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Abstract This paper introduces an adaptive preconditioner for iterative solution of
sparse linear systems arising from partial differential equations with self-adjoint op-
erators. This preconditioner allows to control the growth rate of a dominant part of the
algebraic error within a fixed point iteration scheme. Several numerical results that il-
lustrate the efficiency of this adaptive preconditioner with a PCG solver are presented
and the preconditioner is also compared with a previous variant in the literature.
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1 Introduction

In this paper, we focus on solving linear systems of equations arising from computing
the numerical solution of a partial differential equation. The accuracy of this numer-
ical solution is estimated by evaluating the error between the obtained approximate
solution and the exact solution. There are several different sources that contribute to
this error, the discretization error, the linearization error, and the algebraic error. We
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are in particular interested in the algebraic error which arises from computing itera-
tively the solution of the resulting linear system of equations. A means for measuring
the accuracy of this result is to evaluate the error, which is the difference between the
approximate and the exact solutions. Also in the realm of linear algebra, an algebraic
error originates from the iterative solution of the linear system of equations result-
ing from the discretization of the problem. Several works were carried out with the
primary objective of identifying the algebraic error during the iterative solution of a
linear system, raised from a numerical approximation of partial differential equations
[8,6,5,7,21–23,18]. Subsequent works used the theory of a posteriori error estimates
in order to derive rigorous upper bounds of the global error, which includes the al-
gebraic error [3,2,16,12,10,20]. More recent works focused on deriving appropriate
guaranteed upper bound directly on the algebraic error using equilibrated flux recon-
structions [20,17,19]. In the context of using a posteriori error estimates, an adaptive
preconditioner, which is used in combination with a specific initial guess and based
on the estimated local distribution of the algebraic error, is derived in [1]. To the best
of our knowledge, that is the first work that focused on preconditioners that take into
account the distribution of the error.
In this work, we are interested in solving a linear system A · x = b by an iterative
method. The system arises from the discretization of a partial differential equation for
which an error analysis has been undertaken and a posteriori algebraic error estimates
are available. The magnitudes of these estimates indicate that the algebraic error is
concentrated on some specific areas of the domain, which leads to a certain error-
driven domain decomposition. If the indices of the vertices where the algebraic error
is high are gathered in a subset L, whereas the remaining vertex indices are grouped
into another subset R, a first step to efficiently reduce the energy norm of the error
is obtained, according to [1], by expressing it as a sum of two terms: a first term
that is specific to the unknowns of L, called L-term and dominant –according to the
information stemming from a posteriori error estimates– and a second term that does
not depend on the unknowns of L, called R-term (see [1, Formula (20)]). A second
step consists in making the projection of the residual on the unknowns of L nil. This
implies that the L-term is cancelled (equal to zero). This lead to the introduction of an
adaptive solve procedure and its equivalent preconditioner and initial guess for PCG
solver (see [1, Theorem 1]).
In this paper, we introduce an approach that allows to control the evolution of the
dominant part of the algebraic error, from one iteration to another of an iterative
scheme. We define a seminorm of the error, that we call AL-seminorm, that bounds
the dominant part of the algebraic error (localized on L). Then we derive a precondi-
tioner, which we refer to as L-adaptive, that bounds the growth rate of this quantity
in a fixed-point iteration scheme. Even though the theoretical results are derived for
a fixed-point iteration scheme, our numerical results use preconditioned CG solver
for faster convergence. We consider several test cases, in particular those for which
the adaptive solve procedure and its equivalent preconditioner, which we refer to as
R-adaptive, studied in [1] is not efficient. We observe that the configurations of the
L-adaptive preconditioner for which the AL-seminorm of the error is strictly decreas-
ing in a fixed-point iteration scheme, perform well when a PCG solver is used as
well. We notice that even though the number of iterations of PCG is reduced when
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going from an initial Block Jacobi preconditioner to the R-adaptive preconditioner
in [1, Section 5], we still get an improvement by using the L-adaptive one. In fact,
the decrease in the number of iterations with the L-adaptive preconditioner is more
important in the test cases where the R-adaptive preconditioner is not sufficient to
significantly reduce the number of iterations.
This article is organized as follows. Section 2 presents the model problem and recalls
the starting assumption on the distribution of the algebraic error, then we analyze
in Section 3 the behavior of a partial algebraic error within a fixed-point iteration
scheme. In Section 4, we derive specific preconditioners that would ensure that from
an iteration i to the next iteration i+1, the evolution of that algebraic error localized
on the targeted subdomains is controlled. More precisely, the growth rate of the local
algebraic error between those two iterations can be bounded by a fixed coefficient.
Section 5 makes the connection with the preconditioner derived in [1]. The numerical
behavior of both preconditioners is studied on several different test cases in Section 6.

2 Preliminaries

For 1 ≤ d ≤ 3, let Ω ⊂ Rd be a non-empty, open, bounded set. We assume Ω is
connected. Ω , Ω̊ and ∂Ω denote respectively the closure, interior and boundary of
Ω . Our model problem is a second-order elliptic equation which seeks an unknown
function u : Ω → R such that:{

−∇ · (K∇u) = f in Ω ,

u = 0 on ∂Ω ,
(2.1)

where K is a positive definite and uniformly bounded diffusion tensor, and f : Ω →R
is a source term in L2(Ω), which is the space of square integrable functions over Ω .
Let Th be a matching simplicial mesh of Ω and Vh be the usual finite element space
of continuous piecewise p-th order polynomial functions (p≥ 1). For simplicity, it is
assumed that K and f are piecewise constant with respect to the mesh Th. The linear
algebraic system arising from the discretization by finite element method of (2.1) on
Th using the basis functions of Vh is expressed as:

A ·x = b, (2.2)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix, b ∈ Rn is the right
hand side vector, and x ∈ Rn is the solution vector. The Galerkin solution can then

be written as uh =
n
∑

l=1
xlϕl ∈Vh, where (ϕl)1≤l≤n is a basis of Vh.

We consider solving the system (2.2) by an iterative solver. We denote by x(i) the

approximate solution after i iterations and by u(i)h =
n
∑

l=1
x(i)l ϕl the associated function

from Vh. Our main assumption is that an estimation of the local distribution of the
error ‖K 1

2 ∇(uh−u(i)h )‖L2(K) is available on all mesh elements K ∈Th (Ω =∪K), and
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consequently the main domain Ω is decomposed into two disjoint open subdomains
(they are aggregates of mesh elements) Ω1 and Ω2 such that:{

Ω 1∪Ω 2 = Ω ,

Ω̊ 1∩ Ω̊ 2 = /0,
(2.3)

where Ω1 is composed of the elements with a high algebraic error:

||K1/2
∇(uh−u(i)h )||2L2(Ω1)

� ||K1/2
∇(uh−u(i)h )||2L2(Ω2)

. (2.4)

Following the domain decomposition of (2.3), let A(1) and A(2) be the local stiffness
matrices for the subdomains Ω1 and Ω2, respectively. They are defined by:

A(1)
jk = (K

1
2 ∇ϕk,K

1
2 ∇ϕ j)Ω1 , 1≤ j,k ≤ n, suppϕk ∩Ω1 6= /0, suppϕ j ∩Ω1 6= /0,

A(2)
jk = (K

1
2 ∇ϕk,K

1
2 ∇ϕ j)Ω2 , 1≤ j,k ≤ n, suppϕk ∩Ω2 6= /0, suppϕ j ∩Ω2 6= /0.

