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Abstract

We rigorously prove the passage from a Lotka-Volterra reaction-
diffusion system towards a cross-diffusion system at the fast reaction
limit. The system models a competition of two species, where one spe-
cies has a more diverse diet than the other. The resulting limit gives
a cross-diffusion system of a starvation driven type. We investigate
the linear stability of homogeneous equilibria of those systems and
rule out the possibility of cross-diffusion induced instability (Turing
instability). Numerical simulations are included which are compatible
with the theoretical results.
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1 Introduction

1.1 Problem setting

We consider a semilinear reaction-diffusion system that models a competition dy-
namics when two species have partially different diets. The population densities of
the two species are denoted by u = u(t, x) and v = v(t, x). The species u has a
more diverse diet and is divided into two substates ua = ua(t, x) and ub = ub(t, x)
so that u = ua + ub. The system is parametrized by a small parameter ε > 0 and
written as



















∂tu
ε
a = da∆u

ε
a + fa(u

ε
a) +

1

ε
Q(uεa, u

ε
b, v

ε ), in (0,+∞)× Ω,

∂tu
ε
b = db∆u

ε
b + fb(u

ε
b, v

ε)− 1

ε
Q(uεa, u

ε
b, v

ε ), in (0,+∞)× Ω,

∂tv
ε = dv∆v

ε + fv(u
ε
b, v

ε), in (0,+∞)× Ω,

(1.1)

where Ω ⊂ R
N, N ≥ 1, is a bounded domain with a smooth boundary, and da, db

and dv are diffusivities for the three populations. The unknown solutions depend
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on the parameter ε and we denote it explicitly if needed. The above system is
complemented with nonnegative initial data

uεa(0, x) = uina (x) , uεb(0, x) = uinb (x) , vε(0, x) = vin(x) , x ∈ Ω , (1.2)

and zero flux boundary conditions,

da∇uεa · σ = db∇uεb · σ = dv∇vε · σ = 0 , on (0,+∞)× ∂Ω , (1.3)

where σ denotes the outward unit normal vector on the boundary ∂Ω.
In this paper, we explore the effect of diet diversity in a competition context

and show the emergence of cross-diffusion triggered by the different substates ua
and ub, as ε → 0. The competition dynamics is given in the reaction terms. The
reaction terms of order one are given by

fa(ua) := ηaua

(

1− ua
a

)

,

fb(ub, v) := ηbub

(

1− ub + v

b

)

, (1.4)

fv(ub, v) := ηvv
(

1− ub + v

b

)

,

where a, b > 0 are carrying capacities supported by two different groups of resources
and ηa, ηb, and ηv > 0 are the intrinsic growth rates of ua, ub, and v, respectively.
The competition of the two species, u and v, is for the resource b. However, the
species u has a diverse diet and can survive by consuming the other resource a
without competition. To model such a competition using a Lotka-Volterra type
system, the species u is divided into two substates ua and ub depending on their
diets. In the above reaction terms, ua takes a logistic equation type reaction, and ub
and v take Lotka-Volterra competition equations type reactions as given in (1.4).
Since competition exists only partially for the species u, the competition is weak
for u. However, the species v competes with u for all of its resources and hence the
competition is not weak in general and the competition result may depend on the
parameter ε (see Sections 4 and 5).

The individuals of the species u may freely change the type of food depending
on the availability, which is modelled by the fast reaction term of order ε−1,

1

ε
Q(ua, ub, v) :=

1

ε

[

φ
(ub + v

b

)

ub − ψ
(ua
a

)

ua

]

, ε > 0 . (1.5)

In this reaction term, ǫ−1 φ
(ub + v

b

)

is the conversion rate for individuals in the

state ub which switch to the other state ua, and ǫ
−1 ψ

(ua
a

)

is the conversion rate

in the other direction. The conversion rate φ
(

ub+v
b

)

is assumed as a function of the
starvation measure ub+v

b for the populations ub and v. If the resource b dwindles or
the population ub+ v increases, the resource b becomes scarce relatively, and more
individuals of population ub will convert to ua and consume the other resource a.
Hence, we assume that φ is an increasing function of the starvation measure (see [22]
for more discussion on the starvation measure). In the same way, the conversion
rate ψ is a function of the starvation measure ua

a for the population ua and is
assumed to be increasing. For this reason, it makes sense to call the conversion
dynamics given by (1.5) a starvation-driven conversion, which eventually results in
the starvation-driven cross-diffusion after taking the limit ε → 0 (see [8, 9]). More
specifically, we assume the following starvation-driven conversion hypothesis
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(H1) φ and ψ in (1.5) are increasing functions belonging to C1([0,+∞)); in addi-
tion, there exist strictly positive constants δψ, δφ, Mφ′ , and Mψ′ such that,
for all x ≥ 0,

ψ(x) ≥ δψ > 0, φ(x) ≥ δφ > 0, φ′(x) ≤Mφ′ , and ψ′(x) ≤Mψ′ .

The main result of the paper is that, as ε→ 0, the (unique) solution (uεa, u
ε
b, v

ε)
of the initial boundary value problem (1.1)–(1.5) converges to a limit (ua, ub, v) and
this limit is a weak solution of the reaction cross-diffusion system

{

∂tu = ∆(daua + dbub) + fa(ua) + fb(ub, v), in (0,+∞)× Ω,

∂tv = dv∆v + fv(ub, v), in (0,+∞)× Ω,
(1.6)

where ua and ub are (uniquely) determined by the nonlinear system

ua + ub = u and Q(ua, ub, v) = 0, (1.7)

complemented by the initial data,

u(0, x) = uin(x) := uina (x) + uinb (x) , v(0, x) = vin(x) , x ∈ Ω , (1.8)

and the zero flux boundary condition,

∇(daua + dbub) · σ = dv∇v · σ = 0 , in (0,+∞)× ∂Ω . (1.9)

Note that the zero flux boundary conditions in (1.3) are equivalent to the homo-
geneous Neumann boundary conditions,

∇uεa · σ = ∇uεb · σ = ∇vε · σ = 0 , on (0,+∞)× ∂Ω

(see [20] for similar diffusion operator for a single species with two phenotypes).
However, after taking the singular limit, we obtain the zero flux boundary conditions
(1.9), but not the homogeneous Neumann boundary conditions.

