system, and that
the tension is uniform in the film (meaning the populations of surfactants are uniform), we can
write the same law for both SDS and DOH: 2ΓiS + cihS = cst, with i = {s, d}. Also, the
deformation of this piece of film can be written as ϵ = S/S0 − 1 with S0 its initial surface. As
the volume is preserved, we thus have S = S0(1 + ϵ) and h = h0/(1 + ϵ) for respectively the
surface and thickness of film. Casting this into the conservations of SDS and DOH yields:

2Γd(1 + ϵ) + cdh0 = 2Γd,0 + cd,0h0 (1.8)
2Γs(1 + ϵ) + csh0 = 2Γs,0 + cs,0h0 (1.9)

These conservation laws, when fed with a given deformation ϵ and initial conditions (cs,0, cd,0, h0),
are a set of equations which become implicit in the case of the micellar regime, as the total bulk
concentrations cs and cd are actually each the sum of two variables: a monomeric and a micellar
concentration. This is why this model becomes analytically intractable in the micellar regime.
For an analytical resolution in the submicellar regime, see Prins et al. [5].

Thermodynamic identity

We need now to link surface tension to the surface excesses of all the species, in order to couple
it with the mass conservation equations. Thus, we first write formally the evolution of surface
tension with respect to the chemical potentials of all the surface active species. We do so by
expressing the variation of internal energy dU for a piece of film, that is the first fundamental
thermodynamic relation:
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dU = −pdV + TdS +
∑

k

µkdNk + γdS (1.10)

Where p is the pressure in the film, V the volume of the piece of film, T the temperature,
S the entropy, µk the chemical potential of each species k = {s, d, n} at the interface, Nk their
surface populations, γ the surface tension and S the surface of the piece of film.

On the other hand, as the internal energy U(V,S, Nk, S) is an extensive function of volume,
entropy, surfactant populations and surface, the Euler’s theorem for homogeneous functions writes
U = −V p+ ST + ∑

k µkNk + γS, which be can differentiated:

dU = −pdV − V dp+ TdS + SdT +
∑

k

(µkdNk +Nkdµk) + γdS + Sdγ (1.11)

This can now be equated with the fundamental thermodynamics identity and yields:

dγ = hdp− sdT −
∑

k

Γkdµk (1.12)

Where h is the thickness of the piece of film, s is its entropy per unit area and Γk = Nk/S
are the surface excesses which eventually appear here. As we are in normal conditions with
constant pressure and temperature throughout the whole experiment, we can thus directly write
the relation between surface tension and the chemical potentials of the surface active species:

dγ = −
∑

k

Γkdµk (1.13)

Chemical equilibrium

A thermodynamic consequence of the instantaneous chemical equilibrium we impose in the piece
of film is that the chemical potentials of the interface and the bulk must be equal. More precisely,
for each species, the equality of the chemical potential between the interface, the bulk monomeric
populations and the bulk micellar populations must be respected. These conditions are already
enforced with all the equilibrium and adsorption laws written in subsection 1.2.1. What we need
to write here besides all this is the form of the chemical potential of the monomeric phase:

µk,interface = µk,bulk,mono = µk,0 +RT ln(cm
k ) (1.14)

Meaning we can now express the surface tension variation as:

dγ = −
∑

k

RTΓkd(ln cm
k ) (1.15)

This can be integrated using the expressions of the Γk’s 1.6 and yields the full expression:

γ = γw −RTΓ∞ ln
(
1 + 2Ksc

m
s +Kdc

m
d

)
(1.16)

Where γw = 72.8 mN/m is the surface tension of pure water, or the glycerol/water mix
free of any surfactant. This is the relation between the surface tension and the monomeric
concentrations of SDS and DOH.
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Γ∞ (mol/m2) Ks (m3/mol) Kd (m3/mol) K (m3/mol)

van den Tempel et al. [31] 2.5 − 5 .10−6 5

Prins et al. [5] 7.10−6 0.38 233

Joos et al. [95] 7.10−6 (from lit.)

Vollhardt et al. [96] 14.10−6 (from data) 0.13 98

Fang et al. [41] 6.10−6 (from lit.) 0.78 ou 0.48 1600 4.67 or 5.83

Vollhardt et al. [97] 6.5 10−6 0.13 (from lit.) 98 (from lit.)

Table 1.1: Table of the co-adsorption Langmuir parameters found in the literature, by
chronological order. Most parameters are deduced by the authors from comparison with
their experimental data, but some are taken from the previous articles (’from lit.’) and some
are not given in the paper but can be deduced from the data (’from data’).

Numerical resolution and chemical parameters

Equation 1.16 giving γ = f(cm
s , c

m
d ) is coupled to the mass conservations 1.8-1.9 we recall:

2Γd(1 + ϵ) + cdh0 = 2Γd,0 + cd,0h0

2Γs(1 + ϵ) + csh0 = 2Γs,0 + cs,0h0

And the chemical equilibrium laws between the monomeric and micellar concentrations:

cm
s = cs if cs < CMC and cm

s = CMC otherwise.
cd = cm

d (1 +KcM
s )

This set of equations must be fed a deformation ϵ, initial concentrations cs,0 and cd,0, an initial
thickness h0 and the chemical parameters K, Ks, Kd, Γ∞. Then, a numerical resolution can be
performed to determine γ. It is related to the film tension σf defined in eq.0.2.4 by σf = 2γ.

This is done with a Matlab code using symbolic computation to approach a solution where
mass conservation laws are enforced as close as possible. Performing the minimisation starting
with the trivial case ϵ = 0 and increasing (resp. decreasing) gradually searching in the vicinity
of the previous solution yields very good results and essentially no numerical error on the total
solution σf (ϵ).

Regarding the chemical parameters, a wide literature gives access to them, although certain
values took time to converge and some are still open to debate [5,31,40,41,95,97]. I report Table
1.1 extracted from our paper Poryles et al. [6], which summarises all the parameters we found.
Notably, the set of parameters we retain for our numerical resolution is: K = 4.67 m3/mol,
Ks = 0.14 m3/mol, Kd = 98 m3/mol and Γ∞ = 6.5 × 10−6 mol/m2.
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1.2.2 Numerical results
In Fig.1.3, we report our numerical resolution of the system of subsection 1.2.1, in micellar regime
(A) and submicellar regime (B).

Figure 1.3: Numerical resolution of the strain-stress curves (centred and normalised with the
equilibrium tension σ0). A: with cs = 2.4 CMC and cd = 153 mg/L. The different colours
account for different thickness of films h0 (which is a parameter of the model) from blue to
red: h0 = 0.3, 0.5, 1, 2 µm. The black solid line, which is the full numerical resolution with
h = 1 µm, is fitted with the black dotted line with a function Ef

ϵ
1+ϵ

(fitting on Ef ). B:
without dodecanol with an SDS concentration cs = 0.9 CMC close to the micellar regime.
The solid line is the numerical resolution: for some negative threshold value of ϵ, the micellar
regime is attained, and the contribution of SDS to film elasticity vanishes. The dashed line
is the best fit with the same function Ef

ϵ
1+ϵ

as previously.

Fig.1.3 A shows the strain-stress curves predictions for various thicknesses of film (solid lines)
varying over an order of magnitude h0 = 0.3, 0.5, 1, 2 µm. We define the film elasticity Ef as
the slope in origin of these curves, and we see that varying h by an order of magnitude leads to
a change in elasticity by a factor 2 at best. Film elasticity is a slowly varying function of
film thickness.

As eq.16 already suggests despite its crude model, these curves are non-linear in ϵ, Also, we
choose to fit our data with the following function:

∆σ = Ef
ϵ

1 + ϵ
(1.17)

Which defines a film elasticity Ef as its slope in origin.

Important Remark: This function is NOT an application of the model of subsection 0.2.3
with hΓ ≫ h0 and Ef = 2EM which we will not risk identifying. It only captures the non-linearity
of the curves and allows us to compare the relative stiffness of the different solutions.

The dashed lines in Fig.1.3 are fits with eq.1.17 for h = 1 µm. We see that they indeed
capture the non-linearity, but there is also a small discrepancy at large ϵ. As we anticipate that
the thicknesses of our films are varying around h = 0.5 − 1.5 µm and are not always known, the
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small discrepancy of the fit will remain under our error bars and eq.1.17 remains a solid tool to
characterise our film elasticities.

Fig.1.3 B shows the stress-strain curve for a submicellar regime of SDS without dodecanol.
In this regime, an interesting feature that we highlight is the passage from the submicellar to the
micellar regime occurring for ϵ going below ∼ −0.2. When the micellar regime is attained, the
film elasticity completely vanishes, meaning that micellar SDS alone has no contribution to it.
This can be rationalised by the fact that above the CMC, the bulk monomeric concentration of
SDS is always the same, capped at the CMC. Thus, the surface population in equilibrium with
this bulk concentration is the same whatever the ϵ, and γ is constant.

Important Remark 2: The other consequence is that the elasticity shown in Fig.1.3 A is
due to the contribution of dodecanol ! In this latter case, the SDS concentration above the CMC
still matters, as dodecanol is shared between the surface, the bulk and the SDS micelles.

Figure 1.4: Film elasticities Ef fitted on our numerical model as a function of dodecanol
concentration for: (red) cs = 1.2 CMC, (blue) cs = 2.4 CMC.

Back to the micellar regime, Fig.1.4 shows how Ef (computed through our fits on the numer-
ical resolutions of stress-strain curves) depends on the dodecanol concentration cd. Dodecanol
is expected to be the main parameter to tune the elasticity of our solutions, as a factor
2 on its concentration can lead to one order of magnitude on Ef !

This is all the predictions we can make on these stress-strain curves, extending the pioneering
work of Prins et al. [5] to micellar regimes of SDS/DOH mixtures. We shall now look at the
experiments which have allowed us to measure those curves, and compare them to our model.
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1.3 A foam film rheometer
The experimental values of the film elasticity we discuss below have been obtained by Raphaël
Poryles, using a set up very similar to the set up I used during my PhD to obtain the experimental
results of Chapter 3. Here the elementary foam has 5 films, whereas I used a 3 films set-up.

In this section, I briefly present the 5 films set-up, but the precise data analysis will not be
discussed here, as it is not part of my work. I will elaborate much more about both the
technological aspects and the data processing in chapter 3 for this reason.

1.3.1 Experimental setup
The experimental setup is about creating a deformable centimetric elementary foam as depicted
in Fig.1.5 and presented more thoroughly by Bussonnière et al. [4]. It is composed of five films
linked by two free menisci, embedding a central film of length dc = 6 mm. The edges at min
z = 0 and max z = 42 mm are supported by a rigid metallic frame along which four motors are
free to slide at imposed velocities Um, supporting the four edges with the red velocity arrows.
The rigid frame respects the 120o of the rest angles between the films.

As it will be shown later, even during rather fast deformations, the angle between the films
stay close to 120 o, as the relative tension variation remains small. In that context, a great
advantage of this system is that the films are thus flat rectangles that stay in the same plane
whatever the position of the motors. This makes the image acquisition much easier, which is at
the origin of all our measurements.

Figure 1.5: Notations and geometry for the elementary foam with 5 films used in this
chapter.

This geometry is very close to that of the Besson & Debrégeas setup [78], with an invariance
by translation along z instead of an axisymmetry. The gain here is that we have more degrees
of freedom for the deformation of the elementary foam, as each motor can have its own ve-
locity/displacement instructions, and also allows us to probe greater amplitudes of deformations
(ϵ ∼ 1 here vs. ϵ ∼ 0.05 in the Besson & Debrégeas setup). The main shortcoming of our setup



62CHAPTER 1. ELASTICITY OF A SINGLE FOAM FILM AND HOW TO MEASURE IT

however is that we will not be able to probe as wide of a range of deformation rates because
of the camera resolution and the limitations of the motors (we will have ϵ̇ ∼ 1 − 10 Hz vs.
ω ∼ 0.01 − 100 rad/s).

The foam films are made by bathing the whole deformable frame in soapy solutions which
are SDS/DOH aqueous mixtures with 15% of glycerol in volume and fluorescein (at [Fluo] =
0.8 g/L). This action is automatically performed in a repeatable way using a step-by-step motor
rising a bath towards the frame.

The system is monitored from the top using fluorescence cameras with the relevant colour
filter for fluorescein. This allows us to track the displacements of the menisci (which are saturated
given their thicknesses ∼ 300 µm compared to the films ∼ 1 − 10 µm).

The applied deformation has a top-down symmetry, compressing two sides, stretching the two
others as depicted in Fig.1.6A. The situation is also symmetrical in amplitude, as the compressed
films go from d−(0) = d0+A/2 to d−(tend) = d0−A/2, the stretched films from d+(0) = d0−A/2
to d+(tend) = d0+A/2. d0 = 12.2 mm and A varies in the range [4, 14] mm. A first experimental
observation is that the central film has a deformation ϵ that remains small ∼ 0.1 compared to
the other films ∼ 1. This leads to consider that the central film remains at its equilibrium tension
σ0.

Figure 1.6: Notations for the stress and deformation measurements in the elementary foam.
A: Compressing and stretching the films result in decreased/increased tensions that induce
changes of angles between the films. B: Extraction/Withdrawal of lengths of films in the
planes of the films must be taken into account to compute the actual deformations of the
films.

Fig.1.6A also illustrates the stress measurement in the system. It is based on the same
principle as in Besson et al. [78], that is a measure of the dynamics of the angles θ±, whose
deviation from a static value (here given by the second Plateau’s law 2θ0 = 120o) is directly
linked to a difference of film tension between the three neighbouring films. Writing the tension
balance projected on the horizontal direction at all times (neglecting inertia) gives:

∆σ±

σ0
= σ± − σ0

σ0
= 1

2 cos θ± − 1 (1.18)
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The angles θ± can be deduced from the displacements δ± of the menisci, and the known
positions of the motors at all times. This gives experimental access to the dynamics of film
tension.

On the other hand, in Fig.1.6B, we illustrate how the deformations ϵ are obtained. As
discussed in 0.4.5 the film deformation can not be directly deduced from the motor and mensicus
motion. Fortunately, we have a clear signature of the film creation at the boundary between
the streched films and the meniscus : these new pieces of film obey the Frankel law discussed
in subsection 0.3.2. They are much thicker (usually 10 times), and thus appear much brighter
in the fluorescence images, than the film initially present on the frame, before the deformation.
This allows to track these preexisting pieces of film and to define their deformations as:

ϵ±(t) = L±(t)
L±(0) − 1 (1.19)

Where L±(0) = d0 ∓A/2 is the initial length of preexisting film, and L±(t) = d± ∓2LF r(t) is
the current value estimated by taking into account the presence of Frankel films. The underlying
assumption of these expressions is that the same quantity of film LF r(t) (measured only in the
central film) goes out/in of all the menisci. This a rather bold assumption that is needed to
further advance with these experiments. Notably, chapter 3, which is about a similar
setup, aims at going beyond this approximation.

1.3.2 Experimental results and comparison with the predictions
The two measures of ∆σ± and ϵ± give experimental access to stress-strain curves for the system.
Both can be put in the same graph, as ∆σ+, ϵ+ > 0 and ∆σ−, ϵ− > 0 are respectively the
stress-strain curves in extension and in compression.

Figure 1.7: Stress strain curves: A: For a given chemistry (cs = 2.4 CMC for SDS, cd =
35 mg/L for DOH) with different velocities of deformations (red Um = 5 mm/s, black Um =
10 mm/s). B: For different concentration of dodecanol with the same deformation Um =
10 mm/s and SDS concentration cs = 2.4 CMC (from red to black: cd = 0, 15, 35, 50 mg/L).

In Fig.1.7A, we show two typical curves for a micellar SDS/DOH mixture (cs = 2.4 CMC
for SDS, cd = 35 mg/L for DOH) for two different velocities of deformation Um = 5 mm/s (red)
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and Um = 10 mm/s (black) at fixed A = 6 mm. Their superimposition is a piece of evidence
that the contributions of the intrinsic/extrinsic viscosities of the interfaces can be neglected.

NB 1: The origin is a slightly angular point, this may be due to an initial repositioning of the
films when we start the deformation, which is also encountered in chapter 3 and more thoroughly
investigated in subsection 3.8.1.

In Fig.1.7B, we fix Um = 10 mm/s and the dodecanol concentration is varied in the range
cd = 0, 15, 35, 50 mg/L from red to black (the green of Fig.1.7B corresponds to the black of
Fig.1.7A). We thus see that the more we add dodecanol (a poorly soluble surfactant),
the stiffer the foam films get. The full lines are the experimental data with errors remaining
on average below ∼ 5%.

We have now given ourselves everything to draw these stress-strain curves for deformed foam
films, let us compare them to the thermochemical model of section 1.2. Fig.1.8 is a reboot of
Fig.1.3 with now the experimental data (open circles).

Figure 1.8: Predicted stress strain curves taken from Fig.1.3 with experimental data as the
black circles: A: with cs = 2.4 CMC and cd = 153 mg/L. The different colours account
for different thickness of films h0 (which is a parameter of the model) from blue to red:
h0 = 0.3, 0.5, 1, 2 µm. B: without dodecanol with an SDS concentration cs = 0.9 CMC
close to the micellar regime. The solid line is the numerical resolution: for some negative
threshold value of ϵ, the micellar regime is attained, and the contribution of SDS to film
elasticity vanishes.

In the first case A, we have cs = 2.4 CMC and cnom
d = 35 mg/L the nominal concentration

in DOH. The black circles are the experimental data corresponding to the green curve of Fig.1.7B.
We first tried to plot the numerical prediction using the nominal concentration of DOH cnom

d ,
resulting in the black dotted line. The slope remained too small, even when we start sweeping
realistic values for the film thickness which has been measured as h0 = (1.0 ± 0.5) µm. We
thus took the intermediate value h0 = 1 µm and fitted on an effective dodecanol concentration
cfit

d , with in mind to take into account the impurities present in the solution besides the nominal
concentration of dodecanol added by us. The black solid line is the main fit with h0 = 1 µm and
cfit

d = 153 mg/L.
In the second case B with cs,0 = 0.9 CMC, the circles are the experimental data, the solid

line is our model, and the slope agreement is rather good without any fitting parameter. The
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only physical ingredient we do not capture is the elasticity of the film as it is compressed enough
for it to reach cs = CMC when the interfaces evacuate surfactants towards the bulk. As said
above, in our model, without the presence of any other surfactants, the elastic contribution of
SDS vanishes, which we do not observe experimentally. One reason might be what we suppose
for our initial conditions (given by the foam films we extract from the bath), that is we have a
piece of bulk with a total concentration cs,0, which is the nominal concentration of surfactant
added to the solution, sandwiched between two interfaces whose surfactant populations Γs,0 are
at equilibrium with it. Given the short amount of time it takes to create these interfaces when
they are extracted, we could expect them to tap into the already-isolated piece of bulk being
extracted, thus lowering the initial concentration cs,0 < cnom

s below the nominal concentration.
This problem of film extraction, and to what extent the initial extracted film shares the same
concentrations than the bath, is still open to debate. This was discussed by de Gennes [43] in
2001, in which a model keeping mechanical and thermodynamic equilibrium instantaneous, even
at the short time scales of a film pullout, can lead to predict unrealistic shapes for foam films.

Now, it is also possible to extract a film elasticity Ef out of the experimental data using the
same fit of eq.1.17, just as we did with our numerical predictions. These fits are represented as
the dotted lines in Fig.1.7B and describe well our experimental data as well.

1.3.3 Theoretical and experimental film elasticities
Experimental film elasticities are reported in Fig.1.9: A where SDS is at cs = 1.2 CMC (red)
and cs = 2.4 CMC (blue, corresponds to the four curves of Fig.1.7B) and B where no dodecanol
is added to the solution and cs varies from 0.75 CMC to 6 CMC (the red and blue points match
the points of A at cnom

d = 0). The dotted lines in A are only guides to the eye. The denomination
cnom

d in A is the nominal concentration of dodecanol, that is the quantity effectively added to the
solutions.

A first observation, without dodecanol on Fig.1.9B, is that film elasticity is a decreasing
function of cs. The extreme values tell us that an increase by a factor 10 in SDS concentration
can yield a decrease by a factor 50 in film elasticity. This behaviour is not easy to rationalise, as
a pure micellar SDS solution is expected to have a vanishing film elasticity under the assumption
that the chemical equilibrium is met at all times. This very last point of chemical equilibrium
hypothesis is not to be called into question again however, since if it was the problem, we
would see a velocity dependency of our elasticity, which we do not. As discussed earlier,
SDS is known to come with residual dodecanol, and its micelles to host them in the
bulk [42,93], which is a first unwanted source of surface active impurities contributing
to the elasticity as the main surfactant contribution vanishes. Also, the exchanges of
these impurities between the bulk and the micellar phase (more micelles means more soluble
impurities) make the dependency of Ef with cs > CMC non trivial, even at fixed quantities of
impurities, making it even harder to rationalise.

Also, when we start adding DOH ourselves (cf. Fig.1.9A), the elasticity of foam films increases
quite rapidly, over an order of magnitude by adding up to cnom

d = 50 mg/L = 2.7 × 10−4 mol/L
making it comparable to the elasticity of SDS in its submicellar regime. This increase in elasticity
is all the more important as the SDS concentration is close to the CMC. This can be qualitatively
rationalise by the fact that more micelles means a greater share of the population of DOH in the
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Figure 1.9: Film elasticities: A: as a function of the dodecanol concentration cd (red
cs = 1.2 CMC, blue cs = 2.4 CMC); B: as a function of SDS concentration without any
added dodecanol.

micellar phase, making its equilibrium surface population variations lower when the interface is
deformed.

Effective concentration of dodecanol

These fits over the dodecanol concentration can be repeated so that we match the films elasticities
Ef,th = Ef,exp measured earlier, and we estimate the effective dodecanol concentrations cfit

d =
f(cnom

d ) in Fig.1.10. In red we have the data for cs = 1.2 CMC, in blue cs = 2.4 CMC. The
black dotted line is the first bisector, where the data would be in the case of a flawless model
applied to ideal solutions.

Figure 1.10: Fitted concentration of dodecanol cfit
d as a function of the nominal concentra-

tion cnom
d added to the solutions. Blue is with cs = 2.4 CMC, red is for cs = 1.2 CMC. The

black dotted line is the function y = x.

The first observation is that the global quantity of dodecanol virtually added to the solution
to get a quantitative match with the data increases with the concentration of SDS. This is
expected, as more SDS means more impurities in the solution. However, the slopes are larger
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than 1, with the red one, close to the CMC being almost 1 while the blue one is closer to 3. This
is the signature that SDS impurities alone cannot explain the quantitative mismatch between
our data and our model fed with the nominal concentrations of DOH. Seeing the dependency of
this slope with the concentration of SDS, this might be a problem caused by a flawed value for
K, the exchange coefficient between the micellar and monomeric bulk phases. Another possible
explanation could be direct DOH exchanges between the SDS micelles and the interface.
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1.4 Conclusions of Chapter 1
• Foam film elasticity is not a trivial concept: it is not about surfactant gradients or

unsteady diffusion problems but rather finite size effects of the bulk for the sake of
populating the interfaces.

• Back in 1967, Prins et al. [5] developed a theoretical model based on Langmuir
isotherms taking into account the small thicknesses of the bulk and made predictions
for the elasticities in the submicellar regime. They also conducted experiments which
validated their model, stretching a vertical film and looking at its thickness profile.

• I extended the model to the micellar regime, which required a numerical resolution
not available at the time of Prins. We fitted the model on experimental data made
prior to my arrival, deforming a 5 films elementary foam allowing us to draw the
stress-strain curves of foam films ∆σ

σ0
= f(ϵ).

• Our thermochemical model captures the qualitative behaviour of these curves but
fails to predict them quantitatively with the nominal concentrations of surfactants
added to the solutions.

• The not-so-well-known kinetics of hydrolysis of SDS into dodecanol and the sensibility
of film elasticity with insoluble impurities make it difficult to actually control and
predict the stress-strain curves quantitatively. We fitted our model on an effective
dodecanol concentration encompassing both the amount of dodecanol already present
with SDS and the insoluble impurities present in the air.

• We managed to evaluate film elasticity Ef for quite a wide range of SDS and dode-
canol concentrations. This will be useful later on while looking at the visco-elastic
response of an elementary foam in chapter 3, in order to validate the elasticity mea-
surements performed thereupon.



2
In-plane motions in a foam film: line tension

and damping forces

Foam films display complex 2D motions in their own planes, which can be easily visualised when
we look at the reflected dancing colours at their surface. Any child playing with bubbles can
notice it! A closer look also reveals that these coloured patterns tend to adopt circular shapes.
But what is the driving force at play here? How is it related to the colours? The short answer is:
the different colours correspond to different film thicknesses, and the resulting thickness gradient
corresponds to a driving force on the interfaces, due to its excess of energy compared to a flat
film. Hence the coloured circular arrangement seen at the surface.

Also, the motions implied by these forces must be damped somehow, and we need to clarify
the physical ingredients potentially at stake here: it may be due to the intrinsic surface shear
viscosity ηs and/or bulk viscosities of both the gas and the liquid ηg or ηl. The competition
between these ingredients, and more incredibly the existence of a surface viscosity in a certain
range of situations, is still open to debate!

In this chapter, I will expose the work of our group around an experimental setup which
allowed us to create and measure a line tension T in the plane of a single foam film, using its
heterogeneities of thickness. By studying the relaxation of a patch of foam film, and knowing
the damping mechanism at play, we were able to quantify and validate our force measurement
of T . This setup was built a first time during the internship of Marion Berry (spring/summer
2021, supervised by Raphaël Poryles), from which a proof of concept and preliminary results were
obtained, and a second time the year after for the internship of Gaëlle Audéoud (spring/summer
2022 supervised by me), from which the definitive experimental data were obtained. I made the
data analysis and the theoretical model, under the supervision of Isabelle Cantat, and the results
have been submitted to Physical Review Letters [99] (currently addressing minor revisions).

69
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2.1 Capillary force and line tension in foam films
As we discussed in the Introduction, in-plane motions of foam films are only about plug flows for
time scales up to tens of seconds (cf. 0.2.1), giving them a sliding puzzle-like dynamics. This has
proven to be a crucial piece of information, as it enabled the development of a general theoretical
framework for these motions in the form of 2D Navier-Stokes equations. This conception of foam
films retraces back to the work of Mysels, Couder et al. [28,49], part of which being fairly recent.

These equations have since enabled to further advance in the description of these systems:
measuring surface viscosities [1,36], studying gravity drainage and the convection in the plane of
foam films [64,100], or even 2D turbulence phenomena [101]. A proper passage from a 3D to a
2D Stokes equation in the case of a foam film is derived and proposed in Appendix 4, along with
its Green function.

In this section, we write our own equation of motion following the same path as these previous
studies. The novelty is that we build a stress tensor for the fluid which takes into account thickness
gradients in the film. Once we have this constitutive law and the corresponding equation of
motion, we will focus on the particular case of a very localised thickness gradient, which will
allow us to define a line tension T , and the 2D Stokes equation in which it is a source term.

All this preparatory theoretical work will help us describe the experiment of the next section
where a line tension is brought to light by a “simple” relaxation phenomenon.

2.1.1 Building the capillary stress tensor for an elementary piece
of film with a thickness gradient

We consider the piece of film represented in the Figure 2.1. It is limited by the two interfaces
and by the vertical planes which intersect the plane z = 0 along the elementary lengths dξ and
ds. The unit vector n is chosen along the steepest slope of the interface and the unit vector t is
perpendicular to n (both in the (x, y) plane):

n = (hx, hy, 0)/
√
h2

x + h2
y , t = (hy,−hx, 0)/

√
h2

x + h2
y (2.1)

With the indices accounting for the derivatives along the specified coordinates of the cartesian
basis B0 = (ex, ey).

