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Abstract. We develop a denotational semantics of Linear Logic with
least and greatest fixed points in a general categorical setting based on
the notion of Seely category and on strong functors acting on them.
We exhibit a simple instance of this setting in the category of sets and
relations, where least and greatest fixed points are interpreted in the
same way, and in a category of sets equipped with a notion of totality
(non-uniform totality spaces) and relations preserving them, where least
and greatest fixed points have distinct interpretations.

1 Introduction

Propositional Linear Logic is a well-established logical system introduced by
Girard in [13]. It provides a fine-grain analysis of proofs in intuitionistic and
classical logic, and more specifically of their cut-elimination. LL features a log-
ical account of the structural rules (weakening, contraction) which are handled
implicitly in intuitionistic and classical logic. For this reason, LL has many useful
outcomes in the Curry-Howard based approach to the theory of programming:
logical understanding of evaluation strategies, new syntax of proofs/programs
(proof-nets), connections with other branches of mathematics (linear algebra,
differential calculus etc), new operational semantics (geometry of interaction). . .

However propositional LL is not a reasonable programming language, by lack
of data-types and iteration or recursion principles. This is usually remedied by
extending propositional LL to the 2nd order, thus defining a logical system in
which Girard’s System F [15] can be embedded. However even if such a system is
very expressive in terms of computable functions, its algorithmic expressiveness is
poor: it is not possible to write a term !ι ⊸ ι (where ι = ∀ζ !(!ζ ⊸ ζ) ⊸ !ζ ⊸ ζ is
the standard representation of integers) which computes the predecessor function
in one (or a uniformly bounded) number of reduction steps3.

Another option to turn propositional LL into a programming language is to
extend it with least and greatest fixed points of formulas as early suggested
by Girard in an unpublished note [14], though the first comprehensive proof-
theoretic investigation of such an extension of LL is recent [1]: Baelde considers
an extension µMALL of Multiplicative Additive LL sequent calculus with least

3 More precisely we know that such a proof does not exist in System F and it is very
likely that it does not exists in second order LL either.



and greatest fixed points. His motivations arose from a proof-search and system
verification perspective on LL and our purpose is to develop a more Curry-
Howard oriented point of view on µMALL (or rather µLL4) alternative to the
“system F” approach to representing programs in LL. The ν-introduction rule of
µLL (Park’s rule) leads to subtle cut-elimination rewrite rules for which Baelde
could prove a restricted form of cut-elimination, sufficient for establishing for
instance that a proof of the type of integers µζ (1⊕ ζ) necessarily reduces to an
integer. There are alternative proof-systems for the same logic, involving infinite
or cyclic proofs, see [2], whose connections with the aforementioned finitary
proof-system are not clear yet.

Since the proof-theory (and hence the “operational semantics”) of µLL is still
under development, it is important to investigate its denotational semantics,
whose definition does not rely on the rewrite system µLL is equipped with. We
develop here a categorical semantics of µLL extending the standard notion of
Seely category5 of classical LL. Such a model of µLL consists of a Seely category
L and of a class of functors Ln → L for all possible arities n which will be
used for interpreting µLL formulas with free variables. These functors have to
be equipped with a strength to deal properly with contexts in the ν rule.

Then we develop a simple instance of this setting which consists in taking for
L the category of sets and relations, a well-known Seely model of LL. The strong
functors we consider on this category, that we call variable sets, are the pairs F =
(F, F̂) where F̂ is the strength and F : Reln → Rel is a functor which is Scott-
continuous in the sense that it commutes with directed unions of morphisms
which implies categorical cocontinuity on the category of sets and injections
and maps inclusions to inclusions (this light additional requirement simplifies

the presentation). There is no special requirement about the strength F̂ beyond
naturality and monoidality. Variable sets form a Seely model of µLL where linear
negation is the identity on objects, the formulas µζ F and νζ F are interpreted as
the same variable set, exactly as ⊗ and ` are interpreted in the same way (and
similarly for additives and exponentials): this denotational “degeneracy” at the
level of types is a well known feature of Rel which doesn’t mean at all that the
model is trivial; for instance normal multiplicative exponential LL proofs which
have distinct relational interpretations have distinct associated proof-nets [9, 8].

Last we “enrich” this model Rel by considering sets equipped with an ad-
ditional structure of totality: a non-uniform totality space (NUTS) is a pair
X = (|X |, T (X)) where |X | is a set and T (X) is a set of subsets which intu-
itively represent the total, that is, terminating computations of type X . This
set T (X) is required to coincide with its bidual for a duality expressed in terms
of non-empty intersections; one nice feature of this definition is that the bidual

4 Exponentials are not considered in µMALL because some form of exponential can
be encoded using inductive/coinductive types, however these exponentials are not
fully satisfactory from our point of view because their denotational semantics do not
satisfy all required properties.

5 Sometimes called new-Seely category in the literature



of a set of subsets of |X | is simply its upwards-closure (wrt. inclusion)6. Given
two NUTS X and Y there is a natural notion of total relation t ⊆ |X | × |Y |
giving rise to a category Nuts which is easily seen to be a Seely model of LL.
To turn it into a categorical model of µLL, we need a notion of strong functors
Nutsn → Nuts. Rather than considering them directly as functors, we define
variable non-uniform totality spaces (VNUTS) as pairs X = (|X|, T (X)) where

|X| : Reln → Rel is a variable set and, for each tuple
−→
X = (X1, . . . , Xn) of

VNUTS’s, T (X)(
−→
X ) is a totality structure on the set |X|(|

−→
X |). It is also re-

quired that the action of the functor |X| on Nuts morphisms and the strength

X̂ respect this totality structures. Then it is easy to derive from such a VNUTS
X a strong functor Nutsn → Nuts and we prove that, equipped with these
strong functors, Nuts is a model of µLL. Most proofs are given in an Appendix.

Related work. In [18], that we became aware of only recently, Loader extends
the simply typed λ-calculus with inductive types and develops its denotational
semantics. His models are cartesian closed category C equipped with a class of
strong functors and seem very close to ours (Section 2.3): one might think that
any of our models yields a Loader model as its Kleisli category. This is not the
case because in a Loader model the category C is cocartesian7 whereas the Kleisli
category of a Seely category is not in general: this would require an iso between
!(X ⊕ Y ) and !X ⊕ !Y which is usually absent. Loader studies two concrete
instances of his models: one is based on recursion theory (partial equivalence
relations) and the other on a notion of domains with totality described as a
model of LL and might give rise to one of our Seely models, this point requires
further studies. Our NUTS are quite different from Loader totality domains
which feature a notion of “consistency” enforcing some kind of determinism
and, combined with totality, allow the Kleisli category to be cocartesian as well.
Our model is based on Rel and therefore is compatible with non-determinism [5]
and PCF recursion. This is important for us because we would like to consider
rules beyond Park’s rule for inductive and coinductive types, based on PCF fixed
points with further guardedness conditions8 in the spirit of [20] or even on infinite
terms in the spirit of [2]. We mention also the work of Clairambault [6, 7] who
investigates the game with totality semantics of an extension of intuitionistic
logic with least and greatest fixed points (without reference to [18]). A Kleisli-
like connection with his work should be sought too.

Notations We use the following notational conventions: −→a stands for a list
(a1, . . . , an). An operation f is extended to lists of arguments in the obvious
way: f(−→a ) = (f(a1), . . . , f(an)). When we write natural transformations, we
very often omit the objects where they are taken and prefer to keep these ob-
jects implicit for the sake of readability, because they can easily be retrieved

6 This is a major simplification wrt. notions of totality on coherence spaces [12] or
Loader’s totality spaces [17] where biduality is much harder to deal with.

7 To account for the disjunction of his logical system which crucial for defining inter-
esting data-types such as the integers.

8 For guaranteeing termination.



from the context. If A is a category then Obj(A) is its class of objects and if
A,B ∈ Obj(A) then A(A,B) is the set of morphisms from A to B in A (all the
categories we consider are locally small). If F : A × B → C is a functor and
A ∈ Obj(A) then FA : B → C is the functor defined by FA(B) = F(A,B) and
FA(f) = F(IdA, f).

2 Categorical models of LL

Seely categories. We define the basic notion of categorical model of LL (our
main reference is the notion of a Seely category as presented in [19]. We refer to
that survey for all the technical material that we do not record here).

A Seely category is a symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, γ)
where λX ∈ L(1 ⊗ X,X), ρX ∈ L(X ⊗ 1, X), αX,Y,Z ∈ L((X ⊗ Y ) ⊗ Z,X ⊗
(Y ⊗ Z)) and γX,Y ∈ L(X ⊗ Y, Y ⊗ X) are natural isomorphisms satisfying
coherence diagrams that we do not record here. We use X ⊸ Y for the object
of linear morphisms from X to Y , ev ∈ L((X ⊸ Y ) ⊗X,Y ) for the evaluation
morphism and cur for the linear curryfication map L(Z⊗X,Y ) → L(Z,X ⊸ Y ).
We assume this SMCC to be ∗-autonomous with dualizing object ⊥ (this object
is part of the structure of a Seely category). We use X⊥ for the object X ⊸ ⊥
of L (the dual, or linear negation, of X). It is also assumed that L is cartesian
with final object ⊤, product X1 & X2 with projections π1, π2. By ∗-autonomy
L is cocartesian with initial object 0, coproduct ⊕ and injections πi.

We also assume to be given a comonad ! : L → L with counit derX ∈
L(!X,X) (dereliction) and comultiplication digX ∈ L(!X, !!X) (digging) together
with a symmetric monoidal structure (Seely natural isos m0 : 1 → !⊤ and m2

with m2
X1,X2

: !X1 ⊗ !X2 → !(X1 & X2) for the functor ! , from the symmetric
monoidal category (L,&) to the symmetric monoidal category (L,⊗) satisfy-
ing an additional coherence condition wrt. dig. This strong monoidal structure
allows to define a lax monoidal structure (µ0, µ2) of ! from (L,⊗) to itself.
More precisely µ0 ∈ L(1, !1) and µ2

X1,X2
∈ L(!X1 ⊗ !X2, !(X1 ⊗X2)) are de-

fined using m0 and m2 (and are not isos in most cases). Also, for each object
X ∈ Obj(L), there is a canonical structure of commutative ⊗-comonoid on !X
given by wX ∈ L(!X, 1) and contrX ∈ L(!X, !X ⊗ !X). The definition of these
morphisms involves all the structure of ! explained above, and in particular
the Seely isos. We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥ and
similarly for morphisms. It is a monad on L.

2.1 Strong functors on L

Given n ∈ N, an n-ary strong functor on L is a pair F = (F, F̂)) where F : Ln → L

is a functor and F̂
X,

−→
Y

∈ L(!X ⊗ F(
−→
Y ),F(!X ⊗

−→
Y )) is a natural transformation,

called the strength of F. We use the notation Z⊗(Y1, . . . , Yn) = (Z⊗Y1, . . . , Z⊗
Yn). It is assumed moreover that the diagrams of Figure 1 commute, expressing
a monoidality of this strength.



