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abstract: Mating system theory based on economics of resource
defense has been applied to describe social system diversity across
taxa. Suchmodels are generally successful but fail to account for sta-
ble mating systems across different environments or shifts in mat-
ing system without a change in ecological conditions. We propose an
alternative approach to resource defense theory based on frequency-
dependent competition among genetically determined alternative be-
havioral strategies characterizing many social systems (polygyny,
monogamy, sneak). We modeled payoffs for competition, neighbor-
hood choice, and paternal care to determine evolutionary transitions
among mating systems. Our model predicts four stable outcomes
driven by the balance between cooperative and agonistic behaviors:
promiscuity (two or three strategies), polygyny, and monogamy. Phy-
logenetic analysis of 288 rodent species supports assumptions of our
model and is consistent with patterns of evolutionarily stable states
and mating system transitions. Support for model assumptions in-
clude that monogamy and polygyny evolve frompromiscuity and that
paternal care and monogamy are coadapted in rodents. As predicted
by our model, monogamy and polygyny occur in sister taxa among
rodents more often than by chance. Transitions to monogamy also
favor higher speciation rates in subsequent lineages, relative to po-
lygynous sister lineages. Taken together, our results suggest that ge-
netically based neighborhood choice behavior and paternal care can
drive transitions in mating system evolution. While our genic mat-
ing system theory could complement resource-based theory, it can
explain mating system transitions regardless of resource distribu-
tion and provides alternative explanations, such as evolutionary in-
ertia, when resource ecology and mating systems do not match.
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Introduction

Mating systems play a critical role in genetic, demographic,
and social dynamics of populations. Prevailing models ex-
plaining mating system diversity emphasize links between
resource and mate monopolization. If resources are defensi-
ble, polygynous males on high-quality territories will have
access to more females than monogamous males on low-
quality territories (Verner and Willson 1966; Orians 1969),
and temporal variation in mate availability or sex ratio fur-
ther accentuates this dichotomy between polygyny and
monogamy (Emlen and Oring 1977; Houston et al. 2013;
Gomes et al. 2018). However, paternal care can shift the
advantage to a monogamous system (Maynard Smith 1977;
Wakano and Ihara 2005; Jungwirth and Johnstone 2018).
Indeed, the diversity of factors thought to influence variation
inmating systems has led to calls formore integrativemodels
to better predict mating system evolution, including the
above considerations (Komers and Brotherton 1997; Hous-
ton et al. 2013; Klug 2018; Kvarnemo 2018) as well as social
interactions (Alonzo 2010; Dillard and Westneat 2016).
However, most past models, with some exceptions, favored
extrinsic factors (e.g., resources, operational sex ratio, mate
defensibility) in explaining the evolution of mating systems
(e.g., Sandell and Liberg 1992; Ptak and Lachmann 2003;
Gomes et al. 2018; reviewed in Vehrencamp and Bradbury
1984; Davies 1991; Shuster and Wade 2003). Few models
include social competition and intrinsic genetic factors in
driving mating system evolution or the likelihood of transi-
tions between mating system states (Wakano and Ihara
2005; Alonzo 2007; Jungwirth and Johnstone 2018; see also
Alonzo 2010; Dillard and Westneat 2016). Likewise, most
empirical approaches to understanding such transitions
have focused on extrinsic factors (Komers and Brotherton
1997; Lukas and Clutton-Brock 2013; Kvarnemo 2018).
This is problematic because while the environment and the
distribution of resources may change and shift the economic
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000 The American Naturalist
advantages of a particular mating system, an existing mat-
ing system may remain static, given evolutionary inertia
(i.e., lack of phenotypic change across species due to intrin-
sic factors) and the existence of genetically based mating
system strategies. Likewise, intrinsic genetic factors could
shift amating systemwith no ostensible change in resource
distribution in the environment (see also Alonzo 2010;
Dillard andWestneat 2016). The limited theoretical atten-
tion to intrinsic factors means that we have an incomplete
understanding of how genetically based alternative mating
strategies affect the evolution of mating systems relative to
extrinsic mechanisms. We propose that by influencing so-
cial interactions, genetic mechanisms underlying mating
system strategies complement resource-based ecological
approaches and could also shape mating system evolution
independent of the defensibility of resources.
Frequency-dependent competition among genetically

determined behavioral types could provide a general expla-
nation for mating system evolution among species. Indeed,
such competition drives mating systems within species (e.g.,
lizards [Sinervo 2001], birds [Küpper et al. 2016; Lamich-
haney et al. 2016], isopods [Shuster and Sassaman 1996],
and damselflies [Cordero et al. 1998; Svensson et al. 2005])
and can generate divergence between populations (Corl
et al. 2010). Furthermore, genetic models of frequency-
dependent competition may apply to diverse taxa. Recent
molecular studies have revealed a genetic basis of male be-
havior in a number of species (Bester-Meredith et al. 1999;
Young 1999; Lim and Young 2004; Young andWang 2004;
Ophir et al. 2008; Walum et al. 2008), including alternative
male strategies and their underlying behaviors (Bishop et al.
2004; Knafo et al. 2008; Oliveira et al. 2008; Küpper et al.
2016; Lamichhaney et al. 2016). Here, we modeled such
genetic strategies to test whether purely intrinsic factors
associated with mating systems (i.e., genetically based fixed
behaviors) predict evolutionary transitions among mating
systems while ignoring the effects of resource availability
and defensibility.
Game theoretic approaches have been used to model the

evolution of mating systems since Maynard Smith (1977).
His model explored the evolution of parental care and
had implications for mating systems, since a defecting par-
ent (i.e., one that provides no care) was assumed to seek ad-
ditional mating opportunities. Indeed, this seminal article
cemented the idea thatmonogamy andbiparental carewere
linked (Houston et al. 2013; but see Komers and Brotherton
1997). The majority of such models focused on the condi-
tions favoring monogamy or polygyny (e.g., Ranta and Kai-
tala 1999; Ptak and Lachmann 2003) orwhenmultiplemat-
ing strategies coexist (e.g., Sinervo and Lively 1996). No
doubt inspired by Emlen and Oring’s (1977) verbal model,
these game theoretic models investigated the influence of
diverse factors onmating system evolution, such as the im-
This content downloaded from 128.114
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portance of parental care (Wakano and Ihara 2005; Jung-
wirth and Johnstone 2018), habitat quality (Ranta and
Kaitala 1999), space use and the defensibility of resources
(Sandell and Liberg 1992), and sex ratio (Kokko and
Jennions 2008; Gomes et al. 2018). These models focused
on the influence of extrinsic factors on mating system evo-
lution. In contrast to these phenotypic models, a handful of
studies examined how genetic systemsmight influencemat-
ing system evolution; these models yield surprising results
(Ptak and Lachmann 2003; Sinervo et al. 2007; Moulherat
et al. 2017). For example, Ptak and Lachmann (2003) showed
that specific attention to allelic inheritance leads to a much
broader state space where polygyny is stable based on a
polygyny threshold scenario (i.e., resource defense polyg-
yny). Likewise,Moulherat et al. (2017) showed that differ-
ences in gene expression (dominance vs. plasticity) alters
the likelihood that a set of alternative male strategies is
maintained within a population. Moreover, recent game
theoretic models have suggested that social interactions
can have important effects on model outcomes (Alonzo
2010; Dillard and Westneat 2016). For example, male-
female conflict (Alonzo 2007), male-male cooperative in-
teractions (Sinervo et al. 2007), and female-female inter-
actions (Jungwirth and Johnstone 2018) can all alter the
conditions favoring the expression of different mating
patterns. Taken together, inclusion of explicit inheritance
rules and social behaviors driven by these genes can gen-
erate shifts in the patterns of mating system due to factors
other than classical extrinsic drivers, such as resource dis-
tribution and operational sex ratio. Our goal here is to build
on these past efforts to examine the evolution ofmating sys-
tems due solely to the impact of genes on specific behaviors
controlling social interactions.We focus on intrinsic factors
and ignore resource distribution, sex ratio, and other ex-
trinsic factors. Specifically, we add two new elements to past
models. First, we model three alternative strategies as in
past studies on the maintenance of alternative mating strat-
egies (e.g., Sinervo et al. 2007; Moulherat et al. 2017), but
with a focus on mating system state when alternative strat-
egies are not maintained as well as cases when multiple
strategies are maintained. Second, we model two social
behaviors (neighborhood choice and paternal care) driven
by genic recognition of others, as suggested in recent empir-
ical work (Bester-Meredith et al. 1999; Mateo 2004; Sinervo
et al. 2006; Holmes and Mateo 2007; Widdig 2007;
Ophir et al. 2008).
We extend previous game theoretic models based on