Our goal is now to build the 2D stress tensor for the film σcap by considering the forces
exerted on the lateral faces. Note that the air pressure is taken as the pressure reference, so that
no forces are exerted on the top and bottom interfaces. The norm of the thickness gradient is
a small parameter in the problem, as classically used in the lubrication approximation. To build
the film stress tensor, we anticipate that the forces exerted on the system are of order 2 in this
parameter (as will be shown below), and we thus drop higher order terms. Also, we consider that
both interfaces are subject to a surface tension γ = γ0 +δγ deviating from its equilibrium tension
γ0 by a second order term δγ.

Let us first consider the face 1 defined in Fig.2.1. It is a rectangle of area dS1 = 2hds of normal
n, and we denote dF 1 = dF p,1 +dF γ,1 the total force applied on the surface. The local pressure
in the film is P = −γ0∆h, leading to the pressure force dF p,1 = −PdS1n = 2γ0h∆hdsn. Note
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Figure 2.1: Notations for an elementary piece of foam film confined between two liquid-gas
interfaces. The semi-thickness h of the foam film varies along ξ.

that here we discarded the second order term δγ in the Laplace pressure as we anticipate it would
yield a contribution of high order.

The forces induced by the surface tension at the top and bottom interfaces dF γ,1 need more
precautions as the force orientations are slightly tilted with respect to n and differ between both
interfaces. They are applied along the vectors:

ntop/bot = n ± ||∇h||ez√
1 + ||∇h||2

(2.2)

Where by definition of our local frame Be = (n, t), we have ||∇h|| = |∂ξh|. Thus, we write
the forces:

dF γ,1 = (γ0 + δγ)ds (ntop + nbot) =
(
2γ0(1 − ||∇h||2

2 ) + 2δγ
)
ds n (2.3)

In which the two contributions along ez compensate for each other, leading to this develop-
ment at second order. We can now write the total force acting on face 1:

dF 1 = 2
(
γ0(1 − ||∇h||2

2 + h∆h) + δγ
)
ds n (2.4)

We now look at face 2 of normal t. In a similar way, we write the pressure force dF p,2 =
−PdS2t = 2γ0h∆hdξt which is similar to face 1 at leading order despite the trapezoidal form
of dS2.

This time, the direction of the forces due to surface tension is horizontal along t on both
interfaces. The subtlety here lies in the lengths over which are applied the surface tension at the
top and bottom interfaces, and which are given by dl2 = dξ(1+ ||∇h||2/2) at second order. This
leads to the expression:

dF γ,2 = 2(γ0 + δγ)dl2 t =
(
2γ0(1 + ||∇h||2

2 ) + 2δγ
)
dξ t (2.5)

And we finally have the full expression of the force on face 2:
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dF 2 = 2
(
γ0(1 + ||∇h||2

2 + h∆h) + δγ
)
dξ t (2.6)

The goal now is to finally write σcap whose general expression is given and developed:

σcap =

dF1
ds
.n dF1

ds
.t

dF2
dξ
.n dF2

dξ
.t


Be

= γ0

−||∇h||2 0

0 ||∇h||2


Be

+ 2
(
γ0(1 + h∆h) + δγ

)
I2 (2.7)

Which can be more easily transcribed in the initial cartesian basis B0 = (ex, ey) in the form
σcap = σ

∗
cap + σfI2, with σf = 2

(
γ0(1 + h∆h) + δγ

)
and:

σ
∗

cap = −γ0

∂xh
2 − ∂yh

2 2∂xh ∂yh

2∂xh ∂yh ∂yh
2 − ∂xh

2


B0

(2.8)

This tensor σcap eq.2.7 accounts for all the capillary forces acting on a piece of foam film
with a thickness gradient such as depicted in Fig.2.1. It takes into account both the pressure and
surface tension forces projected in the plane of the film.

However, the specific case we want to further describe and study has only very localised
regions where h varies. The experimental situation will be described in section 2.2: we create two
adjacent regions of constant thicknesses (or varying very slowly spatially) where the variations of
h are all contained at the border. This border is so thin compared to the dimensions of the two
regions that we will aim at describing this zone as a 1D object subject to a line tension T defined
and computed using σcap.

2.1.2 Gradients of thickness localised in a very thin region: build-
ing a line tension T

The goal of this subsection is to consider the limit where the thickness of the foam film varies
in a very localised zone only, which we will call thickness jump zone hereafter. We will
approximate this thin zone to a closed contour C, of any shape, across which we jump from a
thickness h1 to h2. By expressing the capillary stress tensor σcap in this region, we can integrate
the forces and exhibit the presence of a line tension T acting along C.

We will focus on the force acting on a section line normal to C, exerted by one side of the
line on the other. The line tension T is defined as the excess of force applied by one side of the
line on the other (Fig.2.2, the line is parallel to the thickness gradient) compared to the case
where we would have a flat film with interfaces at the equilibrium surface tension γ0. It can be
expressed as (note that we define T for a single interface whereas σcap has been already
defined for two interfaces) :

T =
∫ ξmax

ξmin

t.(1
2σcap − γ0I2).t dξ (2.9)
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Figure 2.2: Contour C separating two zones of different thicknesses h1 and h2 at equilibrium
surface tension γ0. Line tension T is defined as the excess force applied by one side (ext) on
the other (int) compared to a case where there is no change in h or γ along the line.

Where ξmin and ξmax are chosen outside of the transition region, so that the integral does
not depend on their precise value. The computation of T needs to be carefully written, as not
only the thickness varies along ξ, but also the surface tension γ = γ0 + δγ.

Surface tension profile within the thickness jump zone

Figure 2.3: Notations for a contour I in the thickness jump zone symbolised by the colour
gradient. By integrating the interface stress along this contour for any ε, we get an expression
for the local tension γ(ξ) in the thickness jump zone, enabling the computation of the line
tension T .

In order to estimate δγ in the thickness jump zone, we start by doing a force balance over a
contour I defined in Fig.2.3. It follows the tangential direction of C and encompasses a range
of ξ from ξmin = 0 the edge of the inner side where h = h1 to ξ = ϵ arbitrarily taken between 0
and ξ = ξmax the edge of the outer side where h = h2. The choice of ξmax is a practical problem
which we address in the experimental section 2.3.4. Another important assumption is that the
zone where ∇h is not negligible is very localised. That means we assume that ξmax/R ≪ 1, the



74 CHAPTER 2. IN-PLANE MOTIONS IN A FOAM FILM

width ξmax over which h varies is much smaller than the radius of curvature R of contour C. We
will thus develop our force balance equation in orders of ξmax

R
.

Let us write this force balance acting on the closed contour I:

FI =
∮

I
σcap.nI dI (2.10)

Where nI is the local normal vector oriented outward to the contour I of which we show
an example for the segment [BC] in Fig.2.3 (not to be confused with n, the local normal to
C). On the one hand, the integrals over [AB] and [CD] have constant local normal vectors nAB

and nCD and a varying stress tensor σcap as the thickness h varies. On the other hand, σcap

is constant over [BC] and [DA], but the local normal vectors nBC/DA(sI) will vary. Note that
because we suppose that the local curvature κ = 1/R of C varies slowly along the curvilinear
abscissa, we approximate the Laplacian in the expression of σcap to ∆h = ∂ξξh, and we get,
using eq.2.7:

FI

γ0
=

[
nAB + nCD

] ∫ ϵ

0

[
(∂ξh)2 + 2h∂ξξh+ 2(1 + δγ

γ0
)
]
dξ

+ 2(1 + δγ(0)
γ0

)
∫ C

B
nBC(sI)dsI (2.11)

+
[

− (∂ξh)2
∣∣∣
ϵ
+ 2h∂ξξh

∣∣∣
ϵ
+ 2(1 + δγ(ϵ)

γ0
)
] ∫ A

D
nDA(sI)dsI

The first line accounts for the integral over [AB] and [CD], the second for [BC] and the
third for [DA]. Note that we use ∂ξh = 0 and ∂ξξh = 0 at ξ = 0 as the inner and outer region
of C are defined so that h = cst.

We now express the local vectors of I, nAB and nCD in the local basis of C (t,n) using the
local curvature of C denoted κ = 1/R, and the length [BC] = L:

nAB = t − L

2Rn

nCD = −t − L

2Rn

And the vector integrals over [BC] and [DA]:

∫ C

B
nBC(sI)dsI = −Ln∫ A

D
nDA(sI)dsI = +L(1 + ϵ

R
)n

Furthermore, because the contour C is closed and the capillary forces diverge as ξmax −→ 0,
we neglect inertia and viscous forces and we have the nullity of FI . Projecting eq.2.11 along n,
dividing by L, and setting δγ(0) = 0 (even if it mean redefining the reference of surface tension
with an offset to the equilibrium value), we get:
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0 = − 1
R

∫ ϵ

0

[
(∂ξh)2 + 2h∂ξξh+ 2δγ

γ0

]
dξ (2.12)

+ (1 + ϵ

R
)
[

− (∂ξh)2
∣∣∣
ϵ
+ 2h∂ξξh

∣∣∣
ϵ
+ 2δγ(ϵ)

γ0

]

Out of the integral, two terms depending directly on h scale as O(h2

ϵ2 ) and are balanced by
the field of surface tension δγ(ϵ)

γ0
. We also notice the presence of terms of order O( h2

ϵR
) which

need to be balanced by δγ(ϵ)
γ0

as well. Writing with the ∇ = ∂ξ notation again, eq.2.12 leads to
an expression of the field of surface tension:

δγ

γ0
(ϵ) = 1

2 ||∇h(ϵ)||2 − h∆h(ϵ) + Γsup(ϵ) (2.13)

Where the first two terms are of lowest order O(h2

ϵ2 ) and where Γsup is the correction for the
higher order O( h2

ϵR
). The first two terms of the surface tension field are sufficient to advance and

to finally define the line tension T , and a discussion about the higher order term Γsup = O( h2

ϵR
)

awaits the interested reader in subsection 2.1.3.

Final expression of T

We now have the expression δγ(ϵ) for the surface tension anywhere in the thickness jump ϵ ∈
[0, ξmax]. This is a key information as the general expression of T writes using the expression of
σcap of eq.2.7:

T =
∫

ξ
t.(1

2σcap − γ0I2).t dξ = γ0

∫
ξ

(1
2 ||∇h||2 + δγ

γ0
+ h∆h

)
dξ (2.14)

Thanks to the expression of δγ given by eq.2.13, the lowest order is simplified: the gradient
term is completed and the laplacian term is cancelled, yielding:

T = γ0

∫ ξmax

ξmin

||∇h(ξ)||2 dξ (2.15)

This is the expression for the line tension acting along C. Interestingly, this quantity is
actually twice the excess of energy stored in the excess of area in the thickness jump zone.
Another computation based on thermodynamics considerations and a discussion awaits the reader
in subsection 2.1.3.

2.1.3 Important remarks
Line tension expression through virtual work considerations and factor 2 with
the excess of energy per unit length of line

In subsection 2.1.2, we have found an expression of the line tension T , which is actually an excess
of stress stored into the thickness jump. We found it by considering the mechanical equilibrium
of a tilted patch of film at rest in this region. What is implied through the existence of this
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mechanical equilibrium is that an element of film flattens out through capillary flows at times
much longer than the time of our experiment. In this mean time, surface tension enforces surface
conservation by being larger in the thickness jump. This is all due to this intrinsic feature of a
surfactant-laden interface that is being able to create Marangoni stresses to resist capillary flows.

However, the expression of the excess of stress/line tension T can also be retrieved by consid-
ering the virtual work of the flat films neighbouring the thickness jump, which act as reservoirs of
surface tension, both sides being set at reference tension γ = γ0. These works must be computed
under the constraints of conserved volume and area of interface.

Let us consider a portion of thickness jump, of initial width ξmax (along y), length L (along
x) (with respect to the notations of subsection 2.1.2), and initial thickness field h0. Ap = Lξmax

denotes the projected area of interface. We also consider that the thickness jump is in contact
with a reservoir of surface tension set at γ0. The portion of thickness jump is deformed, with
its width becoming ξmax + dξmax, its length L + dL and its thickness field h. These variations
verify dξmaxdL < 0 as we impose the set of constraints: (i) V =

∫
Ap hdxdy = cst conserved

volume, and (ii) A =
∫

Ap(1 + 1
2 ||∇h||2)dxdy = cst conserved area of interface. We will denote

δℓ = 1
2

∫ ξmax
0 ||∇h0||2dy the excess of length stored in the thickness jump along the y axis in the

initial state.

Figure 2.4: Notations for a segment L of thickness jump.

The work of the reservoir in this transformation must be zero, as there is no dissipative
phenomenon at stake here, nor any internal energy variations as area is conserved. This writes:

δW res = 0 = γ0dA
p + TdL (2.16)

Where T is the line tension, defined for one interface, that is an excess of stress stored in the
thickness jump. In order to determine T , we need to provide an expression for the variation of
projected area Ap during the transformation. This variation is the consequence of imposing both
volume and interface area conservations, meaning we work at constant distribution of thicknesses
(the histograms of h0 and h are the same). Thus, patches of film are redistributed in steeper
regions during the transformation (for dL > 0, resp. flatter regions for dL < 0), and the projected
area Ap changes.
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These constraints impose a dilation along the y axis, and the relationship between the gradi-
ents of thickness writes:

∇h = ∇h0 × ( 1
1 + dξmax

ξmax

) (2.17)

Area conservation can be written between both configurations:

L× (ξmax + δℓ) = (L+ dL) ×
∫ ξmax+dξmax

0
(1 + 1

2 ||∇h||2)dy (2.18)

Where a change of variable y′ = y/(1 + dξmax

ξmax
) can be applied in the integral of the left-hand

side, as well as eq.2.17 for the gradient, and we can linearise and simplify our expression to get:

0 = ξmaxdL+ Ldξmax − L

ξmax

dξmaxδℓ+ dLδℓ (2.19)

Here we recognise dAp = ξmaxdL + Ldξmax with the first two terms. This shows that
dAp = O(dLδℓ), allowing us to write dξmax/ξmax = −dL/L at leading order. The third term
thus becomes: L

ξmax
dξmaxδℓ = −dLδℓ+ O(dLδℓ δℓ

ξmax
). This is injected in eq.2.19 and yields:

dAp = −2dLδℓ+ O(dLδℓ δℓ

ξmax

) (2.20)

Which can be used at leading order in eq.2.16 to finally get:

T = 2γ0δℓ = γ0

∫ ξmax

0
||∇h0||2dy (2.21)

This expression is in agreement with the demonstration of subsection 2.1.2, and corresponds
to twice the excess of surface energy per unit length of the line of tension.

Higher order correction to the surface tension in the thickness jump zone and
2D Laplace law

Let us consider eq.2.13 which gives the profile of surface tension δγ across the thickness jump
zone. We remind:

δγ

γ0
(ϵ) = 1

2 ||∇h(ϵ)||2 − h∆h(ϵ) + Γsup(ϵ)

for any normal ordinate ϵ ∈ [0, ξmax] in the thickness jump zone. This is a development at
order O( h2

ξ2
max

), but let us now take a closer look at the higher order term Γsup = O( h2

ξmaxR
)

(where we recall that R ≫ ξmax is the local radius of curvature of C).
By injecting the expression 2.13 of δγ in eq.2.12, we get:

Γsup(ϵ) = 1
R

∫ ϵ

0
||∇h||2 dξ (2.22)

And if we now look at the difference of surface tension across the whole thickness jump zone,
that is ∆γC = δγ(ξmax), the first two terms of eq.2.13 on the right hand-side vanish and we
have:
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∆γC = γ0 × Γsup(ξmax) = γ0

R

∫ ξmax

ξmin

||∇h||2 dξ = T

R
(2.23)

Which is a 2D Laplace law linking the jump of surface tension γ across a curved line to the
line tension T .

2.2 Creating line tension in a foam film: experimental
setup

In the previous section 2.1 we predict the presence of a line tension T in the plane of a foam film
with two regions of different thicknesses. We provide an expression for it with eq.2.15, and it
appears that the knowledge of the thickness profile in the transition zone between the two regions
is the key to compute T .

The goal of this section is to create experimentally this situation with two regions, and to
measure the thickness profiles in the film to get access to an estimation of the line tension T .
We achieved this using a simple setup composed of a single horizontal foam film deformed in a
controlled way.

2.2.1 Principle of the experiment, technical limitations and nota-
tions

Figure 2.5: Top view of the film, timelapse of the deformation followed by the inner
relaxation of the thin coloured patch. Times from A to F: t = −1, −0.6, 0, 1, 3, 6s.

The principle of the experiment is detailed in Fig.2.5 of which we describe the different steps:

• A: A horizontal foam film is created very elongated in the rectangular aperture formed by
a plastic piece with a squared “U” form and a mobile metallic bar. We create it by bathing
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the frame by hand in a soapy solution. We wait for it to drain until it is thin enough to
display colours in reflected light.

• B: The preexisting film is stretched very rapidly, extracting some new film from the menisci
of the frame (appearing in grey in Fig.2.5). This new grey film is a Frankel film, whose
dynamics of extraction is detailed in subsection 0.3.2.

• C: At the end of the motor motion, which defines the origin of time t = 0, the very
elongated arena-shaped thin piece of film is surrounded by the thicker film: a line tension
exists at the border which tends to minimise its perimeter. We measure its value over the
time of the experiment by looking at the thickness profile along L with the hyperspectral
camera.

• D-F: The thin film retracts toward a circular shape to achieve its minimum of perimeter.
The timescale of the motion is set by a trade-off between the value of T and the damping
forces imposed by the viscous air friction.

All notations used to describe our system are shown in Fig.2.6.

Figure 2.6: Experimental setup and notations used in the chapter.

The foam film is formed with an initial width a = 2.1 mm. This very narrow configuration only
lets a very elongated flat film to exist between the menisci present at each edge of the frame. The
film is let to drain for 3 min to the point that it displays coloured patterns (Fig.2.5A), meaning
its thickness has decreased down to a few hundreds of nanometres. The stretching imposed by
the motor is performed at V mot = 10 mm/s for 1 s up till the film has a width a = 12.1 mm.
The origin of times t = 0 is set at the end of the motor motion, and we show a typical film at
this time in Fig.2.6A.

The contrast between the coloured thin film and the thick grey film allow us to estimate
the position of the contour C along which the line tension is applied. The thickness across C
is monitored using a spectral camera along L. The precise localisation of this line from the
spatio-spectral image required some work. We found its precise position using a mirror put in the
plane of the rectangular frame. With a triangular cache put on the mirror, we were also able to
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find the angle θy = 7o between L and the y axis (which we tried to lower as much as possible).
This angle is neglected hereafter.

In the following, we will only consider the measurement range t ∈ [0, 1.5]s where we measure
the relaxations of L and R and the line tension T . This restriction is due to two main factors:
(i) the lamp for the spectral camera radiates quite a lot of heat, we must turn it off before it
generates significant thermal Marangoni flows, and (ii) we will later need the hypothesis L ≫ R,
which is less and less true as the relaxation occurs.

Gravity is neglected throughout this whole study, as the film lies horizontally with a very good
precision. This is due to the fact that the thin patch acts as a very sensitive level for the foam
film, and the slightest tilt angle leads to a movement toward the menisci at the edges during the
relaxation, hindering the measurement. We thus put the deformable frame on three adjustable
vertical screws in order to get the right corrections to the horizontality of the setup.

Last problem but not least are the parasitic air movements which we limit by covering the
setup with an enclosure as soon as we have created the foam film, and before the deformation.

2.2.2 Setup

Figure 2.7: Experimental setup used to create the foam film with two regions of different
thicknesses. 1-A: black plastic piece with a squared “U” form (corresponding to the black
edges in Fig2.6B). 1-B: metallic mobile edge (corresponding to the green edge in Fig2.6B)
attached to a motor with a wedge-shaped plastic piece. 1-C: plastic bath containing the
soapy solution that we raise by hand to form the foam film on the rectangular deformable
frame. 2: Hyperspectral camera mounted on a navitar objective monitoring the thickness
along the line L of Fig.2.5. 3: Colour camera monitoring the foam film with reflected light.
4: White powerful light aligned in reflection with the hyperspectral camera to create inter-
ferences against the foam film. 5: White LED panel aligned in reflection with the colour
camera in order to image the coloured reflection of the thin parts of the film. 6: Cardboard
enclosure positioned around the setup during the experiments to mitigate parasitic air move-
ments.
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Chemistry

The soapy solutions used to create our flat foam films are SDS/dodecanol mixtures in a solvent
made of 75% water 15% glycerol (NB: contrary to any other solution used in the frame of this
Ph.D work, no fluorescein is added here as we do not need any fluorescent light to image the
system). The concentration of SDS is always set at cSDS = 2.4 CMC = 5.6 g/L while the
concentration of dodecanol varies between cDOH = 0, 15, 35, 50mg/L. The protocole to create
the soapy solutions is the same as the others.

Deformable frame and motor

The deformable frame used in this set of experiments is made of one single 3D-printed plastic
piece with a squared “U” form (Fig2.7A) to which we add a straight metallic part sliding in its
arms. This latter is also attached to a PI micromove C-867 motor (Fig2.7B). The result is a
rectangular deformable frame with one side of fixed length w = 62 mm and the other side with
a length varying between a = 1 and 25 mm.

Cameras

We use a Resonon Pika L hyperspectral camera mounted on a 12X Navitar objective (Fig2.7(2))
to monitor the thickness profile of the foam film along the line L shown in Fig.2.5C. It is aligned
with a white light (Fig2.7(4)) with respect to the angle of reflection at the surface of the foam
film, which acts as a Fabry-Pérot interferometre for the sake of this measurement. The angle of
incidence θ with the horizontal plane of the foam film was carefully measured θ = 38o.

The other (regular) camera we use is an Imaging Source colour DFK 23UM021 camera
mounted on a 24-mm Nikon objective (Fig2.7(3)) monitoring the foam film from above and the
dynamics of retraction of the thin patch toward a circular shape. Fig.2.5 is a timelapse of a typical
experiment produced using this camera. To get the contrast of colours at the surface of the foam
film, an LED panel is attached in reflection of this camera (Fig2.7(5)). In our subsequent usage
of this camera, the angle of incidence with the foam film (∼ 10o) will always be neglected with
respect to parallax problems.

2.3 Image processing

2.3.1 Detection of the thin region contour and kinematics of the
relaxation

In order to study the dynamics of relaxation of the thin film, we start by tracking the area of the
thin coloured film. We want to binarise colour images to make contrast between two kinds of
pixels: coloured ones (thin film) and grey ones (thick film). The former have very high values
in their respective colours (either in R, G or B) but very low values in the others, and the latter
have intermediate values in all channels.

We create two sets of three masks:
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Figure 2.8: Example of contour detection performed on a film with no dodecanol at time
t = 0. A: Image of the film at t = 0 recalling the notations used in the text, the detected
contour C is highlighted in red, the line L along which the thickness profiles are measured
is in light blue. B: Image of the film at t = 1.5 s the end of our measurement range. C:
Perimeter P of C as a function of time. D: Area A of the interior of C as a function of time.
Mind the ordinate, which is centred around the slightly varying values of A. E: Semi-length
L of the thin film as a function of time, defined as half the distance between the highest
point and the lowest point of C. F: Semi-width R of the arena of thin film as a function
of time, estimated with the area and the semi-length R = A/(4L). All the uncertainties
are represented with shaded areas and evaluated by taking the standard deviation over 13
experiments.

• Set 1 is three masks for the highest values for each RGB channel, each colour with its own
threshold. The pixels below the threshold are put to zero, the pixels above subtracted by
the threshold. Each mask is thus white where the thin film is of the given colour, black
everywhere else.

• Set 2 is three masks for the lowest values for each RGB channel, each colour with its own
threshold. The pixels above the threshold are put to zero, the pixels below are kept as
they are. Each mask is thus white in the coloured region except for the thresholded colour
which is in black. The threshold is chosen so that the grey regions are above it and appear
in black.

By summing the masks of Set 1 and 2 by colour, we have three images where the coloured
region appears in white, and the grey region appears in black. We average the three masks to
get an image which is binarised using a dedicated Matlab function im2bw. We fill the gaps in
the detected coloured region by dilation-erosion with a small disk of a few pixels in radius.

We then use the contour detection function contourc of Matlab on the binary image we
obtained to get C. A typical frame of the set of experiments without dodecanol taken at time
t = 0 is shown with its detected contour in Fig.2.8A.
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From there we can have access to the geometry of the arena of thin film and, by repeating the
process over the whole movie, characterise the whole kinematics of the system. All the quantities
we extract are shown in Fig.2.8C-F with their uncertainties being the standard deviation over 13
experiments. The perimeter P and the area A are directly extracted from the features of the
contour C and are plotted in Fig.2.8C and D. We see as expected that the perimeter tends to
decrease as the thin film relaxes toward a circular shape, while the area remains almost constant
(mind the ordinate in graph D) which is a key information allowing us later on to assume the
incompressibility of the interfaces.

From C, we also deduce the geometrical parameters L and R. They define an approximate
arena-shaped geometry for C, with parallel straight lines of lengths 2L connected by semi-circles
of radii R. L is estimated by measuring the distance between the highest and lowest point of
C while R is deduce from the measurements of L and A as the area of the arena shape we
suppose has the expression for L ≫ R: A ≃ 4LR. We thus see that toward the end of the
measurement range we have, we end up with L(t = 1.5 s) ≃ 12 mm which remains much greater
than R(t = 1.5 s) ≃ 1 mm, and our assumption holds for the whole dynamics we study.

2.3.2 Comment on the chemistry

In the previous subsection 2.3.1, we displayed an example of relaxation with a peculiar chemistry
that is without dodecanol. We indeed tried to vary this parameter, but ended up with less reliable
data and a lack of repeatability arising as soon as we put any concentration of dodecanol, starting
from 35 mg/L up to 200 mg/L.

With dodecanol, the film either undergoes the exact same dynamics as the 13 previous ex-
periments shown in Fig.2.8, or at the opposite shows no relaxation at all. An example is shown
in Fig.2.9. In the case with no relaxation, which becomes more prevalent as more dodecanol is
added, the thin film remains elongated and eventually destabilises, bending along its length. We
hypothesise several origins for this wriggling behaviour during the time range of our measurement:

• Solid-like in-plane motions resisting shear due to heterogeneities of dodecanol concentration
at the interfaces. Dodecanol is known to undergo a phase transition at a water-air interface
and produce rafts of crystalline 2D phase [102] if concentrated enough. The concentration
threshold for this transition is not clear however, even more so in our case where the bulk
has SDS micelles, and the dodecanol population is distributed between the interface, the
bulk and the SDS micellar phase.

• Air movements at longer times, although in this case our repeatable experiments without
dodecanol should also be affected as we witness bending during the same time range as
our measurements.

This qualitative lack of repeatability makes us exclude dodecanol as a working
parameter, and all the results we will show and discuss in the following will come from
the same set of 13 experiments without dodecanol shown in Fig.2.8.
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Figure 2.9: Two examples for [DOH] = 200 mg/L. The repeatability is poor: on the left the
thin film relaxes with a kinematics quantitatively very similar to what is shown in Fig.2.8,
on the right the thin patch does not relax and eventually bends along its length.