For ease of presentation, we consider the following ordering. The unknowns corre-
sponding to the vertices of Ω̊1 are numbered first, those of the interface between the
two subdomains second, and those of Ω̊2 last. Let nL ∈ N and n2 ∈ N be the number
of vertices in Ω 1 and Ω 2 resp., we define the restriction matrices R1 and R2 from the
global set of degrees of freedom to the set of degrees of freedom related to Ω 1 and to
Ω 2:

∀(xL,xR,x1,x2) ∈RnL×Rn−nL×Rn−n2×Rn2 : R1 ·
(

xL
xR

)
= xL, R2 ·

(
x1
x2

)
= x2,

(2.5)
such that:

– xL is the vector containing the degrees of freedom related to Ω 1;
– xR is the vector containing the degrees of freedom related to Ω̊2;
– x1 is the vector containing the degrees of freedom related to Ω̊1;
– x2 is the vector containing the degrees of freedom related to Ω 2.

Therefore, for the same vector
(

xL
xR

)
=

(
x1
x2

)
, the entries of x1 constitute a part of

xL. The same can be said about xR and x2, respectively.
Then we can split the operator A as follows,

A = A(1)
p +A(2)

p , A(1)
p = RT

1 A(1)R1, A(2)
p = RT

2 A(2)R2. (2.6)

A(1)
p and A(2)

p are the extensions of the local stiffness matrices (also called Neu-
mann matrices [9]) A(1) and A(2) to the whole domain. They are symmetric positive
semidefinite (SPSD).
Furthermore, we obtain the equivalent formulation to (2.4) in the realm of matrices:

(x−x(i))T ·A(1)
p · (x−x(i))� (x−x(i))T ·A(2)

p · (x−x(i)) , (2.7)
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where x(i) is the approximate solution at iteration i. Note that summing both sides
of inequality (2.7) gives the energy norm of the error, (x−x(i))T ·A · (x−x(i)). This
inequality expresses that A(1)

p -seminorm of the error, also referred to as L-norm (see
[1, Section 5.1]), is the dominant part of the energy norm of the error. Thus, it is this
quantity that should be decreased.

3 Controlling the local algebraic error in fixed-point iteration scheme

In this section we study an approach that allows to maintain the evolution of the left
hand side of (2.7) limited, that is to keep it under a given threshold from one iteration
to another. This is equivalent to ensuring the following property,

∃τ > 0, ∀i ∈ N, (x−x(i+1))T ·A(1)
p · (x−x(i+1))≤ τ(x−x(i))T ·A(1)

p · (x−x(i)).

Thus, considering a fixed-point iteration scheme,

x(i+1) := x(i)+M−1 · (b−A ·x(i)),∀i ∈ N, (3.1)

with an arbitrary initial guess x(0), we seek a preconditioner M−1 that satisfies the
property,

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) ·u)T·A(1)
p · ((I−M−1A) ·u)≤ τuT ·A(1)

p ·u, (3.2)

because we have x−x(i+1) = (I−M−1A) · (x−x(i)) from (3.1).
In what follows, we state several lemmas that are useful for establishing the necessary
and sufficient conditions for property (3.2).

Lemma 3.1 Let P ∈ Rn×n be a symmetric positive semi-definite matrix, Q ∈ Rn×n

be an invertible matrix and V be an arbitrary subspace of Rn. The following two
assertions are equivalent:

– ∃τ1 > 0, ∀u ∈V : ((I−Q) ·u)T ·P · ((I−Q) ·u)≤ τ1uT ·P ·u,
– ∃τ2 > 0, ∀u ∈V : (Q ·u)T ·P · (Q ·u)≤ τ2uT ·P ·u.

Proof We denote by || ||P : x 7→
√

xT ·P ·x the seminorm defined by P on Rn. To
prove the equivalence of the assertions, it suffices to notice that for any u ∈ Rn we
have:

||u−Q ·u||2P ≤ 2||u||2P +2||Q ·u||2P
and

||Q ·u||2P = ||u− (u−Q ·u)||2P ≤ 2||u||2P +2||u−Q ·u||2P.
ut

Lemma 3.2 Let P∈Rn×n be a symmetric positive semi-definite matrix and Q∈Rn×n

be an invertible matrix. If

∃τ > 0, ∀u ∈ Rn : ((I−Q) ·u)T ·P · ((I−Q) ·u)≤ τuT ·P ·u,

then Ker(P) is invariant of Q, i.e. ∀v ∈ Ker(P) : Q ·v ∈ Ker(P).
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Proof We give a proof by contrapositive of this lemma. If Ker(P) is not invariant of
Q, then there exists a vector u0 ∈ Ker(P) such that Q ·u0 /∈ Ker(P). Thus,

∀τ > 0,∃u0 ∈ Rn : ((I−Q) ·u0)
T ·P · ((I−Q) ·u0) = ||Q ·u0||2P > 0 = τ(uT

0 ·P ·u0).

ut
The next corollary follows from the above lemma by taking P := A(1)

p and Q :=
M−1A.

Corollary 3.1 Let M−1 be a preconditioner of the matrix A that satisfies,

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) ·u)T ·A(1)
p · ((I−M−1A) ·u)≤ τuT ·A(1)

p ·u,

then Ker(A(1)
p ) is invariant of M−1A.

This corollary provides a necessary condition for the property (3.2) to be satisfied.
On the other hand, we aim at proving sufficient condition for that property with the
following lemma.

Lemma 3.3 Let M−1 be a preconditioner of the matrix A. If Range(A(1)
p ) is invariant

of (M−1A)TA(1)
p (M−1A) then:

∃τ > 0,∀u ∈ Range(A(1)
p ) : ((I−M−1A) ·u)T·A(1)

p · ((I−M−1A) ·u)≤ τuT·A(1)
p ·u.

