
HAL Id: hal-03013390
https://hal.science/hal-03013390

Submitted on 28 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing the Tangent Graeffe Root Finding Method
Joris van der Hoeven, Michael Monagan

To cite this version:
Joris van der Hoeven, Michael Monagan. Implementing the Tangent Graeffe Root Finding Method.
International Congress on Mathematical Software 2020, Jul 2020, Braunschweig, Germany. pp.482-
492, �10.1007/978-3-030-52200-1_48�. �hal-03013390�

https://hal.science/hal-03013390
https://hal.archives-ouvertes.fr

Implementing the tangent Graeffe
root finding method???

Joris van der Hoeven12 and Michael Monagan1

1 Dept. of Mathematics, Simon Fraser University, Canada
2 CNRS, LIX, École polytechnique, France

Abstract. The tangent Graeffe method has been developed for the ef-
ficient computation of single roots of polynomials over finite fields with
multiplicative groups of smooth order. It is a key ingredient of sparse
interpolation using geometric progressions, in the case when blackbox
evaluations are comparatively cheap. In this paper, we improve the com-
plexity of the method by a constant factor and we report on a new
implementation of the method and a first parallel implementation.

1 Introduction

Consider a polynomial function f : Kn → K over a field K given through a black
box capable of evaluating f at points in Kn. The problem of sparse interpolation
is to recover the representation of f ∈ K[x1, . . . , xn] in its usual form, as a linear
combination

f =
∑

16i6t

cix
ei (1)

of monomials xei = x
e1,1
1 · · ·xe1,nn . One popular approach to sparse interpolation

is to evaluate f at points in a geometric progression. This approach goes back
to work of Prony in the eighteen’s century [15] and became well known after
Ben-Or and Tiwari’s seminal paper [2]. It has widely been used in computer
algebra, both in theory and in practice; see [16] for a nice survey.

More precisely, if a bound T for the number of terms t is known, then we
first evaluate f at 2T − 1 pairwise distinct points α0,α1, . . . ,α2T−2, where
α = (α1, . . . , αn) ∈ Kn and αk := (αk1 , . . . , α

k
n) for all k ∈ N. The generating

function of the evaluations at αk satisfies the identity∑
k∈N

f(αk)zk =
∑

16i6t

∑
k∈N

ciα
eikzk =

∑
16i6t

ci
1−αeiz

=
N(z)

Λ(z)
,

where Λ = (1−αe1z) · · · (1−αetz) and N ∈ K[z] is of degree < t. The rational
function N/Λ can be recovered from f(α0), f(α1), . . . , f(α2T−2) using fast Padé

? Note: This paper received funding from NSERC (Canada) and “Agence de
l’innovation de défense” (France).

?? Note: This document has been written using GNU TEXmacs [13].

approximation [4]. For well chosen points α, it is often possible to recover the
exponents ei from the values αei ∈ K. If the exponents ei are known, then the
coefficients ci can also be recovered using fast structured linear algebra [5]. This
leaves us with the question how to compute the roots α−ei of Λ in an efficient
way.

For practical applications in computer algebra, we usually have K = Q,
in which case it is most efficient to use a multi-modular strategy, and reduce to
coefficients in a finite field K = Fp, where p is a prime number that we are free to
choose. It is well known that polynomial arithmetic over Fp can be implemented
most efficiently using FFTs when the order p− 1 of the multiplicative group is
smooth. In practice, this prompts us to choose p of the form s2l + 1 for some
small s and such that p fits into a machine word.

The traditional way to compute roots of polynomials over finite fields is
using Cantor and Zassenhaus’ method [6]. In [10,11], alternative algorithms were
proposed for our case of interest when p−1 is smooth. The fastest algorithm was
based on the tangent Graeffe transform and it gains a factor log t with respect
to Cantor–Zassenhaus’ method. The aim of the present paper is to report on a
parallel implementation of this new algorithm and on a few improvements that
allow for a further constant speed-up.