(!X1 ⊗ !X2)⊗ F(
−→
Y ) !(X1 & X2)⊗ F(

−→
Y )

!X1 ⊗ F(!X2 ⊗
−→
Y )

F(!X1 ⊗ !X2 ⊗ F(
−→
Y )) F(!(X1 & X2)⊗

−→
Y )

m2 ⊗ F(
−→
Y )

F(m2 ⊗
−→
Y )

!X1 ⊗ F̂
X2,

−→
Y

F̂
X1,!X2⊗

−→
Y

F̂
X1&X2,

−→
Y

1⊗ F(
−→
Y ) !⊤⊗ F(

−→
Y )

F(1⊗
−→
Y ) F(!⊤⊗

−→
Y )

m0 ⊗ F(
−→
Y )

F(m0 ⊗
−→
Y )

∼ F̂
⊤,

−→
Y

Fig. 1. Monoidality diagrams for strong functors

Operations on strong functors. There is an obvious unary identity strong
functor I and for each object Y of L there is an n-ary Y -valued constant strong
functor KY ; in the first case the strength natural transformation is the identity
morphism and in the second case, it is defined using w!X . Let F be an n-ary
strong functor and G1, . . . ,Gn be k-ary strong functors. Then one defines a k-
ary strong functor H = F ◦ (G1, . . . ,Gn): the functorial component H is defined
in the obvious compositional way. The strength is defined as follows

!X ⊗H(
−→
Y ) F((!X ⊗Gi(

−→
Y ))ni=1) F((Gi(!X ⊗

−→
Y ))ni=1) = H(!X ⊗

−→
Y )

F̂ F((Ĝi)
k
i=1)

and is easily seen to satisfy the required monoidality commutations. Given an
n-ary strong functor, we can define its De Morgan dual F⊥ which is also an

n-ary strong functor. On objects, we set F⊥(
−→
Y ) = F(

−→
Y ⊥)⊥ and similarly for

morphisms. The strength of F⊥ is defined as the Curry transpose of the following

morphism (remember that !X ⊸

−→
Y ⊥ = (!X ⊗

−→
Y )⊥ up to canonical iso):

!X ⊗ F(
−→
Y ⊥)⊥ ⊗ F(!X ⊸

−→
Y ⊥) !X ⊗ F(!X ⊸

−→
Y ⊥)⊗ F(

−→
Y ⊥)⊥

F(!X ⊗ (!X ⊸

−→
Y ⊥))⊗ F(

−→
Y ⊥)⊥F(

−→
Y ⊥)⊗ F(

−→
Y ⊥)⊥⊥

∼

F̂⊗ Id
F(ev) ⊗ Idev γ

Then it is possible to prove, using the *-autonomy of L, that F⊥⊥ and F are
canonically isomorphic (as strong functors)9. As a direct consequence of the
definition of F⊥ and of the canonical iso between F⊥⊥ and F we get:

Lemma 1. (F ◦ (G1, . . . ,Gn))
⊥ = F⊥ ◦ (G⊥

1 , . . . ,G⊥
n ) up to canonical iso.

The bifunctor ⊗ can be turned into a strong functor: one defines the strength

as !X ⊗ Y1 ⊗ Y2 !X ⊗ !X ⊗ Y1 ⊗ Y2 !X ⊗ Y1 ⊗ !X ⊗ Y2

contr!X ⊗ Id ∼
. By De

Morgan duality, this endows ` with a strength as well. The bifunctor ⊕ is also
endowed with a strength, simply using the distributivity of ⊗ over ⊕ (which

9 In the concrete settings considered in this paper, these canonical isos are actuality
identity maps.



in turn results from the fact that L is symmetric monoidal closed). By duality
again, & inherits a strength as well. Last the unary functor ! can be equipped

with a strength as follows !X ⊗ !Y !!X ⊗ !Y !(!X ⊗ Y )
digX ⊗ !Y µ2

.

2.2 Fixed Points of strong functors.

The following facts are standard in the literature on fixed points of functors.

Definition 1. Let A be a category and F : A → A be a functor. A coalgebra
of F is a pair (A, f) where A is an object of A and f ∈ A(A,F(A)). Given
two coalgebras (A, f) and (A′, f ′) of F , a coalgebra morphism from (A, f) to
(A′, f ′) is an h ∈ A(A,A′) such that f ′ h = F(h) f . The category of coalgebras
of the functor F will be denoted as CoalgA(F). The notion of algebra of an
endofunctor is defined dually (reverse the directions of the arrows f and f ′) and
the corresponding category is denoted as AlgA(F).

By Lambek’s Lemma, if (A, f) with f ∈ A(A,F(A)) is a final object in
CoalgA(F) then f is an iso. We assume that this iso is always the identity
as this holds in our concrete models so that this final object (νF , Id) satisfies
F(νF) = νF . We focus on coalgebras rather than algebras for reasons which will
become clear when we deal with fixed points of strong functors. This universal
property of νF gives us a powerful tool for proving equalities of morphisms.

Lemma 2. Let A ∈ Obj(A) and let f1, f2 ∈ A(A, νF). If there exists l ∈
A(A,F(A)) such that F(fi) l = fi for i = 1, 2, then f1 = f2.

Lemma 3. Let F : B ×A → A be a functor such that, for all B ∈ Obj(B), the
category CoalgA(FB) has a final object. Then there is a functor νF such that
(νF(B), Id) is the final object of CoalgA(FB) (so that F(B, νF(B)) = νF(B))
for each B ∈ Obj(B), and, for each g ∈ B(B,B′), νF(g) is uniquely characterized
by F(g, νF(g)) = νF(g).

We consider now the same νF operation applied to strong functors on a
model L of LL. Let F be an n+1-ary strong functor on L (so that F is a functor

Ln+1 → L). Assume that for each
−→
X ∈ Obj(Ln) the category CoalgL(F−→

X
) has

a final object. We have defined a functor νF : Ln → L uniquely characterized

by F(
−→
X, νF(

−→
X )) = νF(

−→
X ) and F(

−→
f , νF(

−→
f )) = νF(

−→
f ) for all

−→
f ∈ Ln(

−→
X,

−→
X ′)

(Lemma 3). For each Y,
−→
X ∈ L, we define ν̂F

Y,
−→
X

∈ L(!Y ⊗ νF(
−→
X ), νF(!Y ⊗

−→
X )).

We have !Y ⊗ νF(
−→
X ) = !Y ⊗ F(

−→
X, νF(

−→
X )) F(!Y ⊗

−→
X, !Y ⊗ νF(

−→
X ))

F̂
Y,(

−→
X,νF(

−→
X))

exhibiting a F
!Y⊗

−→
X
-coalgebra structure on !Y ⊗ νF(

−→
X ). Since νF(!Y ⊗

−→
X ) is the

final coalgebra of the functor F
!Y⊗

−→
X
, we define ν̂F

Y,
−→
X

as the unique morphism



!Y ⊗ νF(
−→
X ) → νF(!Y ⊗

−→
X ) such that the following diagram commutes

!Y ⊗ νF(
−→
X ) F(!Y ⊗

−→
X, !Y ⊗ νF(

−→
X ))

F(!Y ⊗
−→
X, νF(!Y ⊗

−→
X )) = νF(!Y ⊗

−→
X )

F̂
Y,(

−→
X,νF(

−→
X))

F(!Y ⊗
−→
X, ν̂F

Y,
−→
X
)

ν̂F
Y,

−→
X

(1)

Lemma 4. Let F be an n + 1-ary strong functor on L such that for each
−→
X ∈

Obj(Ln), the category CoalgL(F−→
X
) has a final object νF−→

X
. Then there is a

unique n-ary strong functor νF such that νF(
−→
X ) = νF−→

X
(and hence F(

−→
X, νF(

−→
X )) =

νF(
−→
X )), F(

−→
f , νF(

−→
f )) = νF(

−→
f ) for all

−→
f ∈ Ln(

−→
X,

−→
X ′) and

F(!Y ⊗
−→
X, ν̂F

Y,
−→
X
) F̂

Y,(
−→
X,νF(

−→
X))

= ν̂F
Y,

−→
X
.

Lemma 5. Let F be an n + 1-ary strong functor on L such that for each
−→
X ∈

Obj(Ln), the category AlgL(F−→
X
) has an initial object µF−→

X
. Then there is a

unique n-ary strong functor µF such that µF(
−→
X ) = µF−→

X
(and hence F(

−→
X,µF(

−→
X )) =

µF(
−→
X )), F(

−→
f , µF(

−→
f )) = µF(

−→
f ) for all

−→
f ∈ Ln(

−→
X,

−→
X ′) and

F(!Y ⊗
−→
X, µ̂F

Y,
−→
X
) F̂

Y,(
−→
X,µF(

−→
X ))

= µ̂F
Y,

−→
X
. Moreover (µF)⊥ = ν(F⊥)

Proof. Apply Lemma 4 to the strong functor F⊥ .

2.3 A categorical axiomatization of models of µLL

Our general definition of Seely categorical model of µLL is based on the notions
and results above. We refer in particular to Section 2.1 for the basic definitions
of operations on strong functors in our LL categorical setting.

Definition 2. A categorical model or Seely model of µLL is a pair (L,
−→
L ) where

1. L is a Seely category

2.
−→
L = (Ln)n∈N where Ln is a class of strong functors Ln → L, and L0 =
Obj(L)

3. if X ∈ Ln and Xi ∈ Lk (for i = 1, . . . , n) then X ◦
−→
X ∈ Lk and all k

projection strong functors Lk → L belong to Lk

4. the strong functors ⊗ and & belong to L2, the strong functor ! belongs to
L1 and, if X ∈ Ln, then X⊥ ∈ Ln

5. and last, for all X ∈ L1 the category CoalgL(X) (see Section 2.2) has a final
object. Moreover, for any X ∈ Lk+1, the associated strong functor νX : Lk →
L (see Lemma 4) belongs to Lk.

Our goal is now to outline the interpretation of µLL formulas and proofs in
such a model. This requires first to describe the syntax of formulas and proofs.



Syntax of µLL. We assume to be given an infinite set of propositional variables
V (ranged over by Greek letters ζ, ξ . . . ). We introduce a language of proposi-
tional LL formulas with least and greatest fixed points.

A,B, · · · := 1 | ⊥ | A⊗B | A ` B | 0 | ⊤ | A⊕B | A & B | !A | ?A | ζ | µζ A | νζ A

The notion of closed types is defined as usual, the two last constructions being
the only binders.

Remark 1. In contrast with second-order LL or dependent type systems where
open formulas play a crucial role, in the case of fixed points, all formulas appear-
ing in sequents and other syntactical devices allowing to give types to programs
will be closed. In our setting, open types appear only locally, for allowing the
expression of (least and greatest) fixed points.

We can define two basic operations on formulas.

– Substitution: A [B/ζ], taking care of not binding free variables (uses α-
conversion).