Proof A(1)
p and (M−1A)TA(1)

p (M−1A) are symmetric positive semidefinite. In addi-
tion, if Range(A(1)

p ) is invariant of (M−1A)TA(1)
p (M−1A), then (M−1A)TA(1)

p (M−1A)

and A(1)
p , seen as linear operators from Range(A(1)

p ) to Range(A(1)
p ), are symmetric

positive semidefinite and symmetric positive definite respectively. In this case, we
can introduce the following generalized eigenvalue problem:

Find (yk,µk) ∈ Range(A(1)
p )×R such that (M−1A)TA(1)

p (M−1A) ·yk = µkA(1)
p ·yk.

(3.3)

Since A(1)
p is an SPD operator on Range(A(1)

p ), the eigenvalues of (3.3) can be chosen
so that they form a basis of Range(A(1)

p ) that is both A(1)
p -orthonormal and

(M−1A)TA(1)
p (M−1A)-orthogonal. Let m = dim(Range(A(1)

p )) = rank(A(1)
p ) and let

u ∈ Range(A(1)
p ) then:

u =
m

∑
k=1
〈A(1)

p ·u,yk〉yk

=⇒ (M−1A)TA(1)
p (M−1A) ·u =

m

∑
k=1
〈A(1)

p ·u,yk〉(M−1A)TA(1)
p (M−1A) ·yk

=
m

∑
k=1

µk〈A
(1)
p ·u,yk〉A

(1)
p ·yk

=⇒ uT · (M−1A)TA(1)
p (M−1A) ·u =

m

∑
k=1

µk〈A
(1)
p ·u,yk〉2

≤ ( max
1≤i≤m

µi)
2

m

∑
k=1
〈A(1)

p ·u,yk〉2 = ( max
1≤i≤m

µi)
2uT ·A(1)

p ·u.



An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm 7

And applying the result of Lemma 3.1 on the last inequality ends the proof. ut

It must be emphasised that Lemma 3.3 gives a sufficient condition for Property (3.2)
to be true not on the whole space Rn, but only on a subspace of it. However, the
error e(i) := x− x(i) is not guaranteed to belong to that subspace as the initial guess
x(0) is arbitrarily chosen. Therefore, this sufficient condition is too restrictive, since
its effect is valid only for the iterations when the error lies in the range of A(1)

p . It is
also worth mentioning that the necessary condition of Corollary 3.1 and the sufficient
condition of Lemma 3.3 do not match. In the sequel, we will derive a second property
that is similar to (3.2), that involves a definite matrix, and for which we can derive a
sufficient and necessary condition.

4 Deriving a block partitioning and controlling the corresponding algebraic
error norm

By proceeding in the same way as in [1, Section 3.3], we replace the sum-splitting
of the operator, as in (2.6), by a block-partitioning of the matrix. By considering the
ordering of the unknowns described in Section 2, A(1) and A(2) can be expressed as,

A(1) =

(
F E(1)

E(1)T A(1)
int

)
, A(2) =

(
A(2)

int E(2)

E(2)T AR

)
,

where A(1)
int and A(2)

int are the blocks related to the vertices in the interface, i.e., the
vertices in Ω 1∩Ω 2. If we take,

ALR = AT
RL =

(
0

E(2)

)
, AL = A(1)+

(
0 0
0 A(2)

int

)
,

then we get the following block-partitioning

A =

(
AL ALR
ARL AR

)
, (4.1)

where the L-part stands for the set of vertices that belong to Ω 1 and the R-part for the
vertices of Ω̊ 2. If we denote by nR the number of vertices of Ω̊ 2, then nR = n−nL.
nL and nR are equal to the sizes of the diagonal SPD blocks AL and AR, respectively.

The right hand side vector b can be partitioned accordingly, i.e., b =

[
bL
bR

]
.

We recall that in this case, if we denote,

AL := RT
1 ALR1 =

(
AL 0
0 0

)
, (4.2)

then by combining the formulation of (2.7) with the superiority property of [1, Lemma 3],
which states that the AL-norm is higher than the A(1)-seminorm, we have:

(x−x(i))T ·AL · (x−x(i))≥ (x−x(i))T·A(1)
p · (x−x(i))� (x−x(i))T·A(2)

p · (x−x(i)).
(4.3)
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Therefore, instead of controlling the dominant A(1)
p -seminorm of the error, we will

focus on the AL-seminorm of the error which is larger. To ensure that the evolution
of this latter in a fixed-point iteration scheme from one iteration to another is limited
and kept below a fixed tolerance, we have to find a preconditioner M−1 such that,

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) ·u)T ·AL · ((I−M−1A) ·u)≤ τuT ·AL ·u. (4.4)

Lemma 3.2 applied to the matrices P := AL and Q := M−1A yields the following
corollary.

Corollary 4.1 Let M−1 be a preconditioner of the matrix A that satisfies,

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) ·u)T ·AL · ((I−M−1A) ·u)≤ τuT ·AL ·u,

then Ker(AL) is invariant of M−1A.

Lemma 4.1 Ker(AL) is invariant of M−1A if and only if

∃M1 ∈ RnL×nL ,∃M3 ∈ RnR×nL ,∃M4 ∈ RnR×nR : M−1A =

(
M1 0
M3 M4

)
.

Proof As AL =

(
AL 0
0 0

)
and AL is SPD, we have Ker(AL) =

{(
0

yR

)
|yR ∈ RnR

}
.

Let M−1A =

(
M1 M2
M3 M4

)
, then ALM−1A =

(
ALM1 ALM2

0 0

)
. Let yR ∈RnR , we have

ALM−1A ·
(

0
yR

)
=

(
ALM2yR

0

)
.

Recall that Ker(AL) is invariant of M−1A if and only if

∀y ∈ Ker(AL), ALM−1A ·y = 0.

Therefore, Ker(AL) is invariant of M−1A if and only if

∀yR ∈ RnR , ALM2 ·yR = 0.

Since AL is SPD, this latter property is equivalent to

∀yR ∈ RnR , M2 ·yR = 0,

which means that M2 = 0. ut

Lemma 4.2 Let M−1 be a preconditioner of the matrix A. If M−1A can be written as

M−1A =

(
M1 0
M3 M4

)
, (4.5)

where M1 ∈ RnL×nL ,M3 ∈ RnR×nL ,M4 ∈ RnR×nR , then

∃τ > 0, ∀u ∈ Rn : (M−1A ·u)T ·AL · (M−1A ·u)≤ τuT ·AL ·u.



An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm 9

Proof With (4.5), we have

(M−1A)TAL(M−1A) =

(
MT

1 MT
3

0 MT
4

)(
AL 0
0 0

)(
M1 0
M3 M4

)
=

(
MT

1 ALM1 0
0 0

)
.

Let u =

(
uL
uR

)
∈ Rn, we have:

uT · (M−1A)TAL(M−1A) ·u =

(
uL
uR

)T

·
(

MT
1 ALM1 0

0 0

)
·
(

uL
uR

)
= uT

L ·MT
1 ALM1 ·uL

and

uT ·AL ·u =

(
uL
uR

)T

·
(

AL 0
0 0

)
·
(

uL
uR

)
= uT

L ·AL ·uL.

