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Abstract

A catenary is the shape that an electric cable takes under its own weight if sus-
pended only at its ends between two pylons. A rope hung between two masts
is also described with a catenary equation which is based on the hyperbolic
cosine function. We propose here to approach the hyperbolic cosine function
with two simple experiments using a beaded chain. We first study the static
form of a chain whose ends are suspended between two poles, when the dis-
tance between the two poles varies. Then, we study the dynamics of the same
chain falling from the edge of a table. The simplicity of these two experiments,
which can be done at home, makes them appropriate for undergraduate students
interested in practicals.
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1. Introduction

A catenary is a two-dimensional curve that describes the shape of an homogeneous flexible
chain suspended by its ends so that it is sagging only subject to gravity. In the early 17th century,
Galileo was the first to address the mathematical question of the shape of a chain hanging
under gravity; he wrongly claimed that the shape would fit a parabola [1, 2]. A few years
later, in 1690, Jacob Bernoulli launched a challenge to find the mathematical description of a
suspended chain shape. One year after, the curve equation was obtained by Leibniz et al: they
called it ‘the catenary equation’ [3—5]. It corresponds to the hyperbolic cosine function cosh,
and is also known as a ‘chainette’ in textbooks. This mathematical function can be expressed
efte

in terms of exponential functions as cosh(x) = “5*—.
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In this paper, we propose to study the hyperbolic cosine function with two simple experi-
ments that can be performed at home with everyday life objects: a chain, a smartphone camera
and a computer. Both experiments deal with classical physical problems: the first experiment is
static (the analysis of the form taken by a hanging chain [6, 7]) while the second one is dynam-
ics (the motion of a chain sliding from a horizontal surface [8]). They are thus appropriate for
undergraduate students.

2. The shape of the chain

2.1. Theoretical description

We consider a chain of length L and mass M—which is uniform—and we denote p = % its
mass per unit length. We use Cartesian coordinates (x, z), with x the horizontal axis and z the
vertical axis (see figure 1 for notations). The two extremities of the chain are placed at x = 0
and x = h, so that z(0) = z(h). Moreover, we impose the origin of the z-axis such as z(0) = 0.
Applying the equilibrium condition on a chain’s element of length d/ in the x and z directions
leads to

d(T.cos a) =0, )
d(T.sin o) — pugdl =0,

where dl = v/dx2 +dz2 = dxy/1 + (g—j)z and « the angle the segment d/ makes with the

x-axis. We then deduce
T(x). cos a(x)=A

2
2
d(T. cos a. tan o) = ugy/ 1+ (ji) dx @

with A a constant, which depends on the distance & between the two chain’s ends: we

. . dZ _ . d _ l .
will denote it A(h), and § = tan a. Knowing that 5. argsh(u) = T we obtain, after

integration, the following differential equation:

dz dz ng h
h{— | — h|— =—(x—=].
o (5) e (] )= () ®

Because of the symmetry, arg sh (% |x:h/2) =0, and we get & = sinh (4 (x — %)). Know-
dx 1

ing thatcos a = = JiE’ we finally deduce
dx

z(x) = & cosh (x _gh/2> — & cosh <h> ,

2
= A cosh <x—h/2> g @
= : ,

T(x) =

COS «

with £(h) = A/f—fg?.



Figure 1. Picture of the beaded chain used in this paper, suspended only by its ends,
with the notations used for the derivation of the catenary equation. The two extremities
of the chain (of length L and mass M) are separated by a distance /. Vector quantities
are represented by bold letters and we use the Cartesian coordinate plane (x, z): g is the
acceleration produced by gravity at the Earth’s surface. A segment of chain, of length d/,
at coordinates (x, z) is subject to the tension of the chain T(x) at point x, to the tension of
the chain T(x 4 dx) exerted at the point x + dx and to its weight pdlg with p the linear
mass density of the chain. This segment makes an angle a(x) with the x-axis. Inset:
Picture of the chain laid on a table to distinguish the individual beads that make it up.

2.2. Chain’s characteristic

We used a beaded chain of length L = 952 mm and mass M = 21 g: its mass per unit length
is thus p = %"’ =22g- m~!. The chain is composed of Npeags = 221 beads and is suspended
between its two ends separated by a distance & varying from 30 to 80 cm (figure 1). For each
distance h, we took a picture of the chain with a smartphone fixed to a camera tripod equipped
with a bubble level to ensure horizontality: we checked that the camera’s optical axis was
perpendicular to the plane of the chain. We measured the (x(n), z(n)) coordinates of points
of the chain by clicking manually on the n € [[0;221]] beads with the multi-points tool in
Imagel [9]. We then reconstructed the shape of the chain point by point, as shown on figure 2,
which displays the measured profiles z(x) for the different values of 4.