– Negation or dualization: defined by induction on formulas 1⊥ = ⊥, ⊥⊥ = 1,
(A ` B)⊥ = A⊥ ⊗ B⊥ , (A ⊗ B)⊥ = A⊥

` B⊥ , 0⊥ = ⊤, ⊤⊥ = 0, (A &
B)⊥ = A⊥ ⊕ B⊥ , (A ⊕ B)⊥ = A⊥ & B⊥ , (!A)⊥ = ?A⊥ , (?A)⊥ = !A⊥ ,
ζ⊥ = ζ, (µζ A)⊥ = νζ A⊥ and (νζ A)⊥ = µζ A⊥ . Obviously A⊥⊥ = A for
any formula A.

Remark 2. The only subtle point of this definition is negation of propositional
variables: ζ⊥ = ζ which entails (B [A/ζ])⊥ = B⊥

[
A⊥/ζ

]
. If we consider B as

a compound connective with placeholders labeled by variables then B⊥ is its
De Morgan dual. It is also a natural way of preventing the introduction of fixed
points wrt. variables with negative occurrences as in D = µζ (1 & (!ζ ⊸ ζ))
which is not a formula of µLL (or has not the intended meaning).

The logical system is the usual unilateral sequent calculus of classical LL [13]
extended with the fixed point fragment:

⊢ Γ, F [µζ F/ζ]

⊢ Γ, µζ F
(µ− fold)

⊢ ∆,A ⊢ ?Γ,A⊥ , F [A/ζ]

⊢ ∆, ?Γ, νζ F
(ν − rec)

By taking, in the last rule, ∆ = A⊥ and proving the left premise by an axiom,
we obtain the following derived rule

⊢ ?Γ,A⊥ , F [A/ζ]
(ν − rec

′)
⊢ ?Γ,A⊥ , νζ F

The reduction rules can be found in [1] which also provides a proof that
this system admits cut-elimination10. A cut-free proof has not the sub-formula
property in general because of rule (ν − rec). Though, Baelde’s theorem makes
sure that a proof of a sequent which does not contain any ν-formula has a cut-free
proof with the sub-formula property.

10 The system considered by Baelde is slightly different: no exponentials, no context
in the (ν − rec) rule. Though it seems quite clear that his proof can be adapted to
the system presented here which is equivalent to Baelde’s, in terms of provability at
least.



Functoriality of formulas. The cut-elimination reduction rule for the (µ −
fold)/(ν−rec) cut requires the possibility of substituting a proof for a variable in a
formula. More precisely, let (ζ, ξ1, . . . , ξk) be a list of pairwise distinct variables

containing all free variables of a formula F and let
−→
C = (C1, . . . , Ck) be a

sequence of closed formulas. Let π be a proof of ⊢ ?Γ,A⊥ , B, then one can define

a proof F
[
π/ζ,

−→
C/

−→
ξ
]
of ⊢ ?Γ, F

[
A/ζ,

−→
C/

−→
ξ
]⊥

, F
[
B/ζ,

−→
C/

−→
ξ
]
by induction

on F , see [1]. As an example, assume that F = µξ G (so that (ζ, ξ, ξ1, . . . , ξk)
is a list of pairwise distinct variables containing all free variables G). The proof

F
[
π/ζ,

−→
C/

−→
ξ
]
is defined by (setting G′ = G

[−→
C/

−→
ξ
]
)

G
[

π/ζ, (µξ G′) [B/ζ] /ξ,
−→
C /

−→
ξ
]

⊢ ?Γ,G′ [A/ζ, (µξ G′) [B/ζ] /ξ]
⊥
, G′ [B/ζ, (µξ G′) [B/ζ] /ξ]

(µ− fold)
⊢ ?Γ,G′ [A/ζ, (µξ G′) [B/ζ] /ξ]

⊥
, (µξ G′) [B/ζ]

(ν − rec
′)

⊢ ?Γ, (µξ G′) [A/ζ]⊥ , (µξ G′) [B/ζ]

Notice that this case uses the additional parameters
−→
C is the definition of this

substitution. Another example is F = G1 ⊗G2: F
[
π/ζ,

−→
C/

−→
ξ
]
is defined as

G1

[

π/ζ,
−→
C /

−→
ξ
]

⊢ ?Γ,G′

1 [A/ζ]
⊥
, G′

1 [B/ζ]

G2

[

π/ζ,
−→
C/

−→
ξ
]

⊢ ?Γ,G′

2 [A/ζ]
⊥
, G′

2 [B/ζ]
(⊗)

⊢ ?Γ, ?Γ,G′

1 [A/ζ]
⊥
, G′

2 [A/ζ]
⊥
, G′

1 [B/ζ]⊗G′

2 [B/ζ]
(c)

⊢ ?Γ,G′

1 [A/ζ]
⊥
, G′

2 [A/ζ]
⊥
, G′

1 [B/ζ]⊗G′

2 [B/ζ]
(`)

⊢ ?Γ,G′

1 [A/ζ]
⊥
`G′

2 [A/ζ]
⊥
, G′

1 [B/ζ]⊗G′

2 [B/ζ]

Notice that it is essential that all formulas of the context are of shape ?H (even
if F is exponential-free) since we use contraction rules on this context.

Interpreting formulas and proofs (outline). We assume to be given a µLL

Seely model (L,
−→
L ), see Section 2.3. With any formula A and any repetition-free

sequence
−→
ζ = (ζ1, . . . , ζk) of type variables containing all the free variables of

A, we associate JAK−→
ζ

∈ Lk in the obvious way, for instance JA⊗BK−→
ζ

= ⊗ ◦

(JAK−→
ζ
, JBK−→

ζ
) ∈ Lk by conditions (4) and (3) in Definition 2 and Jνζ AK−→

ζ
=

ν(JAK−→
ζ ,ζ

) using condition (5). Then JA⊥K−→
ζ

= JAK⊥−→
ζ

up to a natural isomor-

phism. In this outline, we leave symmetric monoidality isomorphisms of L and
of ! implicit (see for instance [11] how monoidal trees allow to take them into
account). With any Γ = (A1, . . . , An) we associate an object JΓ K of L and with
any proof π of ⊢ Γ we associate a morphism JπK ∈ L(1, JΓ K) using the categori-
cal constructs of L is a straightforward way, see [19]. Then one proves that if π
and π′ are proofs of ⊢ Γ and π reduces to π′ by the cut-elimination rules, then
JπK = Jπ′K. This is done by an inspection of the various cut-elimination rules.



In the case of (µ− fold)/(ν − rec) cut-elimination, we need the following lemma
that we state in a rough way (again, isos are kept implicit).

Lemma 6. Let Γ = (D1, . . . , Dn) be a sequence of closed formulas, F be a
formula and ζ, ξ1, . . . , ξk be a repetition-free list of variables containing all the
free variables of F . Let π be a proof of ⊢ ?Γ,A⊥ , B (so that, setting X =
JD⊥

1 K & · · · & JD⊥
n K, we can consider that JπK ∈ L(!X ⊗ JAK, JBK)) and let

−→
C = (C1, . . . , Ck) be a list of closed formulas. Then

JF
[
π/ζ,

−→
C /

−→
ξ
]
K = JF K

ζ,
−→
ξ
(JπK,wX ⊗

−−→
JCK) ( ̂JF K

ζ,
−→
ξ
)
X,(JAK,

−−→
JCK)

.

To understand this formula notice that JF K
ζ,
−→
ξ
(JπK,wX ⊗

−−→
JCK) ∈ L(JF K

ζ,
−→
ξ
(!X⊗

JAK, !X⊗
−−→
JCK), JF K

ζ,
−→
ξ
(JBK,

−−→
JCK)) and that ( ̂JF K

ζ,
−→
ξ
)
X,(JAK,

−−→
JCK)

belongs to L(!X⊗

JF K
ζ,
−→
ξ
(JAK,

−−→
JCK), JF K

ζ,
−→
ξ
(!X ⊗ JAK, !X ⊗

−−→
JCK)) .

3 Sets and relations

The category Rel has sets as objects, and given sets E and F , Rel(E,F ) =
P(E × F ). Identity is the diagonal relation and composition is the usual compo-
sition of relations, denoted by simple juxtaposition. If t ∈ Rel(E,F ) and u ⊆ E
then t · u = {b ∈ F | ∃a ∈ u (a, b) ∈ t}.

Rel as a model of LL. This category is a well-known model of LL in which
1 = ⊥ = {∗}, E ⊗ F = (E ⊸ F ) = E ` F = E × F so that E⊥ = E. As to the
additives, 0 = ⊤ = ∅ and &i∈I Ei = ⊕i∈I Ei =

⋃
i∈I {i} × Ei. The exponentials

are given by !E = ?E = Mfin(E).
For the additives and multiplicatives, the operations on morphisms are de-

fined in the obvious way. Let us be more specific about the exponentials. Given
s ∈ Rel(E,F ), !s ∈ Rel(!E, !F ) is !s = {([a1, . . . , an], [b1, . . . , bn]) | ∀i (ai, bi) ∈ s},
derE ∈ Rel(!E,E) is given by derE = {([a], a) | a ∈ E} and digE ∈ Rel(!E, !!E)
is given by digE = {(m1 + · · ·+mn, [m1, . . . ,mn]) | ∀i mi ∈ Mfin(E)}. Lastm0 ∈
Rel(1, !⊤) is m0 = {(∗, [])} and m2

E,F ∈ Rel(!E ⊗ !F , !(E & F )) is given by

m2
E,F = {(([a1, . . . , ak], [b1, . . . , bl]), [(1, a1), . . . , (1, ak), (2, b1), . . . , (bl)])

| a1, . . . , ak ∈ E and b1, . . . , bl ∈ F} .

Weakening wE ∈ Rel(!E, 1) and contrE ∈ Rel(!E, !E ⊗ !E) are given by wE =
{([], ∗)} and contrE = {(m1 +m2, (m1,m2)) | mi ∈ Mfin(E) for i = 1, 2}.

3.1 Hom-continuous functors on Rel

A functor F : Reln → Rel is hom-continuous11 if, for all
−→
E ,

−→
F ∈ Reln and all

directed set D ⊆ Reln(
−→
E ,

−→
F ), one has F(

⋃
D) =

⋃
{F(−→s ) | −→s ∈ D}. This

11 The right setting to express this property would be that of cpo-enriched categories

but we don’t really need this general concept here.



implies in particular that if −→s ⊆
−→
t , one has F(−→s ) ⊆ F(

−→
t ) (taking D ={

−→s ,
−→
t
}
). To simplify notations assume that n = 1 (but what follows holds

for all values of n).

Lemma 7. Let E and F be sets and let s ∈ Rel(E,F ) and t ∈ Rel(F,E).
Assume that t s = IdE and that s t ⊆ IdF . Then s is an injective function and
t = {(b, a) ∈ F × E | (a, b) ∈ s}.

Lemma 8. Let F : Rel → Rel be a hom-continuous functor. Assume that E ⊆
F and let η+E,F = {(a, a) | a ∈ E} ∈ Rel(E,F ) and η−E,F = {(a, a) | a ∈ E} ∈

Rel(F,E). Then F(η+E,F ) ∈ Rel(F(E),F(F )) is an injective function.