2.3.3 Extracting the thickness profiles
In order to measure the thickness profiles, we collect the movie of the spectra along the line L of
Fig.2.5C, of which an example of frame at t = 1.5 s is shown in Fig.2.10A. We start by finding the
average spectrum Iwater of the lamp and exposition we use by averaging our frames over time and
position, yielding the green curve shown in Fig.2.10B. Now at a given time and position, we can
collect a spectrum I(λ) (blue curve in Fig.2.10B) and filter it by defining Ĩ(λ) = I

Iwater
− ( I

Iwater
)

where the top bar is an average over λ. The result is shown in Fig.2.10C. Given that the foam
film behaves for the light as a Fabry-Pérot interferometre of varying thickness 2h(y) observed at
an angle θ = 38o, we can directly have a prediction for the intensity:

Ĩ(k, 2h, θ) = Ĩ0 cos
(

4nkh
√

1 − sin2 θ/n2
)

(2.24)

Where n is the refractive index of water and k = 2π
λ

is the wavenumber. Thus, from an
intensity profile Ĩ(k, 2h) ∝ cos(αk × 2h) with α = 2n

√
1 − sin2 θ/n2 = 2.36, we can extract

the thickness 2h. The extraction itself is performed by taking the numerical Fourier transform of
Ĩ from the wavenumber space k into the thickness space H:

F [Ĩ](H) =
∫ kmax

kmin

Ĩ(k, 2h)eikHdk (2.25)

Where kmin and kmax are respectively the minimum and maximum wavenumbers given by the
maximum and minimum wavelengths detected by the hyperspectral camera. As eq.2.24 suggests,
in the thickness space we expect a dirac function centered around H = α × 2h convoluted by
a cardinal sine of width determined by kmax − kmin, which defines our resolution. Taking into
account the geometrical factor α of dilation of our thickness space (α = 2.36 in our case with
θ = 38o), the theoretical resolution is Hmin,th = π

α(kmax−kmin) ≃ 150 nm. However, given the
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Figure 2.10: Processing of the spectral images obtained for a typical experiment without
dodecanol at t = 1.5 s toward the end of the measurement range. A: Typical image obtained
with the spectral camera. The abscissa is the position along the monitored line with its
origin set in the middle of the thin film, the ordinate is the wavelength. The central zone
displaying a single large interference oscillation and delimited by the vertical red dotted line
is the thin film. The red shaded areas are blind zones where it not possible perform the
thickness measurement. The blue line is the abscissa y chosen for the example in B. B:
The blue curve is a typical intensity profile taken at a given y shown in A by the vertical
blue line. The green line is the spectrum of the lamp obtained by averaging the frames in
space and time. C: Normalised and centred intensity profile Ĩ out of which we extract the
thickness of the foam film at the given time and position y.

exposure and vanishing spectrum of the lamp at the edges of the spectral range of our camera,
our experimental resolution is estimated around Hmin,exp = 400 nm.

In the same way, our numerical integration is performed over a wavenumber space with finite
steps ∆k. Knowing that the difference of λ’s from one pixel to the next is always ∆λ = 1 nm
with a range λ ∈ [400, 1000] nm, the largest step in wavenumber as we integrate is ∆k =
2π

(
1

λmin
− 1

λmin+∆λ

)
= 4.5 × 104 rad m−1. This yields a theoretical maximum detectable value

Hmax,th = π
α∆k

= 30 µm which is never attained in practice.
In our measurable range Hmin,exp = 400 nm and Hmax,th = 30 µm, we now work to deduce

the profile 2h(y) out of the spectra F [Ĩ](H), looking at its highest peak. We also define a second
criterion which is a threshold to exceed for a peak to prevent noise. We thus consider both the
position and height of the peaks of F [Ĩ](H) in the thickness space H and have the following
cases which can be seen in Fig.2.10A and Fig.2.11:

• If the peak is above the threshold and positioned at H ∈ [Hmin,exp , Hmax,th] in the
measurable range, we attribute its position H to the thickness 2h = H. This is the case in
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the outer regions where the intensity profile Fig2.10B is taken, it corresponds to the grey
thick film and most of the thickness jump zone.

• If the peak is above the threshold and positioned at H < Hmin,exp, it is below our resolution,
the peak is too broad to be precise but intense enough thanks to our thresholding to rule
out noise to be its cause. A value of zero is attributed to the thickness 2h = 0. This
is the case in the inner region, between the two vertical red dotted lines, where a single
well-defined oscillation is measured along the λ axis. It corresponds to the coloured thin
flat film, that is located between the red dotted lines in Fig.2.10A, or equivalently in the
flat segments of Fig.2.11 set to zero.

• If the peak is below the threshold, or above it but located in H > Hmax,th, it is treated
as noise and we attribute the value 2h = NaN . This is what happens in the blind zones,
where the thickness profiles become too steep and hinder the measurement (red shaded
areas of Fig.2.10A or dotted lines of Fig.2.11).

This methodology is applied for each spectrum at each y for the given frame, and repeated
for each frame of the movie, building a thickness profile at each time of the experiment. Typical
thickness profiles obtained throughout a whole experiment are shown in Fig.2.11. The grey shaded
area corresponds to the lower resolution Hmin,exp. The dotted parts of the profiles correspond
to the blind zones where the thickness profile is too steep, neighbouring the edges of the thin
films. They are parabolic interpolations found by imposing the continuity of thickness 2h at both
the edge of the thin film (2h = 0) and the edge of thick film (2h > 0), and the continuity of
thickness gradient at the edge of the thick film.

Figure 2.11: Thickness profiles obtained along L at different times. The origin of time t = 0
is set when the motor stops its motion. The red line corresponds to the spectral image
taken as an example in Fig.2.10, and is the last thickness profile of our measurement range
t ∈ [0, 1.5]s. At this time t = 1.5 s, the foam film is in a state close to what is shown in
Fig.2.5D.
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2.3.4 Computing the resulting line tension
As we have access to the thickness profiles 2h during the relaxation (Fig.2.11), we now aim at
measuring the line tension T .

Note that we will be able to compute two values of T for each profile, as two thickness jump
zones are monitored at the same time by the spectral camera on both sides of the arena. To do
so, we provide again the theoretical formula of T , that is eq.2.15:

T = γ0

∫ ξmax

ξmin

||∇h(ξ)||2 dξ

The experimental values of the different terms involved in this equation are discussed below.

Surface tension γ0

The equilibrium surface tension γ0 is well known for a given chemistry thanks to a pendant drop
campaign already described in the Introduction 0 subsection 0.1.3. For our solutions with SDS
alone, it is γ0 = 35 mN/m.

Thickness gradient ||∇h||

First, we identify the y axis of our problem (along which we measure the thickness profiles in
Fig.2.11) to the direction of the thickness gradients on both sides of the thin film. We thus
define an axis ξ for each semi-profile, one going in the +y direction, the other oriented in the
−y direction. Along these axis ξ, we compute the gradients of the semi-profiles ||∇h||. They
need to be carefully computed, as any numerical derivative, but especially here that our thickness
profiles h have been interpolated in the blind zones where the contributions of the gradient is
important.

In the blind zones, we interpolate our thickness profiles by a well-defined parabola imposing
continuity of h at both ends of the blind zone and the continuity of ||∇h|| at the thick film edge.
These parts of the profiles are analytically well defined, and the computation of the gradient is not
a problem. In the thicker zones where we are able to measure h, computing a gradient requires
to smooth the profile. To do so, we chose to perform polynomial fits of order 3 starting at the
edges of the blind zones and going up til the end of a maximal length of integration ℓ∞ discussed
right after. As we do not constrain the 3rd order polynomial fit to respect any continuity of
thickness or thickness gradient, we will be very careful not to integrate the computed gradient at
the junction between the blind zone and the measurement zone.

Lower integration boundary

The lower boundary ξmin = 0 is always defined as the edges of the thin film, that is the first
non-zero values starting from the origin y = 0 toward the right or left.

Upper integration boundary

The upper boundary ξmax is a parameter to consider with caution in practice as ||∇h|| vanishes
smoothly. To build this discussion, we introduce an auxiliary function T (ℓint) defined as:
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Figure 2.12: Example of the dependence T (ℓint) with the length of integration ℓint (whose
retained value for the sake of computing T in the main graph is ℓ∞ = 3 mm). ℓ80 corresponds
to the length of integration where T reaches 80% of its maximal value obtained with ℓ∞.
This profile is obtained with the orange thickness profile of Fig.2.11, at t = 1 s.

T (ℓint) = γ0

∫ ℓint

0
||∇h(ξ)||2 dξ (2.26)

In which the upper bound is a free variable. In Fig.2.12 we show typical measurement T (ℓint)
made out of the orange curve of Fig.2.11 (averaged on both semi-profiles). We arbitrarily define
a length ℓ∞ = 3 mm beyond which we risk to start integrating the thickness gradient due to the
meniscus on the supporting frame. As expected from the smoothly-vanishing thickness gradients,
T (ℓint) plateaus smoothly as well.

2.3.5 Results
Measurement of T

The retained value for the line tension T at a given time step is T (ℓ∞). This is done for each
experiment of our set of 13, and the average over them is shown in Fig.2.13 (again the orange
dotted line is matched with the previous profiles of h and T (ℓint)). We thus have an estimate of
our line tension T (t) at each time, and we see that we are dealing with a tiny force, of the order
of T ∼ 10−10N.

Also, we see that it tends to increase with time, which is consistent with the fact that the
thickness profiles in Fig.2.11 tend to be steeper over time, leading to more important thickness
gradients.

The experimental error is the standard deviation over both semi-profiles of the 13 experiments.
In Fig.2.12, the error bars account for the difference in measured line tension between the left
and right thickness jump zones monitored by the camera, and a difference up to 20% is observed.
This remains under our global error due to statistical repetition which is of the order of 50%. The
fact that the measurement is performed in the flat regions of the contour, however, raises a good
question: do the curved edges undergo a local compression during the relaxation which would
change the local value of T where it effectively applies a force? This conundrum is addressed
later on in subsection 2.4.6, as well predictions for the evolution of T with time. In the following,
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Figure 2.13: Line tension T computed over time on the set of experiments without do-
decanol. The error is the standard deviation over the computations for 26 semi-profiles of
thickness 2h(ξ) which consist of 13 experiments, each with 2 monitored sides of the thin
film treated independently. The vertical dashed lines indicating particular times are colour-
matched with the thickness profiles given as examples in Fig.2.11.

we will assume that T (t) is a uniform scalar value along the line of tension whose sole dependency
is time, given by the experimental data in Fig.2.13.

Location of the force T

Figure 2.14: First schematic view of the contour C∗ as an arena of semi-width R∗, semi-
length L. The line tension T is applied at any point of C∗ (and is supposed uniform along
it, the factors 2 accounting for the two interfaces).

As stated in subsection 2.3.1, the thin film contour C is approximated to an arena with
parallel straight lines of lengths 2L connected by semi-circles of radii R. However, the values
of R being actually comparable to the typical values ℓint over which T is integrated,
the position where the line tension is applied becomes ill-defined. Thus, we need to
distinguish the contour C from the effective contour C∗ along which we consider the
line tension to be applied.

In Fig.2.14, we define C∗, a similar arena along which we consider that T is effectively applied,
with a semi-width R∗ defined as:
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R∗ = R + ℓ80/2 (2.27)

Where ℓ80 is the length for a given profile T (ℓint) so that T (ℓ80) = 0.8T (ℓ∞), which is
graphically represented in Fig.2.12. Both R and ℓ80/2 are of the order of ∼ 0.5 − 1 mm as
shown respectively in Fig.2.8F and Fig.2.12.

2.4 Modelling the relaxation of the thin film: we vali-
date our line tension measurement

Now that we have come up with a measurement for the line tension T (Fig.2.13), which has never
been measured before to the best of our knowledge, we want to validate the values we found.
To do so, a valuable piece of experimental knowledge is the time evolution of the geometry of
the thin patch as it relaxes towards a circular shape. All this information is shown in Fig.2.8.

In this section, we detail the equations leading to a prediction of the dynamics of L(t), the
semi-length of the thin patch, knowing the forces in the plane of the foam film. The force here is
the line tension, and the dynamics is found to be damped by air friction. We have a quantitative
agreement which validates our measurement of T . We first start by writing a general equation
of motion for a foam film with a line tension in its plane.

2.4.1 Equation of motion for a foam film with line tension
Let us consider a foam film with the same configuration as in Fig.2.2 Left, except we now keep
C∗ as a 1D object subject to a line tension T (mind the ∗ we have now due to the correction of
the contour detailed above 2.3.5). Besides the capillary forces we described in section 2.1, the
foam film is considered to be subject to friction both in its own plane with an intrinsic surface
shear viscosity and with air viscosity. An element of film of area dA taken in the inner or the
outer region of C∗ without crossing it have the force balance:

(
2ηs∆v + 2∇γ + 2fg + fη

)
dA = 0 (2.28)

Where v is the 2D velocity field in the plane of the foam film, ηs is the surface shear viscosity,
fg is the friction force on the air for one interface and fη the friction force due to bulk liquid
viscosity integrated over the thickness of the film. The factors 2 account for the two water-air
interfaces of the film. This equation is a 2D Stokes equation with exterior forces 2fg and fη.

If we now choose our element of film dA so that it crosses C∗ at the curvilinear abscissas
s and s + ds, we must add two terms for the line tension 2T (2 interfaces again) acting along
+t(s+ ds) and −t(s) the tangential directions of C∗. This gives the new balance:

(
2ηs∆v + 2∇γ + 2fg + fη

)
dA = −∂(2T t)

∂s
ds (2.29)

Which we can rewrite with the normal vector n and the local curvature of C∗ denoted κ(s).
We also consider T to be constant along C∗, giving:
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(
2ηs∆v + 2∇γ + 2fg + fη

)
dA = 2Tκ(s)n(s) ds (2.30)

This equation can be rewritten globally using a well-defined Dirac distribution. Let us define
a set of such functions δC∗ defined over S the whole foam film so that:

∀r′ ∈ C∗,
∫∫

S
δC∗(r − r′)d2r = 1 (2.31)

And eq.2.28 and 2.30 can be defined as a single equation at any point r ∈ S:

2ηs∆v(r) + 2∇γ(r) + 2fg(r) + fη(r) =
∮

C∗
2Tκ(r′)δC∗(r − r′)n(r′)dr′ (2.32)

This is the general equation for the in-plane motion of a foam film with a line tension acting
along a contour C∗ of any shape. This is still a specific case of a more general one, which is a
foam film with any thickness field h. In our case, the thickness gradients are very localised in a
specific zone, but a more general framework awaits the reader in Appendix 5.

Also, it has to be noted that equation 2.32 must be combined with a relationship between
the surface tension and the surface deformation in order to be a closed problem. Let us provide
one in the form of the incompressiblity of the interfaces.

2.4.2 Closing the problem: incompressibility of the interfaces
The question of whether the surfactant-laden interfaces we are dealing with are compressible, and
to what extent, is one of the main issues we attempt to address in this manuscript for multiple
situations. In the previous chapter 1, we considered extensible interfaces and measured their
surface elasticity Ef .

In the present case of our thin film relaxing toward a circular shape under the effect of line
tension, we will consider incompressible interfaces. To support this assumption, a first physical
quantity we can look at is the evolution of the area A of the thin region, shown in Fig.2.8D. It
varies slightly throughout the relaxation and we neglect these variations. This incompressibility
hypothesis is a key assumption for the model we will use later on. It is questionable however, as
a global condition over the conservation of the total area of thin film dA

dt
= 0 do not exclude local

compression and extension to occur. A discussion and additional arguments for this hypothesis
awaits the interested reader in subsection 2.4.6.

Thus, we write this condition ∇.v = 0, where we remind that ∇ is a 2D operator in the
plane (Oxy) and we have the full set of equations for the relaxation of the arena:

2ηs∆v(r) + 2∇γ(r) + 2fg(r) + fη(r) =
∮

C∗ 2Tκ(r′)δC∗(r − r′)n(r′)dr′

∇.v = 0
(2.33)

Now that the problem is closed, we need to find the solution for our velocity field v. Before
looking at the source term on the right-hand side of the first equation, let us have a closer look
at the damping forces on the left-hand side. Some simplifications can be made before finding a
suitable model for our geometry.
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Important remark: In subsection 0.2.5 of the Introduction, I already introduced this limit of
incompressible interfaces. There, I also refer to Appendix 2 where I developed a set of equations
for compressible interfaces in the limit of high elasticities. The resulting compressible correction to
the flow field is computed in Appendix 3, in the specific geometry of the line tension experiment.
We found that it is indeed a higher order correction for the sake of studying the relaxation
dynamics, and we discard it in the present chapter.

2.4.3 Damping forces: the Boussinesq number Bq
Before applying the above equation to our arena-shaped geometry, let us focus on the left hand-
side of eq.2.32. The first, third and fourth terms 2ηs∆v, 2fg and fη are dissipative forces
respectively accounting for the surface shear viscosity, the friction on the air and the liquid bulk
dissipation.

If we want to use it in practice, a natural question about the general framework eq.2.33 is:
What is the dominating damping force? This is not an easy question to answer, as surface shear
viscosity is highly chemistry-dependent. In fact, ηs is not well quantified in the case of
soluble surfactants, which is our case with SDS alone [36]. On the other hand, the bulk
viscosities are well known, but the resulting forces (especially in the gas) need to be treated
carefully. Let us define them more accurately and start by comparing these two.

Bulk liquid friction fη

As discussed in subsection 0.2.1 of the Introduction, only plug flows in the z direction are allowed
in our foam films, far from the menisci. This means that the only liquid bulk viscous contributions
to our equations come from the gradients of velocity in the plane of the foam film. They can be
integrated over z to give:

fη =
∫ h

−h
η∆vdz (2.34)

Where ∆ and v are here and again only defined in the (Oxy) plane of the foam film. The
scaling for this force is thus:

fη ∼ ηh
U

ℓ2
xy

(2.35)

Where η = 10−3Pa · s is the bulk viscosity of water, h ∼ 10−6m the thickness of the film,
U ∼ 10−2mm/s the typical in-plane velocity, and we need here to provide ℓxy the typical length
scale over which the flow field varies in the plane of the foam film. We take the experimental
order of magnitude ℓxy ∼ R∗ ∼ 10−3m (cf. the experimental section 2.2, subsection
2.3.5).

Gas friction fg

The tangential force applied by gas friction on an element of interface can be expressed:

fg = ηg
∂vg

∂z

∣∣∣
z=±h

(2.36)
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Where z is the normal direction to the median plane (Oxy) of the foam film, ηg is the dynamic
viscosity of the gas phase, and vg is the velocity in the exterior gas phase projected in (Oxy).
We suppose in our geometry that vg(x, y, z) = vg(x, y,−z) for any (x, y). This force scales as:

fg ∼ ηg
U

ℓz

(2.37)

Where ηg = 1.8 · 10−5Pa · s, U ∼ 10−2mm/s, and ℓz ∼
√

ηg

ρg
τ is a typical length scale for the

vertical gradient of velocity in the gas phase.
Giving an order of magnitude for this latter length raises the question of taking into account

gas inertia or not. An estimation of the Reynolds number for the gas in our problem gives:

Re = ρgUℓxy

ηg

∼ 1 (2.38)

With ρg ∼ 1 kg/m3 the density of the air.
In this regime of Reynolds numbers, the distance ℓz can be chosen as a Blasius length over

which a visco-inertial boundary layer develops in the neighbouring gas. Getting an order of
magnitude with this scaling means providing a typical time for our dynamics, which is of
the order τ ∼ 1 s (Fig.2.8), yielding ℓz ∼ 10−3m.

In the hypothesis of vanishing Reynolds numbers Re = 0, no typical length other than the
one imposed by the system can be constructed, and we necessarily have: ℓz ∼ ℓxy ∼ 10−3m
which remains of the same order of magnitude! This is important as we will later use in practice
a model at Re = 0 despite our computation Re ∼ 1, which is a strong hypothesis in our work.

Comparison between the bulk frictions: gas friction dominates

With the two scalings provided to fg and fη, we can now compute their relative importance:

fη

fg

∼ ηhℓz

ηgℓ2
xy

∼ 10−1 (2.39)

Meaning from now on we can discard the liquid bulk friction term fη from eq.2.33.

The Boussinesq number: comparing gas friction and surface shear viscosity

Thus, the two remaining damping forces are the surface shear viscosity (which depends on the
chemistry), and gas friction. In the literature, measurements of ηs for soluble surfactants such as
SDS, which we are using, are limited by subphase bulk friction [34, 36], and only upper-bounds
can be computed. We face the exact same problem in the case of in-plane motions of foam films,
except the subphase here is the gas phase rather than the liquid bulk.

Let us proceed with caution, and define a number to compare these damping forces, which
is called a Boussinesq number Bq. This is going to come in handy later on when looking at the
damped dynamics of the in-plane motions. Bq is defined in our case as:

Bq = ηs

ℓxyηg

(2.40)
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Where we again use the experimental coincidence that ℓz ∼ ℓxy for the gas phase. This
number will be a central parameter for the Saffman & Hughes model we are about to describe
and apply to our case in order to predict the relaxation dynamics.

2.4.4 Mapping on the Saffman and Hughes model
Effective forces in C∗ are applied at the curved edges

Figure 2.15: Full schematic view of our system. The inner red line is the arena defined by
the edge of thin film of semi-width R. The outer black dotted line is the arena defined by
the edge of thick film of semi-width R+ ℓ80. The plain black line is the arena of semi-width
R∗ = R+ ℓ80/2 retained to be the line of tension along which a tension 2T is applied (with a
factor 2 for the two interfaces). The domains Ω± are the cylindrical domains of fluid where
a force Fx = 4T pulls them toward the centre.

In Fig.2.15, we show the two domains Ω± where an effective force is applied in the fluid, that
is where the curvature of C∗ is non-zero. These two can be considered as impenetrable cylinders
as they both have a homogeneous velocity field of absolute value |dL

dt
|. Thus, eq.2.33 needs only

to be solved outside of these domains Ω±, where the line tension forces are zero.
Also, by definition of the tension (cf. Fig.2.2 and eq.2.9), Ω± are both pulled with a force

4T (two pulling edges times two interfaces).
The problem of describing the dynamics of relaxation of L(t) can thus be mapped

to the problem of predicting the kinematics of two thin cylindrical patches each pulled
towards the other with a force 4T in a fluid of surface viscosity ηs and subject to air
friction at their circular bases. The two cylinders are far from one another in the sens that
L ≫ R∗, and we anticipate that they can be treated independently, i.e. they both generate
flow fields that are negligible in the vicinity of their distant counterpart. We will validate this
hypothesis later on.

The mobility of an individual cylinder is known

Let us start by considering the problem of a single dragged cylinder depicted in Fig.2.16. An
infinite liquid sheet of medium plane (Oxy) and of width 2h has a viscosity of η. For scores
|z| > h we have a gas phase of viscosity ηg, and the interfaces {z = ±h} are incompressible and
have a surface shear viscosity of ηs. We consider a cylinder contained in the liquid sheet of radius
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R∗ and height 2h aligned with the z axis, and subject to a force Fx = 4Tex. No inertia is taken
into account, ruling out time as a variable. The velocity of the cylinder is thus colinear to Fx

and solving the problem is reduced to finding the friction coefficient ζ (Pa · m · s) defined as:

Fx = −ζ(Bq) Ux (2.41)

ζ is here a function of the Boussinesq number Bq defined in subsection 2.4.3 com-
paring surface shear viscosity to gas friction. It comes with the fact that, as demonstrated
in 2.4.3, the bulk viscous friction of the cylinder over its lateral area 2πR∗h on the neighbouring
liquid is negligible.

Figure 2.16: Notations used to describe the drag force applied to the cylinders Ω± subject
to a force Fx = 4T .

An exhaustive resolution of this problem has been developed first by Saffman [103] (1976)
in the low Bq regime, followed by Hughes et al. [104] (1981) who extended the prediction for
any Bq. The interested reader will note that what these studies call a surface shear viscosity is
defined in our notations by ηs = 2hη but they end up in the same physical situation as us, where
ηs exists on its own and η is set to zero. They solve for both the rotational and translational
problems of a cylinder subject to constant torque and force, but only the latter relates to our
situation.

Hughes et al. [104] compute the two limits Bq = 0 and Bq −→ +∞, and solve numerically
the in-between, yielding the black curve in Fig.2.17. The low limit ζ0 = ζ(Bq = 0) is given by:

ζ0 = 16ηgR
∗ (2.42)

And the asymptotic expression of ζ becomes, for large Bq:

ζ

ζ0
(Bq → +∞) =

π
4Bq

ln (2Bq) − Ce + 4
πBq

− ln (2Bq)
2Bq2

(2.43)

Where Ce ≃ 0.58 is the Euler-Mascheroni constant.
These predictions for the friction coefficient ζ(Bq) will allow us model the relaxation of the

thin film, as we measure directly both the force Fx = 4T applied to the edges and their velocity
of retraction U = dL

dt
.
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Figure 2.17: Mobility ζ as a function of the Boussinesq number Bq normalised by the low-Bq
limit ζ0. The black line is the theoretical prediction, the blue horizontal lines are the highest
and lowest experimental estimations of ζ made throughout the whole relaxation.

The retraction of C∗ can be treated as two independent moving cylinders

As said above, we have separated the problem of solving eq.2.33 into two different subproblems:

• Ω± are individual impenetrable cylinders each pulled with a force 4T towards the other.

• The flow field outside these domains can be solved by superimposing the two solutions of
eq.2.33 with source terms reduced to the drag of each cylinder.

The former subproblem needs the latter to yield a flow field which becomes negligible at the
distance separating the two cylinders. This allows us to see the dynamics of Ω± as two decoupled
problems.

The computation of the flow field in outside of Ω± has been done by Stone & Ajdari [105].
Compared to all the cases detailed in this paper, we have here an infinite subphase (H/R → +∞
with the notations of the paper), and we anticipate that we are in a subphase friction-dominated
regime (Λ ≫ 1 in the paper). Fig.7 of the paper shows that in our case, and with our notations
now, the amplitude of the velocity field imposed by one domain Ω± in the vicinity of the other is
below 0.1|dL

dt
| for 2L > 10R∗, which is always the case in our measurable range of time.

This validates our assumption that we can treat both domains independently and use the
Saffman & Hughes model to look at the dynamics of retraction of L(t).

2.4.5 Quantitative agreement in the air friction-dominated regime
The previous subsection 2.4.4 provides us with a model for the mobility ζ(Bq) of the edges of
the arena Ω± (cf. Fig.2.15). Experimentally, we measure at each time step both their velocities
U exp(t) = dL

dt
and the forces applied on them Fx(t) = 4T (t). Thus, for any time t, we now want

to compare the value U exp to a theoretical value:

U th(t) = Fx(t)
ζ(Bq) (2.44)
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Note that the model does not have time as a variable, as no inertia or time-varying forces
are among its physical ingredients. Each time step thus represents an independent measure to
compare to the model.

To get U th, we now only need to define in what regime of Boussinesq number Bq we are.
As discussed in [36], solid experimental clues set an upper bound for ηs in the case of soluble
surfactants (and micellar SDS in particular) at ηs ≲ 10−9Pa m s, allowing us to estimate in our
case:

Bq = ηs

R∗ηg

≲
10−9

10−3 × 18 × 10−6 ∼ 0.06 (2.45)

Meaning we expect to be in an air friction-dominated regime. With this in mind, the model
of Saffman & Hughes et al. [103,104] of subsection 2.4.4 gives the expression:

U th(t) = 4T (t)
16ηgR∗(t) (2.46)

A comparison with the experimental values U exp(t) = dL
dt

is shown in Fig.2.18. The middle
thicker blue line is the ratio U exp/U th computed with R∗ = R+ ℓ80/2, the higher blue line with
R∗ = R + ℓ80 and the lower one with R∗ = R. The uncertainties are shown with shaded areas
and correspond to the standard deviation over the 13 repetitions of the experiment, the lower
bound being taken with the lower line, the upper bound with the higher line.