In section 2, we recall the Graeffe transform and the heuristic root finding
method based on the tangent Graeffe transform from [10]. In section 3, we present
the main new theoretical improvements, which all rely on optimizations in the
FFT-model for fast polynomial arithmetic. Our contributions are twofold. In
the FFT-model, one backward transform out of four can be saved for Graeffe
transforms of order two (see section 3.2). When composing a large number of
Graeffe transforms of order two, FFT caching can be used to gain another factor
of 3/2 (see section 3.3). In the longer preprint version of the paper [12], we also
show how to generalize our methods to Graeffe transforms of general orders and
how to use it in combination with the truncated Fourier transform.

Section 4 is devoted to our new sequential and parallel implementations of
the algorithm in C and Cilk C. Our sequential implementation confirms the gain
of a new factor of two when using the new optimizations. So far, we have achieved
a parallel speed-up by a factor of 4.6 on an 8-core machine. Our implementation
is freely available at http://www.cecm.sfu.ca/CAG/code/TangentGraeffe.

2 Root finding using the tangent Graeffe transform

2.1 Graeffe transforms

The traditional Graeffe transform of a monic polynomial P ∈ K[z] of degree d
is the unique monic polynomial G(P) ∈ K[z] of degree d such that

G(P)(z2) = P (z)P (−z). (2)

If P splits over K into linear factors P = (z − β1) · · · (z − βd), then one has

G(P) = (z − β2
1) · · · (z − β2

d).

http://www.cecm.sfu.ca/CAG/code/TangentGraeffe

More generally, given r > 2, we define the Graeffe transform of order r to be
the unique monic polynomial Gr(P) ∈ K[z] of degree d such that Gr(P)(z) =
(−1)rd Resu(P (u), ur − z). If P = (z − β1) · · · (z − βd), then

Gr(P) = (z − βr1) · · · (z − βrd).

If r, s > 2, then we have

Grs = Gr ◦Gs = Gs ◦Gr. (3)

2.2 Root finding using tangent Graeffe transforms

Let ε be a formal indeterminate with ε2 = 0. Elements in K[ε]/(ε2) are called
tangent numbers. Now let P ∈ K[z] be of the form P = (z−α1) · · · (z−αd) where
α1, . . . , αd ∈ K are pairwise distinct. Then the tangent deformation P̃ (z) :=
P (z + ε) satisfies

P̃ = P + P ′ε = (z − (α1 − ε)) · · · (z − (αd − ε)).

The definitions from the previous subsection readily extend to coefficients in K[ε]
instead of K. Given r > 2, we call Gr(P̃) the tangent Graeffe transform of P of
order r. We have

Gr(P̃) = (z − (α1 − ε)r) · · · (z − (αd − ε)r),

where
(αk − ε)r = αrk − rαr−1k ε, k = 1, . . . , d.

Now assume that we have an efficient way to determine the roots αr1, . . . , α
r
d of

Gr(P). For some polynomial T ∈ K[z], we may decompose Gr(P̃) = Gr(P) +Tε
For any root αrk of Gr(P), we then have

Gr(P̃)(αrk − rαr−1k ε) = Gr(P)(αrk) + (T (αrk)−Gr(P)′(αrk)rαr−1k)ε

= (T (αrk)−Gr(P)′(αrk)rαr−1k)ε = 0.

Whenever αrk happens to be a single root of Gr(P), it follows that

rαr−1k =
T (αrk)

Gr(P)′(αrk)
.

If αrk 6= 0, this finally allows us to recover αk as αk = r
αrk

rαr−1k

.

2.3 Heuristic root finding over smooth finite fields

Assume now that K = Fp is a finite field, where p is a prime number of the form
p = σ2m + 1 for some small σ. Assume also that ω ∈ Fp be a primitive element
of order p− 1 for the multiplicative group of Fp.