competition among three fixed genetic strategies (Sinervo
et al. 2007; Friedman and Sinervo 2016) by including pater-
nal care and social neighborhood choice to explore mating
system evolution. Variation in the level of aggression and
cooperation or care among genotypes should influence
both the monopolization of space and thus mates as well
.034.022 on January 19, 2020 16:37:28 PM
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Genic Mating System Evolution 000
as the degree of parental care provided by each strategy
(Vehrencamp and Bradbury 1984; Davies 1991; Sinervo
and Lively 1996; Shuster and Wade 2003; Schradin and
Pillay 2005a). The strategies in our model can be described
as (1) investment in aggression and therefore maintenance
of a large territory overlapping with multiple females but
without paternal care (polygyny); (2) lower aggression and
smaller territory size but cooperation at territory boundaries
(i.e., dear enemy effect [Temeles 1994]) coupled with invest-
ment in paternal care (monogamy); and (3) a nonterritorial
strategy with no paternal care, which is often referred to as
a sneaker strategy in otherwise territorial systems (sneak).
Here, sneaker males employ deception to attain copulations
through mimicking female behavior and avoiding male
territorial interactions (Sinervo and Lively 1996; Alonzo
et al. 2000; Jukema and Piersma 2006). We vary the fitness
benefits of male care and neighborhood choice in our
model to explore patterns of evolutionary transitions among
mating system states. Our approach integrates the genetic
contribution to competitionwithin and among social strat-
egies to show that specific behaviors facilitate evolution-
ary transitions in mating system regardless of resource
distribution.
We test for qualitative consistency of assumptions and

predictions of our model through phylogenetic compar-
ative analyses using data on rodent mating systems and
a well-supported phylogeny to identify social strategies
associated with mating system transitions. The phyloge-
netic comparative analysis confirms key assumptions
and predictions of our genetic model. While resource-
based and genetic explanations are likely complemen-
tary and could interact in interesting ways, our effort here
demonstrates the important role that genetic strategies
can play in mating system evolution irrespective of re-
source distribution considerations.
Genetic Mating System Model

Wemodeled frequency-dependent social competition among
three genetically determined strategies using a game theo-
retic approach (Maynard Smith 1982). We assumed that
fitness is determined by additive effects of alleles at a single
locus in a diploid sexual organism (table S1; tables S1–S7
are available online; Alonzo and Sinervo 2001; Sinervo
et al. 2007; Friedman and Sinervo 2016; Barreto et al. 2017;
Moulherat et al. 2017). The single gene we model has ef-
fects on a number of behaviors and is similar to empirical
findings in systems with a supergene (e.g., ruffs [Küpper
et al. 2016; Lamichhaney et al. 2016]), pleiotropic effects
on multiple behaviors (e.g., slime molds [Queller et al.
2003; Foster et al. 2004]), or both (e.g., lizards [Sinervo
et al. 2006]). We include three alleles that correspond to
common alternative mating strategies (polygyny, monog-
This content downloaded from 128.114
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amy, sneak) and have pleiotropic effects on behaviors (com-
petition, settlement, care, and recognition). Allelic effects are
represented by three genotypic payoff matrices described
below (table S1) that determine offspring frequencies at re-
cruitment for each diploid genotype (table S2). We explore
how changing values of neighborhood choice (random set-
tlement to four times higher probability of settlement by
neighbors with specific strategy combinations) and paternal
care (no care to threefold higher recruitment advantage of
offspring) affect the evolutionarily stable strategy (ESS)mat-
ing system (Maynard Smith 1982) and transitions among
mating systems.
Following population genetic theory (Wright 1968;

Maynard Smith 1982; Sinervo and Lively 1996; Sinervo
et al. 2007; Friedman and Sinervo 2016), we calculated
the relative change in frequency of each of the six geno-
types in adult cohorts described by the genotype vector g
(with elements gi and diploid subscripts i p rr, rk, rj,
kk, kj, jj, where alleles r p polygyny, k p monogamy,
and j p sneak):

g(t 1 1) p s#g(t)1 (12 s)#g 0, ð1Þ

which includes adults at time t surviving (s) to the next year
(t 1 1) and recruitment of each genotype by juveniles (g 0),
as described below (eq. [3]), who replace adults that do
not survive (12 s). Variation in adult survival (s) had the
sole effect of lengthening the periodicity of stable cycles
when all three strategies were preserved, but no effect on
the ESS.
We calculated genotype frequencies of juveniles bymod-

ifying the diploid genetic model proposed by Friedman and
Sinervo (2016, eq. [5.11] in sec. 5.3) and Friedman et al.
(2017, eq. 14 in supplemental material on inheritance from
two parents). Note that here we modify variable names of
the original to reflect the characters and behaviors in our
extended model. In that model, frequencies of juveniles at
recruitment are given by the vector g 0 (called s in the orig-
inal, with elements gi and diploid subscripts i p rr, rk, rj,
kk, kj, jj, where haploid alleles rp polygyny, kpmonog-
amy, and j p sneak), which is calculated by

g 0 p cgFF ○A ○ [H1, ::: ,H6] ○B ○MgM, ð2Þ
where g is a vector of genotype frequencies (variable s in
the original) and the superscripts refer to the diploid geno-
type of adult males (gM), females (g F), and juveniles (g0);
[H1, ::: ,H6] describes allele inheritance rules (see below),
and matrices F, M, A, and B reflect the outcome of sur-
vival of females (F) and males (M) and mate preferences
of females (A) and males (B). We modified that model by
first replacing survival matrices (F,M)—which we account
for in equation (1) but which does not include genotype-
specific survival rates—with fitness payoff matrices (F).
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Second, we replaced mate choice behavioral matrices (A,
B) with ones describing discrimination (D) and parental
care behavior (P) in males. Values for these new matrices
in our model are given in table S1, and we describe the be-
havior associated with each in separate sections below.
Our modified model becomes

g 0 p cgFFF ○ [H1, ::: ,H6] ○ P ○ D ○FMgM: ð3Þ

This matrix formulation presents the order of events of re-
production, with female parental genotypes to the left (g F),
males to the right (gM), and Mendelian ratios forming
progeny in themiddle [H1, ::: ,H6] that aremodified by se-
lection on females (FF) andmales (D ○P ○FM). Genotype
frequencies in the next generation (g 0) are a product of pa-
rental genotypes (female gF, male gM) combined to produce
Mendelian ratios with a hex matrix consisting of 6#6
elements (table S2). Each of the 6#6 elements of the
hex matrix contain six-element vectors, [H1, ::: ,H6], that
are Markov transition probabilities (i.e., Mendelian ratios)
for progeny genotypes from random mating of a female
genotype (i; rows) and amale genotype ( j; columns). Given
an equal sex ratio and no sex-specific selection, the frequen-
cies ofmale and female genotypes of juveniles are symmet-
rical. Mendelian ratios are then modified by selection in
matrices that describe competition (F) andmale behaviors
(D and P).
Payoffs from frequency-dependent competition among