Figure 2.18: Experimental and theoretical comparison for the relaxation speed. The theo-
retical values U th are computed in the low Boussinesq number limit, which corresponds to
an air friction-dominated regime. The three lines correspond each to a different definition
of R∗, from top to bottom: R∗ = R + ℓ80, R∗ = R + ℓ80/2 and R∗ = R. The uncertainties
are the extremal values obtained considering all three lines with their respective standard
deviations.

The quantitative agreement is good, as for t > 0.5 s we have U exp/U th ≃ 1.5±1.0. It means
we experimentally validate our measure of line tension T , assuming we are in the low Boussinesq
limit thanks to our chemistry. We can also express this in terms of experimental friction coefficient
ζexp:
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ζexp

ζ0
(t) = 4T (t)

16ηgR∗(t)U exp(t) (2.47)

Where time is again acting as a dummy variable listing independent measurements throughout
our working range t ∈ [0, 1.5] s. The maximum and minimum values for this friction coefficient
(taking into account all times t > 0.5 s and the uncertainties) are shown with blue lines in
Fig.2.17, and correspond as expected to the low Bq regime.

2.4.6 Important remarks and some calculations

Quantitative discrepancy at early times

In Fig.2.18, we see that for t ∈ [0, 0.5] s, we have a velocity U exp significantly higher than what
we expect with our model in the low Boussinesq model.

We are relaxing “too” fast and the explanation cannot be that we have taken the wrong Bq-
limit: higher Boussinesq numbers means taking into account the contribution of surface shear
viscosity besides air friction, leading to velocities lower than the U th we computed.

The only qualitatively reasonable explanation we have envisioned is an air displacement along
the y-axis coming from both directions towards the centre y = 0 induced by the displacement of
the motor in the +x direction. This would lead to a decrease in the relative velocities between
the moving edges of the thin film and the surrounding air, lowering the vertical velocity gradients
in the latter and thus lowering the friction.

As for validating this hypothesis... no complex or outlandish experiments trying to control
the air movements around the setup were attempted, and so no undergrad interns conducting
the experiments were harmed.

Spatial distribution of T (s)

The major weakness of the validation of our measurement of the line tension T is that it relies on
the bold hypothesis that T is uniform along the contour C∗ (of curvilinear abscissa denoted s).
In subsection 2.4.1 we assume this, supported by the fact that the measurement on both sides of
the arena are very close. However the line tension responsible for the retraction of the arena is
applied at the edges, where we do not measure it, and we have to rely on the assumption ∂T

∂s
= 0.

The risk we incur regarding this hypothesis is a local compression of the thickness jump zone
during the relaxation as the edges retract. This would lead to different line tensions at the edges
(where it applies the driving force) and in the straight parts of the arena (where we measure it).

In Fig.2.19B, we show a spatiotemporal image of the interference colours along the red line
of A and rearranged so that the middle of the arena is at the origin of x (thus correcting for
the slight global advection of the arena). The coloured patterns show that the compression ϵx is
applied in a uniform way along x. This is a solid experimental argument in favour of an equally
shared compression of the contour C∗ as it relaxes, and thus a uniform line of tension T .
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Figure 2.19: Temporal mosaic of the relaxation of the arena. A: The red line is the pixel line
along which each row of the mosaic is taken at every time step. B: Temporal mosaic centred
in the frame of the arena (the global advection of the arena in the frame of the camera is
corrected).

Time evolution of T (t)

In Fig.2.13, we see that the line tension T increases significantly by a factor 2 during the relaxation.
We want to rationalise this trend.

Let us first look at the scalings of T with the geometry of the thickness jump zone. If we
recall the expression of the line tension, we see that it scales as:

T = γ0

∫ ξm

0
||∇h||2 dξ ∼ γ0

δh2

w
(2.48)

Where δh is the typical difference of thickness between the thin and thick films, and w the
typical width of the thickness jump zone.

We can have an experimental access to both δh and w using the thickness profiles of Fig.2.11.
w can be estimated with w = ℓ80 defined in Fig.2.13 as the distance of integration from the edge
of the thin film where 80% of the value of T is attained. δh can be estimated as the thickness of
the thick film at the position where w is measured. Both are shown in Fig.2.20A-B, and graph
C is the normalised line tension defined as:

T ∗ = wT

γ0δh2 (2.49)

Which is now constant in time and close to 1, meaning our numerical integration and our
evaluation of δh and w went well.

During the relaxation, we see that both δh and w increase by similar factors ∼ 1.5 − 2,
hence the comparable increase of line tension as it scales as T ∼ δh2/w. What we want now to
rationalise is thus how δh and w grow as the line of tension relaxes.



100 CHAPTER 2. IN-PLANE MOTIONS IN A FOAM FILM

Figure 2.20:

If we get back to our general hypothesis that fluid exchanges between two neighbouring
elements of film are infinitely long (due to very slow Poiseuille flows as detailed in 0.2.2) we
can think of the thickness jump zone as a closed system, in the sense of volume conservation.
Thus, we would assume that VC∗ = δh × w × P is conserved during the relaxation, and, as the
perimeter P is a decreasing function of time (cf. Fig.2.8C), we would expect δh and/or w to
increase over time. However, the volume VC∗ contained in the thickness jump zone, estimated
with our measurement of δh and w, is shown in Fig.2.20D and increases as well.

This is puzzling, and hinders going further in the reasoning. A potential explanation is a
local compression along the direction tangent to C∗ of the thickness jump zone near our line
of measurement, which is located in the middle of the arena. Even in this case, what remains
unclear is why δh grows over time, as it is basically the thickness of the thick film. The areas of
both the thin and thick films being conserved (cf. Fig.2.8D), the product δh×A should remain
constant as well instead of growing because of δh. This could mean that not only the thickness
jump zone is being locally compressed, but also the thick film near it. To further advance on this
matter, we would need the thickness field everywhere in the foam film, or at least at the edges
as well.

Therefore, the function T (t) is assumed uniform along C∗ and its evolution in time is known
but not predicted. These are the main flaws of this novel force measurement.
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2.5 Conclusions of Chapter 2
• In-plane motions in foam films can be induced by the presence of a line tension T .

It originates from localised thickness gradients in the film and tend to minimise the
perimeter between pieces of film with different thicknesses.

• For instance, this line tension is relevant for the description of marginal regeneration
(cf. 0.3.4) where thin patches take circular shapes.

• We managed to create a foam film with a configuration where an elongated arena of
thin film is embedded in a thicker film, with a tension line separating them. The thin
film relaxes towards a circular shape to minimise the perimeter of the tension line.
We are able to measure simultaneously the line tension and the relaxation dynamics
of the arena.

• We are speaking of very tiny forces T ∼ 10−10N , whose precise measurement is a
novelty of our work.

• In the frame of our study, using a soluble surfactant (SDS), the in-plane motions are
damped by air friction and I analytically predicted the dynamics of relaxation of the
arena.

• The measure of our line tension T is in quantitative agreement with the predicted
kinematics for the relaxation motion damped by air friction. This validates our new
measurement.
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3
Dissipative phenomena in an elementary foam:

a matter of geometrical frustration

This last chapter is about the core of my experimental work. Here, we will be looking at the
rheology of an elementary foam, like my predecessors Adrien Bussonnière and Raphaël Poryles
did [4,6], gathering information on the viscoelastic response of this “local scale of liquid foams”.
Only now we focus on a system with three films that will allow us to better describe the viscous
response of these foams.

In fact, we will be able to quantify the exchanges of surfactants between the films and with
the meniscus during the deformation. This is important because a stretched film relaxes by
accepting some interface in its plane (cf. Frankel films 0.3.2) whereas a compressed film relaxes
by giving up some interface. Thus, quantifying the interface balance (i.e. the surfactant balance)
around the meniscus neighbouring these compressed and stretched films is the key experimental
piece of information needed to complete the rheological model developed in our group [4] and
before [1, 78].

The main result of this study, and thus of this thesis, is that in the range of strain
rate 1−10 Hz, and with all our SDS/DOH mixtures, we only witness film-film exchanges
of surfactants, and the meniscus does not play any role of reservoir in this balance.

103
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3.1 Rheology of an elementary liquid foam: geometric
frustration

3.1.1 An elementary liquid foam with three films
Our elementary foam is presented schematically in Fig.3.1, as well as the general principle of its
deformation.

Figure 3.1: Elementary liquid foam with three films. A: Side view with the three films (1
for the top left, 2 for the bottom left, 3 for the right) and the three interfaces shared by
the films (top, left and bottom interfaces). B: Perspective view of the foam, we impose the
velocities ui for each film using three motors. The distance between the two supporting red
frames is fixed at 4.2 cm.

Describing this system is equivalent to looking at the local scale of a liquid foam: one meniscus
neighboured by three films. In the Introduction 0, subsection 0.4.5, we look at the rheology of an
elementary foam with 5 films, and see the viscoelastic response of a Maxwell fluid. Going down
to three films and imposing deformations so that u1 = u2 = −u3, the response of the difference
of tension between film 3 and the two others is similar as shown in Fig.29A.

As stated in subsection 0.4.5, the flat deformed foam films have a non-linear elastic response,
and the mechanical dissipation is located elsewhere. We expect this region to be very localised
near the meniscus and to exist because of what we call a geometric frustration.

Investigating this is the motivation behind passing from 5 to 3 films. We want to be able to
better control the deformation state on both side of the meniscus. This was a problem with the
5-films configuration, as we could not deform the central film significantly.

3.1.2 Position of the problem
To understand where lies the problem of the viscous dissipation in our elementary foam, let
us look at a peculiar zone, depicted in Fig.3.2: near the meniscus, where the symmetry of
deformation imposes a stagnation point at the interface (blue cross). Given the three
films configuration, the presence of these stopping points is inevitable, and they result in what
we call a geometric frustration.
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Figure 3.2: Schematic view of the region close to the meniscus as predicted by Bussonnière
et al. [4]. A: Plug flows are imposed far from the meniscus, but because of the symmetry,
the left interface has a stagnation point (blue cross). B: Zoom near the stagnation point,
with the flow field u in blue, the surfactant flux Γu in red. The stagnation point implies the
existence of a sheared zone, whose length ℓ can be estimated [4] ℓ ∼ 100 µm. The stagnation
point is also a point of vanishing surfactant flux, and it is yet undetermined in [4] whether
the influx of surfactants on the left interface comes from the meniscus (jm) or from the other
film (jF ).

Fig.3.2B represents the flow field (blue) and the surfactant transports (red) in the foam near
the stagnation point, localised in the middle of the left interface. Most of our experimental results
are obtained in the symmetry of deformation and with the direction of the imposed velocities
shown in the figure.

The vanishing velocity at the interface imposes the existence of a sheared region near the
meniscus of length ℓ ∼ 100 µm which is described and estimated by Bussonnière & Cantat [4].
The model behind it and its estimation will be adapted to our own geometry in 3.2.4. This is
where the actual viscous dissipation occurs in the system.

The prediction of this length ℓ relies on the surfactant transport map. Here the stagnation
imposes the creation of interface on the left, for which we need to provide for its surfactants.
Two sources of surfactants can be envisioned here: either the top interface transfers some of its
surfactants with a transverse flux jF , or the meniscus provides for it with a flux jm. This is where
lies the main theoretical conundrum: these two fluxes must enforce the surfactant balance in the
system, but how shared is burden? Can we neglect one of them?

The relative importance of these two fluxes jF and jm determines the profiles of
surface concentrations Γt/l of surfactants along both interfaces, setting the Marangoni
stress boundary condition for the shear flow. It thus controls the value of the extension
ℓ of the sheared domain and eventually the amount of viscous dissipation in the system.

3.1.3 First hint
In order to get a first qualitative input about these exchanges, we look at the extracted pieces
of film in a stretched film and how it may depend on the compression/extension state of its
neighbouring films. In Fig.3.3, we impose a fixed deformation ∆Lin for a film and a varying
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∆Lex for the two neighbouring films. The three films have initially the same lengths Linit. This
corresponds to the deformation factors:

ϵin/ex = ∆Lin/ex

Linit

− 1 (3.1)

And we set a constant ϵin = +0.3 whereas we vary continuously ϵex from −0.5 (compression)
to +0.3 (extension). This latter case thus corresponds to an isotropic stretching of the elementary
foam. The deformations are imposed with fixed velocities so that all deformations have ended at
0.1 s thus corresponding to a strain rate of 10 Hz.

Figure 3.3: Geometry of the deformations applied to the films. All three films start at the
same initial length Linit. The horizontal film 3 is always stretched in the same way by a
distance ∆Lin, and we vary the deformation of film 1 and 2 (keeping it with a top-down
symmetry) with a distance ∆Lex. The direction of the deformation sets the sign of ϵex:
negative in compression, positive in extension.

Throughout the deformation, we witness the extraction of pieces of film in the plane of film
3 (undergoing the fixed deformation ϵin). It is a Frankel film as described in the Introduction
in subsection 0.3.2, which has a contrast in fluorescence with the preexisting film 3 due to a
difference of thicknesses. This allows us to measure a length Lout shown in Fig.3.4A, which is
a top view of film 3: the large bright fringe on the right is the motor after the stretch, the thin
fringe on the middle-left is the free meniscus linking film 3 to its vertical neighbours, film 1 and
2. Fig.3.4B shows the quantity Lout of Frankel film extracted by stretching film 3 as a function
of time for all the range of ϵex imposed to its neighbours.

What we immediately see is that the quantity of outgoing film Lout heavily depends on the
compression state of the neighbouring films. Even more interestingly, Lout completely vanishes as
the deformation ϵex of the neighbouring films tends towards ϵin, that is the case of an isotropic
stretching of the elementary foam. In this specific configuration, the films are unable to exchange
any interface by symmetry (we turn jF off), and we see that no interface seems to be
provided by the meniscus alone, suggesting that the flux jm is zero.

This is a first qualitative piece of evidence about the relative importance of these surfactant
exchanges. To further investigate this, we need to make the balance between the outgoing
quantities of interface of the extracted films as well as the quantitites of interface given up by
the compressed films.



3.2. THEORETICAL STATE OF THE ART 107

Figure 3.4: Quantifying the length out extracted film in the stretched film 3 depending on the
deformation of its neighbours film 1 and 2. A: Motor 3 imposes a fixed global deformation
ϵin = 0.3 to film 3, motor 1 and 2 impose the same global deformations ϵex ∈ [−0.5, 0.3] to
film 1 and 2. Lout = f(t) is the length of extracted film seen in the plane of film 3 throughout
the deformation. B: Lout = f(t) for the whole range of ϵex. The outgoing quantity of film
heavily depends on the deformation imposed to the neighbouring films, and vanishes for
ϵex = 0.3 = ϵin the isotropic deformation. This suggests that the flux jm (meniscus towards
the interfaces) is minimal in the surfactant balance around the meniscus.

First, let us have a closer look at the model for the sheared zone and how jF and jm intervene
in this theoretical description. It was first developed by Bussonnière & Cantat [4] in the frame of
the five films elementary foam. We propose here an adaptation with three films.

3.2 Theoretical state of the art: the Bussonnière &
Cantat model for the viscoelasticity of elementary
liquid foams

3.2.1 Theoretical description of the flat film, the sheared zone,
the dynamic and static menisci

The model developed in [4] will be useful for interpreting my results, and is briefly recalled here
for the sake of consistency. As the geometry is different, I have made the necessary minor
adaptations.

The model uses the following assumptions :

• The system is invariant by translation in the direction parallel to the free meniscus.
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• The shear is mainly localised in a region C (defined in Fig.3.5) where the curvature of the
interfaces can be neglected.

• The central piece of the films D undergo plug flows imposed by the motors.

• The dynamic menisci B bridge the sheared zone with the meniscus A. The curvature gradient
is localised here.

• The system is supposed in steady state at the time scale of the deformation.

• Most of the surfactants are at the interface, meaning we are in a case where Γ ≫ ch with
h the typical thickness of film and c the bulk concentration of surfactants.

The regions and notations are all shown in Fig.3.5 for our main symmetry of deformation where
the stagnation point is on the left interface. Note that all minus/plus signs, in/out exponents
and inequalities must be inverted if the directions of the imposed velocities are inverted (if we
want u1,2 to point inward and u3 to point outward). The main studied deformation has
this symmetry and these directions for the imposed velocities and is called “Push 3”
hereafter.

Figure 3.5: Symmetry of the imposed deformation (u1 = u2 = −u3) and notations for the
different zones considered in the model. γ’s are the surface tensions of the interfaces and σ’s
are the film tensions defined for zones D where the interfaces are symmetrical. Credits to
Bussonnière et al. [4].

It has to be noted that compared to what is shown in [4], the main difference between the
three films case and five films case is that the latter suppose that film 3 (the central horizontal
film) remains at rest with no deformation and with the equilibrium tension γ0. This assumption
is supported both by theoretical and experimental arguments detailed in [4]. For the three films
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case, film 3 is deformed and the tension conditions for the top/bottom interfaces at infinity in
zones C is γ3 < γ0. It only requires to redefine the reference tension in the model, which is
without important consequences.

3.2.2 Set of equations
Let us now write the coupled equations in region C. We need to write the conservation of momen-
tum, volume, surfactant, as well as the Gibbs identity coupling surface tension with surfactant
surface excesses, and the chemical equilibrium beween bulk and surface concentrations of sur-
factants. The notations for the local frame as well as the boundary conditions in zone C are all
shown in Fig.3.6 which is zone C of film 1, with the top and left interfaces.

Figure 3.6: Notations for zone C in film 1 (top and left interfaces). P0 is the junction with
zone D, Pm with zone B. The local frame is denoted (s, ζ) and the direction perpendicular
to it the direction z along which our system is supposed invariant by translation. h(s) is
the thickness of the film, v(s, ζ) is the flow field, with ut/l(s) denoting its values in ζ = ±h

2 .
c(s, ζ) is the concentration field of surfactants and Γt/l is the surface excess of surfactants at
both interfaces. Credits to Bussonnière et al. [4].

Let us start by the lubrication equation in the bulk, in which the pressure gradient is zero
as curvature is negligible in zone C. Also, the boundary condition for the velocity field at the
interfaces is given by the Marangoni stress so that:

∂ζζv = 0 (3.2)
∂sγt/l = ±η∂ζv

∣∣∣
± h

2
(3.3)

Where the ± sign in front of the shear accounts for the fact that the surfaces are oriented
towards ±ζ on the top and left interfaces.

Eq.3.2 comes with the direct consequence that the flow field is a simple shear flow of equation:

v(s, ζ) = ∆uf

h
ζ + um (3.4)
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Where ∆uf (s) = ut − ul is the difference of velocities between the interfaces and um(s) =
(ut + ul)/2 is the mean velocity across the film. Mass conservation thus writes:

Q =
∫ h

2

− h
2

v(s, ζ)dζ = umh = cst (3.5)

Which can be recast using the boundary condition at s → −∞ (towards domain D) where
v(s, ζ) = u∞ and h(s) = h∞:

u∞h∞ = h

2 (ut + ul) (3.6)

Now with eq.3.3, we must balance the stress in the simple shear flow with the Marangoni
stress, leading to:

∂sγt = η
∆uf

h
and ∂sγl = −∂sγt (3.7)

This is where we are able to see the beauty of shearing a foam film: the opposed gradients of
surface tension at the two interfaces means a difference of surfactant populations, and surfactant
transport from one interface to the other and at the boundary of C is what will completely
determine the shear in the end. And thus the viscous dissipation. We write this further using the
Marangoni modulus to link γt/l and Γt/l:

γt/l = γ0 − EM

Γt/l − Γ0

Γ0
(3.8)

Where Γ0 is the equilibrium surfactant population at rest and EM the Marangoni modulus of
the interface defined in the Introduction 0.1.4 with eq.11. This leads directly to, using eq.3.7:

−EM

Γ0
∂sΓt = η

∆uf

h
and ∂sΓl = −∂sΓt (3.9)

Meaning that the quantity Γt + Γl = 2Γ∞ is conserved along s in region C.

The next set of equations we can write in order to close the system is the diffusion field of
surfactants in the film as well as its conservation at the interface. As discussed in subsection
0.2.2, diffusion along ζ is considered to be instantaneous while diffusion along s is infinitely long.
We thus write:

∂ζζc = 0 (3.10)
∂s(Γt/lut/l) = ∓D∂ζc

∣∣∣
± h

2
(3.11)

Eq.3.10 yields a linear profile of c in the bulk for which the boundary conditions are given by
providing an additional equation for the chemical equilibrium, that is:

c(s,±h

2 ) = c0 + Γt/l − Γ0

hΓ
(3.12)
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This is the simplest model linking c to Γ, a more refined one was developed in chapter 1 and
the physical interpretation of hΓ for SDS/DOH mixtures is discussed in subsection 0.2.3. Solving
eq.3.10 with these two boundary conditions allows us to write the full field of bulk concentration:

c(s, ζ) = c0 + Γt + Γl − 2Γ0

2hΓ
+ Γt − Γl

hhΓ
ζ (3.13)

Combining this with eq.3.11, we arrive at:

∂s(Γtut) = −DΓt − Γl

hhΓ
and ∂s(Γlul) = −∂s(Γtut) (3.14)

Meaning that the quantity Γtut + Γlul is also conserved along s.
In the end, the conservation laws of momentum and surfactants can be written using the

boundary condition at s → −∞ (zone D) where we have a plug flow between identical interfaces,
leading to:

Γt + Γl = 2Γ∞ (3.15)
Γtut + Γlul = 2Γ∞u∞ (3.16)

Which allows us to substitute Γl and ul in the other equations, finally yielding a set of four
equations bearing on Γt, ut, ∆uf and h:

∂sΓt = −ηΓ0

EM

∆uf

h
(3.17)

∂s(Γtut) = −2DΓt − Γ∞

hhΓ
(3.18)

∆uf = (ut − u∞) 2Γ∞

2Γ∞ − Γt

(3.19)

h = h∞u∞(2Γ∞ − Γt)
Γ∞u∞ + ut(Γ∞ − Γt)

(3.20)

3.2.3 Boundary condition on the meniscus side s → sm: the sur-
factant flux jm as an unknown parameter

In order to close the problem, we need to provide for boundary conditions on the meniscus side
of the problem. To do so, we first need to define properly the curvilinear abscissa sm of point
Pm at which these conditions are applied.

This abscissa does not correspond to the point Ps of Fig.3.5, as the vanishing Laplace pressure
condition of region C becomes invalid in region B, the dynamic meniscus. Pm defines the frontier
between C and B where we suppose that the tension of the top free interface reaches the tension
of film 3: γt(sm) = γ3 + ∆γout + ∆γin besides two additional terms ∆γout/in corresponding to
the tension jump due to the dynamic menisci (cf. Fig.3.5). These two terms have been computed
in 0.3.2, and an estimate in [4] allows us to neglect them, leading to the final definition of Pm,
or abscissa sm so that: γt(sm) = γ3. This can be equivalently rewritten as:
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Γt(sm) = Γ3 (3.21)

This definition itself is not a sufficient condition to close the problem however, and we also
need to provide a condition for the left interface in sm. As beyond sm the top interface is
considered to be at its final value of surface excess of surfactant Γ3, the surfactant flux towards
the left interface necessarily comes from the meniscus and not the top interface. This takes the
form:

Γl(sm)ul(sm) + jm = 0 (3.22)

Where jm is the ad hoc flux from the meniscus bulk to the left interface between Pm and Ps

(introduced qualitatively in subsection 3.1.2). A phenomenological description of jm is developed
in [4], by writing it as :

jm = −Um

(
Γl(sm) − Γ0

)
(3.23)

where Um = rm/τ is a typical transport velocity with rm the meniscus curvature and τ a
typical time of adsorption of surfactants. This time can be estimated with a blasius layer of
diffusion of surfactant in the meniscus, knowing the typical interface velocities and diffusion
coefficient D. All these details are given in [4], but will not be of particular importance for the
following of this thesis work.

3.2.4 Numerical resolution of the system
The system made of eq.3.17-3.20 along with the boundary conditions eq.3.15, 3.16, 3.21 and
3.22 can eventually be solved numerically. The control parameter here is the surface excess
Γ∞ and the sought quantity is u∞.

Fig.3.7 shows the resolution of the system. Blue colours stand for the “Push 3” case we are
mostly interested in, where u∞ < 0 (represented in Fig.3.5 and 3.6), orange colours stand for
the other case where all velocities in films 1, 2 and 3 are of the opposite sign (same symmetry
for the stopping point).

Velocities Uc = E/η and Ud = D/hΓ are respectively a capillary and a diffusion velocity
defining a normalising velocity

√
UcUd. The solid lines stand for the case where jm is neglected.

The dotted lines stand for the case where jm is non-zero with Um imposed at: Um ∼
√
UcUd.

All curves end in s = sm where the condition 3.21 is met. Finding sm also leads, after
redimentionalisation, to an estimate for the length ℓ of zone C, and [4] yields ℓ ∼
100 µm.

First thing to notice for the vanishing jm case (solid lines) is that ul vanishes in s = sm,
meaning that we do not have a stopping point in Ps but rather a stagnant cap from Pm to Ps.
This is expected: without jm, the flux Γlul(sm) is zero: if not for Γl, then the interface velocity
ul(sm) must vanish.

Much less intuitive is the fate of h close to the meniscus: it thins out if film 1 is compressed
and it thickens if it is stretched! This is an indirect consequence of surfactant fluxes imposing an
extension to the mean flux um = (ut + ul)/2 in zone C with a sign opposite to that of zone D.
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Figure 3.7: Numerical resolutions for: (a) the surface concentrations of surfactants, (b)
the interface velocity fields and (c) the thickness profile. Credits to Bussonnière et al. [4].

In the end, the numerical resolution gives a relationship u∞ = f(Γ∞) with Γ∞ being the
control parameter in the system. This relationship is rather presented in the form of graph
∆σ = f(U) where ∆σ is the difference of tension between film 1 and 3 (directly linked to the
difference Γ∞ − Γ3 through the Marangoni modulus) and U = ut(sm) is found by solving the
system and finding u∞. We show the results for the case of negative u∞ (stretching film 1) in
Fig.3.8. The leftmost blue curve corresponds to vanishing Um (thus vanishing jm), the rightmost
red one to Um = 1000

√
UcUd.

Figure 3.8: Numerical resolution of the differences of tension ∆σ as a function of the interface
velocity U = ut(sm). The colours are for different values of Um from (blue) Um → 0, no
exchanges with the meniscus, to (red) Um = 1000

√
UcUd dominating exchanges with the

meniscus. Credits to Bussonnière et al. [4].

These stress-strain curves ∆σ = f(U) characterise the rheological response of the
elementary liquid foam. Thus, finding the value for the numerical free parameter Um

(and the flux jm behind it) is the key to predict them.
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3.3 Experimental challenge: measuring jm

Knowing the value of jm is thus the experimental challenge we face in the frame of this thesis
work. To investigate this, we now need to relate this quantity to experimentally measurable
quantities. The surfactant exchanges take the form of creation (resp. destruction) of interfaces
in the plane of the stretched film 1 (resp. compressed film 3). Below, we relate the amount of
surfactants leaving and entering the films to measurable lengths in these films.