Proof. Notice first that η−E,F η+E,F = IdE and η+E,F η−E,F ⊆ IdF and therefore

F(η−E,F )F(η
+
E,F ) = Id by functoriality and F(η+E,F )F(η

−
E,F ) ⊆ Id by hom-continuity.

The announced property results from Lemma 7.

Let Rel⊆ be the category whose objects are sets and morphisms are set
inclusions (so thatRel⊆(E,F ) has η+E,F as unique element if E ⊆ F and is empty

otherwise). Then η+ can be thought of as the “inclusion functor” Rel⊆ → Rel,
acting as the identity on objects. Obviously, Rel⊆ is cocomplete12.

Proposition 1. If F : Rel → Rel is hom-continuous then F η+ : Rel⊆ → Rel
is directed-cocontinuous (that is, preserves the colimits of directed sets of sets).

Remark 3. In the proof above, we use crucially that D is directed. It is easy to
find examples showing that this condition is necessary.

We know that a hom-continuous functor F maps inclusions to injections, we
shall say that F is strict if it maps inclusions to inclusions, that is, if E ⊆ F then
F(E) ⊆ F(F ) and F(η+E,F ) = η+

F(E),F(F ) (which implies F(η−E,F ) = η−
F(E),F(F )). As

a direct consequence of Proposition 1, we get:

Lemma 9. If F is strict hom-continuous then, for any directed set of sets D,
one has F(

⋃
D) =

⋃
E∈D F(E).

3.2 Variable sets and basic constructions on them

Definition 3. An n-ary variable set is a strong functor V : Reln → Rel such
that V is hom-continuous and strict.

By the general considerations of Section 2.1, we know that there is a constant
strong functorReln → Rel with value E for each set E, that there are projection
strong functors Reln → Rel, that × (that is ⊗) and + (that is ⊕) define
strong functors Rel2 → Rel, that Mfin( ) (that is ! ) defines a strong functor
Rel → Rel, that strong functors on Rel are stable under composition, and that

12 Notice that it is not complete, for instance is has no terminal object.



if V is a strong functor Reln → Rel then there is a “dual” strong functor V⊥

(which is actually identical to V in this very simple model). We have only to
check that for each of the strong functors V defined in that way, the underlying
functor V is a strict hom-continuous functor.

We deal with ! and composition, the other cases are similar. The underly-
ing functor of ! is M : Rel → Rel defined by M(E) = Mfin(E), M(s) =
{([a1, . . . , ak], [b1, . . . , bk]) | (ai, bi) ∈ s for i = 1, . . . , k} if s ∈ Rel(E,F ), First
if s ⊆ t ∈ Rel(E,F ), it follows from the definition that M(s) ⊆ M(t). Let
D ⊆ Rel(E,F ) be directed, we prove M(

⋃
D) ⊆

⋃
s∈D M(s): an element of

M(
⋃
D) is a pair ([a1, . . . , ak], [b1, . . . , bk]) with (ai, bi) ∈

⋃
D for i = 1, . . . , k.

Since D is directed, there is an s ∈ D such that (ai, bi) ∈ s for i = 1, . . . , k and
the inclusion follows. Strictness is obvious.

Let Vi : Reln → Rel be variable sets for i = 1, . . . , k and letW : Relk → Rel

be a variable set. Then the functor W ◦
−→
V : Reln → Rel is clearly strict hom-

continuous (since these conditions are preservation properties) from which is

follows that the strong functor U = W ◦
−→
V is a variable type.

Fixed point of a variable set. Let F : Rel → Rel be a strict hom-continuous
functor. Since ∅ ⊆ F(∅) we have Fn(∅) ⊆ Fn+1(∅) for all n ∈ N, by induction
on n and hence F(

⋃∞
n=0 F

n(∅)) =
⋃
Fn(∅) by Lemma 9 since {Fn(∅) | n ∈ N} is

directed. Let σF =
⋃∞

n=0 F
n(∅), then (σF, IdσF) is an F-coalgebra.

Lemma 10. The coalgebra (σF, Id) is final in CoalgRel(F).

Notice that (σF, Id) is also an initial object in AlgRel(F). When we insist on
considering σF as a final coalgebra, we denote it as νF.

Lemma 11. Let F : Reln+1 → Rel be a strict hom-continuous functor. The
functor νF : Reln → Rel is strict hom-continuous.

Let V : Reln+1 → Rel be a variable set, by Lemma 4, there is a unique strong

functor νV : Reln → Rel which is characterized by: νV(
−→
E ) = νV−→

E
, for each

−→s ∈ Reln(
−→
E ,

−→
F ), νV(−→s ) = V(−→s , νV(−→s )) and last V(!E ⊗

−→
F , V̂

E,
−→
F
) = V̂

E,
−→
F
.

Lemma 12. The functor νV is a variable set.

Proof. By the conditions above satisfied by νV we have that νV = νV and hence
νV is strict hom-continuous by Lemma 11.

A model of µLL based on variable sets. Let Reln be the class of all n-
ary variable sets, so that Rel0 = Obj(Rel). The fact that (Rel, (Reln)n∈N) is
a Seely model of µLL in the sense of Section 2.3 results mainly from the fact
that we take all variable sets in the Reln’s so that there is essentially nothing
to check. More explicitly: (1) holds by Section 3, (2) holds by construction, (3)
holds by the fact that variable sets compose as explained in Section 3.2 (notice
that this condition refers to the general composition of strong functors defined
in Section 2.1), (4) holds by Section 3.2 and by the fact that the De Morgan
dual of a strong functor is strong, see Section 2.1 and (5) holds by Section 3.2.



4 Non-uniform totality spaces

Basic definitions. Let E be a set and let T ⊆ P(E). We define T ⊥ =
{u′ ⊆ E | ∀u ∈ T u ∩ u′ 6= ∅}. If S ⊆ T ⊆ P(E) then T ⊥ ⊆ S⊥ . We also have
T ⊆ T ⊥⊥ and therefore T ⊥⊥⊥ = T ⊥ . One pleasant feature of this duality is
that the biorthogonal closure admits a very simple characterization.

Lemma 13. Let T ⊆ P(E), then T ⊥⊥ = ↑T = {v ⊆ E | ∃u ∈ T u ⊆ v}.

Proof. The ⊇ direction is obvious, let us prove the converse so let u ⊆ E and
assume that u /∈ ↑T . This means that for each v ∈ T there exist a(v) ∈ v such
that a(v) /∈ u. Let u′ = {a(v) | v ∈ T } ⊆ E. By construction we have u′ ∈ T ⊥

and u ∩ u′ = ∅. This shows that u /∈ T ⊥⊥.

A non-uniform totality space (NUTS) is a pair X = (|X |, T (X)) where |X |
is a set and T (X) ⊆ P(|X |) satisfies T (X) = T (X)⊥⊥, that is T (X) = ↑T (X).
Of course we set X⊥ = (|X |, T (X)⊥).

Example 1. Let X = (N, T (X)) where T (X) is the set of all infinite subsets of
N. It is a NUTS because a superset of an infinite set is infinite. Then |X⊥ | = N

and T (X⊥) is the set of all cofinite subsets of N (the subsets u of N such that
N\u is finite). If, with the same web N, we take T (X) = {u ⊆ N | u 6= ∅} (again
T (X) = ↑T (X) obviously), then T (X⊥) = {N}.

We define four basic NUTS: 0 = (∅, ∅),⊤ = (∅, {∅}) and 1 = ⊥ = ({∗} , {{∗}}).
Given NUTS X1 and X2 we define a NUTS X1⊗X2 by |X1 ⊗X2| = |X1|× |X2|
and T (X1 ⊗ X2) = ↑ {u1 × u2 | ui ∈ T (Xi) for i = 1, 2}. And then we define
X ⊸ Y = (X ⊗ Y ⊥)⊥ .

Lemma 14. t ∈ T (X ⊸ Y ) ⇔ ∀u ∈ T (X) t · u ∈ T (Y ).

We define the categoryNuts whose objects are the NUTS andNuts(X,Y ) =
T (X ⊸ Y ), composition being defined as the usual composition in Rel (rela-
tional composition) and identities as the diagonal relations. Lemma 14 shows
that we have indeed defined a category.

Multiplicative structure

Lemma 15. Let X and Y be NUTS and t ∈ Nuts(X,Y ). Then t is an iso
in Nuts iff t is (the graph of) a bijection |X | → |Y | such that ∀u ⊆ |X | u ∈
T (X) ⇔ t(u) ∈ T (Y ).

Lemma 16. Let t ⊆ |X |×|Y |. One has t ∈ Nuts(X,Y ) iff t⊥ = {(b, a) | (a, b) ∈ t} ∈
Nuts(Y ⊥ , X⊥).

Proof. This is an obvious consequence of Lemma 14 and of the fact that (X ⊸ Y ) =(
X ⊗ Y ⊥

)⊥
and

(
Y ⊥

⊸ X⊥
)
= (Y ⊥ ⊗X)⊥ .



Lemma 17. Let t ⊆ |X1 ⊗X2 ⊸ Y |. One has t ∈ Nuts(X1 ⊗X2, Y ) iff for all
u1 ∈ T (X1) and u2 ∈ T (X2) one has t · (u1 ⊗ u2) ∈ T (Y ).

Lemma 18. The bijection α|X1|,|X2|,|Y | is an isomorphism from (X1 ⊗X2) ⊸
Y to X1 ⊸ (X2 ⊸ Y ).

We turn now ⊗ into a functor, its action on morphisms being defined as in
Rel. Let ti ∈ Nuts(Xi, Yi) for i = 1, 2, we have t1⊗t2 ∈ Nuts(X1⊗X2, Y1⊗Y2)
by Lemma 17 and by the equation (t1 ⊗ t2) ·(u1 ⊗ u2) = (t1 · u1)⊗(t2 · u2). This
functor is monoidal, with unit 1 and symmetric monoidality isomorphisms λ, ρ,
γ and α defined as in Rel. The only non-trivial thing to check is that α is indeed
a morphism, namely α|X1|,|X2|,|X3| ∈ Nuts((X1 ⊗X2) ⊗X3, X1 ⊗ (X2 ⊗X3)).

This results from Lemma 18 and from the observation that ((X1 ⊗X2)⊗X3)
⊥ =(

(X1 ⊗X2) ⊸ X⊥
3

)
and (X1 ⊗ (X2 ⊗X3))

⊥ =
(
X1 ⊸

(
X2 ⊸ X⊥

3

))
.

The SMC category Nuts is closed, with X ⊸ Y as internal hom object
fromX to Y , and evaluation morphism ev = {(((a, b), a), b | a ∈ |X | and b ∈ |Y |}
which indeed belongs to Nuts((X ⊸ Y ) ⊗ X,Y ) by Lemma 17 since, for all
t ∈ T (X ⊸ Y ) and u ∈ T (X) we have ev (t⊗ u) = t u ∈ T (Y ). This category
Nuts is also *-autonomous with dualizing object ⊥ = 1.