Let P = (z − α1) · · · (z − αd) ∈ Fp[z] be as in the previous subsection.
The tangent Graeffe method can be used to efficiently compute those αk of P
for which αrk is a single root of Gr(P). In order to guarantee that there are a
sufficient number of such roots, we first replace P (z) by P (z + τ) for a random
shift τ ∈ Fp, and use the following heuristic:

H For any subset {α1, . . . , αd} ⊆ Fp of cardinality d and any r 6 (p− 1)/(4d),
there exist at least p/2 elements τ ∈ Fp such that {(α1− τ)r, . . . , (αd− τ)r}
contains at least 2d/3 elements.

For a random shift τ ∈ Fp and any r 6 (p − 1)/(4d), the assumption ensures
with probability at least 1/2 that Gr(P (z + τ)) has at least d/3 single roots.

Now take r to be the largest power of two such that r 6 (p − 1)/(4d) and
let s = (p− 1)/r. By construction, note that s = O(d). The roots αr1, . . . , α

r
d of

Gr(P) are all s-th roots of unity in the set {1, ωr, . . . , ω(s−1)r}. We may thus
determine them by evaluating Gr(P) at ωi for i = 0, . . . , s− 1. Since s = O(d),
this can be done efficiently using a discrete Fourier transform. Combined with the
tangent Graeffe method from the previous subsection, this leads to the following
probabilistic algorithm for root finding:

Algorithm 1
Input: P ∈ Fp[z] of degree d and only order one factors, p = σ2m + 1
Output: the set {α1, . . . , αd} of roots of P

1. If d = 0 then return ∅
2. Let r = 2N ∈ 2N be largest such that r 6 (p− 1)/(4d) and let s := (p− 1)/r

3. Pick τ ∈ Fp at random and compute P ∗ := P (z + τ) ∈ Fp[z]
4. Compute P̃ (z) := P ∗(z + ε) = P ∗(z) + P ∗(z)′ε ∈ (Fp[ε]/(ε2))[z]

5. For i = 1, . . . , N , set P̃ := G2(P̃) ∈ (Fp[ε]/(ε2))[z]

6. Let ω have order p−1 in Fp. Write P̃ = A+Bε and compute A(ωir), A′(ωir),
and B(ωir) for 0 6 i < s

7. If P (τ) = 0, then set S := {τ}, else set S := ∅
8. For β ∈ {1, ωr, . . . , ω(s−1)r} if A(β) = 0 and A′(β) 6= 0, set S := S ∪
{rβA′(β)/B(β) + τ}

9. Compute Q :=
∏
α∈S(z − α)

10. Recursively determine the set of roots S′ of P/Q

11. Return S ∪ S′

Remark 1. To computeG2(P̃) = G2(A+Bε) we may useG2(P̃ (z2)) = A(z)A(−z)+
(A(z)B(−z) +B(z)A(−z))ε, which requires three polynomial multiplications in
Fp[z] of degree d. In total, step 5 thus performs O(log(p/s)) such multiplications.
We discuss how to perform step 5 efficiently in the FFT model in section 3.

Remark 2. For practical implementations, one may vary the threshold r 6 (p−
1)/(4d) for r and the resulting threshold s > 4d for s. For larger values of s,
the computations of the DFTs in step 6 get more expensive, but the proportion
of single roots goes up, so more roots are determined at each iteration. From
an asymptotic complexity perspective, it would be best to take s � d

√
log p.

In practice, we actually preferred to take the lower threshold s > 2d, because
the constant factor of our implementation of step 6 (based on Bluestein’s algo-
rithm [3]) is significant with respect to our highly optimized implementation of
the tangent Graeffe method. A second reason we prefer s of size O(d) instead
of O(d

√
log p) is that the total space used by the algorithm is linear in s. In the

future, it would be interesting to further speed up step 6 by investing more time
in the implementation of high performance DFTs of general orders s.

3 Computing Graeffe transforms

3.1 Reminders about discrete Fourier transforms

Assume n ∈ N is invertible in K and let ω ∈ K be a primitive n-th root of unity.
Consider a polynomial A = a0 + a1z+ · · ·+ an−1z

n−1 ∈ K[z]. Then the discrete
Fourier transform (DFT) of order n of the sequence (ai)06i<n is defined by

DFTω((ai)06i<n) := (âk)06k<n, âk := A(ωk).