We first measured the distance a(n) between two  successive beads
a(n) =/ (x(n+ 1) — x(n)> + (z(n + 1) — z(n))* and found a = (a(n)) = 4.4 +0.1 mm

(inset of the figure 2), in very good agreement with the expected value a = m = 4.3 mm.

2.3. Experimental description of the chain curve

To compare the data with the catenary equation (equation (4)), we fitted our experimental data
X—X0
¢
&(h) as free parameters. The graph of x( as a function of 4 displays a linear behavior and

we found % = 0.511 £ 0.002, as expected (figure 3(a)). The parameter £(h) can be related to

(figure 2) with the theoretical expectation z(x) = £ cosh ( ) — & cosh %" leaving x¢(h) and

the total chain’s length L since L = foh 1+ % dx =2¢ sinh (%) . We numerically solved

this nonlinear equation, which allows us to deduce a theoretical expectation of £(h), as shown
h

28(h)

; a linear fit gives a slope of 0.989 £ 0.004, in very good agreement with the

in figures 3(b) and 4. Moreover, the inset of figure 3(b) displays the graph sinh (

_L_
28(h)

)asa

function of
theory.
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Figure 2. Shape of the suspended chain when the distance & between its two ends is
varying: h = 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80 cm. The blue dots are obtained
by manually clicking on the beads on the picture of the chain. These data (oints are

fitted with the theoretical curve of the catenary equation z(x) = £ cosh %hﬂ) -

& cosh (2'—’5) (black dashed lines, ¢ and x( being free parameters). Inset: Experimen-

tal determination of the distance a between two successive beads; n is the bead index of
the chain (n = 0...221); we find a ~ 4.4 4+ 0.1 mm. The pointing error is estimated to
be 0.5 mm, except at the chain’s extremities where the pointing is delicate because of
the fixing.

2.4. Tension at the chain’s extremities

Let us denote 7(0) = T(h) = T and |a(0)| = |a(h)| = «ap the tension and the angle at the
chain’s extremities which both depend on /. The equilibrium condition for the whole chain
is written as 27 sin oy = 2T cos o tan g = Mg. The angle o is deduced from the ended

H TN _ 1 2Z(NVpeads)—2(NVbeads—1) _ 02 1 — 8
points of the chain: ap = ;5 (arctan A Ny — arctan xrﬂ)' Since Tp = 5 m
dsi dz dz/dx Sinh('v?/z btain T, Mg Fi 4 sh h
andsin o = £ = = , we obtain Ty = . Figure 4 shows the
dr \/H-(dz/dx)2 cosh(ﬂﬁ) 0 2 tanh(%) g

graph of To(h) where the gravity at the Earth’s surface was assumed to be 9.8 m - s 2. Note that
;I,iHLl To(h) = +o0: a suspended horizontal cable would imply an infinite tension on the posts.
N

It is therefore impossible to have a perfectly horizontal catenary: that is why droppers are
used to connect the catenary with a contact wire which is horizontal in the electrical overhead
lines.
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Figure 3. (a) Graph of the free parameter x, as function of the distance / between the
fixed point displays a linear behavior with a slope of 1/2, as expected with equation (4).
(b) The fitting parameter £ as a function of % is in agreement with the theoretical
expectation we numerically obtained.
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Figure 4. Graph of the chain tension at its extremities. Experimental points (blue cir-
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Figure 5. Schematic of the forces acting on a chain falling from the edge of a table at a
time ¢ > 0. We denote z(f) the length of the chain hanging out of the table, the surface of
the table being defined by z = 0. The reference time r = 0 corresponds to the beginning
of the fall. We split the chain into two subsystems. The first one, S; (in blue), corresponds
to the part of the chain in contact with the table at time ¢, and has a length of L — z().
Four forces act on S;: its weight Wy, the two components of the reaction (N1, F;) and
the tension T; exerted by the other part of the chain. The second subsystem is S, (in
red) and is the part of the chain of length z(7) that is hanging over. S, is subject to two
forces: the weight W3 and the tension T,. The chain is supposed to be inextensible so
that | Ty = [Tz

=~

3. Fall of the chain from the edge of a table

In this second part, we approach the mathematical function cosh differently by studying another
classical physics problem: the dynamics of a chain falling from the edge of a table.

3.1. Theoretical description

We consider a similar beaded chain, but with different characteristics: it is now composed of
Nieags = 229 beads so that its length is now L = 982 mm and its mass is M = 22 g. The chain
is fully stretched and lying on a table so that its direction is perpendicular to the edge of the
table.