We consider the following generalized eigenvalue problem:

Find (λk,yk) ∈ R×RnL such that MT
1 ALM1 ·yk = λkAL ·yk. (4.6)

MT
1 ALM1 and AL are both symmetric positive definite matrices, therefore the eigen-

vectors yk can be chosen so that they form a basis of RnL that is both AL-orthonormal
and MT

1 ALM1-orthogonal. As a consequence, we can write:

uL =
nL

∑
k=1
〈AL ·uL,yk〉yk

⇐⇒ MT
1 ALM1 ·uL =

nL

∑
k=1
〈AL ·uL,yk〉MT

1 ALM1 ·yk =
nL

∑
k=1
〈AL ·uL,yk〉λkAL ·yk.

Therefore,

uT
L·MT

1 ALM1·uL =
nL

∑
k=1

λk〈AL·uL,yk〉2 ≤ max
1≤i≤nL

λi

nL

∑
k=1
〈AL·uL,yk〉2= ( max

1≤i≤nL
λi) uT

L·AL·uL.

(4.7)

Hence (M−1A ·u)T ·AL · (M−1A ·u)≤ ( max
1≤i≤nL

λi) uT ·AL ·u. ut

Theorem 4.1 Let A =

(
AL ALR
ARL AR

)
be an SPD matrix, M−1 be a preconditioner of

A and AL be defined as in (4.2). The property,

∃τ > 0, ∀u ∈ Rn : ((I−M−1A) ·u)T ·AL · ((I−M−1A) ·u)≤ τuT ·AL ·u (4.8)

is satisfied if and only if

∃W1 ∈ RnL×nL ,W3 ∈ RnR×nL ,W4 ∈ RnR×nR : M−1 =

(
W1 −W1ALRA−1

R
W3 W4

)
. (4.9)

In that case, the minimum coefficient τ that satisfies (4.8) is the maximum eigenvalue
λk of (4.6).
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Proof According to Corollary 4.1, Lemmas 4.1 and 4.2, we have:

∃τ > 0,∀u ∈ Rn : ((I−M−1A) ·u)T ·AL · ((I−M−1A) ·u)≤ τuT ·AL ·u

if and only if R1M−1AR3
T = 0, where R1 ∈RnL×n,R3 ∈RnR×n are restriction matri-

ces defined such that R1 :
(

xL
xR

)
∈Rn 7→ xL ∈RnL , and R3 :

(
xL
xR

)
∈Rn 7→ xR ∈RnR .

Let W1∈RnL×nL,W2∈RnL×nR,W3∈RnR×nL,W4∈RnR×nR such that M−1=

(
W1 W2
W3 W4

)
.

Then R1M−1 =
(
W1 W2

)
and AR3

T =

(
ALR
AR

)
. Hence:

R1M−1AR3
T = 0 ⇐⇒ W1ALR +W2AR = 0 ⇐⇒ W2 =−W1ALRA−1

R .

The minimum coefficient τ is deduced from the proof of Lemma 4.2 as inequal-
ity (4.7) is sharp. ut

It is worth mentioning that the submatrix A−1
R involved in the preconditioner M−1

in (4.9) cannot easily be computed in practice and requires itself an iterative scheme.
Furthermore, it is noteworthy that Theorem 4.1 does not impose any special require-
ments on matrices W1, W3 and W4. For instance, the choice of a matrix W3 :=
−A−1

R ARLWT
1 and symmetric diagonal blocks W1 and W4 may be considered for

the purposes of symmetry. In this case, it is possible to use M−1 as a preconditioner
outside the framework of fixed-point iteration schemes, for a PCG solver for exam-
ple. As far as the block W4 is concerned, we can choose it to be equal to A−1

R as
this inverse is already needed for an off-diagonal block. Furthermore, if we denote
SL := AL−ALRA−1

R ARL, we can deduce the expression of the upper left block M1 of
the matrix M−1A from (4.9) in Theorem 4.1. Indeed, we have

M1 = R1M−1ART
1 =

(
W1 −W1ALRA−1

R

)( AL
ARL

)
= W1SL;

and the generalized eigenvalue problem (4.6) becomes,

Find (λk,yk) ∈ R×RnL such that SLWT
1 ALW1SL ·yk = λkAL ·yk. (4.10)

We are interested in the maximum λk as it gives the minimum value of τ in (4.8),
i.e. the minimum upperbound of the error’s growth rate. It is straightforward that the
eigenvalues λk form the spectrum of the matrix SLWT

1 ALW1SLA−1
L . To render this

spectrum bounded from above, three options can be considered:

– W1 = S−1
L : This choice reduces the spectrum of SLWT

1 ALW1SLA−1
L to 1 since

SLWT
1 ALW1SL = AL.

– W1 =A−1
L : This choice makes the spectrum of SLWT

1 ALW1SLA−1
L bounded from

above by 1. In fact,

SLWT
1 ALW1SLA−1

L = (SLA−1
L )2,

and Sp(SLA−1
L )⊂ ]0,1] (see [11, Theorem 3.1]).
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– Taking W1 as a SPD preconditioner such that the eigenvalues of W1AL are below
a fixed scalar ν > 0 implies that the maximum λk (and hence the minimal τ) is
less than ν2 (see Lemma 4.3 below).

It should be outlined that the first two choices are more theoretical than practical as
it is often costly to compute the exact inverse of a large block AL or a dense Schur
complement matrix SL. The third choice is more affordable in practice, as there are
many preconditioning strategies that allow to bound the maximum eigenvalue of the
preconditioned operator, e.g. domain decomposition-based preconditioners (like one-
level Additive Schwarz, BDD or two-level Schwarz) [9] or LORASC [11].

Lemma 4.3 Let W1 be an SPD preconditioner of AL such that the eigenvalues of
W1AL are below a fixed scalar ν > 0,

λmax(W1AL)≤ ν . (4.11)

Then it holds that:

λmax(SLW1ALW1SLA−1
L )≤ ν

2. (4.12)

Proof We know that

SLW1 = ALW1−ALRA−1
R ARLW1.

Therefore since W1 and ALRA−1
R ARL are SPD matrices, the eigenvalues of

ALRA−1
R ARLW1 are nonnegative therefore

λmax(SLW1)≤ λmax(ALW1).

And also from [11, Theorem 3.1],

λmax(SLA−1
L )≤ 1.