If da = db, the diffusion for the species u given in (1.6) is the homogeneous
linear diffusion. However, the diffusivity of a species usually depends on its food
(or prey) and da 6= db in general. In that case (da 6= db), the diffusion for the total
population in (1.6) contains cross-diffusion dynamics depending on the distribution
of the three populations groups, ua, ub and v, through the relations in (1.7). This
explains the starvation-driven diffusion for the specific case of the paper, a concept
formally introduced by Cho and Kim [7]. Funaki et al. [18] derived a macroscopic
cross-diffusion model from a system of two phenotypes and a signaling chemical in
the context of chemotaxis.

The proof of the convergence as ε → 0 is rigorously obtained via a priori
estimates for uεa, u

ε
b, and v

ε. The main tool is the energy (or entropy) functional

E(ua, ub, v) :=
∫

Ω

h1(ua) dx+

∫

Ω

h2(ub, v) dx , (1.10)

where

h1(ua) :=

∫ ua

0

ψ
(z

a

)

z dz, and h2(ub, v) :=

∫ ub

0

φ
(z + v

b

)

z dz . (1.11)
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Notice here that the assumption (H1) implies that h1 is positive, increasing, and
convex, and that h2 is positive, increasing in both variables, and convex with respect
to the first variable. Therefore, the name entropy for the function given in (1.10)
is justified. We refer to [10] and [15] for the use of such entropies in the context
of triangular cross-diffusion systems (that is, systems in which only one of the two
equations includes a cross-diffusion term). For more general systems, we refer to
[5, 6, 12, 14, 21, 2] among other works.

Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a sub-
sequence and conclude that the limit is a weak solution of (1.6)–(1.9). To use the
energy estimate, we take initial values with bounded energy, which is our second
hypothesis

(H2) uina ∈ L1
+(Ω), u

in
b ∈ L1

+(Ω), v
in ∈ L∞

+ (Ω), and E(uina , uinb , vin) <∞.

Remark 1. Under Hypothesis (H2), the initial data uina , u
in

b , v
in for the reaction dif-

fusion system (1.1) do not satisfy a priori the nonlinear equation Q(uina , u
in

b , v
in) = 0

in (1.7). Thus, the appearance of an initial layer is expected (see also Section 5).

We conclude this introduction proposing a formal derivation of (1.1) out of a
microscopic system. We shall consider problems left open here (such as regularity,
uniqueness, stability and long time asymptotic behaviour of the macroscopic solu-
tions) in a forthcoming paper, where a more general class of cross-diffusion system
is analysed.

The rest of the paper is organised as follows. Section 2 is devoted to the state-
ment of the existence result. In Section 3.1, we prove a priori estimates, which are
the preliminary ingredients for the proof of the existence result obtained in Sec-
tion 3.2. The paper concludes with the existence and linear stability analysis of
trivial and non-trivial spatially homogeneous steady states, in Section 4 and Ap-
pendix A, with a particular emphasis put on the coexistence state. Some numerical
tests in Section 5 illustrate the linear stability analysis. The discussion in Section 6
completes the article.

1.2 Formal derivation of the reaction-diffusion system with

fast switching

We explain here how the mesoscopic scale model (1.1) is obtained at a formal level
from a microscopic scale model in which the resources inducing the competition
explicitly appear. Consider























































∂ts1 =
1

δ

[

r1s1

(

1− s1
A1

)

− p1s1U1

]

∂ts2 =
1

δ

[

r2s2

(

1− s2
A2

)

− p2s2U2 − pV s2V
]

∂tU1 = D1∆U1 + k1p1s1U1 +
1

ε

[

Φ
(p2U2 + pV V

s2

)

U2 −Ψ
(p1U1

s1

)

U1

]

∂tU2 = D2∆U2 + k2p2s2U2 −
1

ε

[

Φ
(p2U2 + pV V

s2

)

U2 −Ψ
(p1U1

s1

)

U1

]

∂tV = DV∆V + kV pV s2V,

(1.12)

where δ > 0 is the microscopic reaction time scale and ε is the mesoscopic one (hence
δ ≪ ε≪ 1). These equations describe the time evolution of a small ecosystem with
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two prey population densities (or vegetal resources), s1 and s2, and two predator
population densities (or harvesters of the vegetal resources), U and V . Moreover, the
population U is composed of two subpopulations U1 and U2 depending on the prey
they consume, i.e., s1 and s2, respectively. The prey species si follows the logistic
dynamics with a carrying capacity Ai and an intrinsic growth rate ri. The predator
species consume a certain amount of preys which is proportional to the prey density
with proportionality factors p1, p2 and pV . The harvested prey mass is converted to
the predator mass with conversion rates k1, k2 and kV . The subpopulations U1 and
U2 convert to each other depending on the availability of the prey. The two functions
Φ and Ψ are the conversion rates which are respectively increasing functions of the
starvation measures p2U2+pV V

s2
and p1U1

s1
. The other species V consumes only the

second prey s2. Hence, the active competition is only between V and U2, while U1

competes with V passively (via conversion). Finally, since the dispersal rate of a
predator species usually depends on the nature of its prey, D1 6= D2 in general.

Remark 2. The expression (1.12) has no diffusion terms for the prey species s1
and s2. Since growth is the dominant factor for plant species and their dispersal
is negligible, this is especially relevant when the prey species are vegetal resources.
Mathematically, this choice yields an explicit form in the singular limits δ → 0, see
(1.13). Adding diffusion terms in the prey species equations could result in a less
explicit formulas.

The mescoscopic system with fixed ε > 0 is obtained in the limit δ → 0. This is
to say that the time-scale for the reaction of the resources s1 and s2 is much faster
than all other processes. In simple predator-prey models this corresponds to a fast
dynamics of the prey which has been studied more carefully in [30, 24, 28].

In this formal limit δ → 0, we find

s1

(

r1 −
r1s1
A1

− p1U1

)

= 0 =⇒ s1 = 0 or s1 = A1

(

1− p1U1

r1

)

,

and

s2

[

r2
(

1− s2
A2

)

− p2U2 − pV V
]

= 0 =⇒ s2 = 0 or s2 = A2

(

1− p2U2 + pV V

r2

)

.

Only the nontrivial case, s1 6= 0 6= s2, is meaningful (since s1 = 0 and s2 = 0
correspond to unstable equilibria), and we obtain two relations

p1U1

s1
=
r1
s1

− r1
A1

and
p2U2 + pV V

s2
=
r2
s2

− r2
A2

.