adult genotypes are described by the 6#6 matrix F as the
outcome of competition between each strategy interacting
with each of the other strategies as a result of social com-
petition over mates (F is a 6#6 payoff matrix p ((φi,j));
Sinervo and Lively 1996; Friedman et al. 2017). Payoffs
are modified bymatricesD and P, which describe nonran-
dom association behaviors between individuals (see below;
table S1). Matrix D describes choice of social neighbor-
hood based on the genotypes that favor a focal individual’s
fitness (D is discrimination or targeting; see also Sinervo
et al. 2007; Friedman and Sinervo 2016). Matrix P de-
scribes the association of male care behaviors from pater-
nal care (P is paternal behavior). This matrix formulation
is described in detail by Friedman and Sinervo (2016), and
we use the Hadamard product notation (denoted by ○),
which describes element-by-element multiplication be-
tween the behavioral matrices, P andD (for a full descrip-
tion of this approach, see chap. 5 in Friedman and Sinervo
2016; for a model with additive genetic effects, see supple-
mentary information in Friedman et al. 2017), whereas the
products between other matrices (F) and vectors (g) are
given by normal matrix multiplication among vectors or
matrices. The scalar c is the normalization product re-
quired to obtain og 0i p 1, following selection acting on
the parental generation.
This content downloaded from 128.114
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The competition matrices (F) provide estimates of fit-
ness due to social competition within each sex. In the cur-
rent model, we ignore frequency-dependent competition
among female strategies (FF) by setting all matrix elements
to 1. The male competition payoff matrix (FM; table S1A)
describes the success of each male strategy in competition
to acquire territory andmating opportunities either directly
with females whose territories overlap or extrapair from
females on neighboring territories (especially sneak). Com-
petition occurs between each genotype pair in proportion
to the frequency of those genotypes in the population (i.e.,
randomized encounters between males, modified by D
and P below). The competition matrix (FM) then describes
the biases in the representation of alleles in the next gener-
ation (i.e., biases infitness, either direct or extrapair) depen-
dent on which strategies compete. We assume fitness in-
transitivity for competition (FM matrix) among the three
alternative alleles (polygyny1monogamy1 sneak1 polyg-
yny; table S1A), which holds when expanded to all geno-
type pairs (table S1D). Such intransitivity is critical for a
stable trimorphism (Bomze 1983; Sinervo and Lively 1996;
Sinervo et al. 2007; Friedman and Sinervo 2016; Moulherat
et al. 2017) and has been described in a number of species
with very broad taxonomic coverage ranging from bacteria
to plants to vertebrates (Sinervo and Calsbeek 2006; chap. 7
in Friedman and Sinervo 2016). In such systems, polygy-
nous males are aggressive and outcompete monogamous
males, but defense of larger harems by polygynous males
makes them more susceptible to a sneak strategy. In con-
trast, monogamousmales defend their single partner closely
and therefore are not easily usurped by sneak. Further-
more, both polygyny and sneak adults have limited fitness
when common as a result of density-dependent competi-
tion (i.e., competing with males of the same strategy;
payoff r, r p c ! 1, payoff j,j p k ! 1; table S1A), whereas
monogamous males do not (payoff k,k p 1) since they
maintain stable territorial boundaries with neighbors of
the same genotype (dear enemy effect; Temeles 1994).
The neighborhood choice matrix (D; table S1B) describes

the ability of juvenilemales to recognize and settle in specific
neighborhoods of adult male genotypes that will maximize
their fitness. Discrimination behavior (d), which we have
previously argued is a consequence of intransitive strategies
(Sinervo et al. 2007; chap. 7 in Friedman and Sinervo 2016),
allows individuals to seek out neighborhoods where they are
competitively superior (Frean and Abraham 2001; Sinervo
et al. 2007; table S1B). The level of discrimination,Di0 ,i, pro-
duces the additive allelic fitness effect of this behavior (Dk,j,
Dr,k, and Dj,r; d 1 1, otherwise d p 1; table S1B, S1D).
Filiative ( f ) behavior is a parameter in the neighborhood
choice payoff matrix that enhances self-genotype cluster-
ing among monogamous genotypes (Dk,k; f 1 1) to benefit
from nonaggressive genetically similar neighbors (Sinervo
.034.022 on January 19, 2020 16:37:28 PM
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Genic Mating System Evolution 000
et al. 2006, 2007). The benefit of filiative behavior is calcu-
lated by the overlap in monogamy alleles between neigh-
bors as an additive effect of alleles (table S1D). Both neigh-
borhood choice and care behavior could occur either
through direct genic recognition (as assumed in this model)
or through other mechanisms, such as kin philopatry, strat-
egy recognition, biased dispersal, or specific social habitat
choice.
The paternal care payoff matrix (P; table S1C) describes

effects of care by adult males on offspring recruitment (ta-
ble S1C–S1E).We assume that paternal care is restricted to
individuals withmonogamy alleles who invest in offspring
quality (Pk,k; p 1 1, otherwise p p 1; table S1C) rather
than additional mates through social competition with
other males (e.g., the competition payoff matrix,FM). This
assumption is consistent with recent analyses in rodents
showing that the same genes have effects on monogamy,
affiliative behavior, and parental care (Bester-Meredith et al.
1999; Ferguson et al. 2001; Lim and Young 2004; Young
andWang 2004; Ophir et al. 2008; Schradin 2008; Okhovat
et al. 2015). Care is given in direct proportion to the ge-
netic similarity between sire and offspring as an additive
allelic effect (probability of sharing k alleles; table S1D,
S1E) and thus depends on both paternal (M) andmaternal
(F) genotypes. We have modeled male care through genic
recognition rather than care allocated equally to all young by
monogamous males for two reasons. First, paternal care via
allelic recognition of sire-offspring pairs is internally consis-
tent with neighborhood choice behavior (matrix D), which
also requires some sort of genic recognition. Second, such
forms of recognition tied to social relationships, including
paternal care, are observed in nature (Wang et al. 1994,
1998; Bester-Meredith et al. 1999; Marler et al. 2003; Mateo
2003; Neff 2003; Holmes and Mateo 2007; Widdig 2007;
Nam et al. 2010). Care provided equally to all offspring re-
gardless of allelic overlap would likely weaken selection and
could form an interesting extension to our current model.
Male care need not be elaborate but supplements maternal
care through behaviors such as nest defense or thermoregu-
lation to enhance progeny survival (see also Lukas and
Clutton-Brock 2013). In contrast, polygyny and sneak geno-
types provide no care and abandon progeny to seek out
other mates.
Simulation Results