Additive structure. Let (Xi)i∈I be an at most countable family of objects
of Nuts. We define X = &i∈I Xi by: |X | =

⋃
i∈I {i} × |Xi| and T (X) =

{u ⊆ |X | | ∀i ∈ I πi · u ∈ T (Xi)}. It is clear that T (X) = ↑T (X) and hence
X is an object of Nuts. By definition of X and by Lemma 14 we have ∀i ∈
I πi ∈ Nuts(X,Xi). Given

−→
t = (ti)i∈I with ∀i ∈ I ti ∈ Nuts(Y,Xi), we have

〈
−→
t 〉 ∈ Nuts(Y,X) as easily checked (using Lemma 14 again). It follows that

(&i∈I Xi, (πi)i∈I) is the cartesian product of the Xi’s in Nuts. This shows that
the category Nuts has all countable products and hence is cartesian. Since it
is *-autonomous, the category Nuts is also cocartesian, coproduct being given
by ⊕i∈I Xi = (&i∈I X

⊥
i )⊥ . It follows that X = ⊕i∈I Xi = (&i∈I X

⊥
i )⊥ satisfies

|X | =
⋃

i∈I {i} × |Xi| and

T (X) =
{
v ⊆

⋃
i∈I {i} × |Xi| | ∃i ∈ I ∃u ∈ T (Xi) {i} × u ⊆ v

}
as easily checked.

Exponential. This exponential is an extension of the multiset exponential of
Rel with totality. Remember that u(!) = Mfin(u). We set |!X| = Mfin(|X |) and

T (!X) =
{
u(!) | u ∈ T (X)

}⊥⊥
= ↑

{
u(!) | u ∈ T (X)

}
.

Lemma 19. Let t ⊆ Mfin(|X |) × |Y |. One has t ∈ Nuts(!X,Y ) iff for all
u ∈ T (X) one has t · u(!) ∈ T (Y ).

Lemma 20. Let t ⊆ Mfin(|X1|) ×Mfin(|X2|) × |Y |. One has t ∈ Nuts(!X1 ⊗

!X2, Y ) iff for all u1 ∈ T (X1) and u2 ∈ T (X2), one has t ·
(
u
(!)
1 ⊗ u

(!)
2

)
∈ T (Y ).

Lemma 21. For any t ∈ Nuts(X,Y ), one has !t ∈ Nuts(!X, !Y ).



Proof. By Lemma 19 and the fact that !t · u(!) = (t · u)(!).

To prove that Nuts is a categorical model of LL, it suffices to show that the
various relational morphisms defining the strong symmetric monoidal monadic
structure of ! in Rel (see Section 3) are actually morphisms in Nuts. This is
essentially straightforward and based on Lemma 19.

Lemma 22. Equipped with der, dig, m0 and m2 defined as in Rel, ! is a sym-
metric monoidal comonad which turns Nuts into a Seely model of LL.

4.1 Variable non-uniform totality spaces (VNUTS)

Let E be a set, we use Tot(E) for the set of all totality candidates on E,
that is, of all subsets T of P(E) such that T = T ⊥⊥ (remember that T ⊥ =
{u′ ⊆ E | ∀u ∈ T u ∩ u′ 6= ∅}). In other words T ∈ Tot(E) means that ↑T by
Lemma 13. Ordered by ⊆, this set Tot(E) is a complete lattice.

Definition 4. Let n ∈ N, an n-ary VNUTS is a pair X = (|X|, T (X)) where

|X| : Reln → Rel is a variable set |X| = (|X|, |̂X|) (see Section 3.2) and T (X) is

an operation which with each n-tuple
−→
X of objects of Nuts associates an element

T (X)(
−→
X ) of Tot(|X|(|

−→
X |)) in such a way that

1. for any
−→
t ∈ Nutsn(

−→
X,

−→
Y ), the element |X|(

−→
t ) of Rel(|X|(|

−→
X |), |X|(|

−→
Y |))

belongs actually to Nuts(X(
−→
X ),X(

−→
Y )) (where X(

−→
X ) denotes the NUTS

(|X|(|
−→
X |), T (X)(

−→
X ))

2. and for any
−→
Y ∈ Obj(Nutsn) and any X ∈ Obj(Nuts) one has |̂X|

|X|,|
−→
Y |

∈

Nuts(!X ⊗ X(
−→
Y ),X(!X ⊗

−→
Y )). In other words, for an u ∈ T (X) and v ∈

Tot(X)(
−→
Y ), one has |̂X|

|X|,|
−→
Y |

·
(
u(!) ⊗ w

)
∈ Tot(X)(!X ⊗

−→
Y ).

Lemma 23. Any VNUTS X : Nutsn → Nuts induces a strong functor X :
Nutsn → Nuts which satisfies

– |X (
−→
X )| = |X|(|

−→
X |),

– T (X (
−→
X )) = T (X)(

−→
X ),

– X (
−→
t ) = |X|(

−→
t ) ∈ Nuts(X(

−→
X ),X(

−→
Y )) for

−→
t ∈ Nuts(

−→
X,

−→
Y ),

– and X
X,

−→
Y

= |̂X|
|X|,|

−→
Y |

and X can be retrieved from X .

For this reason we use X to denote the functor X . Given n ∈ N let Vnutsn be
the class of strong n-ary VNUTS. We identify Vnuts0 with the class of objects
of the Seely category Nuts. The following refers to Definition 2

Theorem 1. (Nuts, (Vnutsn)n∈N) is a Seely model of µLL.



Proof (partial). We deal with Condition (5). Let first X = (|X|, T (X)) be a unary
VNUTS. Let E = σ|X| which is the least set such that |X|(E) = E, that is E =⋃∞

n=0 |X|
n
(∅). Let Φ : Tot(E) → Tot(E) be defined as follows: given T ∈ Tot(E),

then (E, T ) is a NUTS, and we set Φ(T ) = T (X)(E, T ) ∈ Tot(|X|(E)) = Tot(E).
This function Φ is monotone. Let indeed S, T ∈ Tot(E) with S ⊆ T . Then we
have Id ∈ Nuts((E,S), (E, T )) and therefore, by Condition (1) satisfied by X,
we have Id = |X|(Id) ∈ Nuts(X(E,S),X(E, T )) = Nuts((E,Φ(S)), (E,Φ(T ))
which means that Φ(S) ⊆ Φ(T ). By the Knaster Tarski Theorem (remember
that Tot(E) is a complete lattice), Φ has a greatest fixpoint T that we can
describe as follows. Let (Tα)α∈O, where O is the class of ordinals, be defined
by: T0 = P(E) (the largest possible notion of totality on E), Tα+1 = Φ(Tα)
and Tλ =

⋂
α<λ Tα when λ is a limit ordinal. This sequence is decreasing (easy

induction on ordinals using the monotonicity of Φ) and there is an ordinal θ such
that Tθ+1 = Tθ (by a cardinality argument; we can assume that θ is the least
such ordinal). The greatest fixpoint of Φ is then Tθ as easily checked.

By construction ((E, Tθ), Id) is an object of CoalgNuts(X), we prove that
it is the terminal object. So let (Y, t) be another object of the same category.
Since (|Y |, t) is an object of Coalg

Rel
(|X|) and since (E, Id) is the terminal

object in that category, we know by Lemma 10 that there is exactly one e ∈
Rel(|Y |, E) such that |X|(e) t = e. We prove that actually e ∈ Nuts(Y, (E, Tθ))
so let v ∈ T (Y ). We prove by induction on the ordinal α that e · v ∈ Tα. For
α = 0 it is obvious since T0 = P(E). Assume that the property holds for α
and let us prove it for α + 1. We have t · v ∈ T (X)(Y ) = T (X(Y )) since t ∈
Nuts(Y,X(Y )). Since X(e) ∈ Nuts(X(Y ),X(E, Tα)) and X(E, Tα) = (E, Tα+1)
we have (X(e) t) · v ∈ Tα+1, that is e · v ∈ Tα+1. Last if λ is a limit ordinal and if
we assume ∀α < λ e · v ∈ Tα we have e · v ∈

⋂
α<λ Tα = Tλ. Therefore e · v ∈ Tθ.

We use νX to denote this final coalgebra (E, Tθ) (its definition depends only on

X and does not involve the strength X̂).
So we have proven the first part of Condition (5) in the definition of a Seely

model of µLL (see Section 2). As to the second part, let X be an n + 1-ary
VNUTS. We know by the general Lemma 4 that there is a uniquely defined
strong functor νX : Nutsn → Nuts such that

– νX(
−→
X ) = ν(X−→

X
), so that X(

−→
X, νX(

−→
X )) = νX(

−→
X ), for all

−→
X ∈ Obj(Nutsn),

– X(
−→
t , νX(

−→
t )) = νX(

−→
t ) for all

−→
t ∈ Nuts(

−→
X,

−→
Y )

– and X(Y ⊗
−→
X, ν̂X

Y,
−→
X
) X̂

Y,(
−→
X,νX(

−→
X))

= ν̂X
Y,

−→
X

for all Y ∈ Obj(Nuts) and
−→
X ∈ Obj(Nutsn).

To end the proof, it will be enough to exhibit an n-ary VNUTS Y = (|Y|, T (Y))
whose associated strong functor coincides with νX. The construction of Y is
essentially straightforward, using the constructions available in Rel.

Remark 4. For any closed formula A, the web of its interpretation JAKNuts in
Nuts coincides with its interpretation JAKRel in Rel. It is also easy to check
that for any proof π of ⊢ A, one has JπKNuts = JπKRel (this can be formalized by
a structure preserving functor Nuts → Rel which acts trivially on morphisms).



4.2 Examples of data-types

Integers. The type of “flat integers” is defined by ι = µζ (1⊕ ζ). In Rel, 1⊕ ζ
is interpreted as the unary variable set J1 ⊕ ζKRel

ζ : Rel → Rel which maps a

set E to 1 ⊕ E = {(1, ∗)} ∪ ({2} × E). Hence JιKRel is the least set such that
JιK = {(1, ∗)}∪ ({2}× JιK) that is, the set of all tuples n = (2, (2, (· · · (1, ∗) · · · )))
where n is the number of occurrence of 2, that is JιKRel = N up to renaming. We
have |JιKNuts| = JιKRel = N and we compute T (JιKNuts) dually wrt. the proof
of Theorem 1: it is the least fixed point of the operator Φ : Tot(N) → Tot(N)
(remember that Tot(N) is just the set of all ⊆-upwards-closed subsets of N) such
that, if T ∈ Tot(N) then Φ(T ) = {u ⊆ N | 0 ∈ u or {n ∈ N | n+ 1 ∈ u} ∈ T }.
Therefore Tot(JιKNuts) = {u ⊆ N | u 6= ∅}. So if π is a proof of ⊢ ι, we know
that JπKRel = JπKNuts ∈ T (JιKNuts), and hence is a non-empty set. Using an
additional notion of coherence (which can be fully compatible with Rel as in
the non-uniform coherence space models of [4, 3]) we can also prove that JπKRel

has at most one element, and hence is a singleton {n}. This is a denotational
version of normalization expressing that indeed π “has a value” (and actually
exactly one, which expresses a weak form of confluence).