Therefore, the last three equations in (1.12) turn into



























∂tU1 = D1∆U1 + A1k1p1U1

(

1− p1U1

r1

)

+
1

ε

[

ΦU2 −ΨU1

]

∂tU2 = D2∆U2 + A2k2p2U2

(

1− p2U2+pV V
r2

)

− 1

ε

[

ΦU2 −ΨU1

]

∂tV = DV∆V +A2kV pV V
(

1− p2U2+pV V
r2

)

,

(1.13)

where the conversion rates Φ and Ψ read as

Φ = Φ
(r2
s2

− r2
A2

)

and Ψ = Ψ
(r1
s1

− r1
A1

)

,
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and the Lotka-Volterra reaction dynamics of competition type naturally appears.
Now we consider the relationship between the variables in (1.1) and in (1.13).

First, we define

uεa := U1, u
ε
b := U2, v

ε :=
pV
p2
V ,

and keep the same diffusivity coefficients

da := D1, db := D2, dv := DV .

Then, the coefficients in the Lotka-Volterra type competition dynamics, fa, fb and
fv, are given as

ηa := p1A1k1, ηb := p2A2k2, ηv := pV A2kV , a :=
r1
p1
, b :=

r2
p2
. (1.14)

Finally, the mesoscopic conversion rates are as follows

φ(x) := Φ
( r2
A2

x

1− x

)

, ψ(x) := Ψ
( r1
A1

x

1− x

)

. (1.15)

After replacing variables, coefficients and functions with the above new ones, system
(1.13) becomes our system (1.1).

Remark 3. (i) The conversion rates of the microscopic model, Φ and Ψ, are func-
tions of the starvation measures p2U2+pV V

s2
and p1U1

s1
, instead of simply U2+V

s2
and

U1

s1
, in order to take into account the difference in the harvesting rates p2 and pV .

(ii) The mesoscopic conversion rates φ and ψ in (1.15) are increasing functions,
since Φ and Ψ are chosen to be increasing functions. (iii) It is worth noticing that
the carrying capacities a and b for the predator species are proportional to the growth
rates ri’s of the prey species and that the prey carrying capacities Ai’s are also in-
volved in deciding φ and ψ (see (1.14) and (1.15)). (iv) The macroscopic system
reduces to the classical Lotka-Volterra system of competition type with linear diffu-
sion, whenever the conversion rates φ and ψ are both constant, (see the discussion
section 6).

2 Statement of the main result

Before stating our main result in Theorem 2.2 below, we introduce some notations
that will be used in the sequel, and the definition of the very weak solutions of
(1.6)–(1.9), with the reaction terms in (1.4).

We denote

Ckc := Ckc ([0,+∞)× Ω̄)

:=
{

u = u(t, x) : ∃T > 0 s. t. u ∈ Ck
(

[0, T )× Ω̄
)

and suppu ⋐ [0, T )× Ω̄
}

,

and, for all p ∈ [1,+∞),

Lploc := Lploc((0,+∞)× Ω) :=
{

u = u(t, x) : ∀T > 0 , u ∈ Lp(ΩT )
}

,

with ΩT := (0, T )× Ω. Similarly, for p = +∞,

L∞
loc := L∞

loc((0,+∞)× Ω) :=
{

u = u(t, x) : ∀ T > 0 , ess sup
(t,x)∈ΩT

|u(t, x)| < +∞
}

.
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It is worth noticing here that, due to hypothesis (H1), the function

q(ub, u, v) := Q(u− ub, ub, v) = φ
(ub + v

b

)

ub − ψ
(u− ub

a

)

(u− ub) , (2.1)

defined for (ub, u, v) ∈ [0, u]× (0,+∞)× (0,+∞), satisfies (for given u > 0, v > 0)

∂ub
q(ub, u, v) = φ

(ub + v

b

)

+
ub
b
φ′
(ub + v

b

)

+ψ
(u− ub

a

)

+
u− ub
a

ψ′
(u− ub

a

)

> 0

and
q(0, u, v) < 0 , q(u, u, v) > 0 .

Hence, for any given (u, v) ∈ R
2
+, there exists a unique u

∗
b(u, v) ∈ (0, u) zero of q, and

thus a unique solution of the nonlinear system (1.7) is well-defined. Furthermore,
the implicit function theorem guarantees the continuity (and even the C1 character)
of u∗b with respect to (u, v).

Definition 2.1. Let Ω be a smooth bounded domain of R
N, N ≥ 1. Assume uin ∈

L1
+(Ω), and v

in ∈ L∞
+ (Ω) be nonnegative initial densities. We say that the pair of

nonnegative functions (u, v) is a very weak solution of (1.6)–(1.9) over (0,+∞)×
Ω, with reaction terms (1.4), if the following conditions are satisfied

• (u, v) belongs to L2
loc × L∞

loc,

• for all test functions ξ1, ξ2 ∈ C2
c , with ∇ξ1 ·σ = ∇ξ2 ·σ = 0 on [0,+∞)×∂Ω,

and for ua, ub defined as the unique solution of (1.7), a.e. on (0,+∞)× Ω,
it holds

−
∫ +∞

0

∫

Ω

(∂tξ1)u dxdt −
∫

Ω

ξ1(0, ·)uindx−
∫ +∞

0

∫

Ω

∆ξ1
(

daua + dbub
)

dxdt

=

∫ +∞

0

∫

Ω

ξ1
(

fa(ua) + fb(ub, v)
)

dx dt , (2.2)

and

−
∫ +∞

0

∫

Ω

(∂tξ2) v dxdt−
∫

Ω

ξ2(0, · ) vin dx− dv

∫ +∞

0

∫

Ω

∆ξ2 v dxdt

=

∫ +∞

0

∫

Ω

ξ2 fv(ub, v) dxdt . (2.3)

We observe that all terms in (2.2)–(2.3) are well-defined thanks to the as-
sumptions (H2) on the initial densities uin, vin, to the L2 integrability of the sub-
population densities ua, ub and to the L∞ bound for v. Remember that the logistic
structure of the reaction functions fa, fb, fv involves at most quadratic nonlinear-
ities.

Theorem 2.2. Let Ω be a smooth bounded domain of RN, N ≥ 1. Assume (H1) and
(H2) on parameters and initial data uina , u

in

b , vin, respectively. We denote (uεa, u
ε
b, v

ε)
the unique global strong (for t > 0) solution of system (1.1)–(1.3) with those ini-
tial data. Then, the triplet (uεa, u

ε
b, v

ε) converges a.e. (t, x) ∈ (0,+∞) × Ω (up to
extraction of a subsequence) towards a nonnegative triplet (ua, ub, v), as ε → 0.
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Moreover, the functions u := ua + ub, v satisfy the nonlinear system (1.7), for a.e.
(t, x) ∈ (0,+∞) × Ω, and the following bounds: u ∈ Lq(ΩT ) for q = 2 + 2/N if
N ≥ 3, q < 3 if N = 2 and q = 3 if N = 1; v ∈ L∞(ΩT ); |∇u| ∈ L2(ΩT ); and
for the same previous q, |∇v| ∈ L2q(ΩT ); ∂xi,xj

v , ∂tv ∈ Lq(ΩT ), i, j = 1, . . . ,N.
Finally, (u, v) is a very weak solution of the macroscopic system (1.6)–(1.9) with
the reaction terms (1.4), in the sense of Definition 2.1.