We used equations (1) and (3) to calculate gene frequen-
cies across time and examine ESS mating systems for a
given set of parameter values by searching for the central
tendency after 1,000 generations (Sinervo et al. 2007; ESS
usually fixed within 200 generations). To explore how be-
havior affects transitions between ESS mating systems, we
varied parameterswith particular emphasis placed on explo-
This content downloaded from 128.114
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ration of discrimination (1 ! d ! 5), filiative (1 ! f ! 4),
and paternal care behaviors (1 ! p ! 4). The model as-
sumed equal initial frequencies of all three alleles, but we
also explored simulations with random start frequencies
(1,000 starts for each parameter combination, fig. S1;
figs. S1–S6 are available online).
Evolutionarily stable social systems are determined by

conflict between competitive (discrimination) and cooper-
ative behaviors (filiative, paternal; Hochberg et al. 2003),
which clearly drive ESS outcomes of our model. Mating
system simulations after 1,000 generations predicted one
of four cases: (1) a noncycling stable equilibrium between
polygyny and sneak alleles, (2) a stable interior attractor
of all three alleles (length of cycles was verified for 1500
generations; Sinervo et al. 2007), or (3) a pure ESS (single
allele) of either polygyny (a) or monogamy (b; figs. 1, S2).
The mixed ESS (sneak and monogamy) was never stable,
and sneak alone was never an ESS.
Case 1. Stable coexistence between sneak and polygyny or
a mixed ESS mating system, occurred for only a narrow
parameter range when discrimination was absent (d p 1;
random settlement) and both filiative and paternal care
were low (f ! 1:3, p ! 1:8; values represent recruitment
advantages of young over baseline levels; see bottom left
of fig. 1, where d p 1).
Case 2. All strategies are retained in a rock-paper-scissors
(RPS) cycle, which is either a Nash equilibrium (Sinervo
and Lively 1996) or amixed ESS akin to amultiple paternity
mating system in circumstances where territory boundaries
of alternative strategies within sex overlap somewhat and
between-sex territories are unrelated (Sinervo and Lively
1996). Friedman and Sinervo (2016) discuss differences
in Lotka-Volterra dynamics of an RPS that is an ESS versus
a Nash equilibrium, but both game states retain three strat-
egies because of RPS intransitivity with a stable interior at-
tractor (Bomze 1983). The length of RPS cycles varied as a
function of model parameters (discussed below). Such sys-
tems generate promiscuity as a result of multiple paternity
patterns, but empirical spacing patterns (e.g., high variance
in space use among individuals) suggest that they may con-
tain alternative mating strategies described in our model.
We therefore use the common term “promiscuity” to de-
scribe this mating system outcome with the coexistence
of three alternative male strategies. Stronger density-
dependent competition within the two male strategies
of polygyny and sneak (low c, k) generally increased the
stability of RPS cycles and coexistence as in past models
(Sinervo et al. 2007). Similarly, better discrimination be-
havior (higher d) enhanced coexistence and cycle stability
(see also Sinervo et al. 2007).
.034.022 on January 19, 2020 16:37:28 PM
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Case 3. Sneak is always lost, but either polygyny (case 3a)
or monogamy (case 3b) is the pure ESS (fig. 1). As monog-
amy genotypes become prevalent (i.e., p, f increase), fitness
of sneak is depressed through more frequent encounters
with this superior competitor.
The ESS in case 3 (polygyny vs. monogamy) depends on

levels of paternal care and filiative behaviors (red vs. blue
areas in figs. 1, S2). Counterintuitively, polygyny fixes
when monogamy has moderate levels of filiative and pa-
ternal behaviors (high levels of one or moderate levels of
both; figs. 1, S2). This is because as the fitness of monog-
amy increases, sneak is rapidly eliminated, thereby remov-
ing polygyny’s dominant competitor. However, moderate
This content downloaded from 128.114
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monogamous behaviors are insufficient to outcompete
polygyny, which is superior in male-male competition
(FM). As combinations of paternal and filiative behaviors
increase (above ∼1.5-fold higher fitness), polygyny is out-
competed, leaving monogamy as a pure ESS (see also
Ranta and Kaitala 1999). As discrimination behavior in-
creases, the ESS domain for polygyny expands because
its fitness is enhanced by settling near clusters of monog-
amousmales (increasing d across panels in fig. 1). Between
the two pure ESS domains, a band of parameter values
can fix for polygyny or monogamy or stay entrained in
an RPS (promiscuity) depending on initial allele frequen-
cies (figs. 1, S1). Thus, a mixed polygyny-monogamy state
Filiative Behavior
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Figure 1: Shifts in evolutionarily stable strategy (ESS) mating system with increasing discrimination along a filiative and paternal care gra-
dient. Mating system ESS as a function of filiative (self-attraction) and paternal care behaviors in monogamy for specific values of discrim-
ination showing how polygyny only (red) resides in the parameter space between monogamy only (blue) and rock-paper-scissors promis-
cuity (black). Stippled areas for higher levels of discrimination represent domains where initial allele frequencies influence the ESS (in 110%
of cases), with the dominant color being most commonly fixed (see fig. S1, available online). Notice that hatched red-gray zones (bottom left)
for d p 1 reflect the only stable equilibrium between polygyny and sneak.
.034.022 on January 19, 2020 16:37:28 PM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



Genic Mating System Evolution 000
should be rare and exist as only an unstable or quasi-stable
equilibrium, which rapidly bifurcates tomonogamy or po-
lygyny depending on initial allele frequencies (fig. 1 when
d 1 1; fig. S1).
Empirical Test of the Model

We tested qualitative predictions about evolutionary tran-
sitions and ESS mating systems made by our model by
comparing them with data (table S3) on the phylogenetic
distribution of mating systems in rodents.We chose to test
our model in rodents because considerable data onmating
systems exist in the literature and because evidence for a
genetic basis of the behaviors wemodel has been described
(discussed in detail below). Extant rodent mating systems
are often diagnosed by territorial spacing patterns among
males and females or paternity, and categorization is con-
gruent in taxa where both data are available (table S3; see
methods for search strategy and categorization in the sup-
plementalmaterial). For taxawith sufficient data (N p 288),
mating system was categorized as promiscuous (two to three
strategies within a population; N p161), monogamous
(N p 74), polygynous (N p 44), and mixed polygyny-
monogamy (N p 9).
We surveyed peer-reviewed articles, reviews, books, and

unpublished theses with sufficient information to infer
mating system states in the order Rodentia (table S3).
We categorizedmating systems using (in order of priority)
(1) genetic paternity and (2) degree of overlap of home
ranges within and between each sex. Because extrapair pa-
ternity occurs at a low level even in monogamous species,
we designated some taxa as monogamous if home range
and social patterns suggestedmonogamy, despite evidence
of extrapair offspring (!20% extrapair young). Molecular
and home range data generally suggested the same mating
system when both were available for the same species. In
general, our approach for assessing species mating system
agreed with past reviews (e.g., Waterman 2007), but in a
few instances, our method yielded a different mating sys-
tem (see footnotes in table S3) or we did not deem the pri-
mary data sufficient to categorize mating system in a spe-
cies included elsewhere (indeterminate in table S3; figs. 2,
S3). Our criteria for categorizing a species as showing pa-
ternal care behavior required clear evidence of male be-
havior (care/no care) in natural or seminatural systems
(table S3; see also Lukas and Clutton-Brock 2013).
We used the well-supported, time-calibrated phylogeny