Binary trees with integer leaves. This type can be defined as τ = µζ (ι ⊕
(ζ ⊗ ζ)). Then an element of JτKRel = |JτKNuts| is an element of the set described
by the following syntax: α, β, · · · := 〈n〉 | 〈α, β〉. A computation similar to the
previous one shows that Tot(JτKNuts) =

{
u ⊆ JτKRel | u 6= ∅

}
.

A disappointing type of streams of integers. After reading [2], one could
be tempted to define the type of streams of integers as σ = νζ (ι ⊗ ζ). The
variable set Jι⊗ ζKRel

ζ : Rel → Rel maps a set E to N × E. The least fixed

point of this operation on sets is ∅ and hence |JσKNuts| = ∅ and notice that
Tot(∅) = {∅, {∅}}. In that case, the operation Φ : Tot(∅) → Tot(∅) maps T
to {u× v | v ∈ T and u ∈ P(N) \ {∅}} and hence {∅} to itself. It follows that
T (JσKNuts) = {∅}. What is the meaning of this trivial interpretation? It simply
reflects that, though σ has a lot of non trivial proofs in µLL, it is impossible
to extract any finite information from these proofs within µLL, and accordingly
all these proofs are interpreted as ∅. For instance, there is no proof in µLL of
⊢ σ⊥ , ι (such as a function extracting the first element of a stream). Indeed
if π were such a proof, we would have JπK ∈ Nuts(JσKNuts, JιKNuts) and hence
∅ = JπK·∅ ∈ T (JιKNuts) which is not the case. If such infinite types are meaningful
in a proof-search perspective, their significance as data-types in a curry-Howard
approach to µLL is dubious.

A type of streams of integers. Let σ = νζ (1& (ι⊗ ζ)). This type looks like
the previous one, but the type 1 leaves space for some kind of “empty stream”.
The & means that this empty stream will not be a total element: it will have
to be complemented by some total element from the right argument of the &.



More precisely J1 & (N⊗ ζ)KRel

ζ : Rel → Rel is the variable set which maps

a set E to {(1, ∗)} ∪ {2} × N × E so that up to renaming |JσKNuts| = N<ω

(all finite sequences of integers). In this case, the operator Φ : Tot(N<ω) →
Tot(N<ω) maps T to {v ⊆ N<ω | () ∈ v and ∃n ∈ N, u ∈ T {n} × u ⊆ v} where
we use () for the empty sequence. So Φ0(P(N<ω)) = P(N<ω), Φ1(P(N<ω)) =
{u ∈ P(N<ω) | () ∈ u}, Φ2(P(N<ω)) = {u ∈ P(N<ω) | () ∈ u and ∃n (n) ∈ u},
Φ3(P(N<ω)) = {u ∈ P(N<ω) | ∃n1, n2 (), (n1), (n1, n2) ∈ u} etc. The greatest
fixed point is reached in ω steps, explicitly Tot(JσKNuts) =

⋂
n<ω Φn(P(N<ω)) =

{u ⊆ N<ω | ∃f ∈ Nω ∀k < ω (f(1), . . . , f(k)) ∈ u}. So a total subset of |JσKNuts|
must contain (at least) an infinite stream of integer. It is easy to build a proof of
⊢ σ⊥ , ι extracting the first element of a stream, interpreted as {((n), n) | n ∈ N}.

5 Conclusion and further work

One of the main goals of this work is to develop syntax-independent tools to
study new proof-systems for µLL and more specifically its infinite proof-systems
as in [2]; denotational semantics is clearly a natural framework for such tools.
A crucial step will be to prove that these infinite proofs can be interpreted
as total sets in Nuts. We base the interpretation of such infinite proofs on
the interpretation of their finite approximations and this requires denotational
models which also host partial objects as our Rel model (in contrast with Nuts,
but remember that the interpretations of a µLL proof in Nuts and Rel are
exactly the same set).

This denotational semantics will also serve as a guideline for the design of a
functional language based on µLL, generalizing Gödel’s System T in the spirit
of [18]. However, as explained in the Introduction, Loader’s syntax does not seem
fully compatible with LL as it is based on cocartesian cartesian closed categories
which, as explained in [16] (based on earlier observations by Lawvere), are not
compatible with PCF fixpoints – accounting for recursive function definitions
in functional languages – which are available in many models of LL such as
Rel, (probabilistic, hyper-) coherence spaces etc and can be discarded by an
additional totality structure as in Nuts.

We base the development of this syntax on the idea of representing data-types
as positive formulas of µLL that we can interpret in the Eilenberg-Moore category
L! of the underlying categorical model L of LL (Seely category), in a setting
similar to [10] and therefore have built-in structural primitives (weakening and
contraction in particular). In L!, the ⊕ of LL is a coproduct and the ⊗ is a
cartesian product as expected, the price to pay being that the targeted λ-calculus
will have to feature a notion of value accounting syntactically for the morphisms
of L!, substitution in terms being allowed only for values because only them can
be safely discarded and duplicated thanks to their structural structure.

We would like to thank many people for exciting and quite helpful discussions
on these topics, and in particular Amina Doumane, Paul-André Melliès, Rémy
Nollet, Alexis Saurin and Christine Tasson.
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6 Appendix

6.1 Proof of Lemma 3

Proof. We have F(g, νF(B)) ∈ A(νF(B),F(B′, νF(B))) thus defining a FB′-
coalgebra structure on νF(B) and hence there exists a unique morphism νF(g)
such that

F(B′, νF(g))F(g, νF(B)) = νF(g) ,

that is F(g, νF(g)) = νF(g).
Functoriality follows: consider also g′ ∈ B(B′, B′′), then we know that h =

νF(g′ g) satisfies F(g′ g, h) = h by the definition above. Now h′ = νF(g′) νF(g)
satisfies the same equation by functoriality of F and because F(g, νF(g)) =
νF(g) and F(g′, νF(g′)) = νF(g′), and hence h′ = h by Lemma 2, taking
l = F(g′ g, νF(B)). In the same way one proves that νF(Id) = Id.

6.2 Proof of Lemma 4

Proof. The part of the statement which concerns the functor νF is a direct
application of Lemma 3 so we only have to deal with the strength. Let us prove

naturality so let
−→
f ∈ Ln(

−→
X,

−→
X ′) and g ∈ L(Y, Y ′), we must prove that the

following diagram commutes

!Y ⊗ νF(
−→
X ) νF(!Y ⊗

−→
X )

!Y ′ ⊗ νF(
−→
X ′) νF(!Y ′ ⊗

−→
X ′)

ν̂F
Y,

−→
X

!g ⊗ νF(
−→
f ) νF(!g ⊗

−→
f )

ν̂F
Y ′,

−→
X′

Let h1 = ν̂F
Y ′,

−→
X′ (!g⊗νF(

−→
f )) and h2 = νF(!g⊗

−→
f ) ν̂F

Y,
−→
X

be the two morphisms

we must prove equal. We use Lemma 2, taking the following morphism l.

!Y ⊗ νF(
−→
X ) = !Y ⊗ F(

−→
X, νF(

−→
X ))

F(!Y ⊗
−→
X, !Y ⊗ νF(

−→
X ))

F(!Y ′ ⊗
−→
X ′, !Y ⊗ νF(

−→
X ))

F̂
Y,(

−→
X,νF(

−→
X))

F(!g ⊗
−→
f , Id)



With these notations we have

F(!Y ′ ⊗
−→
X ′, h1) l = F(!Y ′ ⊗

−→
X ′, ν̂F

Y ′,
−→
X′)F(!Y

′ ⊗
−→
X ′, !g ⊗ νF(

−→
f ))

F(!g ⊗
−→
f , !Y ⊗ νF(

−→
X )) F̂

Y,(
−→
X,νF(

−→
X))

= F(!Y ′ ⊗
−→
X ′, ν̂F

Y ′,
−→
X′)F(!g ⊗

−→
f , !g ⊗ νF(

−→
f )) F̂

Y,(
−→
X,νF(

−→
X))

= F(!Y ′ ⊗
−→
X ′, ν̂F

Y ′,
−→
X′) F̂Y ′,(

−→
X′,νF(

−→
X′))

(!g ⊗ F(
−→
f , νF(

−→
f )))

by naturality of F̂

= ν̂F
Y ′,

−→
X′ (!g ⊗ F(

−→
f , νF(

−→
f ))) by (1)

= ν̂F
Y ′,

−→
X′ (!g ⊗ νF(

−→
f )) by Lemma 3

so that F(!Y ′ ⊗
−→
X ′, h1) l = h1 as required. On the other hand we have

F(!Y ′ ⊗
−→
X ′, h2) l = F(!Y ′ ⊗

−→
X ′, νF(!g ⊗

−→
f ))F(!Y ′ ⊗

−→
X ′, ν̂F

Y,
−→
X
)

F(!g ⊗
−→
f , !Y ⊗ νF(

−→
X )) F̂

Y,(
−→
X,νF(

−→
X))

= F(!Y ′ ⊗
−→
X ′, νF(!g ⊗

−→
f ))F(!g ⊗

−→
f , !Y ⊗ νF(

−→
X ))

F(!Y ⊗
−→
X, ν̂F

Y,
−→
X
) F̂

Y,(
−→
X,νF(

−→
X))

= F(!g ⊗
−→
f , νF(!g ⊗

−→
f )) ν̂F

Y,
−→
X

by (1)

= νF(!g ⊗
−→
f ) ν̂F

Y,
−→
X

by Lemma 3

so that F(!Y ′ ⊗
−→
X ′, h2) l = h2 which proves our contention. The monoidality

condition on ν̂F is proved similarly.

6.3 Proof of Lemma 7

Proof. Let a ∈ E, since (a, a) ∈ IdE = t s, there must exist b ∈ F such that
(a, b) ∈ s and (b, a) ∈ t. If (a, b′) ∈ s then (b, b′) ∈ s t ⊆ IdF and hence b′ = b. It
follows that s is a total function E → F . Let (a, b) ∈ s (that is a ∈ E and b =
s(a)). Since t s = IdE , we must have (b, a) ∈ t. Conversely let (b, a) ∈ t, we have
(b, s(a)) ∈ s t and hence b = s(a). We have proven that t = {(s(a), a) | a ∈ E}.
If a, a′ ∈ satisfy s(a) = s(a′) we have therefore (a, a′) ∈ t s = IdE and hence
a = a′; this shows that s is injective.