3 Proof of the main Theorem

We first recall that for any ε > 0, there exists a unique global strong (for t > 0)
solution (uεa, u

ε
b, v

ε) solution to system (1.1)–(1.3), under the assumption on the
initial data of Theorem 2.2. We refer for example to [13, 29] for obtaining such a
result.

3.1 A priori estimates

In this section we shall obtain a priori estimates on the subpopulation densities
uεa, u

ε
b, on the total population densities uε := uεa+ uεb and v

ε, and on Q(uεa, u
ε
b, v

ε).
More specifically, we take advantage of the triangular structure of the system that
give us a priori estimates on the density vε and its derivatives (see Lemma 3.1). The
reaction functions fa and fb of competition type allow us to control the total mass
∫

Ω
uε(t) dx, and to get an L2(ΩT ) estimate on uε (see Lemma 3.2). The latter will be

employed in Lemma 3.3 to obtain estimates on ∇uεa, ∇uεb and Q(uεa, u
ε
b, v

ε), through
the use of the energy functional (1.10)–(1.11). In addition, the triplet (uεa, u

ε
b, v

ε)
will be shown to have finite energy E(T ) as well, for all T > 0.

Hereafter, all constants C and CT are strictly positive and may depend on Ω,
the initial data uina , u

in
b , v

in, the coefficients in system (1.1), the transition functions
φ, ψ and on T , but never on ε. They may change also from line to line in the
computations.

Lemma 3.1. Under the hypothesis of Theorem 2.2, the following statements hold:

(i) there exists a constant C > 0 such that for all ε > 0

‖vε‖L∞((0,+∞)×Ω) 6 C ; (3.1)

(ii) for all q ∈ (1,+∞) there exists a constant C(q) > 0 such that, for all ε > 0,
T > 0 and all i, j = 1, ..,N,

‖∂tvε‖Lq(ΩT ) + ‖∂xi,xj
vε‖Lq (ΩT ) 6 C(q)(1 + ‖uεb‖Lq(ΩT )) ; (3.2)

(iii) for all q ∈ (1,+∞) there exist C(q,N) > 0 and C(q) > 0 such that, for all
ε > 0 and all T > 0,

‖∇vε‖2qL2q(ΩT ) ≤ C(q,N)(1 + ‖uεb‖qLq(ΩT )) + C(q)T. (3.3)

Remark 4.

In the sequel, the value of q in (3.2)–(3.3) will be first chosen equal to 2 (see
Lemma 3.2), and then to a different number after Corollary 3.4.
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Proof. It is easily seen that

0 6 vε(t, x) 6 K := max
{

‖vin‖L∞(Ω) ; b
}

, for a.e. (t, x) ∈ (0,+∞)×Ω . (3.4)

Indeed, by the existence result of strong solution for (1.1), we know that the nonneg-
ativity of vε is preserved in time. Concerning the upper bound in (3.4), it is obtained
by multiplying the equation for vε in (1.1) by (vε − K)+ := max{0, vε − K} and
integrating over Ω, to obtain for all t > 0,

∫

Ω

(vε(t)−K)2+ dx ≤
∫

Ω

(vin,ε −K)2+ dx = 0 .

Next, by the maximal regularity property of the heat equation (see [25] and the
references therein), for all q ∈ (1,+∞) there exists a strictly positive constant C,
which only depends on Ω and q, such that for all i, j = 1, ..,N,

‖∂tvε‖Lq(ΩT ) + ‖∂xi,xj
vε‖Lq (ΩT ) ≤ C(‖fv(uεb, vε)‖Lq (ΩT ) + ‖vin‖Lq (Ω)

)

≤ C
(

1 + ‖uεb‖Lq(ΩT )

)

, (3.5)

so that estimate (3.2) holds. Then, thanks to the Gagliardo-Nirenberg inequality
[27], for all q ∈ (1,+∞), there exists C(q) > 0, such that, for all t > 0 and
i = 1, . . .N, we have

‖∂xi
vε(t)‖L2q(Ω) ≤ C(q)

N
∑

j=1

‖∂xi,xj
vε(t)‖1/2Lq(Ω) ‖v

ε(t)‖1/2L∞(Ω) + C(q)‖vε(t)‖L∞(Ω) .

Integrating the above inequality over (0, T ) and using (3.1) and (3.5), we get es-
timate (3.3).

Lemma 3.2. Under the hypothesis of Theorem 2.2, for all T > 0 there exists
CT > 0 such that for all ε > 0 the following estimates hold:

sup
t∈ [0,T ]

∫

Ω

(uεa + uεb)(t) dx ≤ CT and ‖uεa + uεb‖L2(ΩT ) ≤ CT . (3.6)

Proof. Adding the first two equations in (1.1) and using the positivity of uεa, u
ε
b, v

ε,
we get

∂t(u
ε
a + uεb) ≤ da∆u

ε
a + db∆u

ε
b + ηau

ε
a

(

1− uεa
a

)

+ ηbu
ε
b

(

1− uεb
b

)

(3.7)

≤ da∆u
ε
a + db∆u

ε
b +

1

4
(aηa + bηb) . (3.8)

Then, integrating (3.8) over Ω, the inequality becomes

d

dt

∫

Ω

(

uεa + uεb
)

(t) dx ≤ C ,

implying, for all t in [0, T ], that

‖uεa(t) + uεb(t)‖L1(Ω) ≤ ‖uina + uinb ‖L1(Ω) + C T . (3.9)
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In order to obtain the L2(ΩT ) estimate for uεa+u
ε
b, we integrate inequality (3.7)

first over Ω and then over (0, t), for t ∈ (0, T ), to obtain

∫

Ω

(uεa + uεb)(t) dx +
ηa
a

∫

Ωt

(uεa)
2

dx dt+
ηb
b

∫

Ωt

(uεb)
2

dx dt

≤ ‖uina + uinb ‖L1(Ω) + C‖uεa + uεb‖L1(ΩT ) .

The second estimate in (3.6) follows, using the first one.