We will write FK(n) for the cost of one discrete Fourier transform in terms
of the number of operations in K and assume that n = o (FK(n)). For any
i ∈ {0, . . . , n− 1}, we have

DFTω−1((âk)06k<n)i =
∑

06k<n

âkω
−ik =

∑
06j<n

aj
∑

06k<n

ω(j−i)k = nai. (4)

If n is invertible in K, then it follows that DFT−1ω = n−1 DFTω−1 . The costs of
direct and inverse transforms therefore coincide up to a factor O(n).

If n = n1n2 is composite, 0 6 k1 < n1, and 0 6 k2 < n2, then it is well
known [7] that

âk2n1+k1 = DFTωn1

((
ωi2k1 DFTωn2 ((ai1n2+i2)06i1<n1)k1

)
06i2<n2

)
k2
. (5)

This means that a DFT of length n reduces to n1 transforms of length n2 plus
n2 transforms of length n1 plus n multiplications in K:

FK(n1n2) 6 n1FK(n2) + n2FK(n1) +O(n).

In particular, if r = O(1), then FK(rn) ∼ rFK(n).
It is sometimes convenient to apply DFTs directly to polynomials as well;

for this reason, we also define DFTω(A) := (âk)06k<n. Given two polynomials
A,B ∈ K[z] with deg(AB) < n, we may then compute the product AB using

AB = DFT−1ω (DFTω(A) DFTω(B)).

In particular, if MK(n) denotes the cost of multiplying two polynomials of degree
< n, then we obtain MK(n) ∼ 3FK(2n) ∼ 6FK(n).

Remark 3. In Algorithm 1, we note that step 6 comes down to the computation
of three DFTs of length s. Since r is a power of two, this length is of the form
s = σ2k for some k ∈ N. In view of (5), we may therefore reduce step 6 to 3σ
DFTs of length 2k plus 3 · 2k DFTs of length σ. If σ is very small, then we
may use a naive implementation for DFTs of length σ. In general, one may use
Bluestein’s algorithm [3] to reduce the computation of a DFT of length σ into
the computation of a product in K[z]/(zσ − 1), which can in turn be computed
using FFT-multiplication and three DFTs of length a larger power of two.

3.2 Graeffe transforms of order two

Let K be a field with a primitive (2n)-th root of unity ω. Let P ∈ K[z] be a
polynomial of degree d = degP < n. Then the relation (2) yields

G(P)(z2) = DFT−1ω (DFTω(P (z)) DFTω(P (−z))). (6)

For any k ∈ {0, . . . , 2n− 1}, we further note that

DFTω(P (−z))k = P (−ωk) = P (ω(k+n) rem 2n) = DFTω(P (z))(k+n) rem 2n , (7)

so DFTω(P (−z)) can be obtained from DFTω(P) using n transpositions of ele-
ments in K. Concerning the inverse transform, we also note that

DFTω(G(P)(z2))k = G(P)(ω2k) = DFTω2(G(P))k,

for k = 0, . . . , n− 1. Plugging this into (6), we conclude that

G(P) = DFT−1ω2 ((DFTω(P)k DFTω(P)k+n)06k<n).

This leads to the following algorithm for the computation of G(P):

Algorithm 2
Input: P ∈ K[z] with degP < n and a primitive (2n)-th root of unity ω ∈ K
Output: G(P)

1. Compute (P̂k)06k<2n := DFTω(P)

2. For k = 0, . . . , n− 1, compute Ĝk := P̂kP̂k+n
3. Return DFT−1ω2 ((Ĝk)06k<n)

Proposition 1. Let ω ∈ K be a primitive 2n-th root of unity in K and assume
that 2 is invertible in K. Given a monic polynomial P ∈ K[z] with degP < n,
we can compute G(P) in time G2,K(n) ∼ 3FK(n).