6.4 Proof of Proposition 1

Proof. Let D be a directed set of sets and let H be a set. For each E ∈ D
let sE ∈ Rel(F(E), H) so that (sE)E∈D defines a cocone, that is, for each
E,F ∈ D such that E ⊆ F , one has sE = sF F(η+E,F ). Let L =

⋃
D. Let s ∈



Rel(F(L), H) be given by s =
⋃

E∈D sE F(η−E,L). Let E ∈ D, we have sF(η+E,L) =⋃
F∈D sF F(η−F,L η+E,L) so that sE ⊆ sF(η+E,L) (since sF F(η−F,L η+E,L) = sE when

F = E).
We prove the converse inclusion. Let F ∈ D and let G ∈ D be such that

E,F ⊆ G. We have

sF F(η−F,L η+E,L) = sF F(η−F,G η−G,L η+G,L η+E,G) = sFF(η
−
F,G η+E,G)

= sGF(η
+
F,G)F(η

−
F,G η+E,G)

⊆ sG F(η+E,G) = sE

where we have used the fact that η+F,G η−F,G ⊆ IdG and hence F(η+F,G η−F,G) ⊆

IdF(G) by hom-continuity of F. So sF F(η−F,L η+E,L) ⊆ sE for all F ∈ D and hence

sF(η+E,L) ⊆ sE as contended.

Let now s′ ∈ Rel(F(L), H) be such that s′ F(η+E,L) = sE for each E ∈ D, we
show that s′ = s thus proving the uniqueness part of the universal property. For
E ∈ D, let θE = η+E,Lη

−
E,L ∈ Rel(L,L). Then (θE)E∈D is a directed family (for

⊆) and
⋃

E∈D θE = IdL. By hom-continuity of F, we have

s′ = s′ IdF(L) = s′
⋃

E∈D

F(θE) =
⋃

E∈D

s′ F(η+E,L)F(η
−
E,L) =

⋃

E∈D

sE F(η−E,L) = s

by our assumption on s′ and by definition of s. This shows that the cocone
(F(η+E,L))E∈D on F η+ is colimiting, thus proving that F η+ is directed cocontin-
uous.

6.5 Proof of Lemma 10

Proof. Let (E, t) be an F-coalgebra. Let e = ∅ ∈ Rel(E, ∅) (this is the unique
morphism to the terminal object of Rel). We define a sequence en ∈ Rel(E, σF)
as follows: e0 = ∅ and en+1 = F(en) t. Then en ⊆ en+1 for all n by an easy induc-
tion, using the fact that F is hom-continuous. Let e =

⋃∞
n=0 en ∈ Rel(E, σF),

by hom-continuity of F we have F(e) t = (
⋃∞

n=0 F(en)) t =
⋃∞

n=0(F(en) t) =⋃∞
n=0 en+1 = e which means that e ∈ CoalgRel(F)((E, t), (σF, Id)). We end the

proof by showing that e is the unique such morphism, so let

e′ ∈ Coalg
Rel

(F)((E, t), (σF, Id)) ,

which means that e′ ∈ Rel(E, σF) and F(e′) t = e′.
Let in ∈ Rel(σF, σF) be defined by induction by i0 = ∅ and in+1 = F(in).

Then (in)n∈N is monotone and
⋃∞

n=0 in = Id by definition of σF. We prove by
induction on n that ∀n ∈ N in e

′ = in e. Clearly i0 e
′ = i0 e = ∅. Next

in+1 e
′ = F(in)F(e

′) t = F(in e
′) t = F(in e) t by inductive hypothesis

= in+1 e .

Therefore e′ =
(⋃

n∈N
in
)
e′ =

⋃
n∈N

(in e
′) =

⋃
n∈N

(in e) = e.



6.6 Proof of Lemma 11

Proof. As usual we assume that n = 1 to increase readability. We need to prove
first that νF is monotone on morphisms, so let s, t ∈ Rel(E,F ) with s ⊆ t.
We have νF(s) =

⋃
n∈N

sn and νF(t) =
⋃

n∈N
tn with s0 = t0 = ∅, sn+1 =

F(s, sn) and tn+1 = F(t, tn). By induction and hom-monotonicity of F we have
∀n ∈ N sn ⊆ tn and hence νF(s) ⊆ νF(t). Let us prove now hom-continuity
so let D ⊆ Rel(E,F ) be directed and let t =

⋃
D, we prove that νF(t) =⋃

s∈D νF(s) ∈ Rel(νF(E), νF(F )) using Lemma 2 (with the notations of that
lemma, we take l = F(t, νF(E))). We have FF (νF(t))F(t, νF(E)) = νF(t) by
definition of the functor νF and

FF (
⋃

s∈D

νF(s))F(t, νF(E)) =
⋃

s∈D

F(F, νF(s))
⋃

s∈D

F(s, νF(E)) by hom-cont.

=
⋃

s∈D

F(s, νF(s)) =
⋃

s∈D

νF(s) .

In the second equation, we used the facts that D is directed and the monotonicity
of F and νF on morphisms.

Let E ⊆ F , we prove that νF(E) ⊆ νF(F ). This results from the observation
that if E′ ⊆ F ′, then FE(E

′) ⊆ FF (F
′) and hence ∀n ∈ N Fn

E(∅) ⊆ Fn
F (∅).

Let us check that νF(η+E,F ) = η+
νF(E),νF(F ) ∈ Rel(νF(E), νF(F )). We have

F(F, νF(η+E,F ))F(η
+
E,F , νF(E)) = F(η+E,F , νF(η

+
E,F )) = νF(η+E,F ) by definition

of the functor νF and

F(F, η+
νF(E),νF(F ))F(η

+
E,F , νF(E)) = η+

F(E,νF(E)),F(F,νF(F )) = η+
νF(E),νF(F )

by strictness of F. The equation follows by Lemma 2, so that the functor νF is
strict.

6.7 Proof of Lemma 14

Proof. Let t ∈ T (X ⊸ Y ) and let u ∈ T (X). Let v′ ∈ T (Y )⊥ , since u × v′ ∈
T (X ⊗ Y ⊥) we have t ∩ (u × v′) 6= ∅ and hence (t · u) ∩ v′ 6= ∅. Therefore
t · u ∈ T (Y )⊥⊥ = T (Y ). Conversely assume that ∀u ∈ T (X) t · u ∈ T (Y ). Let
u ∈ T (X) and v′ ∈ T (Y ⊥) = T (Y )⊥ . Since t · u ∈ T (Y ) we have (t · u) ∩ v′ 6= ∅
and hence t ∩ (u × v′) 6= ∅ and this shows that t ∈ T (X ⊸ Y ).

6.8 Proof of Lemma 15

Proof. Assume that t is an iso in Nuts so that there is t′ ∈ Nuts(Y,X) such
that t′ t = Id|X| and t t′ = Id|Y | and since we know that the isos in Rel are the
bijections we know that t is a bijection. The fact that ∀u ⊆ |X | u ∈ T (X) ⇔
t(u) ∈ T (Y ) results from the fact that both t and t′ = t−1 are morphisms in
Nuts.

The converse implication is obvious.



6.9 Proof of Lemma 17

Proof. The condition is obviously necessary, let us prove that it is sufficient so
assume that t fulfills it and let us prove that t ∈ T (X1 ⊗X2 ⊸ Y ). To this end it

suffices to prove that t⊥ ∈ T (Y ⊥
⊸ (X1 ⊗X2)

⊥
). So let v′ ∈ T (Y ⊥) and let us

prove that t⊥ ·v′ ∈ T ((X1 ⊗X2)
⊥
) = {u1 ⊗ u2 | u1 ∈ T (X1) and u2 ∈ T (X2)}

⊥
.

So let ui ∈ T (Xi) for i = 1, 2. We know that t · (u1 ⊗ u2) ∈ T (Y ) and hence
(t · (u1 ⊗ u2)) ∩ v′ 6= ∅, that is (u1 ⊗ u2) ∩

(
t⊥ · v′

)
6= ∅, proving our contention.

6.10 Proof of Lemma 18

Proof. Let t ∈ T ((X1 ⊗X2) ⊸ Y ) and let us prove that s = α · t ∈ T (X1 ⊸

(X2 ⊸ Y )). Given ui ∈ T (Xi) is suffices to prove that (t′ · u1) ·u2 ∈ T (Y ) which
results from the fact that (s · u1) ·u2 = t · (u1 ⊗ u2). Conversely let s ∈ T (X1 ⊸

(X2 ⊸ Y )) and let us prove that t = α−1 · s ∈ T ((X1 ⊗X2) ⊸ Y ). This results
from lemma 17 and from the equation (s · u1) · u2 = t · (u1 ⊗ u2).

6.11 Proof of Lemma 19

Proof. The condition is obviously necessary, so let us assume that it holds. By
Lemma 16, it suffices to prove that t⊥ ∈ Nuts(Y ⊥ , (!X)⊥). Let v′ ∈ T (Y ⊥), we
prove that t⊥ · v′ ∈ T (!Y )⊥ . So let u ∈ T (X), since t · u(!) ∈ T (Y ) and hence(
t · u(!)

)
∩ v′ 6= ∅, that is

(
t⊥ · v′

)
∩ u(!) 6= ∅.

6.12 Proof of Lemma 20

Proof. The condition is necessary since, if u1 ∈ T (X1) and u2 ∈ T (X2), then

u
(!)
1 ⊗ u

(!)
2 ∈ T (!X1 ⊗ !X2). So assume that it holds. Let t′ = curt ∈ Rel(|X1| ⊸

(|X2| ⊸ |Y |)). Let u1 ∈ T (X1), we have t′ · u
(!)
1 ∈ P(|!X2 ⊸ Y |). Let u2 ∈

T (X2), we have
(
t′ · u

(!)
1

)
· u

(!)
1 = t ·

(
u
(!)
1 ⊗ u

(!)
2

)
∈ T (Y ) by our assumption.

It follows by Lemma 19 that t′ · u
(!)
1 ∈ T (!X2 ⊸ Y ) and since this holds for

any u1 ∈ T (X1) we actually have t′ ∈ Nuts(!X1, !X2 ⊸ Y ). It follows that
t = cur−1(t′) ∈ Nuts(!X1 ⊗ !X2, Y ) as contended.

6.13 Proof of Lemma 23

Proof. It is clear that X so defined is a strong functor. Let us check that X can be
retrieved from X . Given a set E, (E,P(E)) is a NUTS that we denote as p(E).
Notice that p can be extended into a functor Rel → Nuts which acts as the
identity on morphisms. There is also a forgetful functor u : Nuts → Rel which
maps X to |X | and acts as the identity on morphisms (btw. p is right adjoint
to u). Let X be a unary VNUTS and let X : Nuts → Nuts be the associated

strong functor. Then we have |X| = u ◦ X ◦ p and |̂X|E,F = X̂p(E),p(F ) for
any sets E and F . Last, given a NUTS X , we have that T (X)(X) is just the
totality component of the NUTS X (X). This shows that X is determined by X
as contended.



6.14 Proof of Lemma 22

Proof. Given an object X of Nuts, we set derX = der|X| ∈ Rel(|!X |, |X |) and

digX = dig|X| ∈ Rel(|!X |, |!!X|). Given u ∈ T (X), we have derX · u(!) = u ∈

T (X) and digX · u(!) = u(!!) ∈ T (!!X). It follows by Lemma 19 that derX ∈
Nuts(!X,X) and digX ∈ Nuts(!X, !!X).