Lemma 3.3. Under the hypothesis of Theorem 2.2, for all T > 0, there exists
CT > 0 such that, for all ε > 0, the global solution of (1.1) satisfies

E(uεa, uεb, vε)(T ) + ‖∇uεa‖2L2(ΩT ) + ‖∇uεb‖2L2(ΩT ) +
1

ε
‖Q(uεa, u

ε
b, v

ε)‖2L2(ΩT )

≤ CT .
(3.10)

Proof. We shall analyse the evolution of E , along the trajectories of the solution of
(1.1). Thus, from the first equation in (1.1) and assumption (H1), we have

d

dt

∫

Ω

h1(u
ε
a) dx =

∫

Ω

(∂tu
ε
a)u

ε
a ψ
(uεa
a

)

dx

= −da
∫

Ω

[

ψ
(uεa
a

)

+
uεa
a
ψ′
(uεa
a

)]

|∇uεa|2 dx

+

∫

Ω

uεa fa(u
ε
a)ψ

(uεa
a

)

dx+
1

ε

∫

Ω

uεa ψ
(uεa
a

)

Qε dx

≤ −daδψ
∫

Ω

|∇uεa|2 dx

+ C

∫

Ω

(uεa)
2
(

1− uεa
a

)

1{uε
a≤a}

dx+
1

ε

∫

Ω

uεaψ
(uεa
a

)

Qεdx.

(3.11)

Concerning the second term in the energy (1.10), we see that

d

dt

∫

Ω

h2(u
ε
b, v

ε) dx

=

∫

Ω

(∂tu
ε
b)u

ε
b φ
( uεb + vε

b

)

dx+

∫

Ω

(∂tv
ε)∂vh2(u

ε
b, v

ε) dx

=: I1 + I2 .

(3.12)

Using the second equation in (1.1), I1 rewrites as follows

I1 ≤ −db
∫

Ω

|∇uεb|2
[

φ

(

uεb + vε

b

)

+
uεb
b
φ′
(

uεb + vε

b

)]

dx

− db

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

∇uεb · ∇vε dx

+ C

∫

Ω

(uεb)
2

(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx

− 1

ε

∫

Ω

uεb φ

(

uεb + vε

b

)

Qε dx .

(3.13)
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On the other hand, observing that

∂vh2(ub, v) =

∫ ub

0

z

b
φ′
(

z + v

b

)

dz = ubφ

(

ub + v

b

)

−
∫ ub

0

φ

(

z + v

b

)

dz , (3.14)

the positivity of φ′ implies that ∂vh2 is positive and

∫

Ω

∂vh2(u
ε
b, v

ε) fv(u
ε
b, v

ε) dx

≤ ηv

∫

Ω

∂vh2(u
ε
b, v

ε) vε
(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx

≤ ηv

∫

Ω

uεbφ

(

uεb + vε

b

)

vε
(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx .

Therefore, we obtain

I2 ≤ −dv
∫

Ω

∂vvh2(u
ε
b, v

ε) |∇vε|2 dx− dv

∫

Ω

∂vub
h2(u

ε
b, v

ε)∇uεb · ∇vε dx

+ ηv

∫

Ω

uεbφ

(

uεb + vε

b

)

vε
(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx .

(3.15)

Computing from (3.14)

∂vub
h2(ub, v) =

ub
b
φ′
(

ub + v

b

)

,

and plugging estimates (3.13) and (3.15) into (3.12), we end up with the estimate

d

dt

∫

Ω

h2(u
ε
b, v

ε) dx ≤− db

∫

Ω

[

φ

(

uεb + vε

b

)

+
uεb
b
φ′
(

uεb + vε

b

)]

|∇uεb|2 dx

− dv

∫

Ω

∂vvh2(u
ε
b, v

ε)|∇vε|2 dx

− (db + dv)

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

∇uεb · ∇vε dx

+ C

∫

Ω

(uεb)
2

(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx

+ ηv

∫

Ω

uεbφ

(

uεb + vε

b

)

vε
(

1− uεb + vε

b

)

1{uε
b
+vε≤b} dx

− 1

ε

∫

Ω

uεb φ

(

uεb + vε

b

)

Qε dx .

(3.16)

Next, using the positivity of φ′ again, we estimate the third term in (3.16) with a
weight η > 0 as

− (db+dv)

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

∇uεb · ∇vε dx

≤ (db+dv)
η

2

∫

Ω

uεb
b
φ′
(

uεb+v
ε

b

)

|∇uεb|2 dx+
db+dv
2η

∫

Ω

uεb
b
φ′
(

uεb+v
ε

b

)

|∇vε|2 dx.
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Thus, choosing η ∈ (0, 2db(db + dv)
−1), gives C(η) := (db − (db + dv)

η
2 ) > 0, and

inequality (3.16) becomes

d

dt

∫

Ω

h2(u
ε
b, v

ε) dx ≤ −dbδφ
∫

Ω

|∇uεb|2 dx− dv

∫

Ω

∂vvh2(u
ε
b, v

ε)|∇vε|2 dx

− C(η)

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

|∇uεb|2 dx

+
(db + dv)

2η

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

|∇vε|2 dx

+ C − 1

ε

∫

Ω

uεb φ

(

uεb + vε

b

)

Qε dx .

(3.17)

Finally, by assumption (H1), the derivative

∂vvh2(ub, v) =
ub
b
φ′
(

ub + v

b

)

−
[

φ

(

ub + v

b

)

− φ
(v

b

)

]

=

∫ ub+v

v

[

φ′
(

ub + v

b

)

− φ′
(z

b

)

]

dz

b

satisfies
|∂vvh2(ub, v)| ≤ 2Mφ′

ub
b
.

Therefore, adding (3.11) and (3.17), and using the boundedness of φ′ again, we
arrive at the following estimate for the time derivative of the energy

d

dt
E(uεa(t), uεb(t), vε(t)) ≤ −daδψ

∫

Ω

|∇uεa|2 dx− dbδφ

∫

Ω

|∇uεb|2 dx

− C(η)

∫

Ω

uεb
b
φ′
(

uεb + vε

b

)

|∇uεb|2 dx (3.18)

+ C‖uεa + uεb‖L2(Ω)‖∇vε‖2L4(Ω) −
1

ε

∫

Ω

(Qε)
2dx+ C.

Integrating in time over [0, T ] the latter inequality, estimate (3.10) is proved by the
means of Lemma 3.1 (with q = 2), Lemma 3.2 and the boundedness of the initial
energy.

We conclude this section by giving improved estimates from interpolation ar-
guments.