Thus,

λmax(SLW1ALW1SLA−1
L )≤ λmax(SLW1)λmax(ALW1)λmax(SLA−1

L )

≤ λ
2
max(ALW1)

≤ ν
2.

ut

5 Link with the adaptive preconditioner for PCG based on local error
indicators

The main goal of Section 4 was to identify a relevant seminorm (the AL-seminorm),
which is superior to the dominant A(1)

p -seminorm, and to derive a preconditioner that
enables to control that seminorm in a fixed-point iteration scheme. In this section, we
connect the results obtained in the previous sections with the preconditioner intro-
duced in [1, Section 4] by:
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¶ verifying if its main feature, which is cancelling the residual on the L-part, is still
true in a fixed-point iteration scheme (Lemmas 5.1 and 5.2),

· identifying the seminorm of the error whose growth rate is controlled by this
preconditioner within a fixed-point iteration scheme (Corollary 5.1).

For that, we exploit the lemmas proven in Section 4 to derive the properties satisfied
by the adaptive preconditioner introduced in [1].

First, we start by the preconditioner M =

(
AL ALR

ARL MS +ARLA−1
L ALR

)
suggested in [1,

Theorem 1], where MS is a preconditioner for SR :=AR−ARLA−1
L ALR. That theorem

states that when preconditioned by this preconditioner, the PCG solver on the whole
system becomes equivalent to a PCG solver on a reduced Schur complement system
resulting in a nil residual on the unknowns of Ω1 (i.e. the L-part) at each iteration:

∀i > 0, R1 · r(i) = R1A · (x−x(i)) = 0, (5.1)

where R1 is the restriction matrix of (2.5). In the following lemma, we prove that this
property is still satisfied with a fixed-point iteration scheme (3.1).

Lemma 5.1 Let M =

(
AL ALR

ARL MS +ARLA−1
L ALR

)
where MS is invertible. When M−1

is used as the preconditioner of the fixed-point iteration scheme defined in (3.1), then
property (5.1) holds regardless of the choice of the initial guess x(0).

Proof The inverse of M is expressed as

M−1 =

(
A−1

L +A−1
L ALRM−1

S ARLA−1
L −A−1

L ALRM−1
S

−M−1
S ARLA−1

L M−1
S

)
.

Therefore,

M−1A =

(
I A−1

L ALR(I−M−1
S SR)

0 M−1
S SR

)
,

and

A(I−M−1A) =

(
0 0
0 SR−SRM−1

S SR

)
.

Thus, R1A(I−M−1A) = 0.
Consequently, for any iteration i > 0 we have

R1r(i) = R1A · (x−x(i)) = R1A(I−M−1A) · (x−x(i−1)) = 0.

ut

For the more general shape of the adaptive preconditioner proposed in [1, Theorem 2],
we prove in what follows that Property (5.1) still holds, but this time for a specific
initial guess x(0).
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Lemma 5.2 Let x(0)R be an arbitrary vector of RnR and W1 ∈ RnL×nL , W2 ∈ RnR×nR

two invertible matrices. Let the linear system A · x = b be solved by a fixed-point
iteration scheme (3.1) with a preconditioner M = WWT and an initial guess x(0)
such that

x(0) =

[
A−1

L · (bL−ALR ·x(0)R )

x(0)R

]
, W =

(
W1 0

ARLA−1
L W1 W2

)
; (5.2)

then R1 · (b−A ·x(i)) = 0 at each iteration i > 0.

Proof The definition of x(0) yields

x−x(0) =

[
−A−1

L ALR · (xR−x(0)R )

xR−x(0)R

]
=

(
−A−1

L ALR
I

)
· (xR−x(0)R ).

We know that due to (3.1), we have for any i,

R1 · (b−A ·x(i)) = R1A · (x−x(i)) = R1A(I−M−1A)i · (x−x(0)).

Therefore, proving the lemma amounts to prove that

∀i ∈ N, R1A(I−M−1A)i
(
−A−1

L ALR
I

)
= 0. (5.3)

Let us demonstrate that by induction.
For i = 0,

R1A
(
−A−1

L ALR
I

)
=
(
AL ALR

)(−A−1
L ALR
I

)
= 0.

We denote M1 := W1WT
1 , and MS := W2WT

2 . A quick computation of the inverse of
W gives

M−1 = W−TW−1 =

(
M−1

1 +A−1
L ALRM−1

S ARLA−1
L −A−1

L ALRM−1
S

−M−1
S ARLA−1

L M−1
S

)
.

Thus we obtain,

I−M−1A =

(
I−M−1

1 AL −M−1
1 ALR +A−1

L ALRM−1
S SR

0 I−M−1
S SR

)
(5.4)

Let i ∈ N, we assume the induction hypothesis (5.3) for i, then due to (5.4) we have

R1A(I−M−1A)i+1
(
−A−1

L ALR
I

)
=
(
AL ALR

)
(I−M−1A)i(I−M−1A)

(
−A−1

L ALR
I

)
=
(
AL ALR

)
(I−M−1A)i

(
−A−1

L ALR(I−M−1
S SR)

(I−M−1
S SR)

)
=
(
AL ALR

)
(I−M−1A)i

(
−A−1

L ALR
I

)
(I−M−1

S SR)

= 0.

Thus, we can apply the induction hypothesis for i to show that (5.3) is true for i+1.
ut
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Moreover, as far as the algebraic error norm is concerned, if we denote by

AR :=
(

0 0
0 AR

)
∈ Rn×n, (5.5)

we can derive the subsequent corollary for these adaptive preconditioners.

Corollary 5.1 Let M−1 be an adaptive preconditioner of the matrix A as defined
in Lemma 5.2. When M−1 is used as the preconditioner of the fixed-point iteration
scheme defined in (3.1), then it holds that:

∃τ > 0, ∀u ∈ Rn : (M−1A ·u)T ·AR · (M−1A ·u)≤ τuT ·AR ·u.

The minimum value of τ is the maximum eigenvalue of the generalized eigenvalue
problem:

Find (λk,yk) ∈ R×RnR such that MT
4 ARM4 ·yk = λkAR ·yk, (5.6)

where M4 is the bottom right block of size nR×nR of the matrix M−1A.

Proof First, if we look at the shape of the adaptive preconditioners either in its gen-
eral shape (as in Lemma 5.2) or in its particular shape (as in Lemma 5.1) we notice
that the preconditioned operator takes the following block form:

∃(M′1,M3,M4) ∈ RnL×nL ×RnL×nR ×RnR×nR : M−1A =

(
M′1 M3
0 M4

)
.