Figure 3.9: Schematic view of the time evolution of the elementary liquid foam. The dots are
material points attached to the top interface. As film 3 is compressed with a motor velocity
−Vm, it gives up a certain length L̂in of interface, whereas film 1 (stretched with motor 1 at
+Vm) accepts a certain length L̂out in its plane.

The two lengths of interface we are interested in in the frame of this balance are L̂out(t)
and L̂in(t) (mm) which are represented in Fig.3.9 during a “Push 3” experiment where the hats
indicate the actual lengths we measure. Note that L̂out is directly measurable in the stretched
films as it is the length of a well defined piece of film. We define L̂in in the same way, but it has
no physical existence as it leaves the compressed film. It is actually the length that would have
the piece of film which disappeared if it was still in the film. They are time dependent quantities
as the deformation takes place and respectively carry the quantities Nout(t) and Nin(t) (mol) of
surfactants which write:

Nout(t) = 2Γ1(t) × L̂out(t) (3.24)
Nin(t) = 2Γ3(t) × L̂in(t) (3.25)

(3.26)

Where Γ1(t) and Γ3(t) are the surface concentrations of surfactants as defined earlier (Γ1
corresponds to the Γ∞ of the model). Here, they are time dependent variables, as the central
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region (region D in the model) of film 1 and 3 undergo stretching/compression during the defor-
mation. This last point rises a subtlety: Nout(t) and Nin(t) are not directly proportional to the
lengths of interface L̂out(t) and L̂in(t) as time goes by. To solve this problem, we must relate
Γ1(t) and Γ3(t) to quantities we can measure experimentally. This is doable by looking back at
eq.1.17 from chapter 1 section 1.3, where we define a film elasticity Ef , which can be related to
the definition of the Marangoni modulus eq.11:

σf = σ0 + Ef
ϵ

1 + ϵ
= σ0 − 2EM

Γ − Γ0

Γ0
(3.27)

Where we suppose that Ef = 2EM in presence of poorly soluble surfactants such as dodecanol
which dominates the elastic response, as discussed in 1.2.2. This allows us to write directly for
both films, 1 and 3:

Γ = Γ0

1 + ϵ
(3.28)

Thus, the lengths of interface at rest we will have to compare are Lout(t) and Lin(t) (mm)
which are the actual lengths of films corrected by the deformation factor of the film:

Lout(t) = L̂out(t)
1 + ϵ1(t)

= Nout

2Γ0
(3.29)

Lin(t) = L̂in(t)
1 + ϵ3(t)

= Nin

2Γ0
(3.30)

(3.31)

Which are the relevant quantities to measure. This is experimentally demanding as we
need to simultaneously measure the lengths of exchanged films as well as their states
of extension/compression.

On the other hand, we need now to relate the quantities of exchanged surfactants Nout(t)
and Nin(t) to jm. Let us define the time t = t1 when the deformation starts, and where we
impose constant and equal velocities ±Vm at the ends of film 1 and 3. Two precautions: first
the motor velocities ±Vm are not directly the velocities u1 = u∞ and u3 = ut(sm) as the zone D
undergoes extension (cf. chapter 1 where we study the elastic contribution of zone D). Second,
we consider that the velocities ui are uncontrolled time-dependent variables imposing u∞(t) and
ut(sm, t) in our model, and each time t is instantly at the relevant steady state given the imposed
velocities. In this frame, the quantities Nout(t) and Nin(t) as we defined them can be written as
time integrals:

Nout(t) = −
∫ t

t1

[
Γtut(sm, t

′) + Γlul(sm, t
′)

]
dt′ (3.32)

Nin(t) = −2
∫ t

t1
Γtut(sm, t

′)dt′ (3.33)

Where the factor 2 for Nin comes from the symmetry of “Push 3” imposing identical top and
bottom interfaces and where we identify the second term of the right hand-side of Nout using
eq.3.22: Γlul(sm, t

′) = −jm(t′). This leads to the interface balance:
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Nout(t) = 1
2Nin(t) +

∫ t

t1
jm(t′)dt′ (3.34)

Which is directly:

Lout(t) = 1
2Lin(t) + 1

2Γ0

∫ t

t1
jm(t′)dt′ (3.35)

This is the key equation to solve our experimental conundrum: quantifying Lout

and Lin allows us to deduce directly jm and the quantities of surfactant exchanged
with the meniscus during the deformation. Besides, two limit cases for these film-meniscus
exchanges can be envisioned. Fig.3.10 gives a schematic view of both of them.

Figure 3.10: Two extreme cases if: A The flux of surfactants from the meniscus to the left
interface is zero jm = 0, then we need to create 4 Lout’s out of 2 Lin’s, and Lout = 1

2Lin; B
The flux of surfactants from the top/bottom interfaces to the left interface vanishes near the
meniscus jF (s = sm) = 0, then the meniscus provides 2 Lout’s and we have Lout = Lin.

Vanishing flux from the meniscus jm = 0

In the case where the meniscus does not provide any surfactant to the frustrated interface, that
is jm = 0 (Fig.3.10A), the only ingoing surfactant flux for film 1 comes from the top interface
coming from film 3, and we directly have through eq.3.35:

Lout(t) = 1
2Lin(t) (3.36)

The simple and intuitive way to interpret this result is to see that if not for the meniscus, we
need to create 4 interfaces Lout out of 2 interfaces Lin, hence the factor 1/2.

Large flux jm

If on the contrary we allow the meniscus to provide as much surfactants as possible (meaning the
factor Um in the model is as large as we want in eq.3.23), the model eq.3.17-3.20 leads to:
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Lout(t) = Lin(t) (3.37)

Again, the intuitive interpretation is to see that at best, the meniscus provides for as many
surfactants as the ingoing interface Lin in order to allow the creation of the interface Lout on
the frustrated side. Providing more than that (i.e. Lout > Lin) is unphysical as the frustrated
interface is slower than the free one |ul(sm)| ≤ |ut(sm)| and its surfactant population lower or
equal Γl(sm) ≤ Γt(sm) .

The next sections 3.4-3.5 are about describing the setup and experimental protocols we used
to quantify the exchanges of surfactants, and how we simultaneously monitor the rheological
response of the system under deformation. The sections after, 3.6-3.8, detail all the data pro-
cessing and necessary precautions associated with the quantification of Lout and Lin. Section
3.9 shows and discusses the results.

3.4 Experimental setup and notations
As the state of the art of elementary liquid foams suggests, the number of coupling between the
physical ingredients at play in our system is high and the geometry already complex at this scale.
Although being the most elementary foam we can think of, three films connected by a meniscus,
this system shows all the couplings we can dream of!

In that respect, collecting a lot of different data in a very well controlled and reliable way is a
necessity if we want to better understand these couplings. The price we paid for that is a strong
automation of our experimental setup, and a lot of different cameras around it, which needed to
be synchronised very accurately (at the µs scale). Also, space management was the key... both
in terms of bulkiness of the different elements and in terms of lighting. The experimental set-up
allows us to measure the meniscus size and position, the film thicknesses and the velocity fields
in the films.

And thus what we reaped has proved to be highly reproducible. This is even surprising,
because some phenomena such as marginal regeneration seem to be quite turbulent and non-
reproducible. Despite all that, the measurements of deformations, deformation rates, and film
tensions in particular, have a good reproducibility for a given chemistry.

3.4.1 Chemistries
In the continuity of the experimental campaigns led with the five films rheometer in chapter 1
and [6], we use SDS/dodecanol mixtures to create our three films elementary foam. Thus, we
will know what to expect when it will come to measure the elasticities of our films. Note however
that contrary to this campaign we removed the glycerol and work with water-based solutions only.
Here are the characteristics of the solutions we use followed by the protocol:

• 1 L of demineralised water (with a resistivity as a proxy for its purity of 18 MΩ · cm)

• A concentration of SDS cSDS = 5.6 g/L = 19.4 mmol/L = 2.4 CMC
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• A concentration of dodecanol which varies from no dodecanol to cDOH = 50 mg/L =
0.27 mmol/L

• A concentration of fluorescein cfluo = 0.8 g/L = 2.4 mmol/L

We weight and put all the solid parts of the recipe (mSDS = 5.6 g, mDOH = {0 , 5 , 15 ,
35 , 50}mg and mfluo = 0.8 g) in a bottle thoroughly cleaned with one rinse with acetone
followed by several rinse with demineralised water of the same quality as used in the next step.
Dodecanol melting at 23 − 24 ◦C, it is cooled down in a fridge in advance if need be to allow a
precise weighing (which didn’t happen many times thanks to one other parameter being living in
Brittany). We then take one litre of demineralised water using a volumetric flask cleaned with the
same protocol as the bottle. The litre of water is then carefully added to the bottle containing
the solids by ensuring the water is flowing gently along the walls of the bottle to avoid excessive
foaming, which could lead to an inhomogeneous mixing by entrapping dodecanol crystals. We
add a magnetic rod to the bottle and put it on a heating magnetic stirrer at 50 ◦C for 2 h. The
bottle is stored in a dry place at room temperature. Mixtures of SDS/dodecanol being subject to
aging in a matter of days (even hours for refined physico-chemistry), the timing which is roughly
respected is a solution made between 2PM and 4PM used in the experiment the next day morning
at around 10AM.

NB: to cope with the aging problem, we tried different chemistries knowing that we need to
fill a 1 L tank of solution and allow the creation of centimetric foam films lasting tens of seconds.
The use of negatively charged fluorescein (which is conditioned by our cyan laser) prohibits the use
of cationic surfactants such as the TABs surfactants, as they interact with fluorescein and hinder
the fluorescence. Non-ionic surfactants were ruled out because of the foaming problem, and no
non-ageing anionic surfactant was found at a reasonable cost given the rather large quantities we
need. Thus, we kept on using SDS.

3.4.2 Notations for the 3-films elementary foam
The notations for the axis of the main frame (x, y, z) are shown in Fig.3.11, with x being
perpendicular to the free meniscus, parallel to the plane of film 3 and oriented towards motor
3. The system is supposed invariant by translation along z, the direction parallel to the free
meniscus (this invariance is discussed later in subsection 3.7).

Also, we will need to define local frames (xi, yi) for film 1 and 2, with in each case xi oriented
towards motor i. All these notations are shown in Fig.3.11A.

Eventually, we need some notations for the positions, angles and lengths in the system, as
the motors and the free meniscus all move during the deformations we impose. The origin of
the main frame is set at the initial position of the meniscus before we start any deformation.
This initial time will be made explicit later in subsection 3.5 while describing the protocol of
the deformation. The lengths Lm,i between the motors and the origin are the lengths actually
imposed in the system by moving the motors (see Fig.3.11B). The meniscus position is denoted
(XBP , YBP ) and is used to define all the other quantities: the lengths of the films denoted Li,
that is the length between the motors and the free meniscus, θ the bisector angle between film
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1 and 2, and θ3 the angle between film 3 and the bisector line of film 1 and 2. These two last
angles will be relevant to project the forces acting on the meniscus and thus to compute the
difference of tension in the system.

Figure 3.11: A: Notations for the local axis for all the films. B: Definitions of the different
lengths in the system, illustrated for an arbitrary deformation. The motors are the red disks,
here placed at arbitrary positions. The three foam films 1, 2 and 3 are the black lines, of
respective lengths L1, L2 and L3. The red dotted lines link the three motors to the centre
of the deformable frame, their lengths are denoted Lm,1, Lm,2 and Lm,3, and are the lengths
imposed experimentally in our setup. The centre of the deformable frame defines the origin
of the x and y axis, and we define the position of the free meniscus with the coordinates
(XBP , YBP ).

3.4.3 Motors, optics and photobleaching setup
Motors

The three moving edges of the supporting frame for the foam are attached to three independent
and identical motors PI mikromove C-867 PI-line M-663.5U. Macros defining their velocities and
position instructions are preloaded on them, and they are all synchronised with a DAQ card
National Instruments USB-6343. The velocity instructions can go up to V = 100 mm/s, but
we will keep it below V = 50 mm/s, as we start having significant discrepancies between the
required ramp and the effective movements of the motors at V = 60 mm/s.

Note that in the following, we extensively use “motor” for “mobile edge of the frame” by
metonymy.

PF Camera

Our main camera monitoring film 3 by fluorescence, named “PF Camera” hereafter, is a Photon
Focus MV1-D1312-160-CL. Its field of view encompasses the whole film 3 with a pixel ratio of
21.8 px/mm, recording 950 × 544 px frames at a rate of 278 Hz. It looks at the system from
above, thus, the bath of soapy solution being in its optical axis, we need to cover the latter
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Figure 3.12: Picture of the whole setup, letters are for cameras, numbers for other exper-
imental tools. A: Photon focus fluorescence camera “PF”, looking at film 3 from the top.
B: Plateau border camera “BP”, looking at the free meniscus from the side. C: Top fluo-
rescence camera “TPF”, looking at film 1. D-D’: Hyperspectral camera 1 “SP1” looking at
the thickness profile along a line contained in the plane of film 1. D’ is the other position
on the experimental setup where “SP1” can be attached to look at film 2. E: Hyperspectral
camera 2 “SP2” looking at the thickness profile of film 3. 1: Deformable frame where the
elementary foam is created. The foam films fluoresce green-yellow light, and the saturated
line connecting the triple points of the three-pointed stars is the free meniscus hanging in
the air. 2: Tank for the soapy solution, lying on a horizontal plate 3 moving up and down
using a stepper motor. 4-5: Blue and white lights used respectively for fluorescence imaging
and hyperspectral imaging. A second white lamp aligned with “SP1” is present but hidden
by the setup. 6: Temperature and humidity sensor positioned as close as possible to the
elementary foam.

with a printed cache so that we avoid stray fluorescent light. The trigger of the camera and the
collection of frames are all done through the DAQ card, with a precision on the synchronisation
and the timestamps of the frames on the order of a µs. A typical frame recorded by this camera
is shown in Fig.3.13.

BP Camera (Bord de Plateau)

The camera monitoring the free meniscus by fluorescence from the side, named the “BP Camera”
hereafter (for Bord de Plateau), is a Basler 1920-155uc camera mounted on a 12X Navitar
objective. Ingoing light is filtered using an orange filter to ensure that we only see the fluoresced
light of the elementary foam. The field of view is focused on a portion of a few millimetres
of free meniscus at the centre of the foam along the z axis, with a pixel ratio in the range
690−1300 px/mm and recording 1920×860 px frames at a rate of 150 Hz. The synchronisation
and collection of frames is done through the DAQ, with the same precision and in the same way
as for the PF camera.
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Figure 3.13: Typical frame recorded with the PF camera. Film 3 is the rectangle in the
middle, bordered on the right by motor 3 (thick saturated vertical fringe) and by the free
meniscus on the left (thin saturated vertical fringe).

One goal of this recording is to measure the radius of curvature of the free meniscus by looking
at the shape of the intensity profile. In order to get a clear signal, we need to remove the light
coming from film 3, whose plane contains the optical axis of the camera, parasiting the fluoresced
light from the free meniscus itself. While using this camera, a horizontal cache is placed between
film 3 and the blue LED lighting the system, so that only the free meniscus fluoresces toward the
BP camera.

An example of a full frame picture is shown in Fig.3.14A, along with the intensity profile I(y)
averaged over z in Fig.3.14B.

Figure 3.14: A Typical frame obtained with the BP camera. The very thin saturated fringe
in the middle localise the position of film 3, whose plane contains the optical axis of the
camera. B Intensity profile I(y) averaged along z. The positions of the shoulders of the
signal will allow us to compute the radius of curvature of the meniscus.
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SP1 and SP2 Cameras (for SPectral)

We use two hyperspectral cameras to monitor the three films, with “SP1” having two positions,
one for film 1, one for film 2, and “SP2” monitoring film 3. These cameras are Resonon Pika L
hyperspectral cameras mounted on 23 mm Schneider High Resolution VIS-NIR objectives. Along
a physical line of length 1024 px, they monitor the light intensity received for each wavelength,
with 600 pixels, each one dedicated to a wavelength λ ∈ [400, 1000]nm with a constant step of
1 nm between each. Depending on the zoom applied, the physical line can be seen with a pixel
ratio ranging from 20 − 30 px/mm. The scale is found by placing a mirror in the plane of the
foam film, on which a narrow strip of tape is affixed, aligned with z and of a well-known width.

TPF Camera (ToP Fluorescence)

Film 1 is imaged using a Basler 1920-155uc camera mounted on a 25mm Fujifilm objective
(Fig.3.12C) with 1920×800 px at a rate of 150 Hz. Ingoing light is filtered using a similar orange
filter as the one used with the “BP” camera. The “TPF” camera could not be aligned with the
normal y1 to film 1 because of a lack of space in the setup due to other cameras. However, it was
put as close as possible from it so that the parallax problem remains negligible for the sake of our
measurement, which is in the vicinity of the centre of the free meniscus. This is where the pixel
ratio is computed (33 or 35 px/mm depending on the set of experiments). The synchronisation
and collection of data is ensured using the DAQ just as for the other cameras. This camera does
not need any cache to remove stray fluoresced light (however a mat strip of tape was placed on
a metallic surface aligned with the optical axis to remove an inopportune reflection). A typical
frame recorded by this camera is shown in Fig.3.15.

Figure 3.15: Typical frame recorded with the TPF camera. Film 1 is the rectangle in the
middle.

Photobleaching setup

To describe the velocity fields in the planes of the films of the elementary foam, we need to create
passive tracers in the film that do not change the state of its interfaces. Thickness heterogeneities
which can be imaged by fluorescence could be a lead, but what we need here is a reliable and
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very localised information on the velocity field (at a scale smaller than the typical heteogeneity).
Thus, the group developed a photobleaching setup designed to locally deactivate fluorescein using
a cyan laser excitted at 488 nm to create tiny pieces of non-fluorescing bulk to track (kudos to
Jacopo Seiwert, Adrien Bussonnière, former post-docs of our group, and Emmanuel Schaub, the
research engineer of the soft matter department at the IPR). This setup was first developed in
2015 and a proof of concept was made with a study of convective transport in vertical foam films
by J. Seiwert et al. [106]. The main contribution in the frame of my Ph.D was to develop its
automation and to allow drawing arrays of dots with the life-saving help of Emmanuel Schaub.

The optical path of the laser is directed using small mirrors, passing through an acousto-optic
modulator AOTFnC-400.650-TN which serves as a very responsive shutter. Toward the end of
the path, the laser hits a mirror attached to a galvanometric scanning head dynAXIS to apply
tiny changes to its direction and is eventually directed down on film 3 to photobleach it from the
top. The shutter and scanning head responsiveness and their synchronisation allow us to shoot
in a reliable way down to ∼ 10 ms per dot, which happened to be the minimal time it takes to
create a dark enough dot in the film.

The laser is used at a power of 120 mW that requires optical protections in the form of glasses
and a special cage covering the optical path of the laser. The acousto-optic modulator and the
mirror with the galvanometric scanner are synchronised with a dedicated channel of the DAQ
card to emit localised flashes at specified positions on film 3 to photobleach them. The result is
a 2 × 8 rectangular grid of dark dots of typical diameter ∼ 100 µm shot with a precision of the
same order of magnitude which we made separate by ∆x = ∆z = 400 µm in both directions. It
is placed near the meniscus and with the two columns aligned with the z-axis. A typical frame
recorded by this camera is shown in Fig.3.16.

Figure 3.16: Zoomed image of the photobleached dots performed with the PF camera. The
saturated vertical fringe on the left is the free meniscus.

3.4.4 Interfacing and synchronising the experiment
The cameras, the motors (both for the deformable frames and to lift the soapy solution bath)
and all the photobleach-related devices are connected to the DAQ card for the synchronisation
and interfaced with LabView.
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The main code is fed with all the parameters: times, motors, cameras, photobleaching setup
and save paths. The motors are loaded with individual macros specifying their positions, velocities
and when to wait for a trigger to be synchronised together. The DAQ card is linked to all cameras
and motors and it triggers the different elements at the times specified by the parameters.

Regarding the cameras, it only launches the beginning of the recording, and the internal
clock of the cameras maintains the framerate. Each frame is collected with its timestamp, thus
preventing a mismatch between times and frames in case of frame skipping, which can happen if
the buffer is overfilled due to random RAM mismanagement events.

The movies, the positions of the motors and their timestamps are collected and stored as
binary files.

3.5 Detailed protocol for the “Push 3” experiment

Figure 3.17: Description of the “Push 3” experiment. A is the initial shape of the film
assembly, as extracted from the bath. B represents the preparation stage, which is required
to control the initial thickness of film 3. C is the deformation we want to address. All
numbers given along the different films are the lengths (in mm) between the centre of the
frame (triple point of the plain lines for t < t0, of the dotted line for t > t0) and the motors.
The red lines indicate which motors are involved at each step, along with their velocities
in red as well. The cyan cursor pointing downwards accounts for the photobleaching step
occurring at t = 31 s. θ is defined as the semi-angle between the vertical films 1 and 2.

The main results of this chapter are obtained in a specific deformation configuration referred
to as “Push 3”, as mentioned earlier and detailed below. In this configuration, films 1 and 2
are stretched, and film 3 is compressed over the same amplitude, at the same velocities, and at
the same times. The protocol is illustrated in Fig.3.17. Other types of deformations have been
investigated and will be compared to “Push 3” later on, as we will detail our results.

Before launching the code and the automated part, we start by cleaning the surface of the
bath with a custom squeegee (removing bubbles and impurities) and by setting the right light
given the choice of camera for the experiment. Note that because of RAM management and
lighting, we can only turn on one camera at a time during the experiments.
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The PF, BP and TPF cameras require blue light to image the system by fluorescence, and
we turn on the blue LED right from the start. The SP1 and SP2 cameras require white lights
specifically aligned with them for their interferometric measurement of thickness. These white
lights produce a lot of heat, thus we only turn them by hand during the main deformation as
specified later.

Then we launch the main LabView code with all the parameters we need, which are defined
in the following. The motor of the bath rises up til it immerses the deformable frame, for 5 s,
then goes down at a well-controled and low velocity of 30 mm/s to wet the frame in reproducible
way and avoid bubble formation. The trigger sent by the DAQ card to command the motor to
go down is the origin of times t = 0 for the experiment. Once the bath is down again, we may
put on different caches depending on the cameras (as discussed individually in section 3.4.3).

At this point the films are too heterogeneous in thickness to proceed to the main deforma-
tion, because of the broken invariance by translation along z and that would lead to a lack of
reproducibility of the experiments. The state of the horizontal film 3 is crucial in particular, as
the main deformation consists in compressing it after it has been photobleached. Right after the
formation of the elementary foam, film 3 can be seen in Fig.3.18A: the thickness distribution in
the film ranges from hundreds of nanometers to tens of microns. Patches of same thicknesses
tend to regroup for energy reasons (the same as what drives the relaxation of the thin film in
chapter 2) and the thicker ones are evacuated towards the menisci at the edges, replaced by
thinner patches (by the marginal regeneration instability discussed in 0.3.4).

We first let the film drain until t = t0 (Fig.3.18B and Fig.3.17B), then it is stretched slowly.
The result is Fig.3.18C, where the red arrows are the newly created films extracted from the
menisci (Frankels films cf. 0.3.2) which have the major advantage to be very homogeneous and
reproducible. The photobleaching step and the main deformation can be made from this state
at t = t1 as depicted in Fig.3.17C. The deformation performed at t1 is our actual measurement,
and varying the velocity of deformation V1 is our second parameter besides chemistry.

All the lengths Lm,i imposed between the centre of the frame and the motors i at all times
are given in Fig.3.17, as well as the velocities imposed.

NB: All the waiting to ensure a controlled state for the horizontal film 3 also has repercussions
on the other films 1 and 2:

• As gravity drainage occurs, it tends to make the top film 1 thinner and the bottom film
2 thicker. This has a direct impact on their respective elasticities, as a thinner film is
also stiffer as expected with our model of chapter 1 section 1.2.2. This dependency is
quite “slow” however, and one order of magnitude in thickness yields a factor two on the
elasticity. Boundaries can be set to this problem by monitoring mean thicknesses of both
film 1 and 2, which we will do using camera SP1.

• Allowing the menisci to drain for extended periods of time lead to the formation of thin
patches near the edges of the film (see 0.3.3). For menisci located at the bottom of their
films (the free meniscus for film 1, the meniscus supported by its motor for film 2) the 2D
Rayleigh-Taylor instability occurs (cf. section 0.3.5). This leads to the constant presence
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Figure 3.18: Fluorescence images of the horizontal film 3 (top view using the PF camera)
during the preparation phase. A: Right after the elementary foam is formed, the film 3
(indicated by the green line in B) is very heterogeneous in thickness (Fig.3.17A). B: Right
before the preparatory stretch, the film has drained and is more homogeneous in thickness
although some patterns are still visible. C: Right after the preparatory stretch (Fig.3.17B),
some newly created film went out of the menisci, identified with the red arrows. The pre-
existing film (which is a bit stretched in the process) is identified by the green line and double
arrows. The extracted Frankel films are very homogeneous and invariant along z.

of thin patches advected upwards, which has consequences for image processing in the
non-horizontal films.

3.6 Data and image processing
In this section, we will detail how we process the different movies to extract all the physical
quantities we need to describe our system. All the following numerical methods will be detailed
for the “Push 3” experiment, which is the main studied deformation of our elementary liquid
foam described in section 3.5. Other deformations such as “Push 1” and “Pull 3” require some
adjustments in movie processing, but the numerical methods remain broadly the same.

3.6.1 Tracking of the free meniscus in the horizontal plane

Extracted ingredient: XBP the horizontal position of the meniscus

When the films are pushed or stretched and the forces they exert on their neighbours change,
the free meniscus moves. The meniscus position will be related quantitatively to the tensions in
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the films in section 3.8. Here we focus on its horizontal motion by computing its position XBP

on the x axis.
As discussed in Bussonnière et al. [4] and seen experimentally in Fig.3.19A-B, the free meniscus

curves in the z-direction as it moves, taking a roughly parabolic shape X(z), and the position
XBP = δ1 + δ2 as we define it in Fig.3.19 is the position of its apex. Although we have δ1 ≃ δ2,
taking into account the parabolic shape for the sake of computing the angle θ between the film
leads to a negligible correction which has been computed and represents less than 1% of deviation
throughout the measurement. This correction had already been investigated and computed in
Bussonnière et al. [4] in a similar configuration, where the interested reader can find its formula
with the same notations for δ1 and δ2. In this study, we will thus only measure the apex position
XBP and not the whole meniscus shape.

Figure 3.19: Tracking of the free meniscus horizontal displacement, example with [DOH] =
50 mg/L at V1 = 50 mm/s. A-B: Top view (PF camera) of the system respectively right
before (t = 31.99 s) and just after (t = 32.1 s) the main deformation occurring at t1 =
32 s. The aspect ratio of the picture is deformed to better see the curvature of the free
meniscus as it moves. We directly see that the total displacement of the apex of the meniscus
XBP = δ1 + δ2 is the sum of δ1 the displacement of the free meniscus as a whole and δ2
the displacement of the apex due to the free meniscus curving in the z direction. Both
contributions are of comparable amplitudes. C: Zoom in the region of the apex of the free
meniscus of A with an aspect ratio faithful to reality. This zone is where we look for the
maximum of correlation of the binary mask D along x for each position z to estimate the
position of the apex of the parabola.