Corollary 3.4. Under the hypothesis of Theorem 2.2, for all T > 0, the following
estimates hold:

‖uεa + uεb‖L2

(

[0,T ];H1(Ω)
) 6 CT , (3.19)

and
‖uεa + uεb‖Lq(ΩT ) 6 CT , (3.20)

where

q :=

{

2 + 2/N if N > 2,

3, if N = 1.
(3.21)

and q < 3 if N = 2.
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Proof. The following argument is performed for the subpopulation uεa. It can be
applied similarly to uεb and thus to uεa + uεb.

Lemma 3.2 and 3.3 give that uεa is bounded in L2([0, T ]; H1(Ω)). Thus, by the
Sobolev embedding theorem, we have that uεa is bounded in L2([0, T ]; LN∗

(Ω)),
with N∗ = 2N

N−2 if N > 2, N∗ ∈ [2,+∞) if N = 2 and N∗ = ∞ if N = 1. Since we

also know that uεa is bounded in L∞([0, T ]; L1(Ω)), by interpolation we obtain that
uεa is bounded in Lq(ΩT ), with q as in (3.21).

Remark 5. At this point, using Lemma 3.1 again, we see that ∂tv
ε and ∇∇vε are

bounded in Lq(ΩT ).

3.2 End of the proof of the main result

End of the proof of Theorem 2.2. The proof is divided in four steps and uses com-
pactness to identify limits along subsequences. The first and the second one focus
on the identification of the limit (as ε → 0) of the densities vε and uε = uεa + uεb,
a.e. in [0, T ]× Ω, respectively. In the third step we obtain the a.e. convergence of
the subpopulation densities uεa, u

ε
b and we identify the obtained limit as the unique

solution of the nonlinear system (1.7). The convergence argument is also extended
globally in time by a diagonal argument. Finally, the proof is concluded in the
fourth step, taking the limit as ε tends to zero, in the very weak formulation of the
system satisfied by uε = uεa + uεb and v

ε.

First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density
vε given in Lemma 3.1 and to the boundedness of uεa + uεb in L2(ΩT ) obtained
in Lemma 3.2, we have that (vε)ε is bounded in L4([0, T ];W 1,4(Ω)) and (∂tv

ε)ε
is bounded in L2([0, T ];L2(Ω)). Therefore, by applying Rellich’s Theorem, there
exists a subsequence, still denoted vε, and v ∈ L4(ΩT ) such that, as ε→ 0,

vε(t, x) −→ v(t, x) , a.e. on [0, T ]× Ω . (3.22)

Moreover,
∇vε ⇀ ∇v in L4(ΩT ), (3.23)

and due to Lemma 3.1 again, v is nonnegative and belongs to L∞(ΩT ), while ∇v
lies in L4(ΩT ).

Second step. We rewrite the parabolic equation satisfied by the density uε = uεa+u
ε
b

as
∂tu

ε = ∆(da u
ε
a + db u

ε
b) + fa(u

ε
a) + fb(u

ε
b, v

ε) . (3.24)

Thanks to Corollary 3.4, we see that (uε)ε is uniformly bounded in L2([0, T ];H1(Ω))
and in L2+2δ(ΩT ) for some δ > 0, so that the reaction term in (3.24) is uniformly
bounded in L1+δ(ΩT ). Then (∂t(u

ε
a + uεb))ε is uniformly bounded in

L1+δ([0, T ];W−1,1+δ(Ω)). Thus, Aubin-Lions’ lemma (cf. [26]) yields a subsequence
(still denoted uε), and a function u ≥ 0, u ∈ L2(ΩT ), such that, as ε→ 0,

uε(t, x) = uεa(t, x) + uεb(t, x) −→ u(t, x) , a. e. in ΩT , (3.25)

where the nonnegativity of u follows from that of uε. Furthermore,

∇uε ⇀ ∇u in L2(ΩT ) , (3.26)
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and

‖u ‖L2(ΩT ) = lim
ε→ 0

‖ uεa + uεb ‖L2(ΩT ) 6 CT ,

‖∇u ‖L2(ΩT ) ≤ lim inf
ε→ 0

‖∇uε ‖L2(ΩT ) 6 CT .

Third step. The energy estimate (3.10) yields the estimate

w

w

w
φ
(uεb + vε

b

)

uεb − ψ
(uεa
a

)

uεa

w

w

w

L2(ΩT )
≤

√
εCT . (3.27)

Therefore,Q(uεa, u
ε
b, v

ε) converges to zero in L2(ΩT ), as ε→ 0, and (up to extraction
of a subsequence)

φ
(uεb + vε

b

)

uεb − ψ
(uεa
a

)

uεa −→ 0, a.e. in ΩT . (3.28)

It remains to prove the existence of the a.e. limit of subsequences of (uεa)ε, (u
ε
b)ε

and to obtain that this limit is, a.e. over ΩT , the unique solution of (1.7), corres-
ponding to the functions u and v obtained in (3.25) and (3.22), respectively.

Let us denote
(

u∗a(u, v), u
∗
b(u, v)

)

the unique solution of (1.7). Then, using the
function q defined in (2.1), we get

Q(uεa, u
ε
b, v

ε) = Q(uεa, u
ε
b, v

ε)−Q(u∗a(u
ε, vε), u∗b(u

ε, vε), vε)

= q(uεb, u
ε, vε)− q(u∗b(u

ε, vε), uε, vε)

= ∂ub
q(ζ, uε, vε) (uεb − u∗b(u

ε, vε)) ,

for some intermediate value ζ between uεb and u
∗
b(u

ε, vε). Hence by hypothesis (H1)
we obtain

|Q(uεa, u
ε
b, v

ε)| ≥ (δφ + δψ)|uεb − u∗b(u
ε, vε)| .

Thus by (3.28), |uεb − u∗b(u
ε, vε)| → 0 as ε → 0, a.e. in ΩT . Finally, the proved

convergence (3.25) and (3.22) and the continuity of u∗b with respect to its arguments,
yields the desired result, i.e.,

uεb → u∗b(u, v) , uεa = uε − uεb → u∗a(u, v) , ε→ 0 , a.e. in ΩT .

To conclude, let us remark that all the a.e. convergence results obtained so far
have been performed on [0, T ], for any arbitrary T > 0. Since (uεa, u

ε
b, v

ε) is defined
on [0,+∞), by extracting subsequences, these arguments can be replicated in the
time intervals [0, 2T ], [0, 3T ], and so on. Then by Cantor’s diagonal argument, the
convergences (3.22), (3.25) and (3.28), and the convergence of the pair (uεa, u

ε
b) to-

wards the solution of (1.7) are verified a.e. in (0,+∞)× Ω.