Naturality and monadicity trivially hold because they hold in Rel: we have
an obvious faithful forgetful functor Nuts → Rel which commutes with all LL
categorical constructs.

We are left with defining the strong monoidality structure of ! (Seely iso-
morphisms), for m0 ∈ Nuts(1, !⊤) we take the same morphism as in Rel. And
we set m2

X1,X2
= m2

|X1|,|X2|
∈ Rel(|!X1 ⊗ !X2|, |!(X1 & X2)|). Let ui ∈ T (Xi)

for i = 1, 2. We have m2
X1,X2

·
(
u
(!)
1 ⊗ u

(!)
2

)
= (u1 & u2)

(!) ∈ T (!(X1 & X2))

since u1 & u2 ∈ T (X1 & X2), and hence by Lemma 20 we have m2
X1,X2

∈
Nuts((!X1 ⊗ !X2) , !(X1 & X2)). Any element w of T (X1 & X2) is of shape
w = u1 & u2 with ui ∈ T (Xi), namely ui = πi · w. We have (m2

X1,X2
)−1 · w(!) =

u
(!)
1 ⊗ u

(!)
2 ∈ T (!X1 ⊗ !X2) and hence by Lemma 19 we have (m2

X1,X2
)−1 ∈

Nuts(!(X1 & X2), (!X1 ⊗ !X2)). This ends the proof that Nuts is a model of
classical Linear Logic since the required commutations obviously hold because
they hold in Rel.

6.15 Full proof of Theorem 1

Proof. Concerning Condition (3), let (Xi)
k
i=1 be elements of Vnutsn and let

X ∈ Vnutsk. Considering X and the Xi’s as strong functors, we know that

X ◦
−→
X is a strong functor Nutsn → Nuts. We simply have to exhibit a VNUTS

whose associated strong functor is X ◦
−→
X . Let F = |X| ◦ |

−→
X | (composition

of variable sets, Section 3.2). Let
−→
X ∈ Nutsn, each Xi(

−→
X ) is an object of

Nuts and hence (F(|
−→
X |), T (X)(X1(

−→
X ), . . . ,Xk(

−→
X ))) is a NUTS. Moreover given

−→
t ∈ Nutsn(

−→
X,

−→
Y ), we know that for each i = 1, . . . , k, one has Xi(

−→
t ) ∈

Nuts(Xi(
−→
X ),Xi(

−→
Y )) since Xi is a VNUTS. Since X is a VNUTS we have F(

−→
t ) ∈

Nuts(X(X1(
−→
X ), . . . ,Xk(

−→
X )),X(X1(

−→
Y ), . . . ,Xk(

−→
Y ))).

Let X ∈ Obj(Nuts) and
−→
Y ∈ Obj(Nutsk). For i = 1, . . . , k we know that

X̂iX,
−→
Y

∈ Nuts(!X ⊗ Xi(
−→
Y ),Xi(!X ⊗

−→
Y )). Therefore

X((X̂iX,
−→
Y
)ki=1) ∈ Nuts(X((!X ⊗ Xi(

−→
Y ))ki=1),X((Xi(!X ⊗

−→
Y ))ki=1))

and hence

X((X̂iX,
−→
Y
)ki=1) X̂X,(Xi(

−→
Y ))k

i=1

∈ Nuts(!X⊗X((Xi(
−→
Y ))ki=1),X((Xi(!X⊗

−→
Y ))ki=1)) .



Moreover we have

F̂
|X|,|

−→
Y |

= |X|((|̂Xi||X|,|
−→
Y |
)ki=1) |̂X||X|,(|Xi(

−→
Y )|)k

i=1

by definition of F

= |X|((|̂Xi||X|,|
−→
Y |
)ki=1) |̂X||X|,(|Xi|(|

−→
Y |))k

i=1

= X((X̂iX,
−→
Y
)ki=1) X̂X,(Xi(

−→
Y ))k

i=1

using again the fact that X and the Xi’s are VNUTS. This shows that the pair

Y = (|Y|, T (Y)) given by |Y| = F and T (Y)(
−→
X ) = T (X)(X1(

−→
X ), . . . ,Xk(

−→
X )) is a

VNUTS whose associated strong functor is X ◦
−→
X thus proving our contention.

Concerning Condition (4), let us deal only with the case of ! , the others
being similar. We have to exhibit a unary VNUTS X whose associated strong
functor Nuts → Nuts coincides with ! (which is known to be a strong functor
Nuts → Nuts by Section 4 and by the general considerations of Section 2.1).
For |X|, which has to be a variable set Rel → Rel, we take the interpretation
E of ! in the model Rel (Section 3.2) which is an element of Rel1, that is, a
unary variable set. Next, given X ∈ Obj(Nuts), we take T (X)(X) = T (!X).
Condition (1) in the definition of VNUTS holds by functoriality of ! on Nuts.

Condition (2) holds by the definition of F̂|X|,|Y | as described in Section 2.1 which
coincides with µ2 (digX ⊗ !Y ) ∈ Nuts(!X ⊗ !Y , !(!X ⊗ Y )).

Let us now turn to Condition (5) which is a bit more challenging.

Fixed Points of VNUTS. Let first X = (|X|, T (X)) be a unary VNUTS. Let

E = σ|X| which is the least set such that |X|(E) = E, that is E =
⋃∞

n=0 |X|
n
(∅).

Let Φ : Tot(E) → Tot(E) be defined as follows: given T ∈ Tot(E), then (E, T ) is
a NUTS, and we set Φ(T ) = T (X)(E, T ) ∈ Tot(|X|(E)) = Tot(E). This function
Φ is monotone. Let indeed S, T ∈ Tot(E) with S ⊆ T . Then we have Id ∈
Nuts((E,S), (E, T )) and therefore, by Condition (1) satisfied by X, we have Id =
|X|(Id) ∈ Nuts(X(E,S),X(E, T )) = Nuts((E,Φ(S)), (E,Φ(T )) which means
that Φ(S) ⊆ Φ(T ). By the Knaster Tarski Theorem (remember that Tot(E) is
a complete lattice), Φ has a greatest fixpoint T that we can describe as follows.
Let (Tα)α∈O, where O is the class of ordinals, be defined by: T0 = P(E) (the
largest possible notion of totality on E), Tα+1 = Φ(Tα) and Tλ =

⋂
α<λ Tα when

λ is a limit ordinal. This sequence is decreasing (easy induction on ordinals
using the monotonicity of Φ) and there is an ordinal θ such that Tθ+1 = Tθ (by
a cardinality argument; we can assume that θ is the least such ordinal). The
greatest fixpoint of Φ is then Tθ as easily checked.

By construction ((E, Tθ), Id) is an object of CoalgNuts(X), we prove that it
is the terminal object. So let (Y, t) be another object of the same category. Since
(|Y |, t) is an object of Coalg

Rel
(|X|) and since (E, Id) is the terminal object in

that category, we know by Lemma 10 that there is exactly one e ∈ Rel(|Y |, E)
such that |X|(e) t = e. We prove that actually e ∈ Nuts(Y, (E, Tθ)) so let v ∈
T (Y ). We prove by induction on the ordinal α that e · v ∈ Tα. For α = 0 it
is obvious since T0 = P(E). Assume that the property holds for α and let us
prove it for α+1. We have t ·v ∈ T (X)(Y ) = T (X(Y )) since t ∈ Nuts(Y,X(Y )).



Since X(e) ∈ Nuts(X(Y ),X(E, Tα)) and since X(E, Tα) = (E, Tα+1) we have
(X(e) t) · v ∈ Tα+1, that is e · v ∈ Tα+1. Last if λ is a limit ordinal and if we
assume ∀α < λ e · v ∈ Tα we have e · v ∈

⋂
α<λ Tα = Tλ. Therefore e · v ∈ Tθ.

We use νX to denote this final coalgebra (E, Tθ) (its definition depends only on

X and does not involve the strength X̂).
So we have proven the first part of Condition (5) in the definition of a Seely

model of µLL (see Section 2). As to the second part, let X be an n + 1-ary
VNUTS. We know by the general Lemma 4 that there is a uniquely defined
strong functor νX : Nutsn → Nuts such that

– νX(
−→
X ) = ν(X−→

X
), so that X(

−→
X, νX(

−→
X )) = νX(

−→
X ), for all

−→
X ∈ Obj(Nutsn),

– X(
−→
t , νX(

−→
t )) = νX(

−→
t ) for all

−→
t ∈ Nuts(

−→
X,

−→
Y )

– and X(Y ⊗
−→
X, ν̂X

Y,
−→
X
) X̂

Y,(
−→
X,νX(

−→
X))

= ν̂X
Y,

−→
X

for all Y ∈ Obj(Nuts) and
−→
X ∈ Obj(Nutsn).

To end the proof, it will be enough to exhibit an n-ary VNUTS Y = (|Y|, T (Y))
whose associated strong functor coincides with νX. We know that |X| is a
variable set Reln+1 → Rel so let F = ν|X| = σ|X| which is a variable set

Reln → Rel (see Section 3.2). Let
−→
X ∈ Obj(Nutsn), we have |νX(

−→
X )| =

|ν(X−→
X
)| =

⋃∞
n=0 |X−→

X
|n(∅) = F(|

−→
X |). Let

−→
t ∈ Nutsn(

−→
X,

−→
Y ), then νX(

−→
t ) is the

unique element s of Nuts(νX(
−→
X ), νX(

−→
Y )) ⊆ Rel(F(|

−→
X |),F(|

−→
Y |)) which satis-

fies X(
−→
t , s) = s, that is |X|(

−→
t , s) = s, which means that νX(

−→
t ) = s = F(

−→
t ).

By a completely similar uniqueness argument we have ν̂X
X,

−→
Y

= F̂
|X|,|

−→
Y |

for all

X ∈ Obj(Nuts) and
−→
Y ∈ Obj(Nutsn). So we set |Y| = F.

Next, given
−→
X ∈ Obj(Nutsn) we set T (Y)(

−→
X ) = T (νX(

−→
X )) ∈ Tot(|νX(

−→
X )|) =

Tot(F(|
−→
X |)). Given

−→
t ∈ Nuts(

−→
X,

−→
Y ) we have

F(
−→
t ) = νX(

−→
t ) ∈ Nuts((F(|

−→
X |), T (Y)(

−→
X )), (F(|

−→
Y |), T (Y)(

−→
Y ))

since (F(|
−→
X |), T (Y)(

−→
X )) = νX(

−→
X ) and similarly for

−→
Y . Last since F̂

|X|,|
−→
Y |

=

ν̂X
X,

−→
Y

∈ Nuts(!X ⊗ νX(
−→
Y ), νX(X ⊗

−→
Y )) we know that Y = (|Y|, T (Y)) is

a VNUTS whose associated strong functor is νX. This ends the proof that
(Nuts, (Vnutsn)n∈N) is a Seely model of µLL.