of rodents from Fabre et al. (2012) for our analyses on evo-
lutionary transitions and speciation rates in rodentmating
systems. We also included paternal care in our analyses to
ascertain its association with mating system, which was
an assumption of our model. Analyses were conducted
in the R 3.5 environment (R Development Core Team
This content downloaded from 128.114
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2018). We first tested whether among-species variation
in mating system exhibited phylogenetic signal using the
fitDiscrete function in the GEIGER package (Harmon
et al. 2008). We applied the lamba transformation to ob-
tain an estimate of phylogenetic signal. Next, we examined
evolutionary transitions in mating system across the phy-
logeny by reconstructing ancestral character states using
maximum likelihood. We used the ace function in the
APE package (ver. 5.1; Paradis et al. 2004) and an asym-
metric Mk model of evolution to reconstruct ancestral
states. Within this model, we compared different models of
evolutionary change, including equal rates, symmetric rates,
and all rates different using the fitDiscrete function in the
GEIGER package (Harmon et al. 2008). The all rates differ-
ent model had a significantly lower log likelihood and
Akaike information criterion (AIC) score (table S4).Wede-
termined unambiguous transitions to monogamy using the
criterion of Mooers and Schluter (1999), where a difference
of 2 between the log likelihood of any of the states is consid-
ered a clear transition. We used this maximum likelihood
reconstruction to compare dates of origin of each mating
system (monogamous, polygynous, and promiscuous) with
a nested ANOVA since our model predicted that polygyny
should arise as a consequence of (i.e., after) increased mo-
nogamous behaviors (increases in polygyny [red areas] in
fig. 1 when d ≥ 2 and fig. S1 when care behavior p in-
creases). We estimated the proportion of transitions and
time spent in differentmating system states with a Bayesian
stochastic character mapping analysis (Bollback 2006) to
account for uncertainty in ancestral mating system states.
The stochastic character mapping involved using the
make.simmap function in the phytools package (Revell
2012). This function first estimates the conditional likeli-
hood of each character state at all nodes of the tree. Next,
it samples the posterior distribution of the transition rate
matrix Q 1,000 times (100,000 generations sampled every
100 generations) using a Bayesian Markov chain Monte
Carlo (MCMC). We estimated pi, the prior distribution
of the root, from the results of the MCMC simulations.
The output of stochastic character mapping includes the
transition rate matrix Q, the proportion of time spent in
each character state, and the final transition probabilities.
Sparse or unbalanced data sampling across a phylogeny

could bias results of ancestral reconstruction of mating
systems states (Salisbury and Kim 2001), which could be
a concern given that we have sampled 276 of 2,277 species
in Rodentia (ignoring subspecies). Our sample includes
species from all six major clades identified by Fabre et al.
(2012): Sciuroidea, Castorimorph, Ctenohystrica, Anoma-
luromorpha,Myomorpha, andMuroidea (table S5). In ad-
dition, we have species from 74% (31 of 42) of the recog-
nized families/subfamilies and 26% of the genera (124 of
474) in the order Rodentia. Mating system was also not
.034.022 on January 19, 2020 16:37:28 PM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



Figure 2: Ancestor reconstruction and distribution of mating systems mapped onto the rodent phylogeny using maximum likelihood. Mat-
ing systems are classified as monogamous (blue), polygynous (red), mixed monogamy-polygyny (pink), promiscuous (black), and undefined
or indeterminate (gray). Bars along the branch lengths represent gains or losses of each pure strategy. Nodes show maximum likelihood
reconstruction estimate of ancestral mating systems as a proportion of each type. Arrows and associated dates indicate the most likely node
of origin (circled nodes), defined as the node where the frequency of the strategy first rises above a likelihood of 0.33 and subsequently fixes
with likelihood 10.95.
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heavily biased across the phylogeny: monogamous taxa
occurred within 18 out of 31 families/subfamilies (58%)
for which we had data onmating system, and polygyny oc-
curred in 17 of 31 families/subfamilies (55%). Overall, our
sampling is balanced in coverage despite being sparse in
regard to total number of species.
We evaluated the hypothesis generated by our model

that transitions to monogamy result in an increased diver-
sification rate using a hidden state speciation and extinc-
tion (HiSSE) model. We compared the rate of speciation
for monogamous species (lmono) with the remaining mat-
ing systems (lprom or polyg) to generate state-specific specia-
tion rates for a binary character. In contrast to a standard
binary state speciation and extinction (BiSSE) model, the
hidden state speciation and extinction model includes
hidden states to account for unmeasured traits that may
influence the diversification rates for given states of an
observed trait (Beaulieu and O’Meara 2016). As a conse-
quence, a HiSSE approach estimates heterogeneity in di-
versification rates unrelated to the focal trait yet simulta-
neously accounts for the effects of the measured trait on
diversification. A key advantage of HiSSE is that transition
rates among states are estimated independently for the hid-
den and observed traits. In our analysis, we fit two BiSSE-
like models and five HiSSE models. We fit two BiSSE-like
models, which included a null analysis to estimate diversi-
fication rates independent of the mating system and amodel
including the influence of mating system on diversification
rates. Our HiSSE models included (1) a null model where
character states evolve independently, (2) a full model al-
lowing the estimation of diversification rates for mating sys-
tem and a hidden trait, (3) a model to estimate the effects of
monogamy and a hidden trait on diversification rates, and
(4) two character-independent diversification models
(CID-2 and CID-4). These models have the advantage
of assuming that the evolution of a trait is independent
of the diversification rate without requiring diversifica-
tion rates to be constant (Beaulieu and O’Meara 2016).
The CID-2 model has the same number of parameters
as the BiSSE-like model, whereas the CID-4 model has
the equivalent number of parameters for a generalized
HiSSE model. We used the diversitree (FitzJohn 2012)
and hisse (Beaulieu and O’Meara 2016) packages in R
to estimate the models of trait-dependent diversification.
The correlation between mating system and parental

care was accomplished using a threshold model (Felsen-
stein 2012) and implemented using the threshBayes func-
tion in the phytools package (Revell 2012). We sampled
200,000 generations with a burn-in of 40,000 generations.
We sampled every 500 trees to generate an estimate of the
correlation between mating system and parental care. We
used the HPDinterval function in the coda package
(Plummer et al. 2006) to obtain the highest posterior dis-
This content downloaded from 128.114
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tribution interval for the correlation coefficient from the
MCMC sampling.
Support for Model Assumptions

Our review of rodent mating systems supported the major
assumptions of our model. The first set of assumptions
concerns the existence and ancestral state of three geneti-
cally determined alternative strategies. First, mating be-
havior in at least some rodent species—and, indeed, other
taxonomically distant species—can in part be traced to al-
ternative alleles at key loci (Bester-Meredith et al. 1999;
Young et al. 1999; Lim and Young 2004; Lim et al. 2004;
Young and Wang 2004; Fink et al. 2006; Walum et al.
2008), as assumed by our behavioral genetics model of
mating system evolution. Furthermore, we found that
mating systems exhibited significant phylogenetic signal
(l p 0:754, P ! :01), suggesting that the notion of an un-
derlying genetic cause is likely.
Three lines of evidence suggest that alternative mating

strategies exist in rodents. Territorial spacing within some
promiscuous rodent species is consistent with territorial
expectations of three mating strategies assumed in our
model (monogamy, polygyny, sneak; table S3). Indeed,
studies with detailed territory maps of promiscuous spe-
cies show that some males control large territories with
several females, other males control smaller nonoverlap-
ping territories and single females, whereas others are wide-
ranging without control of a territory (Maza et al. 1973;
Scantlebury et al. 2008), corresponding to the three strat-
egies modeled. Detailed behavioral data in a few species
support the existence of within-population alternative
strategies similar to those in our model (Bishop et al.
2004; Scantlebury et al. 2008; Mills et al. 2009), although
data on fitness asymmetries among strategies (i.e., intran-
sitivity) are still unknown for any rodent system. Intraspe-
cific color polymorphism versus monomorphism identi-
fies mating systems in reptiles (Sinervo and Lively 1996;
Corl et al. 2010), birds (Lank et al. 1995), and damselflies
(Svensson et al. 2005), so we searched for similar patterns
in our rodent data set. In rodents, we found instances of
segregating coat color polymorphism (including some tri-
morphic species) inmixed or promiscuous species (N p 18;
table S6), suggestive of alternative strategy markers, but we
failed to document color polymorphism in any monoga-
mous or polygynous taxa, which should be fixed for one
strategy. Coat color patterns likely underestimate the prev-
alence of alternative strategy markers—which are more
likely olfactory in rodents, given their heavy reliance on
scent—but nonetheless suggest that alternative strategies
are present in some rodent taxa.
Finally, estimates of ancestral character state transitions