Fourth step. We shall prove now that (u, v) is a weak solution of (1.6), in the sense
of Definition 2.1. For this purpose, let us consider two test functions ξ1, ξ2 in C2

c ,
satisfying ∇ξ1 ·σ = ∇ξ2 ·σ = 0, on [0, T ]×∂Ω. Multiplying the equation satisfied by
uεa+u

ε
b by ξ1 and the third equation of (1.1) by ξ2 and integrating over (0,+∞)×Ω,

we get,

−
∫ ∞

0

∫

Ω

(∂tξ1) (u
ε
a + uεb) dx dt−

∫

Ω

ξ1(0)
(

uin,εa + uin,εb

)

dx =

∫ ∞

0

∫

Ω

∆ξ1
(

dau
ε
a + dbu

ε
b

)

dx dt+

∫ ∞

0

∫

Ω

ξ1
(

fa(u
ε
a) + fb(u

ε
b, v

ε)
)

dx dt ,

(3.29)
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and

−
∫ ∞

0

∫

Ω

(∂tξ2 ) v
ε dx dt−

∫

Ω

ξ2(0) v
in,ε dx =

dv

∫ ∞

0

∫

Ω

∆ξ2 v
ε dx dt+

∫ ∞

0

∫

Ω

ξ2 fv(u
ε
b, v

ε) dx dt .

(3.30)

Concerning the equation (3.29), the convergence results obtained in the previous
steps and the estimates in (3.6) allow us to pass to the limit as ε→ 0, in all the terms
of the equation, using Lebesgue’s dominated convergence theorem, thus obtaining
(2.2).

The same conclusion holds for equation (3.30). Indeed, the boundedness of vε

and its convergence (3.22), together with the estimates in (3.6), allow us to pass to
the limit in all terms of (3.30), using Lebesgue’s dominated convergence theorem
again, thus obtaining (2.3). The proof of Theorem 2.2 is now completed.

4 Linear stability analysis

In this section, we investigate the linear stability of spatially homogeneous steady
states of the macroscopic system (1.6)–(1.9), with reaction and fast reaction func-
tions given by (1.4) and (1.5), respectively. We shall also see the relationship
between the linear stability of the coexistence steady state at the mesoscopic and
macroscopic scale, as ε→ 0.

Let ψ and φ be conversion rates satisfying assumption (H1). We introduce the
following few notations for later use,

ψ1 = ψ(1), φ1 = φ(1) ,

and the parameter providing a criterion for the linear stability (see Theorem 4.1
and Proposition 4.2),

α :=
ψ1

φ1

a

b
> 0 . (4.1)

The pair (ū, v̄) ∈ R
2
+ is a spatially homogeneous steady state of the macroscopic

system if and only if ū = ūa + ūb and the triplet (ūa, ūb, v̄) satisfy the nonlinear
system

fa(ūa) + fb(ūb, v̄) = fv(ūb, v̄) = Q(ūa, ūb, v̄) = 0 . (4.2)

Extinction of u. From Q(ūa, ūb, v̄) = 0 and the strict positivity of φ and ψ, we
see that ūa = 0 if and only if ūb = 0: no extinction of a single subpopulation of the
species u is admitted. Thus, for ūa = ūb = 0, we obtain the trivial and semi-trivial
steady states

(ū1, v̄1) = (0, 0) and (ū2, v̄2) = (0, b) , (4.3)

corresponding to the total extinction of the two species in the ecosystem and to a
partial extinction, respectively.

Survival of u and extinction of v. The other steady states with ūa 6= 0 and
ūb 6= 0 are of main interest. The first case is with v̄ = 0. Denoting ūa = λa and
ūb = σ b, for λ, σ > 0, system (4.2) reduces to

ηaa λ(1− λ) + ηbb σ(1− σ) = 0 ,
λψ(λ)

σφ(σ)
=
b

a
. (4.4)
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Such a semi-trivial state always exists but the uniqueness is non-trivial. Indeed, the
second equation in (4.4) can be written equivalently as

σφ(σ)

φ1
= α

λψ(λ)

ψ1
. (4.5)

Due to assumption (H1), the functions Λ(λ) := λψ(λ)/ψ1 and Σ(σ) := σφ(σ)/φ1
are strictly increasing functions from 0 to +∞. Hence, for every λ > 0 there exists
a unique σ(λ) > 0 solving (4.5) and given by

σ(λ) = Σ−1(αΛ(λ)) . (4.6)

Plugging (4.6) into the left hand side equation in (4.4), the stationary states cor-
respond to the zeros of the function F below

F (λ) := ηaa λ(1 − λ) + ηbb σ(λ)(1 − σ(λ)) . (4.7)

Furthermore, by the competition structure, it follows that F is positive for small
enough λ and F (λ) → −∞ as λ→ +∞. Thus, the macroscopic system (1.4)–(1.7)
admits at least one semi-trivial equilibrium

(ū3, v̄3) = (aλ+ bσ, 0) , (4.8)

solution of system (4.4), with σ = σ(λ) uniquely determined by (4.6). Moreover, if
the equilibrium is unique, F is decreasing around the corresponding λ, i.e. F ′(λ) < 0.

In general it is possible to have several semi-trivial states of type (4.8). As an
example, take

a = b = 1, ηa = 0.2, ηb = 1, φ ≡ 1, ψ(x) =

{

0.1 if x ≤ 1.6,

0.3 otherwise.
(4.9)

The corresponding F (λ) is shown in Figure 1, from where we see that there exist
three semi-trivial states.

0 0.5 1 1.5 2
−0.2
−0.1

0
0.1
0.2

λ

F
(λ
)

Figure 1: Reaction term F (λ) for the example (4.9).

We will discuss the uniqueness issue in Proposition 4.2, where a sufficient condi-
tion for uniqueness of (4.8) is given, and Proposition 4.3, where we exhibit a family
of conversion rates functions φ, ψ for which uniqueness of (4.8) holds true.

Coexistence of u and v. Finally, if ūa 6= 0, ūb 6= 0, v̄ 6= 0, from fv(ūb, v̄) = 0
we get ūb + v̄ = b and thus ūa = a. Then, from Q(ūa, ūb, v̄) = 0 and the definition
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of α it follows that ūb = bα. Therefore, system (4.2) has a unique totally nontrivial
solution given by

(ū4, v̄4) = (a+ bα, b(1− α)) , (4.10)

provided that α < 1.