Proof. We have already explained the correctness of Algorithm 2. Step 1 requires
one forward DFT of length 2n and cost FK(2n) = 2FK(n) +O(n). Step 2 can be
done in O(n). Step 3 requires one inverse DFT of length n and cost FK(n)+O(n).
The total cost of Algorithm 2 is therefore 3FK(n) +O(n) ∼ 3FK(n).

Remark 4. In terms of the complexity of multiplication, we obtain G2,K(n) ∼
(1/2)MK(n). This gives a 33.3% improvement over the previously best known
bound G2,K(n) ∼ (2/3)MK(n) that was used in [10]. Note that the best known
algorithm for squaring polynomials of degree < n is ∼ (2/3)MK(n). It would be
interesting to know whether squares can also be computed in time∼ (1/2)MK(n).

3.3 Graeffe transforms of power of two orders

In view of (3), Graeffe transforms of power of two orders 2m can be computed
using

G2m(P) =
(
G ◦ m×. . . ◦G

)
(P). (8)

Now assume that we computed the first Graeffe transform G(P) using Algo-
rithm 2 and that we wish to apply a second Graeffe transform to the result.
Then we note that

DFTω(G(P))2k = DFTω2(G(P))k = Ĝ2k (9)

is already known for k = 0, . . . , n− 1. We can use this to accelerate step 1 of the
second application of Algorithm 2. Indeed, in view of (5) for n1 = 2 and n2 = n,
we have

DFTω(G(P))2k+1 = DFTω2((ωiG(P)i)06i<n)k (10)

for k = 0, . . . , n−1. In order to exploit this idea in a recursive fashion, it is useful
to modify Algorithm 2 so as to include DFTω2(P) in the input and DFTω2(G(P))
in the output. This leads to the following algorithm:

Algorithm 3
Input: P ∈ K[z] with degP < n, a primitive (2n)-th root of unity ω ∈ K,

and (Q̂k)06k<n = DFTω2(P)
Output: G(P) and DFTω2(G(P))

1. Set (P̂2k)06k<n := (Q̂k)06k<n
2. Set (P̂2k+1)06k<n := DFTω2((ωiPi)06i<n)

3. For k = 0, . . . , n− 1, compute Ĝk := P̂kP̂k+n
4. Return DFT−1ω2 ((Ĝk)06k<n) and (Ĝk)06k<n

Proposition 2. Let ω ∈ K be a primitive 2n-th root of unity in K and assume
that 2 is invertible in K. Given a monic polynomial P ∈ K[z] with degP < n
and m > 1, we can compute G2m(P) in time G2m,K(n) ∼ (2m+ 1)FK(n).

Proof. It suffices to compute DFTω2(P) and then to apply Algorithm 3 recur-
sively, m times. Every application of Algorithm 3 now takes 2FK(n) + O(n) ∼
2FK(n) operations in K, whence the claimed complexity bound.

Remark 5. In [10], Graeffe transforms of order 2m were directly computed using
the formula (8), using ∼ 4mFK(n) operations in K, which is twice as slow as the
new algorithm.

4 Implementation and benchmarks

We have implemented the tangent Graeffe root finding algorithm (Algorithm 1)
in C with the optimizations presented in section 3. Our C implementation sup-
ports primes of size up to 63 bits. In what follows all complexities count arith-
metic operations in Fp.

In Tables 1 and 2 the input polynomial P (z) of degree d is constructed
by choosing d distinct values αi ∈ Fp for 1 6 i 6 d at random and creating

P (z) =
∏d
i=1(z − αi). We will use p = 3× 29× 256 + 1, a smooth 63 bit prime.

For this prime M(d) is O(d log d).
One goal we have is to determine how much faster the Tangent Graeffe (TG)

root finding algorithm is in practice when compared with the Cantor-Zassenhaus
(CZ) algorithm which is implemented in many computer algebra systems. In
Table 1 we present timings comparing our sequential implementation of the TG
algorithm with Magma’s implementation of the CZ algorithm. For polynomials in
Fp[z], Magma uses Shoup’s factorization algorithm from [17]. For our input P (z),
with d distinct linear factors, Shoup uses the Cantor–Zassenhaus equal degree
factorization method. The average complexity of TG is O(M(d)(log(p/s)+log d))
and of CZ is O(M(d) log p log d).