using maximum likelihood enabled us to quantify the
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probability of ancestral mating system states at each node
and the number and age of independent mating system
transitions in rodents (figs. 2, S3). A promiscuous mating
system (i.e., multiple strategies) is ancestral (figs. 2, S3), as
assumed in our model. Taken together, these lines of evi-
dence suggest that our model assumption of genetically
based alternative strategies is valid for the available rodent
data.
The second set of assumptions involves the prevalence

of recognition and paternal care behaviors. Both discrim-
ination and filiative behavior, which rely on genic recog-
nition to produce spatial clustering, are observed in verte-
brates (Emlen and Wrege 1988; Russell and Hatchwell
2001; Krakauer 2005), including rodents (Bester-Meredith
et al. 1999; Mateo 2003, 2004; Widdig 2007; Green et al.
2015), and can drive social interactions (Mateo 2004;
Krakauer 2005; Hain and Neff 2006; Sinervo et al. 2006;
Holmes and Mateo 2007; Widdig 2007). Kin recognition
is tied to specific genes (e.g., arginine vasopressin) that also
affect mating system, social relationships, and paternal
care in some rodents (Bester-Meredith et al. 1999; Young
et al. 1999; Marler et al. 2003; Lim et al. 2004; Young and
Wang 2004; Nam et al. 2010; Ophir et al. 2012). The key
assumption linking evolution of monogamy to paternal
care was also confirmed in the phylogenetic data set for
the subset of species with clear evidence of parental care pat-
terns. The threshold test implemented using the thresh-
Bayes function in the phytools package (Revell 2012) found
a strong association between monogamy and paternal care
(r p 0:90 (highest posterior density intervalp 0.79–0.97),
P ! :05; fig. S4]. In our sample, all monogamous taxa ex-
hibit paternal care. Some polygynous and mixed mating
systems exhibit paternal care (50%), and all (N p 7) of
those that do are recently derived within ancient monoga-
mous clades where genes for care in polygynous males
could represent a vestige of ancestral monogamy. Some
promiscuous mating systems exhibit care (21%), as ex-
pected since they containmonogamy. Thus, model assump-
tions of genic recognition, biased settlement, and paternal
care coupled with monogamy are valid for rodents.
The Congruence of Model Outcomes
and Empirical Patterns

Patterns of evolutionary transitions in rodent mating sys-
tems are consistent with our model results that consider
genetic mating strategies in the absence of variation in re-
source ecology. Most taxa are promiscuous (56%, 161
taxa), as expected given the large parameter domain for
competitive behaviors (c, k, d) that maintain RPS cycles
of three strategies when cooperative behaviors ( f, p) are
weak (black areas in fig. S2) or mixed polygyny-sneak
when discrimination behavior (d) is absent (black areas
This content downloaded from 128.114
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in fig. 1). The next most common mating systems in
rodents are monogamy and polygyny, two ESSs found in
our model for higher levels of cooperative behaviors ( f,
p; case 3 of simulation results). More taxa are monoga-
mous than polygynous (72 vs. 45 species; sign test assum-
ing 50∶50; P ! :005), as observed in our model output,
since polygyny as a pure ESS exists only in a thin param-
eter space where cooperative behaviors ( f, p) are high
enough to eliminate sneak but not high enough to displace
polygyny (red vs. blue areas in figs. 1, S1). Other potential
mating systems (e.g., pure sneak, mixed sneak-monogamy)
did not occur in our survey and were also not stable out-
comes in our ESS model.
Evolutionary Transitions between Mating Systems

Our model showed that increases in the benefits of mo-
nogamous behaviors (filiative, paternal care) are largely
responsible for transitions between mating system states
(figs. 1, S1, S2). In our sample, many more rodent taxa
are monogamous (26%) relative to mammals in general
(3% [Kleiman 1977], 9% [Lukas and Clutton-Brock 2013])
but similar to some other orders (29% of primates and
16% of carnivores [Lukas and Clutton-Brock 2013]), and
monogamy is present in most major rodent lineages (14
of 21; figs. 2, S3). Monogamy is also the most common un-
ambiguous evolutionary transition from a promiscuous
ancestor (we define unambiguous transition when a single
strategy increases above 33% in likelihood analysis
[Mooers and Schluter 1999], although probabilities are
generally 150% in such cases; N p 21; figs. 2, S3) and
more common than unambiguous evolutionary transitions
to polygyny (N p 12). Our estimates of transitions among
mating systems using a stochastic character mapping anal-
ysis suggest that evolutionary shifts from promiscuity to
monogamy (20%) were much more common than those
from promiscuity to polygyny (8%; figs. 3, S5), as expected
from our model, which shows a larger parameter space as-
sociated with monogamy than polygyny (red vs. blue areas
in figs. 1, S1). If increases in monogamous behaviors facil-
itate the evolution of polygyny, as predicted by our model
(increase in f, p in figs. 1, S1), we would expect polygynous
clades to be younger than monogamous ones. Transitions
to monogamy are somewhat older than those to polygyny,
although the difference is not significant (monogamy:mean
age of originp 14.1–3.1 million years ago,N p 14; polyg-
yny: mean age of origin p 9.7–2.1 million years ago,
N p 5; nested ANOVA, P p :11; fig. S3). Furthermore,
we predict that polygyny should exist in clades where mo-
nogamy becomes more common since polygyny relies on
monogamy to eliminate sneak for establishment as a pure
ESS in our model (red areas as f, p increase in figs. 1, S1).
If we restrict analysis of mating system origins to clades
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with well-supported ancestral fixations of monogamy (e.g.,
nodes where likelihood of all other strategies are !0.05),
then we can identify clades where polygyny is derived
(fig. 2). By this criterion, there are eight independentfixations
of monogamy, which outnumber the single independent
fixation of polygyny, which is nested within amonogamous
clade (fig. 2). Furthermore, transitions from monogamy to
polygyny (19.6%) aremore common than frompolygyny to
monogamy (13.7%; figs. 3; S5), as expected if increases in
monogamous behaviors promote polygyny (red areas as f,
p increase in figs. 1, S1).
Mating system transitions should also involve rare or un-

stable coexistence of two mating systems according to our
model. Some species showed mixed mating systems com-
prised of monogamy and polygyny (i.e., sneak lost, nine
taxa), which was never an ESS in our simulations but does
exist as a transitory state whenmonogamy eliminates sneak.
Thus, mixed monogamy-polygyny could be a transient
state before fixation to monogamy or polygyny. Alterna-
tively, mixed mating species may reflect a contact zone
between neighboring populations fixed for polygyny and
monogamy. In either case, rarity of mixed mating systems
in rodents is consistent with our model.
We also found mating system transitions in rodents not

seen in the model results. Unambiguous transitions from
pure monogamy (likelihood probability 10.95) back to
promiscuity (one case) or to polygyny or mixed systems
(seven cases) suggest that mating system reversals occur.
For example, ancestral Bathygeridae are monogamous,
yet Fukomys hottentotus hottentotus is promiscuous (fig. 2;
Bishop et al. 2004), reflecting a reinvasion of polygyny
and sneak. Behavioral and genetic paternity patterns in
This content downloaded from 128.114
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F. h. hottentotus include wide-ranging polygynous males,
monogamousmate-guardingmales, and diminutive sneaker
males (Bishop et al. 2004), resembling other RPS systems
(Sinervo and Calsbeek 2006; Sinervo et al. 2006, 2007).
Such patterns in mating system transitions could reflect ei-
ther uncertainty in the loss of mating systems (ancestral
probability !0.05) or the appearance of new mating sys-
tems lost in the ancestor (novel mutation). The stochastic
character mapping analysis likewise identified transitions
that were not possible in our model formulation, including
those from monogamy to promiscuity (5.6%) or from po-
lygyny to promiscuity (26%), which was surprisingly com-
mon (figs. 3; S5). Future models that would allow for the
reintroduction of lost strategies would be particularly in-
formative on this issue. These patterns of mating system
transitions back tomultistrategy states evoke an evolution-
ary cycle of RPS intransitivity (Sinervo and Lively 1996),
but at a phylogenetic level if it reflects reinvasion of new ge-
netic strategies that were lost on previous evolutionary
transitions.
Effects on Speciation Rates