Therefore, we can apply Lemma 4.2 by switching or commuting the roles of the
subsets L and R. In this case, the result follows immediately. ut

Summary and comments

We provide here a summary of the results of the lemmas and corollary of this section.
We prove in Lemmas 5.1 and 5.2 that the main feature of the adaptive preconditioner
introduced in [1] for PCG solver, that is the projection of the residual on the unknowns
of subdomain Ω1 (L-part) is nil at each iteration, is still valid with a fixed-point itera-
tion scheme. We also prove in Corollary 5.1 that the adaptive preconditioner satisfies
with the same scheme a criterion that expresses that the AR-seminorm of the error
does not increase more than τ-times from iteration i to iteration i+1, where τ is the
maximum eigenvalue of the generalized eigenvalue problem (5.6). The discussion
of the choices of the diagonal blocks of the preconditioner in the end of Section 4
holds for this part as well, i.e., the quality of the preconditioner MS affects the value
taken by τ . The smaller the eigenvalues of M−1

S SR are, the smaller τ is. Besides, the
AR-seminorm of the error represents a share of the global energy norm of the error.
The evolution of this share from an iteration to another is controlled by the adaptive
preconditioner and the growth rate is kept under a fixed threshold. That being said,
the starting hypothesis (2.7) does not enable us to determine whether this share is
dominant. Indeed, (2.7) expresses that the local algebraic error on subdomain Ω1,
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Fig. 5.1 Simple example of the decomposition with a 2×2 mesh grid.

which is the A(1)
p -seminorm of the error, is dominant over the local algebraic error on

subdomain Ω2, which is the A(2)
p -seminorm of the error. Yet, in general we cannot

prove any partial order or superiority relationship, in the sense of matrix positiveness,
between the matrices AR and A(2)

p as we did between the matrices AL and A(1)
p . In-

deed, we demonstrate that with the following counterexample. We consider Poisson’s
equation with Dirichlet boundary conditions on the square [0,1]× [0,1]. We discretize
this PDE by FEM on the uniform grid shown in Figure 5.1. Note that with FEM, the
boundary conditions are taken into account in the evaluation of the right hand side
vector of the linear system. The global matrix obtained for the natural ordering of the
degrees of freedom (from 1 to 9) is:

A =



1 −1/2 0 −1/2 0 0 0 0 0
−1/2 2 −1/2 0 −1 0 0 0 0

0 −1/2 1 0 0 −1/2 0 0 0
−1/2 0 0 2 −1 0 −1/2 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1/2 0 −1 2 0 0 −1/2
0 0 0 −1/2 0 0 1 −1/2 0
0 0 0 0 −1 0 −1/2 2 −1/2
0 0 0 0 0 −1/2 0 −1/2 1


.

If we consider the domain decomposition illustrated in Figure 5.1, then the set of
interior vertices of subdomain Ω2 comprises only the vertex 9 whereas the vertices 5,
6 and 8 are in the interface. Therefore, if we keep the natural ordering then the local
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stiffness matrix for Ω1 and Ω2, respectively are:

A(1) =



1 −1/2 0 −1/2 0 0 0 0
−1/2 2 −1/2 0 −1 0 0 0

0 −1/2 1 0 0 −1/2 0 0
−1/2 0 0 2 −1 0 −1/2 0

0 −1 0 −1 3 −1/2 0 −1/2
0 0 −1/2 0 −1/2 1 0 0
0 0 0 −1/2 0 0 1 −1/2
0 0 0 0 −1/2 0 −1/2 1


,

A(2) =


1 −1/2 −1/2 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 −1/2 −1/2 1

 .

and the extended matrices A(1)
p , A(2)

p and AR are equal to:

A(1)
p =



1 −1/2 0 −1/2 0 0 0 0 0
−1/2 2 −1/2 0 −1 0 0 0 0

0 −1/2 1 0 0 −1/2 0 0 0
−1/2 0 0 2 −1 0 −1/2 0 0

0 −1 0 −1 3 −1/2 0 −1/2 0
0 0 −1/2 0 −1/2 1 0 0 0
0 0 0 −1/2 0 0 1 −1/2 0
0 0 0 0 −1/2 0 −1/2 1 0
0 0 0 0 0 0 0 0 0


,

A(2)
p =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1/2 0 −1/2 0
0 0 0 0 −1/2 1 0 0 −1/2
0 0 0 0 0 0 0 0 0
0 0 0 0 −1/2 0 0 1 −1/2
0 0 0 0 0 −1/2 0 −1/2 1


, AR =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


.

Therefore, the difference is:

A(2)
p −AR =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1/2 0 −1/2 0
0 0 0 0 −1/2 1 0 0 −1/2
0 0 0 0 0 0 0 0 0
0 0 0 0 −1/2 0 0 1 −1/2
0 0 0 0 0 −1/2 0 −1/2 0


,
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and its eigenvalues can be computed: λ1 ≈−0.45161; λ2 = 0; λ3 ≈ 0.59697;
λ4 = 1; λ5 ≈ 1.8546. We can notice that they are not all nonnegative. Therefore,
neither of the assertions (AR ≤ A(2)

p or A(2)
p ≤ AR) is true in the sense of matrix

positiveness.
Furthermore, it should be stressed that the properties of the adaptive preconditioner
introduced in [1, Theorem 1], and the preconditioner introduced in Lemma 4.1 are
complementary, in the sense that each allows to control a part of the global energy
norm of the error. The first one requires inverting the L-block corresponding to a
subdomain Ω1 with a high algebraic error, reduces the AR-seminorm of the error and
cancels the residual on the unknowns of L, whereas the second one requires inverting
the R-block corresponding to a subdomain with low algebraic error (Ω̊2) and ensures
the growth rate of the AL-seminorm of the error from iteration i to iteration i+ 1
stays below a given threshold. Therefore, the choice between those two depends on
the size of submatrix AR with respect to AL. For the cases where the subdomain Ω1
with high errors is confined to a small area, the first adaptive preconditioner could
be an acceptable choice as the submatrix to invert AL is relatively small. In the cases
where the high errors are scattered in wide regions of the domain, the second adaptive
preconditioner seems to be a good alternative as the size of the submatrix to invert
AR is increasingly reduced as the submatrix AL gets larger and larger. Note also that
the exact inverse of the matrix A satisfies the shapes of both preconditioners.

6 Numerical results

In this section, we consider the following experimental framework. The tests are car-
ried in Matlab. We generate an uniform mesh and use PDE toolbox to solve the con-
sidered PDE on the domain Ω . Once the linear system is built, we run a few iterations
of the linear solver (20 iterations of PCG preconditioned by a Block-Jacobi precon-
ditioner) to get an initial estimation of the algebraic error on all the elements of the
mesh. From the values of these a posteriori error estimates, we determine the subsets
of indices L and R. In the sequel, on the plots of the initial distribution of a posteriori
algebraic error estimates, a thick horizontal straight labeled with θ on the color bar
indicates the extent of the errors’ range covered with the Dörfler rate considered (see
[1, Section 5.1]), i.e. all elements represented in color shades above the corresponding
threshold θ form Ω1.
We check first with a fixed-point iteration scheme that the result of Theorem 4.1 holds
in practice and that the growth rate of the AL-seminorm of the error is controlled by
the choice of the block W1 in the preconditioner defined in (4.9). We denote this pre-
conditioner as the L-adaptive preconditioner. The L-adaptive preconditioner imple-
mented in our Matlab prototype is nested (see [14]) in the sense that it does not build
the inverse of the block AR, but the application of the preconditioner is carried out by
a call to an inner solver (PCG in our configuration) with a reduced relative tolerance
of 10−2 and a reduced maximum number of iterations (set to 100). As a precondi-
tioner for the inner solve, we reuse the initial Block-Jacobi preconditioner restricted
to the R-indices. For checking purposes, we consider two different preconditioners
for the block W1 for which an upper bound for the eigenvalues of the preconditioned
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operator is known: a LORASC preconditioner and a Block-Jacobi preconditioner for
AL. For the latter one, we vary the number of diagonal blocks (2, 4, or 8). For the
blocks W3 and W4, the choices proposed in Section 4, i.e. W3 :=−A−1

R ARLWT
1 and

W4 := A−1
R , are the ones considered for the numerical experiments.