In order to track the position of the apex of the free meniscus, we use a correlation technique
with a correlation mask which is a bright vertical saturated segment with a well chosen width
and length on a black background (cf. Fig3.19D). For each position z in the region of the apex
of the free meniscus (Fig3.19C), we look for the maximum of correlation along x of our binary
mask. The value XBP is obtained with an average over z over the region encompassed by the
red rectangle in Fig.3.19A. This process is repeated for each frame individually, with the same
region of interest and the same binary mask.
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Figure 3.20: Typical curve XBP = f(t) obtained for V1 = 50 mm/s and [DOH] = 50 mg/L.
The error is smaller than the width of the curve. Each step of the deformation is placed
at its time of occurrence, see section 3.5. The preparation phase starting at t0 = 28 s ends
around t = 31 s and we photobleach film 3 between t = 31.5 s and 32 s.

Eventually, the origin of XBP is set so that at t < t0 = 28 s we consider it to be at its
rest position, the centre of the deformable frame as shown in Fig.3.20. No drift of the meniscus
position has been witnessed before that time, and this initial position appears as the right criterion
to define when the films meet with an angle of 120o. Thus we set XBP (t = t0) = 0.

3.6.2 Tracking the vertical position of the free meniscus and its
radius by ray tracing

Extracted ingredients:

• YBP (mm) the vertical position of the meniscus

• R (mm) the curvature radius of the meniscus

To determine YBP and R, we use the BP camera, located on the side of the meniscus
and whose a typical frame is displayed in Fig.3.14A. The intensity profiles are obtained by first
averaging each frame along the z direction, as shown in Fig.3.14B. The maximum of intensity
of each frame is tracked and corresponds to the centre of the meniscus, determining its ordinate
YBP (Fig.3.22A). This tracking is done without any correlation technique, as the resolution is
much greater than with the PF camera used for XBP , and we only look at the maximum of I
for each frame. Also, the displacements along the y direction are much smaller than in the x
direction due to the symmetry of the “Push 3” deformation, and the curvature of the meniscus
in the y direction does not need to be quantified.

Finding R is more indirect, as we need to look at the shape of the intensity profile and relate
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it to the shape of the meniscus. As depicted in Fig.3.21, a ray-tracing simulation was necessary
to link R to the profile Ifluo. I developed the simulation with the following assumptions:

• The meniscus has its equilibrium section, that is three sectors of three circles of radii R
tangentially connecting one another (cf. left of Fig3.21)

• We only consider the fluoresced light, which is supposed to be emitted in an homoge-
neous and isotropic way in the volume of the meniscus. Each emitted ray is subject to
reflection/refraction laws at the three curved water/air interfaces.

• We only collect the rays going out of the meniscus horizontally, which we retrace back in
the volume. Each segment of their trajectories contributes to the intensity proportionally
to its length and the number of reflections (where most of the intensity is lost) before going
out towards the camera.

The resulting intensity profile Ifluo shown in Fig.3.21A closely resembles the experimental
observations depicted in Figure 3.21B, with a sudden drop of intensity beyond an ordinate y =
0.208R from the centre. This decrease is noticeable in the simulation as soon as we consider the
first reflection within the meniscus. Including more than the second reflection did not result in a
significant modification of the intensity pattern.

Figure 3.21: Ray tracing simulation for a fluorescent meniscus. A: we define an ideal free
meniscus composed of three interfaces of curvatures R in contact. The red lines are the
outgoing rays seen by the side. On the right, the resulting intensity profile as a function
of the ordinate (normalised by R), where the shaded coloured areas are the contributions
of the different rays: ray without reflection (green), with one reflection (light blue), or two
reflections (purple). B: Identification of the intensity drop on experimental data.

The global maximum of I(y) sets the origin of y for the sake of computing R (Fig.3.21B).
The intensity drops are then detected on each semi profile at ydrop = 0.208R allowing us to
measure R. This detection is realised by looking at the lowest absolute values of y where the
absolute value of the gradient of intensity ∇I = ∂yI exceeds a certain threshold, which sets the
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Figure 3.22: Results of the detection via the side camera “BP” for an experiment at [DOH] =
35 mg/L and Vdef = 50 mm/s. A: Ordinate of the free meniscus as a function of time around
the time of deformation. YBP = 0 is set at t0 = 28 s the time of preparation. B: Radius of
curvature of the free meniscus measured over time. During the deformation itself (between
t1 = 32 s and t = 32.1 s), the free meniscus goes too far off focus, leading to the presence of
a blind zone in the detection.

edge of the drop in intensity of the semi-profile. From this detection, we extract for each frame
two radii of curvature (for the top and bottom semi-profiles) which are very close in practice, and
we define for each frame the radius R(t) as the mean between the two. A typical profile is shown
in Fig.3.22B. Note that we have a blind zone during the deformation, as the meniscus goes too
far off focus (and probably out of our equilibrium assumption for the geometry), hindering the
measurement of R.

3.6.3 Tracking the edges of Frankel films in the horizontal film 3
Extracted ingredient:

• LF r,3 (mm) the length of Frankel film near the free meniscus in film 3.

• LF r,3,ext (mm) the length of film between the edge of the free meniscus and the
Frankel film bordering motor 3.

After the preparation phase at t0 = 28 s, two Frankel films are created in the plane of film 3,
one at the free meniscus, one at the edge of the motor (see Fig.3.23C). Their respective areas
decrease during the main deformation as we compress film 3. Our goal is to track the edges
of these films during the main deformation. We will define all the positions we extract with
respect to the edge of the free meniscus. The boundaries between the thin/thick pieces of film
are material points (cf. subsection 0.3.2), they are highly relevant to track the in-plane motions
in the x direction.

The exact edge of the free meniscus is hard to find experimentally however, as the meniscus is
saturated in fluorescent light, being much thicker than its neighbouring foam films, thus hindering
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Figure 3.23: A: Geometry of the free meniscus of radius of curvature R. The black dot is the
centre of the meniscus located in (XBP ,YBP ), the green one the edge of the flat film, the red
one the edge of the Frankel film produced during the preparation step. B: Intensity profile
of C averaged in the z direction taken at t = 31.9 s. C: Film 3 at t = 31.9 s (i.e. before
the deformation) seen from the fluorescent camera PF from the top. The green line is the
edge of the free meniscus. The red rectangle is where the correlation mask is chosen to track
the Frankel film LF r,3. Similarly the blue rectangle is the correlation mask used to track the
edge of the Frankel film bordering the motor to get LF r,3,ext. D: Positions of the edges of the
Frankel films detected over the deformation. They are defined with respect to the edge of
the free meniscus. The example we give is for a solution of concentration [DOH] = 35 mg/L
whose films are deformed at Vdef = 20 mm/s.

a sharp measurement of its edge. To solve this problem, we must rely on the estimation of the
curvature radius R (determined in section 3.6.2) to be able to localise the edge. As shown
in Fig.3.23A if we consider that the meniscus remains close to its equilibrium geometry, the
meniscus edge is located in XBP +

√
3

4 R (green dot in the figure), which we estimate using
the radius R(t1 = 32 s) found right before the deformation. This

√
3

4 R correction represents up
to 10% of the values of LF r,3 shown in Fig.3.23D, and thus is better known than let to the
uncertainties. Besides, we see with Fig.3.22B that the meniscus radius R has varied little during
the deformation (which is a blind zone for the measurement), thus we choose a single value R
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for this correction that is the value at t1 = 32 s.
The tracking of LF r,3 is performed by image correlation on successive frames. We initialise

the procedure right before the main deformation at t = 31.9 s by taking the intensity profile Iavg

averaged over the z direction, with z in the range delimited by the coloured rectangles shown in
Fig.3.23. Note that the lighting increases from left to right in Fig.3.23B, leading to the intensity
gradient of fluoresced light, but both Frankel films at both edges have very similar thicknesses as
shown later in section 3.6.5. Using the first and second derivatives ∂xIavg and ∂xxIavg, we look
where we have simultaneously a negative enough slope (with a well-chosen threshold) and an
inflection point on the second derivative. The lowest x position is retained as the initial position
of the Frankel film on the free meniscus side and is shown in Fig.3.23B with the vertical red line.
Once this initial position is found, a first correlation mask is defined around it by cropping the
image with an area shown in red in Fig.3.23C. Each following frame is then compared with this
mask, where the maximum of correlation along the x-axis is found and set to be the new position
of the edge of Frankel film, allowing us to draw LF r,3(t). The mask is refreshed every few frames
in order to keep an accurate detection.

The detection of LF r,3,ext(t) by tracking the edge of Frankel film at motor 3 (blue lines and
mask in Fig.3.23) is done in a similar fashion. The only difference is the initialisation done by
clicking directly on the intensity profile Fig.3.23B while monitoring the frame Fig.3.23C. This is
due to a less repeatable initial state: the initial position of this Frankel film can vary by up to a
millimetre, and be neighboured by a central film of different thickness heterogeneities pattern.

3.6.4 Tracking the Frankel film in the top left film 1
Extracted ingredient: LF r,1 (mm) the length of Frankel film going out of the free
meniscus at the bottom of film 1 as it is stretched during the main deformation.

In this subsection, we detail how we detect the outgoing Frankel film in the stretched film 1
using the TPF camera.

In Fig.3.24A-C we detail the relative position of the camera with respect to the films, and
show a typical image obtained as we record. For each frame, we first detect the position of
the free meniscus which we set to be the origin of the local axis x1 as shown in Fig3.24D. This
is done by looking at the position of the middle of the rightmost saturated continuum of the
cropped frame Fig.3.24C. As the image of motor 3 is also saturated, this works only when both
domains are separated (see Fig.3.24C). At longer times, motor 3 becomes too close and only the
right edge of the saturated fringe of the meniscus can be distinguished. Thus we keep memory
of the semi-length of the free meniscus (which varies very little throughout the experiment), and
place the origin of x1 with respect to the rightmost edge of saturation by retrieving the stored
semi-width.

The detection of the edge of the Frankel film located along the free meniscus in film 1 is
based on the same principle as the initialisation of the algorithm of the previous subsection 3.6.3.

The detected edge of Frankel film allows us to define LF r,1 as the length between it and the
edge of free meniscus, whose position is deduced in the same way as for the previous subsection
3.6.3 by taking into account the length

√
3

4 R. We plot an example of result in Fig.3.24E where
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Figure 3.24: Detection process of the outgoing Frankel film in film 1, the example is given
for an experiment at [DOH] = 35 mg/L and V1 = 50 mm/s. A: Full frame image of film
1 at t = 32.1 s at the end of the main deformation. Film 2 is also visible on the left. B:
Schematic position of the camera with respect to the elementary foam. C: Cropped portion
of the frame used to detect the outgoing Frankel film. D: Intensity profile Iavg obtained by
averaging C over the z axis. The leftmost saturated fringe is motor 3 entering the field of
view at the end of the deformation, the rightmost one whose centre is set at x1 = 0 is the
free meniscus. The green line is the edge of the free meniscus, the blue one is the detected
position of the edge of outgoing Frankel film. E: Detected length of outgoing Frankel film
LF r,1(t) as a function of time. It is defined with respect to the edge of the free meniscus. At
the earliest times of deformation the detection is hindered by the saturating brightness of
the free meniscus.

t1 = 32 s is the time of deformation. It has to be noted however that at earliest times after
t1 = 32 s, when the deformation as begun, the edge of Frankel film is not detected as it is
too close from the saturated fringe of the free meniscus, hence the presence of a blind zone in
Fig.3.24E.

3.6.5 Thickness profiles with hyperspectral cameras

Extracted ingredients:

• H1(x1, t) (µm) the thickness profiles of film 1 before the main deformation (for
t < t1 = 32 s).

• H2(x2, t) (µm) the thickness profiles of film 2 before the main deformation (for
t < t1 = 32 s).
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• H3(x3, t) (µm) the thickness profiles of film 2 before the main deformation (for
t < t1 = 32 s).

Figure 3.25: Example of thickness profiles measurements on [DOH] = 35 mg/L at t = 31.9 s
just before the deformation. A: Spectral image of film 2. x2 is the local abscissa aligned with
the axis of deformation of the film defined so that x2 = 0 is the position of the free meniscus
(cf. Fig.3.11). The ordinate is the wavelength λ for each value of which we measure the
light intensity. B: In blue, we show a typical spectrum obtained at a given position x2 = 3
mm located on A by the blue line. In red, we show the average light spectrum, obtained by
averaging the spectra over time and x2. C: Filtered spectrum extracted from B which varies
as cos(αH/λ) from which we extract the thickness H. D-E: Thickness profiles obtained for
the 3 different films along their respective local abscissas x1, x2 and x3 (with x3 = x) at
t = 31.9 s just before the deformation.

We probe the system with our hyperspectral cameras to get the initial distributions of thick-
nesses of the three different films before deforming them at various velocities. This will allow
to monitor the differences of initial states between the films, as gravity drainage occurs before
we start deforming the films at t1 = 32 s. However, measuring during the deformation was not
possible, and motion blur could be a reason.

In order to measure the profiles, we collect the movies of the spectra for the three films, of
which an example of frame right before the deformation at t = 31.9 s is shown in Fig.3.25A.
The procedure is then similar to what is detailed in chapter 2, subsection 2.3: The raw
intensity profiles I (Fig.3.25B) are processed in order to get the normalised and centred profiles
Ĩ (Fig.3.25C) from which a thickness H(y, t) is extracted.

Fig.3.25D-F show the typical profiles measured for the three films of the elementary foam at
t = 31.9 s for the chemistry [DOH] = 35 mg/L. These are the profiles right before the main
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deformation at t1 = 32 s, and we see that film 2 (at the bottom) is twice as thick as the other
films because of gravity drainage.

3.6.6 Tracking of the photobleached dots
Extracted ingredients:

• Lc,1 (mm) the distance between the edge of the free meniscus and the first column
of dots.

• Lc,2 (mm) the distance between the edge of the free meniscus and the second
column of dots.

• (Xk,Zk) (mm) with k = [[1, 16]] the positions of the photobleached dots

Figure 3.26: Example given on [DOH] = 35 mg/L at t = 31.99 s just before the deformation.
A: Zoomed frame of the PF camera in the region where the photobleached dots are created,
near the free meniscus, which appears as the vertical saturated fringe. The yellow disk is the
position of a dot, the yellow rectangle is the correlation mask chosen around this position,
and the green rectangle is the correlation area where the mask will be moved in the next
frame to seek the new position of the dot. B-C: Intensity profiles I along the x and z axis
taken along the lines of matching colours in A. The coloured lines are only here as guides
for the eye. The black lines are the affine profiles Igrad computed using the average profiles
over both directions of the correlation area. This correction is especially necessary in the
x direction as the free meniscus fluoresces much more than the foam film. D-E: Corrected
profiles Icorr where we suppress the local gradient along the given axis in order to better
localise the local minimum of intensity. The apex of the parabolic fits gives a subpixellar
estimation of the position.
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After the preparation phase at t0 = 28 s, which ends at around t = 31 s, the system is let
to relax around one second before the deformation at t1 = 32 s. In the mean time, we use our
cyan laser to photobleach two rows of dots in the Frankel film bordering the free meniscus in
film 3. Once the last dot is shot, we start tracking them individually via the PF camera. They
remain aligned in their respective rows as they are pushed towards the free meniscus when the
“Push 3” deformation occurs with a very good repeatability. The initial positions at t = 31.9 s
are roughly determined by clicking all the dots of each first frame of each experiment. The true
initial positions are found by looking for the local minimum of intensity in the close vicinity of
the clicked pixels.

Once the initial position of a dot is given, we start by defining a correlation mask around it,
shown in the form of a yellow square in Fig.3.26A. We then look in the next frame the position
where it correlates the most in a wider correlation area defined by the green rectangle in Fig.3.26A.
This gives a first estimate of the next position of the dot, however, we need to look around it
for the real local minimum of intensity, as even an offset of one pixel would rapidly lead to a
misalignment between the centre of the next correlation mask and the centre of the tracked dot.

In order to do so, we look at the intensity profiles Iavg,z(x) and Iavg,x(z) averaged and
computed over the dimensions of our correlation area and we compute their respective gradients.
This leads to the definition of a correcting intensity surface, which is a tilted planar surface we
retrieve to the original intensity surface. In Fig.3.26B-C two examples of raw intensity profiles I(x)
and I(z) are chosen respectively along the blue and red lines of Fig.3.26A. In black, we display
the calculated gradients of the average profiles, and in Fig.3.26D-E, we have the corrected profiles
along the same lines. Using these last two, we can find the pixel of the local minimum of intensity,
which will be defining the next correlation mask.

Eventually, we estimate the position of the local minimum with a subpixellar resolution by
fitting the intensity profiles along x and z with two parabolas around the pixel of minimum of
intensity. The coordinated found by doing so are stored as the Xk and Zk positions of dot k for
the given time of the frame.

Using these positions, we are be able to evaluate Lc,1 and Lc,2 (Fig.3.27) the distance between
the edge of the free meniscus and the average position of each column 1 and 2 (containing 8 dots
each), with whom we will later try to evaluate the compression of film 3 ϵ3. The positions of the
dots Zk along z will also allow us to monitor the nullity of the compression ϵz along z, which is
a key measurement to ensure our invariance by translation along this direction (see section 3.7).

3.7 Monitoring the invariance by translation along z

All the experiments and result we aim to establish have been thought as invariant by translation
along the z axis. The main direct consequence of this sought invariance is to allow us to write all
compressions happening in the film as uniaxial compressions, meaning any surface compression
can be written discarding the z terms:

1
A

dA

dt
= ∂vx

∂x
(3.38)

Where A is an area of a piece of film and vx the local velocity along the x axis.
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Figure 3.27: Monitoring the positions of the edge of prepared Frankel film and the photo-
bleached columns. A: Zoom near the meniscus in film 3. The vertical bright fringe on the
middle left is the free meniscus, film 3 is on its right. The red line localises the detected edge
of prepared Frankel film, whose distance from the edge of free meniscus is LF r,3, the green
and yellow lines localise the two columns of photobleached dots, whose distances from the
edge of meniscus are Lc,1 and Lc,2. B: Time evolution of the distances defined in A. The
main deformation happens at t1 = 32 s, where film 3 is compressed.

Figure 3.28: Measurement of the compression along the z axis on an example of [DOH] =
35 mg/L at V1 = 35 mm/s. A: We track the lengths lz,1 and lz,2 defined as the distances
between the upper and lower dots of each column throughout the whole experiment. B:
We define the deformation along z, ϵz = lz/lz,init − 1 and make an average of this quantity
over both column and over all the repetitions of the experiments. The error is the standard
deviation associated with this average. The vertical black dotted line is the time t1 = 32 s
at which the main deformation starts.
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The main indicator that it is verified is by monitoring with the photobleached dots that the
compression ϵz along z is close to zero. This could be defaulted by two main reasons more or
less easy to identify.

Two possible causes for a broken invariance

• A local one: the meniscus-flat film junction instability, which tends to create semicircular
patches of thin film spontaneously going out of the meniscus (see section 0.3.4 relying on
the work of Trégouët et al. [66], Gros et al. [107]). This one can be easily seen once it
is triggered, as the thin semicircles are regularly dispatched along the z axis and hinder
thicker film to approach the meniscus.

• A global one: the relaxation of the thick Frankel film we created next to the free meniscus
during the preparation. Due to the presence of a line tension between the thick prepared
Frankel film and the thin film preexisting the preparation phase of “Push 3”(see section 3.5
for the preparation step, chapter 2 section 2.2 for the line tension), the Frankel film tends
to relax at longer times. This can be directly seen far from the centre, where the lighting
is poor, making this cause for a broken invariance less obvious and more dangerous.

In both cases, measuring that the field ϵz is null is the main indicator that these phenomena
do not hinder the measurement.

Control of the invariance

In order to do so, we use our photobleached dots and define the distances lz between dots aligned
along the z axis as illustrated in Fig.3.28A. The deformation along z is thus defined as:

ϵz = lz
lz,init

− 1 (3.39)

Where lz,init is the initial length taken right at the beginning of the dot tracking, that is after
the preparation phase. Thus it does not take into account the pre-deformation applied to film 3
during this phase. However, it shows how little it varies anyway during the main deformation. In
Fig.3.28B, we see that ϵz remains of the order of a few percents, and does not vary significantly
during the main deformation occurring at t1 = 32 s. With the given example, the deformation
lasts until t = 31.14 s, but tracking the dots becomes impossible before this time, hence the
range of time we display in the figure.

These values are to be compared to the deformation seen on the other axis of the foam film,
that is along x, where we anticipate that the deformations ϵx ≫ ϵz will be much greater as shown
later in subsection 3.8.2. In the following, we will assume this invariance along z to hold, and we
will resume discussing its validity later while computing the ϵx’s. We also extend this hypothesis
of invariance to the preparation phase, before we are able to create the dots, which is reasonnable
although not measured directly.
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3.8 Computing tensions, deformations and elasticites
of the films

This section details how we use the processed data from section 3.6 to extract the relevant
physical quantities with respect to the model presented in section 3.2.

The first quantity is the ratio of tensions σ3/σ1 between the compressed/stretched films.
Theoretically, it gives the boundary conditions s → ±∞ for region C in terms of surface tensions
γ = σ/2. Experimentally, it is extracted by monitoring the angle θ between the films 1 and 2.

The second kind of quantities are the deformations of the films ϵ1 and ϵ3. Theoretically, they
give access to the quantities Lout and Lin of interface exchanged between the films, enabling the
quantification of the flux jm. Experimentally, they are first deduced by tracking the lengths of
well-identified pieces of film (seen as closed systems).

The third and last quantity is the film elasticity of our elementary foam Ef . It allows us
to refine our measurements of the deformations ϵ1 and ϵ3, and to have access to the individual
absolute tensions σ1 and σ3, using their ratio found with the angle measurement. Experimentally,
it is found with a linearisation of our quantities around a specific time of the experiment, which
is more detailed later.

Note that our data processing contains several redundancies, which we consider of high im-
portance to ensure the robustness and consistency of the analysis. The film elasticity is thus
measured in situ, and compared to the values obtained in chapter 1.

3.8.1 Relative tensions between the films
As the films are stretched and compressed, their tensions change, leading to a change in the
angle between the films as the meniscus at the triple point has to maintain its force balance.
This change in angle results in a displacement of the meniscus, which we measure, as shown
in section 3.6. In this subsection, we detail how we start from our displacement measurement
(XBP , YBP ) to be able to compute a ratio of tensions σ3/σ1,2 between the stretched film 3 and
the compressed films 1 and 2.

Raw data and minor corrections

Let us start with the horizontal displacement XBP as it carries most of the information on the
angle between the film, considering the configuration of the “Push 3” deformation. In Fig.3.29,
we show a typical graphs XBP = f(t) for various velocities of deformation V1 at a given chemistry
([DOH] = 50 mg/L). The uncertainty on the reproducibility is of the order of 0.5%, which is
a key indicator that the experimental reproductibility is excellent and the sub-pixellar correlation
techniques detailed in subsection 3.6.1 went well.

A zoom in the very early times of deformations at t0 and t1 in Fig.3.30 reveals two things:

• A very short delay followed by oscillations, mainly due to the inertia of both the motors
and the meniscus.
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• An apparent free slip of the free meniscus of the order of 10 µm in the frame of the cameras
as it starts to move.

The inertial oscillations are small in comparison with the main deformation and the meniscus
acceleration will be neglected in the following. The apparent slip is negligible too, but its origin is
more puzzling. the existence of this slip is clearly due to an initial repositioning of the films with
respect to their meniscii at the motor edges. This slip is suspected to occur also at t1 = 32 s
in the opposite direction as motor 3 pushes back its film. We choose to correct the horizontal
positions and to use XBP,corr, where we removed a +∆Xslip ∼ 30 µm jump at t0 = 28 s, and a
−∆Xslip jump at t1 = 32 s. This correction is very small in any case. A zoom at t0 = 28 s is
shown in Fig.3.30 to illustrate this procedure.

Figure 3.29: Horizontal displacement of the free meniscus throughout the whole “Push 3”
experiment, for [DOH] = 50 mg/L and a varying velocity of main deformation V1. The
figure on the right is just a zoom around t1 = 32 s of the figure on the left. At t0 = 28 s, the
horizontal film 3 is prepared, meaning it is being stretched at V0 = 2 mm/s from 4.2 mm to
10 mm, leading to a first displacement of the free meniscus in +x. At t1 = 32 s, the main
deformation of the “Push 3” experiment is performed at V1 varying between 5 − 50 mm/s.

The other component of the displacement of the meniscus, YBP , which is measured using
the BP camera as detailed in subsection 3.6.2. Given the geometry of the “Push 3” deformation,
a non-zero vertical displacement represents a breaking of symmetry for the system induced by
gravity. In Fig.3.31, we show a typical trajectory for the meniscus throughout the whole ex-
periment, and we make sure that our assumption of a top-down symmetry remains valid as we
have XBP ≫ YBP . YBP remains small, and no slipping behaviour as for XBP was observed at
our resolution (even though it is one order of magnitude greater than on the x axis, given the
configuration of the PF and BP cameras).
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Figure 3.30: Correction because of the apparent free slip. The dark blue data are the
uncorrected positions XBP , the light blue data are the corrected XBP,corr taking into account
the slips at t0 = 28 s and t1 = 32 s.

Figure 3.31: Position of the free meniscus in the Oxy plane with scale-matched axis on
an example of [DOH] = 50 mg/L at V1 = 35 mm/s. The red dot is the beginning of the
preparation step t0 = 28 s which defines equilibrium position of the meniscus. The yellow
dot is the end of the preparation phase at t = 30.9 s. The green dot is the deformation
time t1 = 32 s at which the main deformation occurs. The black dot is the end of the main
deformation, which is t = 32.14 s in this specific case of V1 = 35 mm/s.

Computing the tension ratio

Now that we have the corrected positions (XBP (t), YBP (t)), we can compute the angle θ between
the vertical films 1 and 2. Knowing at all times the lengths Lm,1(t) and Lm,2(t) imposed between
the edges of the motors and the centre of the deformable frame, we can measure the vectors
L1(t) and L2(t) linking the centre of the meniscus to the edges of the motors (see Fig.3.32 for
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Figure 3.32: Definitions of the different lengths in the system, illustrated for an arbitrary
deformation. This is a reminder of Fig.3.11B.

angles and lengths notations):

L1 = X1ex + Y1ey =
(

− Lm,1 cos(θ0) −XBP

)
ex +

(
Lm,1 sin(θ0) − YBP

)
ey (3.40)

L2 = X2ex + Y2ey =
(

− Lm,2 cos(θ0) −XBP

)
ex +

(
− Lm,2 sin(θ0) − YBP

)
ey (3.41)

With θ0 = 60 o being the rest semi-angle between the films. The angle θ we seek is given
through the scalar product of these two vectors, and we have:

θ = 1
2Arccos

(
L1.L2

L1L2

)
(3.42)

Typical measurements of θ are shown in Fig.3.33 Left for various velocities at a given chemistry
([DOH] = 50 mg/L).

Eventually, we are able to compute a ratio between the tensions σi of the films. In the general
case, without the assumption of a top/down symmetry (because of the vertical displacement),
the angle θ we defined is the semi-angle between film 1 and 2 and the angle θ3 is the angle of
film 3 with the bisector line of film 1 and 2 as shown in Fig.3.32. A projection along the bisector
line of L1 and L2 of the forces acting on the meniscus yields the balance:

σ3 cos θ3 = (σ1 + σ2) cos θ (3.43)

Estimating the small angle θ3, we reach at max: θ3,max = Arcsin(YBP

L3
) + X1YBP

Y 2
1

∼ 4 o whose
cosine remains very close to 1 with a 0.5% error, and so we write:

σ3 = 2σ̄ cos θ (3.44)

With σ̄ = σ1+σ2
2 the average of the tensions between the films 1 and 2. As we cannot work

with both σ1 and σ2, and because the vertical displacement YBP remains small compared to
XBP , we will assume in the following σ1 = σ̄. This choice is consistent with the assumption
of top/down symmetry made on some other parameters which are obtained only on film 1 but
not on film 2. Under these assumptions, the ratio between the tension of the compressed film 3
and the tension of the stretched films 1 and 2 is simply given by:
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Figure 3.33: Example for [DOH] = 50 mg/L and a varying velocity of main deformation
V1. A: Semiangle θ between film 1 and 2. At the initial state t0 = 28 s, right before the
preparation, the angle meets the Plateau’s law. Its deviation from this law arise because of
a difference of the tension between film 1 (or 2), and film 3. B: Tension ratio between film
3 and 1 (or 2 equivalently) deduced from the angle measurement.