One part of the chain is horizontal and lying on the table while the other part, of length
z(1), is hanging vertically off of the table (figure 5). We split the chain into two subsys-
tems: S; corresponds to the part of the chain in contact with the table and has a length of
L — z(t). The second subsystem is S, and is the part of the chain (of length z(#)) that is hanging
off.

The chain will start to move as soon as its hanging part z > zo, where zo is a threshold
length, and corresponds to the minimal length of the chain required to trigger the fall of the
entire chain by gravity. The start of the motion sets the reference time + = 0. We measured a
threshold length corresponding to 35 beads, or zp = 154 mm.

The amplitudes of the forces acting on S; are (see figure 5 for notations):

W, = —Mg (1 - %) its weight,

N, = —W, the normal reaction of the table, 5)
F, = —kN, the friction exerted by the table,
Ty the tension exerted by S,

with & the coefficient of friction [10]. For ¢ > 0, the chain is moving so that k = y, < i, where
e and pig = ‘ ,% ‘ are the coefficients of kinetic and static friction, respectively. The latter can be

6
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Figure 6. Chain falling from a table. Comparison between experimental points (blue
circles) of z(7) obtained by manually tracking the lowest bead of the chain, and theoretical
expectation (dashed black line) during the fall of the chain (equation (8)).

estimated with zg. The equilibrium before motion (r < 0) givesN; + Wy =0and F; + T, =0
for Sy and W, + T, = 0 for S,. Moreover, assuming the chain is inelastic, we have |T}| = |T5|.
; _|B| W _
Finally, g = ‘N—l‘ =W o~ 0.186.
Even if the system is not conservative, it is convenient to use the work energy theorem on
the whole system:

d&

where £ is the total energy including kinetic energy K = % (%)2 and the potential energy

U= [—pgzdz= —%zz with the assumption U(z = 0) = 0. The dissipated power due to

friction on the table is P = F1§ = —Mgpuy (1 — £) £. Finally, we get a second-order differ-

ential equation:

dz  z
@ - ﬁ = —&Mk, @)

where 7 =,/ m is the characteristic time of the fall. Since the chain falls without initial
velocity and having z(0) = zo, we obtain

Uk t Hxk
1 = — L ) cosh (7) + L, 8
1) <ZO T+ ) - T+ (3

where we have assumed that z(0) = zo + €, with € an infinitely small positive quantity, so that
the motion is already initiated at time 7 = 0.
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Figure 7. Time-lapse of the chain falling. The time is indicated in frame; the total fall
lasts one second. For sake of visibility, we painted two beads in black. Starting from
frame 31, we have indicated the vertical axis with dashed red lines to emphasize the fact
that the chain is snaking while falling.

3.2. Experimental data

‘We manually tracked the lowest bead of the chain (which was painted in black). The theoreti-
cal fitting of the graph z = f(¢) gave py = 0.1672 +0.0001 (figure 6) and we then deduced
7 =0.293 £0.002s, where we have used a value of 9.8 m -s~2 for g. As expected, note
that 1y < . On figure 6, we see a slight discrepancy between the experimental data and
the theoretical expectation. This is due to experimental uncertainty but also to the theoretical
modeling which assumed a constant coefficient of kinetic friction. The coordinates measure-
ment is actually complicated as soon as the chain’s velocity exceeds the frame rate acquisition
(At = 1/605s): this is the case when % >4 =~03m- s~! (frames 30-60 in figure 7).
We also noticed that the chain snakes horizontally starting from frame 31, maybe due to the
chamfer of the table edge.

4. Conclusions

Through this study, we have illustrated the importance of the hyperbolic cosine function
in simple mechanics. The experiments carried out deal with static and dynamic studies of
the same system: a chain characterized by its mass M and its length L. They have allowed
us to characterize a shape by a characteristic length £ = %Cg"sa" and a movement by a

8



characteristic time 7 = 4/ m In the first experiment, the chain is maintained by posts at

an angle o and a tension 7y while in the second it falls by rubbing on a table with a coefficient
of kinetic friction 1. In both cases the chain is subjected to gravity g so that the acceleration
T% depends on the characteristics of the chain (its mass M), on the boundary conditions (7

and ap) and on the support’s characteristics (i ): T% = w This relates the universal
character of gravity in both experiments: static or dynamical.

The two experiments presented above can be easily conducted at home since they do not
require any specialized equipment: they just require a camera, a chain, a measuring tape, a
kitchen weighting scale and a personal computer. Analyses can be achieved thanks to free
software: ImagelJ for the tracking, and Python for the numerical solving of equations. This
study is thus appropriate for undergraduate students.
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