Second, we evaluate the L-adaptive preconditioner with PCG solver and compare
its results to the preconditioner introduced in [1], that we denote as the R-adaptive
preconditioner. For the numerical experiments with PCG, we consider a fixed block-
size (≈ 5000) for the diagonal blocks used to build Block-Jacobi preconditioners, and
a stopping threshold value of 10−6 for the euclidean norm of the residual.
The three test cases considered here are the following. First, we deal with Poisson
equations of the form

−∆u =−∂ 2u

∂x2 −
∂ 2u

∂y2 = f (x,y) in Ω= ]−1,1[× ]−1,1[ (6.1)

with homogeneous Dirichlet boundary condition

u = 0 on ∂Ω . (6.2)

In the first two cases, we consider two examples with given smooth solutions u:

u(1) =(x+1)× (x−1)× (y+1)× (y−1)× exp(−α× (x2 + y2)) , (6.3)

u(2) =(x+1)× (x−1)× (y+1)× (y−1)× (exp(−α× ((x+0.5)2

+(y+0.5)2))− exp(−β × ((x−0.5)2 +(y−0.5)2))) , (6.4)

with α = 4000 and β = 3000. Then, we tackle a diffusion problem with inhomoge-
neous diffusion tensor

−∇ · (K∇u) = 1 in Ω= ]0,1[× ]0,1[ (6.5)

with Dirichlet boundary condition

u(x,y) =
√

x on ∂Ω . (6.6)

The diffusion tensor is defined as, K = cI, where I is the identity matrix and c is the
diffusivity that varies through the domain Ω . In the third test case, the diffusivity is
defined as:

c(3)(x,y) =

{
105(b9xc+1) if b(9x)c ≡ 0 (mod 2) and b(9y)c ≡ 0 (mod 2),
1 otherwise.

As far as the mesh configuration is concerned, we take an uniform mesh with maxi-
mum edge size Hmax = 0.1 (for the first two test cases) and Hmax = 0.01 (for the third
test case), and the total number of elements is equal to 87552 (for the first two test
cases) and 32544 (for the third test case). After discretization, the size of the matrix
A is 43457×43457 (for the first two test cases) and 16057×16057 (for the third test
case). For the first test case, the initial distribution and a posteriori estimation of the
algebraic error (after j0 = 20 iterations) over the domain Ω are shown in Figure 6.1
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(a) Algebraic a posteriori error estimates after 20 it-
erations

(b) Algebraic errors after 20 iterations

Fig. 6.1 Initial distribution and a posteriori estimation of the algebraic error for test case n°1.
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Fig. 6.2 Evolution of the AL-seminorm of the error with a fixed-point iteration scheme for test case n°1.

where the color shades selected in the subdomain Ω1 are indicated by the red marker
on the left subfigure.
Figure 6.2 displays the AL-seminorm of the error when using a fixed-point iteration
scheme preconditioned with four different configurations of the L-adaptive precondi-
tioner, whereas the evolution of the global energy norm and the L-norm of the error
when using a PCG solver preconditioned by a Block-Jacobi preconditioner, the R-
adaptive preconditioner and the L-adaptive preconditioner is displayed in Figure 6.3.

Likewise, we present the results obtained for the second test case. Figure 6.4 displays
the initial error distribution over the mesh. Figure 6.5 shows the AL-seminorm of the
error when using a fixed-point iteration scheme with the L-adaptive preconditioner.
The global energy norm and the L-norm of the error are plotted in Figure 6.6 for the
PCG solves with the L-adaptive and the R-adaptive preconditioners.
The results of the third test case are as follows. Figure 6.7 displays the initial alge-
braic error distribution over the mesh (the subdomain Ω1 is formed by mesh elements
whose color shades are above the purple marker θ on the color bar), and the evolution
of the AL-seminorm of the error with a fixed-point iteration scheme preconditioned
by L-adaptive preconditioners. Then the evolution of the global energy norm and
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(a) Energy norm of the algebraic error
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(b) L-norm of the algebraic error

Fig. 6.3 Error evolution with PCG for test case n°1.

(a) Algebraic a posteriori error estimates after 20 it-
erations

(b) Algebraic errors after 20 iterations

Fig. 6.4 Initial distribution and a posteriori estimation of the algebraic error for test case n°2.
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Fig. 6.5 Evolution of the AL-seminorm of the error with a fixed-point iteration scheme for test case n°2.
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Fig. 6.6 Error evolution with PCG for test case n°2.

(a) Algebraic a posteriori error estimates after 20 it-
erations
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(b) Evolution of the AL-seminorm of the error

Fig. 6.7 Initial distribution of algebraic error and evolution of the AL-seminorm of the error with a fixed-
point iteration scheme for test case n°3.

the L-norm of the error when using a PCG solver preconditioned by a Block-Jacobi
preconditioner, the R-adaptive preconditioner and the L-adaptive preconditioner is
displayed in Figure 6.8.
Figures 6.2 and 6.5 show that the AL-seminorm of the error is monotonically decreas-
ing when a LORASC preconditioner or a two-block diagonal preconditioner is used
to approximate AL. But this is not the case when we use a block diagonal precon-
ditioner with more than two blocks. This fact relates to ν , the upper bound of the
largest eigenvalue of W1AL. Indeed, it follows from Lemma 4.3 that the growth rate
of the AL-seminorm of the error (i.e. the minimal τ in (4.4)) is less than or equal to
ν2. Lemma 7.1 (see Appendix) and [11, Theorem 3.1] yield the value of the bound
ν obtained when W1 is taken as an m-block diagonal preconditioner and a LORASC

preconditioner of AL respectively. We note that ν is equal to 1+ max
1≤i≤m

m
∑
j=1
j 6=i

γi j for the

former and to 1 for the latter, where the Cauchy-Bunyakovsky-Schwarz (C.B.S.) con-
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Fig. 6.8 Error evolution with PCG for test case n°3.