Genetic mating system games can enhance speciation
rates if diversification in one mating system exceeds those
in others. Indeed, our model results suggest that increased
monogamous behaviors ( f, p) can lead to bifurcation of
promiscuous taxa into monogamous or polygynous taxa.
Such bifurcations can occur through rapid divergence be-
tween populations asmonogamous behaviors increase (fig. 1;
thin red band of polygyny vs. blue band ofmonogamywith
little change in f and p when d 1 2) or when different
populations with the same degree of monogamous be-
haviors have different initial allele frequencies (fig. S1;
boxes with both blue and red for the same values of p,
d). We tested for the effects of mating system on diversi-
fication rates using HiSSE. The BiSSE-like model revealed
that monogamous lineages had higher speciation rates
(lmono p 14:95) than lineages with promiscuous or other
mating systems (lprom p 3:101), suggesting that monog-
amous lineages diversified ∼4.8 times faster than lineages
with promiscuousmating systems.We contrasted results of
the BiSSE model with those of a hidden states model using
a model selection approach based on AIC and AIC model
weights (table 1). The full model HiSSE (includes hidden
states and independent transition rates) outperformed
the remaining six models (two BiSSE and four other
HiSSE). Lineages that evolved monogamous mating sys-
tems had higher diversification rates than those with pro-
miscuity or polygyny as a result of higher speciation rates
and lower overall turnover (l and t in table 2; fig. S6).
Moreover, promiscuous mating systems had higher ob-
served extinction rates than monogamous mating systems
Figure 3: Frequency of transitions between mating system states
estimated by stochastic character mapping reconstruction. The
frequency of transitions from promiscuity to monogamy is greater
than to polygyny, as predicted by our mating system model. Like-
wise, transitions from monogamy to polygyny are higher than the
reverse, as predicted. Transitions back to promiscuity were not
possible in our simple model but show up surprisingly frequently
in the data. The stochastic character map phylogeny is shown in
figure S5, available online.
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(m in table 2). Notably, the full model also showed the in-
fluence of a hidden state on diversification of rodents. Inter-
estingly, the influence of the hidden state appears to affect
promiscuous clades to a greater extent than monogamous
clades. Furthermore, net turnover appeared to be higher
in promiscuous lineages than monogamous lineages (t in
table 2; fig. S6). A higher speciation rate in monogamous
clades from our HiSSE analysis should lead to more taxa
from monogamous versus promiscuous clades. Indeed, a
sister taxon comparison shows that transitions to monog-
amy in rodent clades yields a 4.74-fold greater number of
species than sister clades retaining a promiscuous mating
system (Wilcoxon signed rank test on log(species in sister
clades): S10 p 27:5, P p :002; fig. 2; table S7).
Ourmodel simulations show that a rise inmonogamous

behaviors (increasing f, p) in a more monogamous ances-
tor could lead to both monogamous and polygynous de-
scendent species with little change in monogamous be-
haviors (rapid transitions to red and blue with increased f
and p in figs. 1, S1) more often than from a promiscuous
ancestor (i.e., low monogamous behaviors f, p), which
should lead to a higher speciation rate in monogamous
lineages. We tested this prediction by randomizing charac-
ter states across the tree topology (including nodal values
based on ancestral reconstructions), preserving the fre-
quency of each mating system and observed an average of
8.1 pairs of descendent taxa where monogamy was sister
to either polygyny or a polygyny-monogamymixedmating
system. Less than 1/200 randomizations (P p:005) had as
many bifurcating pairs containing monogamy and polyg-
yny as we observed in our data set (N p 17; figs. 2, S3),
suggesting thatmonogamy and polygyny arise as sister taxa
twice as often as expected by chance alone. Two mecha-
nisms might lead to this pattern. First, monogamy en-
hances invasion of polygyny because weak monogamous
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behaviors (slight increases in p and f shift from promiscuity
in black to polygyny in red in figs. 1, S1) facilitate fixation of
polygyny as a pure ESS, as predicted by our model. Like-
wise, if monogamous behaviors become less developed (p
and f decrease; start frequencies with high monogamy but
low p, f in fig. S1), polygyny can invademonogamy. Second,
monogamy and polygyny could result from socially medi-
ated speciation (Hochberg et al. 2003). Social traits in mo-
nogamous lineages when hybridized with polygynous line-
ages may yield hybrids with depressed fitness (Gill 1984),
reinforcing speciation and fixation of different mating sys-
tems in adjacent populations. This process could be accel-
erated if genes for filiative behavior inmales have pleiotropic
effects on female mate choice (Sinervo et al. 2006), thereby
leading to rapid reproductive isolation between individuals
with or without monogamy genes.
Genetic Mechanisms of Mating System Transitions

Rapid shifts between genetically basedmating systems rely
on simple mutations that impact cooperative behaviors ( f,
p), regardless of the surrounding resource distribution.
Evolutionary transitions between monogamy and polyg-
yny in rodents have been linked to a point mutation in a
vasopressin receptor gene (V1aR; Lim and Young 2004;
Lim et al. 2004; Fink et al. 2006), and this gene is also
linked to increased paternal behavior and reduced aggres-
sion (i.e., filiative behavior) inmonogamous species (Bester-
Meredith et al. 1999). Such mutations would provide a
mechanism for the simultaneous rapid evolution of in-
creased care and filiative behaviors needed for bifurcation
into monogamy or polygyny and potentially lead to speci-
ation. Moreover, pleiotropic effects of V1aR could lead to
rapid evolution of more advanced forms of sociality
through enhanced genic clustering, fidelity, care, and co-
operation, which might explain why highly social species
in rodents (e.g., mole rats and marmots) originate from
monogamous lineages.
The cooperate-care strategy we equate with monogamy

is a form of genic recognition that acts through filiative
and paternal care behaviors and conflicts with polygynous
Table 1: Results from binary state speciation and extinction
(BiSSE)-like and hidden state speciation and extinction
(HiSSE) analyses of trait-dependent diversification
Model
 AIC
 DAIC
 AIC weight
HiSSE:

Full
 2205.22
 .00
 .976

Monogamy
 2196.55
 8.67
 .011

CID4
 2168.76
 36.46
 .000000012

Null
 2139.01
 66.21
 4.08E215

CID2
 2139.00
 66.21
 4.08E215
BiSSE:

Full
 2168.30
 36.91
 .0000000094

Null
 2139.91
 65.31
 6.41E215
Note: Values presented are Akaike information criterion (AIC) scores,
differences (DAIC), and AIC weights for each model comparing diversifi-
cation rates of monogamous versus promiscuous mating systems. Boldface
indicates the best fit model.
Table 2: Estimated rates of speciation (l), extinction (m),
and net turnover (t) derived from the full hidden state
speciation and extinction model
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Promiscuity:

Observed
 3.35
 .04
 3.26

Hidden
 9.70
 1.99E208
 13.41
Monogamy:

Observed
 30.33
 6.33E208
 2.23

Hidden
 2.04
 1.40
 13.49
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strategies. Work on genic recognition in mammals has
shown patterns of genomic imprinting present in polygy-
nous/promiscuous species but absent in monogamous sis-
ter taxa (e.g., Peromyscus polionotus vs. Peromyseus man-
iculatus, Mus spretus vs. Mus spicelegus; Haig 1996; Burt
and Trivers 2006). Experimental crosses between sister
taxa yield hybrid unfitness as a result of mismatches in
imprinted loci of sires and counterstrategy imprinted loci
of dams (Burt and Trivers 2006). Genomic imprinting may
enhance speciation of monogamous and polygynous/pro-
miscuous taxa (Gill 1984) due to alternative alleles for genic
male care and contribute to accelerated bifurcation into
monogamous and polygynous sister taxa. We predict that
newly evolved genomic imprints should exist in the 23 in-
dependent transitions from ancient monogamy to promis-
cuity/polygyny.
Wemodeled complex behaviors driven by a single gene,

and such a formulation could have important conse-
quences for speciation. While a single gene with multiple
effects facilitates theoretical analysis, there is also building
evidence for such systems in the empirical literature. For
example, genetic analysis of ruffs that show alternative
male strategies shows that a large inversion has created a
supergene that drives male color, mating behavior, and ag-
gression (Küpper et al. 2016). Alternatively, a single gene
can have pleiotropic effects on multiple behaviors, as has
been found in cooperative behavior of slimemolds (Queller
et al. 2003; Foster et al. 2004), and is a likelymechanism un-
derlying the association between hormone receptor genes
in rodents (V1aR) and multiple mating and prosocial
behaviors (Wang et al. 1994; Bester-Meredith et al. 1999;
Lim et al. 2004; Young andWang 2004; Albers 2012). Finally,
such effects could be due to multiple genes that are tightly
coupled through linkage disequilibrium despite being
scattered across the genome, as described in lizards (Sinervo
et al. 2006). If the behaviors and their underlying genes seg-
regate in both males and females, then mate choice for
specific behavioral types could generate correlational se-
lection and build up such linkage (Alonzo and Sinervo
2001; Sinervo et al. 2008). Interestingly, such multiple ef-
fects that we describe here resemble magic traits explored
in the speciation literature as a critical component gener-
ating rapid speciation in adjacent or sympatric populations
(reviewed in Servedio et al. 2011). While magic traits de-
scribe traits that couple phenotypic traits for mate choice
with fitness traits related to ecology, the genes we describe
couple social behavior with reproductive success as a con-
sequence of social selection (West-Eberhard 1983; Lyon
and Montgomerie 2012), also referred to as socially medi-
ated speciation (Hochberg et al. 2003). Indeed, expanding
the definition of magic traits to include such socially se-
lected cases could greatly increase the contexts under which
speciation with gene flow is expected to arise.
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Contrasting Genetic and Resource Ecological
Mating System Models

The genetic mating system model we propose here both
contrasts and complements classic resource ecological
mating system models (Verner and Willson 1966; Orians
1969; Emlen and Oring 1977; Davies 1991; Shuster and
Wade 2003; Lukas and Clutton-Brock 2013). In contrast
to resource ecological models, our genetic model is able
to make predictions about evolutionary transitions be-
tween mating system states and the likely impact of such
mating system transitions on speciation rates. In both
cases, our model predictions are consistent with empirical
data from rodents. Furthermore, the genetic model could
provide an explanation for cases where mating system
transitions do not match resource ecology transitions be-
cause of phylogenetic inertia when mating system is con-
served despite resource distribution change or when mat-
ing system shifts despite resource ecology remaining static.
Our survey of rodentmating systems contains examples of
different populations of a single species with either differ-
ent (N p 14) or the same (N p 4) mating system, and
comparisons of the resource distributions of these popula-
tions could help identify cases where the genetic model
provides added insight relative to the resource distribution
ecological model.
While there is increasing evidence for a genetic basis of

mating behavior (Wang et al. 1998; Lim et al. 2004; Young
and Wang 2004; Walum et al. 2008; Corl et al. 2010;
Küpper et al. 2016; Lamichhaney et al. 2016), there are
cases where resource ecology likely has a direct influence
on a mating system (Emlen and Oring 1977; Shuster and
Wade 2003), suggesting that both mechanisms could in-
teract. From this perspective, resource distribution shifts
could explain reversals in mating system states (e.g., mo-
nogamous or polygynous back to promiscuous) not pre-
dicted by our genetic model through shifts in the costs
and benefits of space use or cooperative behaviors. Indeed,
phenotypic plasticity is common for behavioral strategies,
and the real question might be how resource ecology and
genetics interact to shape mating system state. Addition of
fine-scale resource and environmental ecological data to
our rodent mating system data set would allow an evalua-
tion of the explanatory power of each mechanism in
predicting mating system evolution and phylogenetic sig-
nal and would be a fruitful first step in this direction. Like-
wise, models for different genetic mechanisms underlying
behavioral strategies (e.g., plasticity, dominance, heterozy-
gote advantage; Moulherat et al. 2017) could broaden our
understanding of behavioral genetic influences on mating
system evolution, now that we have demonstrated the abil-
ity of a simple codominant genetic model to predict em-
pirical patterns of mating system evolution in rodents.
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Broader Implications

Genetically based social strategies in our model and identi-
fied in rodents (Young andWang 2004) have broad implica-
tions for population ecology since territorial strategies (po-
lygyny, monogamy, sneak) use space differently and have
varying intensities of density regulation against their own
strategy (table S1A; see also Sinervo et al. 2007). Density
cycles in rodent species could be due to social competition
among alternative strategies (Chitty 1996) in promiscuous
taxa. Indeed, female density cycles have been identified
in lizards with alternative mating strategies (Sinervo et al.
2000) because the strategies that evolve in females involve
progeny size and progeny quantity. Likewise, density-
dependent alternative reproductive strategies identified in
the promiscuous bank vole (Mappes et al. 2008) could drive
population density cycles. We also found three examples of
coat color morphs in promiscuous rodent species that sim-
ilarly show population density cycles, which might be
expected when coat color genes have pleiotropic effects on
social behavior (Broadhurst et al. 1974) and life history (ta-
ble S6).
The strength of our hypothesis is the integration of mul-

tiple factors (e.g., territory spacing patterns, mating systems
transitions, social speciation, genomic imprinting, color
polymorphism, and density cycles) that jointly support a
genic model of frequency-dependent competition to drive
mating system evolution. Indeed, alternative strategies gen-
erate mating system variation and predicts evolutionary
transitions among mating system states irrespective of re-
source ecology. While resource distribution and environ-
mental ecology have some influence on the benefits of social
behaviors, genetically based mating strategies themselves
are sufficient to drive mating system evolution. Our model
should generalize to other vertebrates. For example, many
fish species exhibit alternative strategies that include pa-
rental and sneaker males or three strategies (Oliveira
et al. 2008). In trimorphic bluegill sunfish, male care (nest
guarding) is associated with genic recognition of progeny
(Neff 2003) by polygynous rather thanmonogamousmales,
with evidence of RPS dynamics (Friedman and Sinervo
2016). Care-giving males form colonies where mutual de-
fense (cooperation) enhances successful fry development
(Côté and Gross 1993) by repulsion of sneakers and pred-
ators. Trimorphic alternative mating strategies consistent
with an RPS game are also documented in a broad array
of other taxa, including bacteria, flowers, crustaceans, in-
sects, lizards, and birds (Shuster and Wade 2003; Sinervo
and Calsbeek 2006; Sinervo et al. 2007; Oliveira et al.
2008; Friedman and Sinervo 2016). As such, frequency-
dependent competition among alternative strategies could
facilitate mating system evolution and speciation in many
taxa through intrinsic effects of behavioral genetics.
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