Our sequential TG implementation in C Magma CZ timings

d total first %roots step 5 step 6 step 9 V2.25-3 V2.25-5

212 − 1 0.11s 0.07s 69.8% 0.04s 0.02s 0.01s 23.22s 8.43
213 − 1 0.22s 0.14s 69.8% 0.09s 0.03s 0.01s 56.58s 18.94
214 − 1 0.48s 0.31s 68.8% 0.18s 0.07s 0.02s 140.76s 44.07
215 − 1 1.00s 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 − 1 2.11s 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 − 1 4.40s 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218 − 1 9.16s 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 − 1 19.2s 12.4s 69.2% 6.86s 3.25s 1.13s NA 2809.

Table 1. Sequential timings in CPU seconds for p = 3·29·256+1 and using s ∈ [2d, 4d).

The timings in Table 1 are sequential timings obtained on a a Linux server
with an Intel Xeon E5-2660 CPU with 8 cores. In Table 1 the time in column
“first” is for the first application of the TG algorithm (steps 1–9 of Algorithm 1),
which obtains about 69% of the roots. The time in column “total” is the total
time for the TG algorithm. Columns step 5, step 6, and step 9 report the time
spent in steps 5, 6, and 9 in Algorithm 1 and do not count time in the recursive
call in step 10.

The Magma timings are for Magma’s Factorization command. The timings
for Magma version V2.25-3 suggest that Magma’s CZ implementation involves a
subalgorithm with quadratic asymptotic complexity. Indeed it turns out that the
author of the code implemented all of the sub-quadratic polynomial arithmetic

correctly, as demonstrated by the second set of timings for Magma in column
V2.25-5, but inserted the d linear factors found into a list using linear insertion!
Allan Steel of the Magma group identified and fixed the offending subroutine
for Magma version V2.25-5. The timings show that TG is faster than CZ by a
factor of 76.6 (=8.43/0.11) to 146.3 (=2809/19.2).

We also wanted to attempt a parallel implementation. To do this we used
the MIT Cilk C compiler from [8]. Cilk provides a simple fork-join model of
parallelism. Unlike the CZ algorithm, TG has no gcd computations that are
hard to parallelize. We present some initial parallel timing data in Table 2. The
timings in parentheses are parallel timings for 8 cores.

Our parallel tangent Graeffe implementation in Cilk C

d total first step 5 step 6 step 9

219 − 1 18.30s(9.616s) 11.98s(2.938s) 6.64s(1.56s) 3.13s(0.49s) 1.09s(0.29s)
220 − 1 38.69s(12.40s) 25.02s(5.638s) 13.7s(3.03s) 6.62s(1.04s) 2.40s(0.36s)
221 − 1 79.63s(20.16s) 52.00s(11.52s) 28.1s(5.99s) 13.9s(2.15s) 5.32s(0.85s)
222 − 1 166.9s(41.62s) 107.8s(23.25s) 57.6s(11.8s) 28.9s(4.57s) 11.7s(1.71s)
223 − 1 346.0s(76.64s) 223.4s(46.94s) 117.s(23.2s) 60.3s(9.45s) 25.6s(3.54s)
224 − 1 712.7s(155.0s) 459.8s(95.93s) 238.s(46.7s) 125.s(19.17) 55.8s(7.88s)
225 − 1 1465.s(307.7s) 945.0s(194.6s) 481.s(92.9s) 259.s(39.2s) 121.s(16.9s)

Table 2. Real times in seconds for 1 core (8 cores) and p = 3 · 29 · 256 + 1.

4.1 Implementation notes

To implement the Taylor shift P (z + τ) in step 3, we used the O(M(d)) method
from [1, Lemma 3]. For step 5 we use Algorithm 3. It has complexityO(M(d) log p

s).
To evaluate A(z), A′(z) and B(z) in step 6 in O(M(s)) we used the Bluestein
transformation [3]. In step 9 to compute the product Q(z) = Πα∈S(z − α), for
t = |S| roots, we used the O(M(t) log t) product tree multiplication algorithm [9].
The division in step 10 is done in O(M(d)) with the fast division.