Table 6.1 The total number of iterations (IT) needed for the convergence of the preconditioned solve of
the linear systems stemming from test cases 1, 2 and 3.

Test case n°1 Test case n°2 Test case n°3

initial BJ prec. 371 310 1267

R-adap prec.1 36 (+20) 65 (+20) 1069 (+20)

L-adap prec. (LORASC) 40 35 26

L-adap prec (BJ(2)) 6 9 23

stants γi j are defined by (7.2) adapted to AL. Since AL is positive definite, then the
(γi j)i j are less than 1. In practice, and for the matrices tested in this section, a single
C.B.S. constant is very small, thus for a two-block diagonal preconditioner, the ex-
pression of ν contains only one C.B.S. constant. As a consequence, ν2 = (1+γ12)

2 is,
to a certain extent, close to 1, resulting in monotonic AL-seminorm of the error. The
same finding applies when a LORASC preconditioner is selected for W1 as ν equals
1. However, for larger number of blocks (here for example m ∈ {4,8}), ν reflects the
sum of m−1 C.B.S. constants. Therefore, ν2 greatly exceeds 1 and the AL-seminorm
of the error is not decreasing monotonically this time. In summary, the magnitude of
ν2 determines the rate of decrease of the AL-seminorm of the error. In other words,
the growth rate τ is controlled by the quality of the preconditioner for the L-block.
All this is reflected in Figures 6.2, 6.5 and 6.7.
Furthermore, one observes that those preconditioners, which we refer to as L-adap
prec (BJ(2)) and L-adap prec (LORASC) in the legends of Figures 6.2, 6.5 and 6.7
and for which the AL-seminorm of the error is strictly decreasing in a fixed-point
iteration scheme, perform well when a PCG solver is used as well (Figures 6.3,
6.6 and 6.8). Table 6.1 gives the number of iterations for the PCG solve with the
L-adaptive preconditioners, with the R-adaptive preconditioner and with an initial
Block-Jacobi preconditioner. We notice that even though the number of iterations
of PCG is reduced when going from the initial BJ preconditioner to the R-adaptive

1 The 20 iterations count here is due to the fact that the intermediate solution is used to compute the
new initial guess for the R-adaptive preconditioner.
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preconditioner, we still get an improvement by using the L-adaptive one, in both vari-
ants L-adap prec (LORASC) and L-adap prec (BJ(2)). In fact, the drop in the number
of iterations is more important in the third test case, where the R-adaptive precondi-
tioner is not sufficient to significantly reduce the number of iterations, whereas the
L-adaptive one manages to converge within around twenty iterations only. This can
be due to the fact that the algebraic error is more scattered in this third test case, and
that the size of AL is almost twice that of AR for this test case.

7 Conclusions

In this article, we have presented an adaptive preconditioner that is designed to con-
trol the growth rate of the AL-seminorm of the error when used within a fixed-point
iteration scheme. Indeed, we have proven the relationship between that growth rate
and the largest eigenvalue of the L-block of the preconditioned operator M−1A. The
proposed preconditioner has some similarities with the one already proposed in [1].
We have discussed the link between the two preconditioners and proven the prop-
erties satisfied for this type of preconditioners in a fixed-point iteration scheme. We
have tested and compared the two approaches when used as preconditioners for a CG
solver. A significant speedup is observed with the adaptive preconditioner proposed
here with fewer iterations needed for convergence.
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Appendix

Block-Jacobi preconditioning

In this section, we recall a property of Block-Jacobi preconditioners. We follow the
theory developed in [4] and generalize the results to the case with m blocks.
Let the symmetric positive definite matrix A be partitioned into m blocks as follows:
A = [Ai j] for i, j = 1, . . . ,m. We denote by ni the size of the diagonal block Aii, and
by (Vi)1≤i≤n the finite dimensional spaces consistent with the above block partition
of A. Let M be the Block-Jacobi preconditioner of A: M = [Mi j] for i, j = 1, . . . ,m
where:

Mi j =

{
Aii if i = j
0i j otherwise (7.1)

Let γi j be the Cauchy-Schwarz-Bunyakowski (C.B.S.) constant [4] defined for the
2× 2 block matrix composed by Aii and A j j as diagonal blocks, Ai j and A ji as off-
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diagonal blocks:

γi j := sup
vi∈Vi,v j∈V j

vT
i Ai jv j(

vT
i AiivivT

j A j jv j

) 1
2

(7.2)

Lemma 7.1 Let λ be an eigenvalue of M−1A. We have

1− max
1≤i≤m

m

∑
j=1
j 6=i

γi j ≤ λ ≤ 1+ max
1≤i≤m

m

∑
j=1
j 6=i

γi j (7.3)

Proof The extreme eigenvalues of A ·x = λM ·x are the extreme values of

xT ·A ·x
xT ·M ·x

=

m
∑
j=1

xT
j ·A j j ·x j +

m
∑
j=1

m
∑

i=1
i6= j

xT
j ·A ji ·xi

m
∑
j=1

xT
j ·A j j ·x j

; x =

 x1
...

xm


For each pair of distinct indices (i, j), we have:

|xT
j ·A ji ·xi| ≤ γi j

(
xT

i AiixixT
j A j jx j

) 1
2 ≤

γi j

2
(xT

j ·A j j ·x j +xT
i ·Aii ·xi)

Therefore

xT ·A ·x−
m

∑
j=1

xT
j ·A j j ·x j ≤

m

∑
j=1

m

∑
i=1
i6= j

γ ji

2
(xT

j ·A j j ·x j +xT
i ·Aii ·xi)

However, due to the symmetry we notice that:
m

∑
j=1

m

∑
i=1
i 6= j

γ ji

2
(xT

j ·A j j ·x j +xT
i ·Aii ·xi) =

m

∑
j=1

xT
j ·A j j ·x j

m

∑
i=1
i6= j

γ ji

Consequently

xT ·A ·x≤
m

∑
j=1

xT
j ·A j j ·x j(1+

m

∑
i=1
i 6= j

γ ji)

xT ·A ·x≤ (1+ max
1≤i≤m

m

∑
j=1
j 6=i

γi j)
m

∑
j=1

xT
j ·A j j ·x j

This latter inequality completes the proof. ut

Here, we retrieve a known feature of Block-Jacobi preconditioners: they bound the
maximum eigenvalue of the preconditioned matrix (see for example [13,4,15] and
references therein). Indeed, according to Lemma 7.1, a Block-Jacobi preconditioner
allows to keep the maximum eigenvalue of the preconditioned operator M−1A bounded
by a constant that depends on the blocks of matrix. In fact, as the C.B.S. constants
are less than or equal to 1 (because A is SPD [4]), we can deduce that the maximum
eigenvalue is bounded by m the number of blocks.