σ3

σ1
= 2 cos θ (3.45)

Using this relation, we compute the ratios in Fig.3.33 Right from the set shown on its Left.

3.8.2 Deformation of film 3 ϵ3 and film 1 ϵ1

To further describe our system, we now want to look at the states of deformation of our films ϵi.
In fact, the elastic response of a single foam film due to insoluble surfactants can be captured
with the expression used in chapter 1 (eq.1.17):

σ = σ0 + Ef
ϵ

1 + ϵ
(3.46)

Thus, measuring the deformations ϵ1 and ϵ3 of film 1 and 3 and using the tension ratio σ3/σ1,
we will be able to determine the elasticity Ef of our films.

Determination of ϵ3

We start by computing the deformation ϵ3 of the horizontal film 3. Before the preparation step
at t0 = 28 s, film 3 is at rest with a repose length Li,3. As it is stretched during the preparation
phase, two thicker new films are created in the plane of film 3 with a clear contrast with the
preexisting film. The result can be seen in Fig.3.23C. During this preparation phase, film 3 has
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been only accepting interface (either from the menisci or the other films) so that all the matter
initially present before the preparation remained in the film. The initial film, between the two
Frankel films, is thus a closed system that can be used to determine ϵ3.

The total deformation ϵ3 of film 3 is a priori defined as the sum of the deformation along
both axis x and z of its plane: ϵ3 = ϵ3,x + ϵ3,z. The second term ϵ3,z can be discarded thanks to
the invariance by translation along z which we discussed and verified in section 3.7.

Thus, we only need to compute the first term ϵ3,x. By tracking the edges of Frankel films
in film 3, as illustrated in Fig.3.23, we deduce the length Lc,3 = LF r,ext,3 − LF r,3 of the closed
system along x. Knowing that it was equal to the length imposed to film 3 before the preparation
Li,3 = 4.2 mm, we have a direct experimental access to ϵ3,x and ϵ3:

ϵ3(t) = ϵ3,x(t) = Lc,3(t)
Li,3

− 1 (3.47)

This quantity is defined as long as we are able to track the edges of both Frankel films. This
lasts up till the Frankel film next to the free meniscus completely disappears in it, or until the
thin film instability occurs at the edge of the free meniscus as discussed in section 3.7.

A result of the calculation of ϵ3 is shown in Fig.3.34 (red curve), where we see that film 3
starts from a stretched state due to the preparation phase, and is being compressed as we push
on it during the main deformation at t1 = 32 s.

A unique value for the film elasticity Ef?

The full determination of the absolute tensions and deformations relies on the assumption that
the film elasticity Ef is the same for the three films.

This hypothesis of unique Ef is not straightforward as the elasticity of a single film depends
on its thickness which varies from one film to another due to the gravity drainage for instance.
However, by looking at the initial state of our system using the spectral cameras, we see in
Fig.3.25D-F that right before the main deformation at t1 = 32 s, the three films have a factor 2
to 4 of difference in thickness. As discussed in Chapter 1 and in Poryles et al. [6], the thinner a
foam film, the stiffer it is. This dependency is very slow however, as a factor 4 on the thickness
leads to a 15% change in stiffness only.

A direct experimental evidence that the three elasticities are very close in our case is that the
angle θ3 (see Fig.3.32) remains very small compared to θ. An even faster way to control this
symmetry between the films is to see in Fig.3.31 that the displacement along y of the meniscus
is small compared to the displacement along x.

Thus, we will assume that Ef is the same for the three films and that the relationship between
the tension and the deformation of each film is the same and given by eq.3.46.

A first determination ϵ1,a of ϵ1

In order to compute ϵ1, we define a closed system that is the piece of film present in the plane of
film 1 when the main deformation starts at t1 = 32 s. At later times, its length along the local
abscissa x1 is denoted L1,close(t) and can be written as:
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L1,close(t) = L1(t) − 2LF r,1(t) (3.48)

Which is the distance between motor 1 and the free meniscus to which we retrieve the length
of Frankel film going out of the edges. The factor 2 in front of LF r,1 is there to take into account
the Frankel film going out of the supported meniscus of motor 1, which is assumed to be equal
to the Frankel film going out of the free meniscus.

Important remark: Assuming that the Frankel film at the motor is equal to the
Frankel film at the free meniscus is a crude proxy. As we aim at avoiding such hy-
potheses, ϵ1 will be re-estimated later on, using only the film elasticity Ef we are about
to compute in a time range where LF r,1 is negligible.

Its reference length L1,close,0, i.e. the length it would have at the reference tension is unknown,
as film 1 is a priori pre-stretched during the preparatory phase. This is not obvious, but stretching
film 3 alone at t0 = 28 s (cf. Fig.3.17) means stretching the top and bottom interfaces of the
elementary foam, the former being shared with film 1. The deformation ϵ1 is thus defined as:

ϵ1(t) = ϵ1,x1(t) = L1,close(t)
L1,close,0

− 1 (3.49)

The quantity that remains to be found is L1,close,0. In order to estimate it, we can see in
Fig3.33B that at some crossing time during the deformation tc > t1 = 32 s, the tension ratio is
σ3/σ1 = 1, meaning that the tension σ1 of film 1 is the same as the tension σ3 of film 3, of which
we know the deformation ϵ3 at all times. Knowing with eq.3.46 that we also have ϵ1(tc) = ϵ3(tc)
we can write:

L1,close,0 = L1(tc) − 2LF r,1(tc)
1 + ϵ3(tc)

≃ L1(tc)
1 + ϵ3(tc)

(3.50)

Where at this particular time tc which is always at the very beginning of the deformation, the
term LF r,1(tc) ≪ L1(tc) can be discarded as the Frankel films are barely out of their menisci.
Eventually, we have the expression:

ϵ1,a(t) =
(
1 + ϵ3(tc)

)L1(t) − 2LF r,1(t)
L1(tc)

− 1 (3.51)

This first estimation ϵ1,a is also shown in Fig.3.34 (light blue). The time at which it crosses
the red curve ϵ3 is tc the crossing time indicated with a short pointed line. It is important to note
that at some time during the deformation, indicated by the tall vertical dashed lines in Fig.3.34,
we start detecting LF r,1, leading to a sudden drop in the value of ϵ1,a as we take LF r,1 = 0 before
that time.

With these deformations ϵ1,a and ϵ3 and with the ratio of the tensions σ3/σ1, we now have
all we need to compute Ef the elastic modulus of our films.
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Figure 3.34: Example given on [DOH] = 35 mg/L and V1 = 50 mm/s. Red is the deforma-
tion ϵ3 of film 3, Light Blue the first estimation of the deformation ϵ1,a of film 1 and Dark
Blue the corrected deformation ϵ1,b of film 1. The leftmost dotted line is tc the crossing time.
The dashed lines encompass the time at which we simultaneously measure the ingoing and
outgoing films.

3.8.3 Determination of the film elasticity Ef

To estimate the film elasticity Ef , we linearize all our quantities around tc, defining a new time
scale t̂ = t− tc: 

ϵ1,a(t̂) = ϵ0 + λ1t̂

ϵ3(t̂) = ϵ0 + λ3t̂
σ3
σ1

(t̂) = 2 cos θ = C + λθ t̂

(3.52)

In the vicinity of this crossing time t̂ = 0, which is located in Fig.3.34 where all curves intersect
with an ordinate ϵ0, we consider that we have ϵ1,a, ϵ3 ≪ 1. Thus, we linearize eq.3.46 and get:

σ3

σ1
(t̂) = σ0 + Ef ϵ0 + Ef λ3t̂

σ0 + Ef ϵ0 + Ef λ1t̂
(3.53)

And a development at first order in t̂ leads to the expression:

Ef ≃ σ0λθ

λ3 − λ1
(3.54)

In which all quantities can be estimated. The equilibrium tension σ0 depends on the chemistry
only and is already characterised in Chapter 1 with a pendant drop method. The slopes λ1, λ3
and λθ are found with a linear regression for t̂ comprised between t̂ = 0 the crossing time and
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the detection time of the Frankel film for film 1 (leftmost vertical dotted line in Fig.3.34). We
compute the elasticities Ef for all chemistries and velocities of deformation V1 and plot them in
Fig.3.35.

Figure 3.35: A: Measured film elasticity as a function of the dodecanol concentration of the
solution for different velocities of deformation. B: Red is graph A averaged over all velocities,
and we compare it to the Black, the elasticities measured with the setup of chapter 1 (cf. [6])

As we can see in Fig.3.35A, our measures seem to depend on V1 with the trend “the faster,
the stiffer”. At first glance, we could think that this is coherent with the fact that the faster the
interfaces are deformed, the lower is the time given to bulk-interface exchanges, which would tend
to compensate for the gain/loss of surface concentration of surfactants, lowering the change in
surface tension and thus lowering the apparent elasticity of the interfaces. This reasoning would
be valid if the interfaces were in contact with an infinitely thick bulk phase, however as seen in
Chapter 1, the elasticity we observe is expected to be caused by the finite amount of dodecanol
present in the bulk. Besides, the interface is supposed to be at equilibrium with the bulk at all
times given the very short times of diffusion through the foam films for a common surfactant
such as SDS or dodecanol τeq ∼ L2/D ∼ 1 ms. This is much smaller than the smaller time of
deformation τdef ∼ 100 ms, thus ruling out unsteady populations of classical surfactants as an
explanation for varying elasticity.

The explanation for this dependency is actually unclear, and could originate from very insoluble
and large impurities present in the air which would take an infinite time to diffuse through the
bulk.

We see that with the same chemistries and the same range of film thicknesses, we recover
values for Ef which are very close to what was measured in previous works (see Poryles et al. [6]
and Fig.3.35B). In the following, we take our measurements averaged over the velocities as our
reference elasticities Ef depending only on the chemistry.

Also, this elasticity measurement allows us to get the absolute tensions σ. We first
compute σ3, as the measurement of ϵ3 is the most reliable of all deformations. This writes:

σ3 = σ0 + Ef
ϵ3

1 + ϵ3
(3.55)

Getting σ1 can be performed by then using the ratio σ3/σ1 = 2 cos θ, which is our reliable
force measurement shown in Fig.3.33. This will be useful in the form of re-measuring a
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corrected ϵ1,b knowing σ1 and Ef precisely.

3.8.4 A second estimation of the deformation ϵ1,b

We see that now we have computed σ3 we just defined a path to compute the absolute tension
σ1 without relying on the estimation of a deformation factor ϵ1 for the vertical films. In fact, the
first estimation ϵ1,a at large times (dashed lines in Fig.3.34) depends on two things:

• Our capability to measure as early as possible the Frankel film LF r,1 going out of the free
meniscus as film 1 is stretched.

• A strong assumption that the Frankel film going out on the side of motor 1 is the same in
length as the one we measure at the free meniscus.

Thus, we can now try to work the opposite way to avoid making these assumptions: using σ3
and the ratio σ3/σ1 = 2 cos θ which is known with a high precision, we can deduce the absolute
tension σ1. With σ1, we can now deduce another estimation ϵ1,b using the equation:

ϵ1,b = σ1 − σ0

Ef − (σ1 − σ0)
(3.56)

Whose computation is shown in Fig.3.34 (dark blue). Note that the earlier points, before
the crossing time, are shown with a dotted line as this is where the reliability of our angle
measurement is the weakest because of the slip described and discussed at the beginning of
section 3.8.1. Between the crossing time and the time of detection of the Frankel films in film
1, both estimations are expected to be reliable, and we indeed see that they remain quite close.
These two estimations differ however, and the conclusions we make on the interface transfer
properties remains the same using either one estimation of ϵ1 or the other.

The points in which we are the most interested in are between the two black vertical dotted
lines: after the time at which we start measuring some Frankel film going out of the free meniscus
in film 1, and before the end of tracking of the edge of Frankel film at the free meniscus in film
3. In this range, ϵ1,b is the most reliable estimation of ϵ1.
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3.9 Results: Surfactant balance and the fate of jm
3.9.1 Computing Lin and Lout

Now that we have carefully computed the deformations of the films ϵ1 and ϵ3, and that we have
given ourselves the lengths of film LF r,1 and LF r,3 involved in the interface balance, it is time to
compute the proper balance between Lout and Lin as promised in subsection 3.3.

Computing the outgoing quantity of interface Lout(t)

The length of outgoing interface L̂out(t) is directly given by the length of Frankel film detected
near the free meniscus in film 1: L̂out = LF r,1 (cf. subsection 3.6.4).

Computing the length of interface at rest Lout also requires to know the extension state ϵ1 of
the film:

Lout(t) = L̂out

1 + ϵ1
= LF r,1(t)

1 + ϵ1(t)
(3.57)

In section 3.8, we estimate ϵ1 twice: ϵ1,a is computed with eq.3.51 using the tension ratio
between the films and the length of Frankel film LF r,1, whereas ϵ1,b is computed with eq.3.56
using the absolute tension of film 1 once the film elasticity is computed. Both quantities are
represented with an example in Fig.3.34, and we see that these two measurements may differ by
up to a factor 2. They make different hypotheses, detailed above, and although ϵ1,b seems to
have the most parsimonious set of assumptions, we keep both of them and will compute Lout,a,b

twice as well.

Computing the ingoing quantity of interface Lin(t)

It is not directly possible to compute L̂in, as we track a film which is simultaneously compressed
and evacuated from film 3 out of the sight of the camera. To circumvent the problem, we
compute the difference of lengths of interface at rest. To do so, we use the prepared Frankel film
of length LF r,3(t) (cf. subsection 3.6.3), and knowing the state of compression ϵ3(t) of film 3
(cf. subsection 3.8.2) we write:

Lin(t) = L̂in

1 + ϵ3
= LF r,3(t1)

1 + ϵ3(t1)
− LF r,3(t)

1 + ϵ3(t)
(3.58)

The underlying assumption of this method is to consider that the thick prepared Frankel film
LF r,3 has the same state of compression as the thin central film Lc,3 preexisting the preparation
from which ϵ3 is computed through 3.47.

This uniformity of compression state ϵ3 between the two kinds of film is not obvious but
well-founded. As discussed in subsection 0.2.4, tension is uniform in the plane of a foam film,
whatever the thickness of the different patches. With eq.3.46, we see that the condition of
uniform ϵ3 is that both kinds of film have the same film elasticity Ef . This latter depends on the
film thickness!
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Figure 3.36: Thickness profiles of prepared film 3 right before the main deformation at
t1 = 32 s using the hyperspectral cameras SP1 and SP2. The shaded areas are the Frankel
films extracted during the preparation phase. x = 0 is the free meniscus, x = 10 mm is the
edge of motor 3.

However, as seen in Fig.1.3B of subsection 1.2.1, elasticity is a slowly varying function of
thickness. In the present case, typical thickness profiles right before t1 the deformation time are
shown in Fig.3.36 for all chemistries. We identify the thick Frankel films LF r,3 and LF r,3,ext with
respectively the left and right coloured shaded areas.

We see that the central film is thinner on average by less than a factor 1/2, which corresponds
to a difference of elasticities Ef of less than 10%. This means that at maximum, we make an
error of 10% on the estimation of the ϵ3 for the ingoing Frankel film LF r,3. This remains within
our errorbars for the estimation of Lin, as this relative error is mitigated by the fact that Lin

depends on 1 + ϵ3, hence our assumption.

Results

In Fig.3.37, we show all the computable Lin and Lout,b: we managed to get them for the range
[DOH] = 15, 35, 50 mg/L in chemistry, and V1 = 10, 20, 35 and 50 mm/s for the velocity of
deformation.
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Figure 3.37: All exchanged lengths Lin(t) and Lout,b(t) in the ranges of chemistry [DOH] =
15, 35, 50 mg/L and of velocities of deformation V1 = 10, 20, 35 and 50 mm/s.

Now we have ways to compute Lin(t) and Lout(t), and we show a typical result in Fig.3.38
which contains the averaged curves for V1 = 50 mm/s and [DOH] = 50 mg/L. At this velocity,
the deformation takes place between t1 = 32 s and t = 32.1 s.

Our goal is now to compare simultaneously Lin(t) and Lout(t) over the same time range,
which is shown with the shaded orange area. Before this time range, we are limited by the
fact that we start detecting the outgoing film LF r,1 during the deformation and Lout cannot be
defined. The end of this time range is set by the end of the detection of the ingoing Frankel film
LF r,3, hindering the measurement of Lin as well as the estimation of the corrected deformation
ϵ1, and thus of Lout,b.

3.9.2 Vanishing flux jm

In Fig.3.39 we show the two quantities Lout = f(Lin) plot against each other, for the two
computations Lout,a (Fig.3.39A) and Lout,b (Fig.3.39B). These constitute the main result of
this manuscript.

The yellow area corresponds to the expected range for the interface balance. We recall that
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Figure 3.38: Typical graph of interface lengths obtained for [DOH] = 50 mg/L and a velocity
of main deformation V1 = 50 mm/s. Lin is computed from ϵ3, Lout,a from ϵ1,a and Lout,b from
ϵ1,b. The shaded area corresponds to the time range over which both the ingoing and outgoing
quantities of surfactants are measurable simultaneously.

Figure 3.39: Comparison of the outgoing quantities of surfactants as a function of the ingoing
ones Lout = f(Lin) for various chemistries and for the velocities V1 = 10, 20, 35 and 50 mm/s.
A: Lout,a is computed with ϵ1,a; B: Lout,b with ϵ1,b. The shaded area corresponds to the range
of expected balance, with y = x the limit of no film-film exchanges, and y = 0.5x the limit
of no exchanges with the meniscus.

the upper limit Lout(t) = Lin(t) corresponds to the extreme case where the meniscus provides
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for as many surfactants as the free interface, the lower limit Lout(t) = 1
2Lin to the case where

the flux of surfactants from the meniscus is zero. All this is detailed in subsection 3.3.
In our range of measurement, all velocities and chemistries are on the lower bound,

suggesting that the flux of surfactants from the meniscus is null in all cases: jm = 0.

This is the key information we needed to further advance on the theoretical descriptions of
flows in sheared foams. This is also the main experimental result of this thesis work.

Important remarks

• Our result is verified in quite a narrow range of velocities of deformations, from V1 = 10
to 50 mm/s, corresponding to strain rates of ϵ̇ = 2 − 10 Hz given our geometry. At lower
strain rates, we lose the invariance by translation along z before being able to measure
Lin and Lout simultaneously. Higher strain rates cannot achieve reliable measurements,
either because the motors are limited at V1 = 50 mm/s or because smaller amplitudes of
deformations make it impossible to measure Lin and Lout.

• This result is heavily chemistry dependent to the best of our knowledge, as all hidden time
variables allowing/excluding the existence of a jm are adsorption, desorption or diffusion
times of surfactants. Notably, even changing the direction of deformation, and thus the
sign of the potential jm, could lead to very different results under the same deformation
conditions. Adsoption and desorption dynamics are known to be very different. This is a
bit explored in section 3.10, where we look at other deformations, unfortunately without
achieving measuring the interface balance as we did here.

• The balance computed with the corrected ϵ1,b shown in Fig.3.39B is a bit below the lower
bound of our model. This is puzzling, as it would suggest a jm of the opposite sign (from
the interface to the meniscus in this case, which is excluded). It might be caused by the
fact that we neglect the exchanges in the dynamic menisci, the ∆γin/out of Fig.3.5 which
have been neglected and which correspond both to a ∆Γin/out not taken into account in
the surfactant balance. This assumption is more discussed in [4], and could explain this
discrepancy.

3.10 Other deformations

3.10.1 “Push 1”: Potential influence of gravity
In the “Push 1” experiments the geometry of deformation remains exactly the same as in “Push
3” but the roles of the different films are interchanged so that we look at the same system with
the direction of gravity changed. The protocol is shown in Fig.3.40. As discussed in subsections
0.2.4 and 0.3.5, what we expect gravity to change here is:

• Giving different initial thicknesses for the compressed/stretched films. Figs.3.6.5 D-F show
how different are the films whose roles have been interchanged between “Push3” and
“Push1”.
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Figure 3.40: Protocol for the “Push 1” experiment. The prepared film is now film 1, where
we photobleach 10 dots. The angle followed during the main deformation becomes θ1(t).
This protocol corresponds exactly to the “Push 3” protocol with interchanged roles for the
films to probe the effect of gravity.

• Redistribute pieces of films as we deform them, the thicker ones being advected down, the
thinner one advected up.

This second point is quite important, as we want to prepare a thick Frankel film in the plane
of film 1. Stretching a vertical film means having a Frankel film at both the free meniscus and the
motor at the top, and this last one, thicker than the central part, is not in a stable position with
respect to gravity (cf. 0.3.5). Thus, the initial recirculations in film 1 induced by the preparation
step excluded the least mobile interfaces (i.e. with dodecanol), because the top Frankel film falls
slower in the form of chimneys, making the prepared state not reproducible. Without dodecanol,
the top thick patches are evacuated faster, seemingly along the solid frame, and a reproducible
prepared state is possible. The only change compared to the “Push 3” protocol is a shift of 0.5 s
of the preparation time to t0 = 28.5 s.

Besides, we managed to photobleach dots in the prepared film, but tracking them and the
edge of the prepared film throughout the main deformation at t1 was a problem, leading to a big
experimental noise hindering the measurement of Lin(t).

For the sake of measuring the tensions however, the measurement remained possible by
tracking the angle between film 2 and 3 in this case. We plot in Fig.3.41 the film tension ratio
between the compressed film and the stretched film for both “Push 3” (in blue, σ3/σ1) and
“Push 1” (in red, σ1/σ3). The chemistry is with [DOH] = 0 and a velocity of deformation
V1 = 35 mm/s. A few observations:

• The preparation of film 1 in “Push 1”, although identical to the preparation of film 3 in
“Push 3”, has a slightly lower amplitude.

• “Push 1” has larger initial slips in t0 = 28.5 s and t1 = 32 s.

• The measurement is less reproducible, leading to a bigger experimental error.

• The slopes in time of the ratios are the same past the slip in t1 = 32 s.

• The tension ratio relaxes towards 1 after the deformation in the same amount of time.
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Figure 3.41: Comparison of the tension ratio in the “Push 3” (Blue) and “Push 1” (Red)
experiments for the same chemistry [DOH] = 0 and velocity of main deformation V1 =
35 mm/s. The tension ratio is σ3/σ1 for “Push 3” and σ1/σ3 for “Push 1”. The inset is a
zoom on the main deformation at t1 = 32 s.

The main conclusion of this comparison is that gravity does not seem to play a major role
for the rheology of our elementary foam, although its centimetric dimensions raised the question.
However, it poses a lot of major experimental problems for the sake of tracking the patches of
exchanged films and we cannot conclude on the robustness of our quantification of the interface
exchanges under changing gravity.

3.10.2 “Pull 1”: Same symmetry, opposite directions for the im-
posed velocities

The “Pull 1” experiment aims at looking at the interface exchanges with the same symmetry as
“Push 3”, but with minus signs on the imposed velocities. To do so, we designed the protocol
detailed in Fig.3.42. The main fundamental difference with “Push 3” is that the preparation does
not respect the axial symmetry of the main deformation as it still bears on the compressed film
3.

We thus manage to photobleach in film 3 as we previously did for “Push 3”, and to track
simultaneously the columns of dots and the prepared Frankel film as the film is compressed. A
zoom on the region of film 3 neighbouring the free meniscus right before the deformation is shown
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Figure 3.42: Protocol for the “Pull 1” experiment. The prepared film is film 3, where we
photobleach 16 dots. Compared to “Push 3”, we only swap the direction of deformation film
2. The relevant angle to track θ is the semiangle between film 2 and 3.

in Fig.3.43A with the arrows showing the direction of deformations for each film. Fig.3.43B shows
the raw data of the distances between the matching coloured lines in A and the edge of the free
meniscus as the film is compressed. Also, we show the length of outgoing Frankel film LF r,1
detected in film 1. The repeatability of these experiments is limited at longer times by something
that we did not face with “Push 3”: Marginal regeneration. In Fig.3.43C, we show how this
phenomenon takes place, with the semicircular thin patched going out of the free meniscus. For
more details about it, cf. subsection 0.3.4.

Actually, it is retrospectively surprising that no marginal regeneration takes place
in “Push 3”! This even constitutes a result. The main difference in the case of “Pull 1” is
that the compressed film has one frustrated interface and one free, whereas for “Push 3” both
are free to slide on the free meniscus. This requires more investigation.

In the meantime, marginal regeneration is a source of low reproducibility for our experiments,
and “Pull 1” yields noisy deformations ϵ3 for the compressed film, as shown in Fig.3.44, inducing
an even bigger error on the quantity of ingoing interface Lin which we did not manage to compute.
Besides, computing the ratio of tension becomes tricky here, as the preparation step breaks the
symmetry between film 2 and 3 compared to the main deformation. This would require to
compute separately σ2 and σ3 by computing another angle in the problem, which is achievable
but not done yet.

This is as far as we could go on the “Pull 1” experiments on that date, and more refined
specific data processing could lead to better computations of the deformation and significant
quantities of exchanged interface. For now, the Lin’s I tried to compute were so noisy that I do
not dare showing them in this manuscript.
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Figure 3.43: Positions of the edge of prepared Frankel film and the photobleached columns.
A: Zoom near the meniscus in film 3. The vertical bright fringe on the middle left is the free
meniscus, film 3 is on its right. The red line localises the detected edge of prepared Frankel
film, whose distance from the edge of free meniscus is LF r,3, the green and yellow lines localise
the two columns of photobleached dots, whose distances from the edge of meniscus are Lc,1
and Lc,2. B: Time evolution of the distances defined in A as well as LF r,1 (blue) the outgoing
length of interface in film 1. The main deformation happens at t1 = 32 s, where film 3 is
compressed and film 1 is stretched. C: Towards the end of the deformation, the marginal
regeneration instability appears, breaking our invariance by translation and thus stopping
the measurement of the exchanged quantities of interface.

Figure 3.44: Example given on the chemistry [DOH] = 35 mg/L and a velocity of main
deformation V1 = 50 mm/s for the deformations of film 3 and 1. It was not possible to
compute the corrected ϵ1 in this deformation, and we show here the deformation equivalent
to the ϵ1,a of “Push 3”.
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3.11 Conclusions of Chapter 3
• The fluid mechanics behind the visco-elasticity of elementary liquid foams is not

completely settled.

• The elastic contributions are well understood and originate from the finite-sized
reservoir effects of the foam films. This was the subject of chapter 1.

• The viscous contributions are suspected to originate from a very localised sheared
zone near the meniscus, of size ℓ ∼ 100 µm. The existence of this zone is imposed
by the presence of a stagnation point at the interface of the elementary foam, and a
theoretical model already exists to describe it [4].

• The flow field in this zone is fully determined by the Marangoni stresses at the
interfaces, which are set by the dynamics of exchange of the surfactants in this zone.