The sequential timings in Tables 1 and 2 show that steps 5, 6 and 9 account
for about 90% of the total time. We parallelized these three steps as follows.
For step 5, the two forward and two inverse FFTs are done in parallel. We also
parallelized our radix 2 FFT by parallelizing recursive calls for size n > 217 and
the main loop in blocks of size m > 218 as done in [14]. For step 6 there are three
applications of Bluestein to compute A(ωir), A′(ωir) and B(ωir). We parallelized
these (thereby doubling the overall space used by our implementation). The main
computation in the Bluestein transformation is a polynomial multiplication of
two polynomials of degree s. The two forward FFTs are done in parallel and
the FFTs themselves are parallelized as for step 5. For the product in step 9 we
parallelize the two recursive calls in the tree multiplication for large sizes and
again, the FFTs are parallelized as for step 5.

To improve parallel speedup we also parallelized the polynomial multipli-
cation in step 3 and the computation of the roots in step 8. Although step 8
is O(|S|), it is relatively expensive because of two inverse computations in Fp.
Because we have not parallelized about 5% of the computation the maximum
parallel speedup we can obtain is a factor of 1/(0.05 + 0.95/8) = 5.9. The best
overall parallel speedup we obtained is a factor of 4.6=1465/307.7 for d = 225−1.

References

1. A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polynomials on a fixed set
of points. SIAM Journ. of Comp., 4:533–539, 1975.

2. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate poly-
nomial interpolation. In STOC ’88: Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 301–309. ACM Press, 1988.

3. Leo I. Bluestein. A linear filtering approach to the computation of discrete Fourier
transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

4. R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems
of equations and computation of Padé approximants. J. Algorithms, 1(3):259–295,
1980.

5. J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polyno-
mial equations faster. In Proceedings of the ACM-SIGSAM 1989 International
Symposium on Symbolic and Algebraic Computation, pages 121–128. ACM Press,
1989.

6. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Math. Comp., 36(154):587–592, 1981.

7. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Math. Computat., 19:297–301, 1965.

8. M. Frigo, C.E. Leisorson, and R.K. Randall. The implementation of the Cilk-
5 multithreaded language. In Proceedings of PLDI 1998, pages 212–223. ACM,
1998.

9. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, New York, 3rd edition, 2013.

10. B. Grenet, J. van der Hoeven, and G. Lecerf. Randomized root finding over finite
fields using tangent Graeffe transforms. In Proc. ISSAC ’15, pages 197–204. New
York, NY, USA, 2015. ACM.

11. B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over finite
fields using Graeffe transforms. AAECC, 27(3):237–257, 2016.

12. J. van der Hoeven and M. Monagan. Implementing the tangent Graeffe root find-
ing method. Technical Report, HAL, 2020. http://hal.archives-ouvertes.fr/

hal-02525408.
13. J. van der Hoeven et al. GNU TeXmacs. http://www.texmacs.org, 1998.
14. M. Law and M. Monagan. A parallel implementation for polynomial multiplication

modulo a prime. In Proc. of PASCO 2015, pages 78–86. ACM, 2015.
15. R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides

élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de
l’alkool, à différentes températures. J. de l’École Polytechnique Floréal et Plairial,
an III, 1(cahier 22):24–76, 1795.

16. D. S. Roche. What can (and can’t) we do with sparse polynomials? In C. Ar-
reche, editor, ISSAC ’18: Proceedings of the 2018 ACM International Symposium
on Symbolic and Algebraic Computation, pages 25–30. ACM Press, 2018.

17. V. Shoup. A new polynomial factorization and its implementation. J. Symbolic
Computation, 20(4):363–397, 1995.

http://hal.archives-ouvertes.fr/hal-02525408
http://hal.archives-ouvertes.fr/hal-02525408
http://www.texmacs.org

	Implementing the tangent Graeffe root finding method