• The quantity of surfactants exchanged with the meniscus was a free parameter of
the model which could lead to very different predictions for the dissipation occurring
in the elementary foam.

• By looking simultaneously at the quantities of surfactants going in and out of the
meniscus during the deformation of the foam, I was able to measure the nullity
of the quantity of surfactants exchanged with the meniscus.

• This result is robust even if we vary the velocity of deformation or the chemistry
of the foam. I need now to put it back into the theoretical model to close it,
and to compare it to the experimental rheological data I also measured during my
experimental campaign.



Conclusion

The common denominator to all my thesis work is the study of in-plane flows within foam films.
This is a hydrodynamicist’s point of view to help better understanding the ageing and rheology
of liquid foams, starting from a single film and scaling up to what we called an elementary liquid
foam. The subjects I covered in my Introduction are part of the work of a whole (welcoming)
community which has developed the field of foam film hydrodynamics for decades now.

My three chapters are three modest stones that I have the chance to place at three distinct
points of this edifice.

Chapter 1 is about the elasticity of a single foam film. Because the bulk is very thin, it is
a finite-sized reservoir for the sake of populating the water-air interfaces sandwiching it. This
is responsible for an effective elastic contribution under deformation which has already been
predicted and measured by Prins et al. [5] in 1967 in the submicellar regime. Here, I provided an
extension of this model to the micellar regime in presence of poorly soluble surfactants.
I also compared this new thermochemical model to experimental data from Isabelle’s
group, and found that we could predict the elasticity of the different solutions based
on their chemistry. The results were published in Soft Matter [6].

Chapter 2 is about a novel measurement of a line tension force T ∼ 10−10N in the plane
of foam films. It originates from the thickness gradients present in the film along a contour
and sets it in motion in order to minimise its perimeter. These motions are observed during the
marginal regeneration instability for instance, where thin patches take a circular shape because
of this force, and are advected up in the film, thus being an important mechanism for its ageing.
Another example is the use made of in-plane motions of foam films as a proxy for atmospheric
turbulent flows, where this line tension could represent a non-negligible force potentially harming
the analogy. I supervised the experimental campaigns where we created the foam film
subject to this line tension. We looked at a configuration where we were able to
simultaneously measure the force and monitor the relaxation of the in-plane motions.
Our force measurement was validated by a quantitative agreement with the witnessed
relaxation, which I modelled analytically knowing that the damping mechanism was
air friction. The results have been accepted by Physical Review Letters by the time I write this
manuscript [99].

Chapter 3 is about the main experimental contribution of my thesis. The effective viscosity
of an elementary liquid foam is thought to originate from a very localised sheared zone near the
meniscus linking the foam films. The exchanges of surfactants there, between the interfaces, the
bulk and the meniscus, entirely determine the shear flow responsible for the mechanical dissipation.
Adrien Bussonnière and Isabelle Cantat developed a theoretical model for all that [4], but one
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parameter was left free because of a lack of experimental information: how much surfactants
are exchanged with the meniscus? I adapted the experimental setup to perform this
measurement and found that there were no exchanges in all the range of strain rates
and chemistries I tried.

The next step of this study is to look back at the theoretical model, setting the flux of
surfactants towards the meniscus to zero. This will allow us to predict stress curves ∆σ = f(U)
which we can then compare to the unused experimental data measured in my campaigns besides
the surfactant exchanges. Notably, I measured the film elasticities with my setup (validated by
our previous works in chapter 1) and computed the film deformations. We thus have access to
the absolute tensions σ of each film of the elementary foam, which will be a valuable piece of
knowledge for the comparison with the theoretical predictions.



Appendix

Appendix 1: Derivation of compressible Navier-Stokes
equation in 2D
Same derivation than Chapter II of the Landau Lifchitz [108], adapted in 2D. Conservation of
momentum in 2D writes:

ρ
Dv

Dt
= ∇sγ + ∇s · τ s + fext (3.59)

Where τ s is the rheological stress tensor (NB: compared to section 0.1.4, we dispatched the
stress tensor so that σs = γIs + τ s):

τ s = ηs

(
∇sv +t ∇sv

)
+ µs∇s · v Is (3.60)

Where ηs is the surface shear viscosity and µs a coefficient associated to the viscous response
to dilation. It is not yet the dilatational surface viscosity though, as we need first to separate
among these terms the pure dilatational contribution from the pure shear contributions. To do
so, we compute the isotropic part of the tensor:

τ̄ = τxx + τyy

2 = µs∇s · v + ηs

2
(
2∂xvx + 2∂yvy

)
= (µs + ηs)∇s · v (3.61)

Thus, let κs = µs + ηs be the surface dilatational viscosity. We can rewrite the tensor τ s as:

τ s = ηs

(
∇sv +t ∇sv − ∇s · v Is

)
+ κs∇s · v Is (3.62)

Its contribution to eq.3.59 can thus be expressed on the x axis:

∇s·τ s|x = ∂xτxx + ∂yτxy = ∂x

(
κs∇s · v + ηs(2∂xvx − ∂x∇s · v)

)
+ ∂y

(
ηs(∂yvx + ∂xvy)

)
(3.63)

= κs∂x∇s · v + ηs

(
2∂xxvx − ∂x∇s · v + ∂yyvx + ∂yxvy

)
(3.64)

= κs∂x∇s · v + ηs∆vx +
((((((((((((((((

ηs

(
∂xxvx + ∂xyvy − ∂x∇s · v

)
(3.65)

= κs∂x∇s · v + ηs∆vx (3.66)

Which can be recast in eq.3.59 as a general vectorial expression on all axis:
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ρ
Dv

Dt
= ∇sγ + κs∇s

(
∇s · v

)
+ ηs∆sv + fext (3.67)

Which is a general 2D Navier-Stokes equation when associated with a surface conservation
law.

NB: This computation deviates from the 3D one when we compute the isotropic part of τ to
find the dilatational viscosity (or second viscosity), as a 3D tensor would mean hitting a factor
(µ + 2

3η) instead. This defines κ = µ + 2
3η the second bulk viscosity to inject in the expression

of τ and the end of the computation leads to a term (κ + 1
3η)∇(∇ · v) for the viscous forces

associated with dilation.

Appendix 2: Limit of high elasticities for the in-plane
motions of a foam film
The fact that the film elasticity Ef dominates even for small deformations is a key ingredient
in all the models we will develop in the frame of this thesis work. Most of the time, we will
even assume the film to be incompressible, as in the following sections. However, before taking
this limit, it has to be noted that the first limit of very high elasticities for a deformable film
yields interesting results for the description of the kinematics of the film in-plane motions. In fact
we will see here that we can decompose our velocity field in an irrotational component and an
incompressible component, the former being simple, expressed at the lower order with elasticity,
the latter being the solution of a more simple equation at higher order.

In the general case, the uniformity of film tension found in subsection 0.2.4 can be written:

∇sσ
f = 0 (3.68)

If we consider a film formed of two flat symmetrical interfaces, thus removing capillary stress
from the equation, the film tension σf is then “just” twice the surface tension of both interfaces.
This encompasses the elastic and viscous responses of the film, and the uniformity equation 3.68
can be rewritten as twice eq.10 where the exterior forces fg,s have been discarded and surface
tension expressed with Ef = 2EM (cf. eq.11) in the insoluble limit in the form dγ

dt
= Ef

(
∇s ·vs

)
,

yielding:

0 = Ef∇s

∫
t

(
∇s · vs

)
dt+ 2κs∇s(∇s · vs) + 2ηs∆svs (3.69)

Where Ef = 2EM is the film elasticity, which is uniform and independent of time in the
present case.

We first start by doing a Helmholtz-Hodge decomposition of our vector field: vs = virr +vinc,
where virr = ∇sϕ is an irrotational velocity field written as a gradient and vinc = ∇s × ψ 1 is

1In 2D, the curl of a vector is usually a scalar. The Helmholtz decomposition is generalised in 2D
with an alternative definition of this operator which takes a scalar as input and outputs a vector [109]:(
∇s ×

)
: ψ(x, y) −→ (−∂yψ, ∂xψ). Thus, we will implicitly use both definitions ∇s× and ∇s× with or

without the bold nabla depending on the kind of 2D curl.
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an incompressible velocity field written as a 2D curl.
This is where we use our hypothesis that film elasticity is bigger than any other force: Ef ≫

κs

τdef
, ηs

τdef
to write at lowest order only the first term of the right-hand side of eq.3.69:

0 = ∇s

∫
t

(
∇s · vs

)
dt = ∇s

∫
t

(
∇s · virr

)
dt (3.70)

As virr is the non-vanishing component of vs when we take the divergence. We also need to
anticipate that virr will also have a higher order component and we write virr = virr,0 + virr,1
with virr,0 being the lower order term, and by differentiating eq.3.70 with respect to time:

∇s

(
∇s · virr,0

)
= 0 =⇒ ∇s · virr,0 = K(t) (3.71)

This leads directly to a Poisson equation for the velocity potential ∆ϕ = K(t) where the
source term is necessarily the deformation rate K(t) = ϵ̇ in order to respect area conservation
in the problem. To be solved, this part of the velocity field requires us to know the imposed
velocity at the edges of the film, as the Poisson problem can be solved using Neumann boundary
conditions for ϕ, that is knowing ∂ϕ

∂ns
.ns = vs

∣∣∣
edge

(where ns is the normal vector to the edge of
the foam film seen as a 2D domain). This is exactly what we know in practice when we deform
a foam film, and we have a complete set of equations for virr:

∂ϕ
∂ns

.ns is known at the edges
∆ϕ = ϵ̇

(3.72)

This set gives a unique solution virr,0 which can be easily found in practice for simple geome-
tries of deformation. Now that this component is found, we go at higher order in eq.3.69:

0 = Ef∇s

∫
t

(
∇s · (virr,1 + vinc)

)
dt+ 2ηs∆svinc (3.73)

Where the terms of virr linked to the instrinsic viscosities κs, ηs vanish after some reorganisa-
tions using ∆s = ∇s∇s · −∇s × ∇s× . On the other hand, the incompressibility of vinc allows
us to write the set of equations as:∇s · vinc = 0

∇sγinc + ηs∆svinc = 0
(3.74)

Where γinc = Ef

∫
t ∇s · virr,1 dt is a Lagrange multiplier of a 2D Stokes equation for vinc,

enforcing the incompressibility condition. Thus we do not need to make the higher order field
virr,1 explicit to compute the dominant term vinc of vs ≃ vinc + virr,0.

Thus, even if a foam film is being stretched, meaning the velocity at its edges is non-zero, we
can still compute the total velocity field vs = vinc+virr. This is thanks to the film elasticity being
dominant for any small deformation, allowing us to decompose the problem on different orders,
the lower order giving the compressible field virr taking into account the global deformation of
the foam film, the higher order giving the incompressible field vinc which is a solution of a 2D
Stokes equation.
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Note that this result remains valid even if we keep exterior forces fext,s such as air friction,
as long as they remain of higher order than the film elasticity Ef . We only need to add them to
eq.3.74 when we need to solve for the incompressible field.

Appendix 3: Compressible correction for the flow field
of the line tension experiment
In section 2.4 of Chapter 2, we suppose the incompressibility of the interfaces based on the fact
that the area A of the thin film is almost constant in time, as recalled with Fig.3.45C. However,
it undergoes a slight compression, even though the motors have stopped moving.

Figure 3.45: Recalling the notations and some experimental data from chapter 2 section 3.4:
A Notations for the deformable frame; B Semi-length L of the arena of thin film throughout
its relaxation; C Area A of the thin film during the experiment.

This is due to some Frankel film extraction, which happens mostly during the stretching to
create the thick film of area A2 = aw − A (as shown in Fig.3.45A), but which also continues
after the deformation for t > 0. To try and take this into account for the sake of describing the
velocity field in the plane of the foam film, we use the development for the limit of high elasticities
led in the Appendix 2. This latter established that we can decompose the velocity field into two
components: a compressible one corresponding to a pure stretching, and an incompressible one
corresponding to the resolution of a 2D Stokes equation with the exterior forces. The goal of
this Appendix is to apply this decomposition to our concrete problem and to validate
that the compressible term can effectively be discarded in our case, as we assumed in
section 2.4.

This decomposition is conditioned by the fact that the in-plane forces are much lower than
the film elasticity. In the case of chapter 2, these are the exterior friction forces and the line
tension.

First, the friction in this case is dominated by air friction (cf. 2.4.4, and is of the order of
magnitude: fg ∼ ηgU/δ ∼ 10−4Pa with ηg ∼ 10−5Pa · s the air viscosity, U ∼ 10−2m/s the
typical velocity for the in-plane motions and δ ∼ 10−3m the typical width of the sheared air layer
(all recalled from 2.4.3). Second, the line tension forces are of the order T/R2 ∼ 10−3Pa with
T ∼ 10−9N the line tension and R2 ∼ 10−3m the typical curvature radius of the line of tension.
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These forces are to be compared to the elastic forces at stake while deforming the foam
film globally by stretching it and inducing film extraction. This yields forces of the order of
Ef/L ∼ 1 Pa with Ef ∼ 10−2N/m the film elasticity and L ∼ 10−2m the typical length of the
foam film. The elastic forces dominate all the others and thus the decomposition of Appendix 2
can be applied.

Note that in the following, time may appear as it is a constant of our experimental problem.
Our model though is independent of time, and t acts as a dummy variable listing all the resolutions
of the flow field at each time step.

Compressible component for the uniaxial stretching
Let us first start by computing the compressible velocity field using the set of eq.3.72. In the
specific case of the experiment of chapter 2, the foam film is rectangular and went through a
uniaxial deformation which is well known. After the motor has stopped, some Frankel film are
still being extracted at the four edges. We make the assumption that the tension is uniform along
the four menisci at the straight edges, and the tension being uniform in the film, the velocity
of Frankel film extraction VF r is uniform along the rectangular frame, leading to the explicit
conditions for the velocity potential ϕ:

v0 = ∇ϕ

∂xϕ(x = 0) = VF r ; ∂xϕ(x = w) = −VF r

∂yϕ(y = 0) = VF r ; ∂yϕ(y = a) = Vmot − VF r

∆ϕ = 1
A2

dA2
dt

(t)

(3.75)

Where VF r is known by looking at the compression state of the film with the last equation.
Vmot is the velocity of the motor at the time at which we solve the system, and for our measurable
range t > 0: Vmot = 0. The system has a solution for a compressible velocity field v0 that is:v0,x = VF r + x

w

(
− 2VF r

)
v0,y = VF r + y

a

(
Vmot − 2VF r

) (3.76)

This velocity field must now be associated with the incompressible flow which we compute in
section 2.4.

Superposition with the incompressible flow field and importance of
this correction for the relaxation dynamics
The computation of the incompressible velocity field vinc is given equivalently in subsection 2.4.2,
eq.2.33, by considering a γinc that takes into account the compressible flow field, or by Appendix
2, eq.3.74, by adding fg the air friction and the line tension integral as higher order forces in the
system. They both give:∇s · vinc = 0

ηs∆svinc + ∇sγinc + fg =
∮

C∗ Tκ(r′)δC∗(r − r′)n(r′)dr′ (3.77)
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This problem is solved in section 2.4.4 in a form that allows us to get an expression for the
time evolution of L with eq.2.46. With the compressible component, we have:

L̇(t) = − T (t)
4R(t)ηair

− 2L(t)
w

VF r(t) (3.78)

Where the first term of the right hand-side is given by eq.2.46 and the second term is the
compressible contribution. Experimentally, we define U exp = L̇ in section 2.4.4, and here we also
define a corrected velocity:

U exp
corr(t) = U exp(t) + 2L(t)

w
VF r(t) (3.79)

Which now takes into account the compression of the thin film as more thick film is extracted.
This is the corrected velocity that may be taken into account for the sake of quantifying the
relaxation dynamics associated with the line tension forces.

We compute the ratio U exp
corr/U

exp and plot it in Fig.3.46. Mind that U exp = L̇ < 0 and
VF r > 0, hence the ratio below one. We directly see that it is a correction of 15%
at best, which is a useful correction in general, but given the present experimental
uncertainties associated with the line tension measurement (of the order of 50%...), it
has been discarded for the sake of simplicity in the story of chapter 2.

Figure 3.46: Ratio of the corrected velocity U exp
corr by the experimental velocity U exp retained

in chapter 2. The correction is of the order of 15%.

Appendix 4: 2D Stokes equation and derivation of its
Green function
Let us consider a 3D viscous fluid of viscosity η, to which we apply a force perpendicular to
a segment localized by the vector r1 = (x1, y1) in the (Oxy) plane, and by the z-scores z1 ∈
[−M,M ]. We denote f lin the force per unit length applied on a part of the segment, and u the
unit vector of the direction of the force. M is arbitrarily large. The Stokes equations governing
the motion and the pressure field is then:
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∆v(r) − ∇p(r)
η

= −f lin

η

∫ M

−M
δ3D(r − r1)dz1 u (3.80)

∇.v = 0 (3.81)

The dirac delta function δ3D is defined so that its integration over the volume of definition R3

is unity. In this case, the Green function of the Stokes equation is integrated over the segment
and yields:

v(r) = +f
lin

η

∫ M

−M
G3D(r − r1).u dz1 (3.82)

Where G3D, the Oseen tensor, is defined as:

G3D,ij(r) = 1
8π

(
δij

|r|
+ rirj

|r|3
)

(3.83)

Where δij is the Kronecker symbol. We now seek an analogy between this 3D mathematical
problem in order to solve for a point force 2D problem whose Stokes equations can be written:

∆v(r) + ∇γ(r)
ηs

= −T

ηs

δ2D(r − r1)u (3.84)

∇.v = 0 (3.85)

Where γ
ηs

= − p
η

defines by analogy a surface tension and a surface shear viscosity, T is a
force, and the new dirac function δ2D is now defined over the (Oxy) plane. The mathematical
analogy between the problems can be written so that the Green function of the 2D problem is
defined as:

f lin

η

∫ M

−M
G3D(r − r1).u dz1 = T

ηs

G2D(r∥ − r1,∥).u (3.86)

The ∥ index symbolizing the fact that the vector is projected in the (Oxy) plane. Computing
the integral for each coordinate and identifying the terms for the tensor G2D, we get for r ∈
R2 = (Oxy):

G2D,ij(r) = 1
4π

(
δij ln

(2M
|r|

)
+ rirj

|r|2
)

(3.87)

Which is the solution to eq. 3.84 yielding the 2D velocity field:

v(r) = +T

ηs

G2D(r − r1).u (3.88)
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Appendix 5: A more general equation of motion for
foam films with any field of thickness h
In a more general case than presented in subsection 2.4.1, the thickness gradients are not localised
along a contour. We can still write the equation of motion for any thickness field h in the foam
film. We can do so by adding directly the viscous stress tensor σvisc for two viscous 2D interfaces
to the capillary stress tensor σcap computed in eq.2.7 of section 2.1:

σvisc = 2ηs

(
∇v +t ∇v

)
(3.89)

Where v is the 2D velocity field shared by both interfaces, as we put ourselves in the case
where only plug flows are allowed as discussed in 0.2.1 (potentially extensional plug flows though).
Also, the factor 2 in σvisc is here to take into account the two interfaces.

We now write the conservation of momentum in the film neglecting its inertia:

0 = ∇.
(

σcap + σvisc

)
+ fext (3.90)

Where fext = 2fg accounts for the exterior forces acting on the film, which in the present
case are only 2fg the friction forces of the two interfaces on the neighbouring gas phase. Taking
the divergence of both the capillary and viscous stress tensors, we have:

2ηs∆v + 2∇γ + 2γ0h∇(∆h) + 2fg = 0 (3.91)
The first two terms correspond to the terms of a 2D Stokes equation in which the role of the

classical pressure gradient in 3D is held by the Marangoni stress here in 2D. The third term comes
from the divergence of the capillary stress tensor alone, where a simplification occurs between
∇.σ

∗
cap and ∇.(σfI2) with the terms depending on h. Note that we can write equivalently with

both notations ∇δγ as in eq.2.7 or ∇γ as in eq.2.32, as only the deviation from the equilibrium
value matters here.

This equation is the general equation of in-plane motion of a foam film with any thickness
field h and two interfaces of surface viscosity ηs subject to the friction of the neighbouring gas
phase. Is has been already derived by Bruinsma et al. [64] using another approach.

The specific case of eq.2.32 where we defined a line tension can be recovered by injecting a
thickness field h whose gradient is non-zero in very localised regions only. If we do so (as we
did in section 2.4.1), we need to be careful as not only the third term of eq.3.91 matters in the
non-zero gradient of thickness zones, but also ∇γ as discussed in section 2.1.2.
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Titre : Mouvements aux interfaces de mousses liquides élémentaires 

Mots clés : films de savon, mousses liquides, surfactants, rhéologie de surface, tension de ligne, 
interfaces liquides 

Résumé :  Les modèles physiques visant à 
prédire les propriétés mécaniques et 
rhéologiques des mousses liquides sont encore 
en développement. Une échelle locale 
pertinente pour attaquer ce problème du point 
de vue hydrodynamique est la mousse liquide 
élémentaire : quelques films de savon reliés 
entre eux par un ou deux ménisques. Ces 
travaux portent sur les écoulements dans de tels 
systèmes, plus précisément sur les mouvements 
dans les plans de ses différents films de savon. 
Il comporte essentiellement trois contributions. 
 La première porte sur le comportement 

élastique individuel des films sous étirement. 
Nous avons étendu un modèle connu à une 
gamme de chimie plus large et plus commune, 
et avons pu mesurer les modules élastiques 
effectifs de nos solutions. 

La seconde porte sur la mise en évidence et la 
quantification d'une tension de ligne d’origine 
purement capillaire dans le plan d'un film de 
savon d'épaisseur hétérogène. En modélisant 
les mouvements de relaxation dans le plan du 
film de savon, nous validons cette mesure 
inédite par un accord quantitatif avec la 
dynamique observée.  
Enfin, la troisième contribution porte sur les 
échanges de surfactants entre films de savon 
voisins lorsque la mousse élémentaire est 
soumise à une contrainte mécanique. Le 
résultat principal de cette partie, et de cette 
thèse, est que le ménisque séparant les films 
n'intervient pas dans cet échange. Ceci est une 
information importante qui permet de fermer un 
modèle théorique préexistant qui vise à prédire 
la viscosité effective des mousses liquides. 

 

Title : Interfaces in motion in elementary liquid foams 

Keywords : soap films, liquid foams, surfactants, surface rheology, line tension, liquid interfaces 

Abstract :  Models aiming to predict the 
mechanical and rheological properties of liquid 
foams are still under development. A relevant 
local scale to tackle this issue from a 
hydrodynamic perspective is the elementary 
liquid foam: a few foam films connected by one 
or two menisci. This work focuses on flows in 
such systems, specifically on movements within 
the planes of their foam films. It comprises three 
main contributions.  
The first focuses on the individual elastic 

behaviour of films under stretching. We 
extended a known model to a broader and more 
common chemical range and were able to 
measure the effective elastic moduli of our 
solutions. 

The second highlights and quantifies a line 
tension of purely capillary origin within the 
plane of a foam film with heterogeneous 
thickness. By modelling the relaxation 
movements within the plane of the foam film, 
we validate this novel measurement through a 
quantitative agreement with the observed 
dynamics.  
Finally, the third contribution addresses 
surfactant exchanges between foam films 
when the elementary foam undergoes 
mechanical constraint. The main result of this 
part, and of this thesis, is that the meniscus 
separating the films does not play any role in 
this exchange. This is crucial information to 
close an existing theoretical model aiming to 
predict the effective viscosity of liquid foams. 

 


	Introduction
	The fluid dynamics around a surfactant-laden interface
	Surfactants
	Definitions and generalities about interfaces and surface tension 
	Coupling the bulk to the interface
	Constitutive equation and 2D stress tensor s

	2D hydrodynamics and rheology of a foam film
	Foam films only have plug flows far from the meniscus
	Thin bulk means fast chemical equilibrium
	First model for film elasticity and its physical origin
	Far from the meniscus, film tension is uniform
	The incompressible interface limit

	Flows in foam films at a junction with a meniscus
	Lubrication equations in a foam film
	Steady state film extraction: the Frankel problem
	Capillary suction near the meniscus: Aradian's marginal pinching
	Marginal regeneration
	Rayleigh-Taylor-like instability with thickness heterogeneities and gravity
	Evaporation

	Elementary liquid foams
	Plateau's laws: the local equilibrium state for the shape of liquid foams
	T1 events and the Durand-Stone experiment
	Axisymmetric elementary liquid foam under small deformation: the Besson-Debrégeas experiment
	Recent numerical advances
	Rheology of an elementary liquid foam: state of the art in Isabelle Cantat's group at the beginning of my Ph.D

	Spontaneous evolution of foams and films
	Normal motion of the films
	Gravity drainage
	Coarsening of liquid foams
	Link to liquid foams in the industry and daily life


	Elasticity of a single foam film and how to measure it
	Surface and film elasticity measurements in the literature
	SDS/DOH mixtures: a few more comments
	Film elasticity and model in the submicellar regime: the Prins experiment

	Thermochemical models for foam film elasticities
	Our model for SDS/DOH mixtures
	Numerical results

	A foam film rheometer
	Experimental setup
	Experimental results and comparison with the predictions
	Theoretical and experimental film elasticities

	Conclusions of Chapter 1

	In-plane motions in a foam film
	Capillary force and line tension in foam films
	Building the capillary stress tensor for an elementary piece of film with a thickness gradient
	Gradients of thickness localised in a very thin region: building a line tension T
	Important remarks

	Creating line tension in a foam film: experimental setup
	Principle of the experiment, technical limitations and notations
	Setup

	Image processing
	Detection of the thin region contour and kinematics of the relaxation
	Comment on the chemistry
	Extracting the thickness profiles
	Computing the resulting line tension
	Results

	Modelling the relaxation of the thin film
	Equation of motion for a foam film with line tension
	Closing the problem: incompressibility of the interfaces
	Damping forces: the Boussinesq number Bq
	Mapping on the Saffman and Hughes model
	Quantitative agreement in the air friction-dominated regime
	Important remarks and some calculations

	Conclusions of Chapter 2

	Dissipative phenomena in an elementary foam
	Rheology of an elementary liquid foam
	An elementary liquid foam with three films
	Position of the problem
	First hint

	Theoretical state of the art
	Theoretical description of the flat film, the sheared zone, the dynamic and static menisci
	Set of equations
	Boundary condition on the meniscus side ssm: the surfactant flux jm as an unknown parameter
	Numerical resolution of the system

	Experimental challenge: measuring jm
	Experimental setup and notations
	Chemistries
	Notations for the 3-films elementary foam
	Motors, optics and photobleaching setup
	Interfacing and synchronising the experiment

	Detailed protocol for the ``Push 3'' experiment
	Data and image processing
	Tracking of the free meniscus in the horizontal plane
	Tracking the vertical position of the free meniscus and its radius by ray tracing
	Tracking the edges of Frankel films in the horizontal film 3
	Tracking the Frankel film in the top left film 1
	Thickness profiles with hyperspectral cameras
	Tracking of the photobleached dots

	Monitoring the invariance by translation along z
	Computing tensions, deformations and elasticites of the films
	Relative tensions between the films
	Deformation of film 3 3 and film 1 1
	Determination of the film elasticity Ef
	A second estimation of the deformation 1,b

	Results: Surfactant balance and the fate of jm
	Computing Lin and Lout
	Vanishing flux jm

	Other deformations
	``Push 1'': Potential influence of gravity
	``Pull 1'': Same symmetry, opposite directions for the imposed velocities

	Conclusions of Chapter 3

	Appendix