We shall see in the following subsection (see Theorem 4.1) that the stationary
states (4.3) are unstable, so that the total extinction of the species u never occurs.
The species u always survives and its coexistence with the species v is conditioned
by the switching strategy that the subpopulations ua and ub adopt when both
resources run out, quantified through the parameter α. Indeed, the coexistence
occurs if the switch from the state ub to the state ua is faster than the opposite
switch, i.e. α < 1. On the other hand, v goes extinct only if α > 1.

The relationship between the linear stability of the mesoscopic and macroscopic
coexistence steady states, as ε→ 0, is seen in Subsection 4.3.

4.1 Linear stability analysis for the cross-diffusion system

Let us consider the partial starvation measures

λ =
ūa
a

≥ 0 , σ =
ūb
b

≥ 0 , δ =
v̄

b
∈ {0, 1− σ} ,

so that each of the above steady states can be identified with the triplet (λ, σ, δ)
and written as

P̄ = (ū, v̄) =
(

λa+ σb, δb
)

. (4.11)

Linearizing around P̄ the ODEs system associated to (1.4)–(1.7), in the sense
of small perturbation τ , |τ | ≪ 1, i.e.

ua = ūa + τ ũa and ub = ūb + τ ũb

u = ua + ub = (ūa + ūb) + τ(ũa + ũb) = ū+ τ ũ,

v = v̄ + τ ṽ,

(4.12)

we obtain
{

˙̃u = ηa(1 − 2λ)ũa + ηb(1− 2σ − δ)ũb − ηbσ ṽ + o(1),
˙̃v = −ηvδ ũb + ηv(1− σ − 2δ)ṽ + o(1).

(4.13)

Moreover, from the linearization of Q(ua, ub, v) around (ūa, ūb, v̄), we have

∂1Q̄ ũa + ∂2Q̄ ũb + ∂3Q̄ ṽ + o(1) = 0, (4.14)

where ∂jQ̄ = ∂jQ(ūa, ūb, v̄) and

∂1Q̄ = −ψ(λ)− λψ′(λ) =: −β(λ) < 0 ,

∂2Q̄ = φ(σ + δ) + σφ′(σ + δ) =: γ(σ, δ) > 0 ,

∂3Q̄ = σφ′(σ + δ) =: θ(σ, δ) > 0 .

(4.15)

Using ũ = ũa + ũb, from (4.14) we obtain ũa and ũb in terms of ũ and ṽ as follows

ũa =
1

r
γ(σ, δ) ũ+

1

r
θ(σ, δ) ṽ+ o(1) , ũb =

1

r
β(λ) ũ− 1

r
θ(σ, δ) ṽ+ o(1) , (4.16)
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where r = r(λ, σ, δ) := ∂2Q̄ − ∂1Q̄ = β(λ) + γ(σ, δ) > 0. Thus, system (4.13)
becomes

˙̃w = M̄ w̃ + o(1), w̃ :=

(

ũ
ṽ

)

,

and the matrix M̄ =M(P̄ ) has the following entries

M11(P̄ ) =
ηa
r
(1− 2λ)γ(σ, δ) +

ηb
r
(1− 2σ − δ)β(λ) ,

M12(P̄ ) =
ηa
r
(1− 2λ)θ(σ, δ) − ηb

r
(1− 2σ − δ)θ(σ, δ) − ηbσ ,

M21(P̄ ) = −ηv
r
δ β(λ) ,

M22(P̄ ) =
ηv
r
δ θ(σ, δ) + ηv(1− σ − 2δ) .

(4.17)

Next, for ua and ub as in (4.12), using (4.16) again, the linearization of the
cross-diffusion operator in (1.6) reads as

∆
(

daua + dbub
)

= τ
(

da
γ(σ, δ)

r
+ db

β(λ)

r

)

∆ũ+ τ(da − db)
θ(σ, δ)

r
∆ṽ + o(τ),

and the linearized cross-diffusion macroscopic system writes

∂tw̃ = J̄∆w̃ + M̄w̃ + o(1) , ∇(w̃ + o(1)) · σ = 0, (4.18)

with

J̄ :=

[

da
γ(σ,δ)
r + db

β(λ)
r (da − db)

θ(σ,δ)
r

0 dv

]

.

The homogeneous (up to a o(1) term) Neumann boundary conditions for w̃ in (4.18)
follow by the no flux boundary condition (1.9) and (4.16).

Neglecting the o(1) terms, the stability of the linearized system (4.18) can be
analysed decomposing w̃(t, x) as

w̃(t, x) =
∑

n∈N

w̃n(t) en(x) ,

where (en)n∈N is the orthogonal eigenbasis of −∆ on Ω with Neumann boundary
conditions. Denoting 0 = λ0 < λ1 ≤ · · · ≤ λn ≤ · · · the corresponding eigenvalues,
the projection coefficients w̃n(t) evolve independently according the equations

∂tw̃n(t) = (−λnJ̄ + M̄)w̃n(t) , n ∈ N .

Thus, for the stability analysis it suffices to consider the stability of the matrix
Nn := −λnJ̄ + M̄ , i.e.

Nn =

[

− 1
r

(

da γ + dbβ
)

λn +M11 − 1
r (da − db)θ λn +M12

M21 −dvλn +M22

]

, (4.19)

with Mij =Mij(P̄ ) defined in (4.17).

Theorem 4.1. Let ψ and φ be conversion rates satisfying assumption (H1) and
α > 0 defined as in (4.1). Then, the following holds true.
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(i) The trivial and semi-trivial steady states (ū1, v̄1) = (0, 0) and (ū2, v̄2) = (0, b)
are linearly unstable.

(ii) The family of semi-trivial steady states (ū3, v̄3) = (aλ+ bσ, 0) satisfies

σ = λ = 1 , if α = 1 , (4.20)

0 < σ < 1 < λ <
1

2
+

1

2

√

1 +
bηb
aηa

, if α < 1 , (4.21)

and the swapped relation

0 < λ < 1 < σ <
1

2
+

1

2

√

1 +
aηa
bηb

, if α > 1 . (4.22)

Furthermore, they are linearly unstable if α ≤ 1, and if α > 1, they are
linearly stable if and only if the function F in (4.7) is strictly decreasing
around λ, i.e. F ′(λ) < 0.

(iii) If α < 1, there exists a unique strictly positive steady state given by (ū4, v̄4) =
(a+ bα, b(1− α)) and it is linearly stable.

Proof. (i) From (4.17) and (4.15), we have

M(0, 0) = diag
{ηaφ(0) + ηbψ(0)

φ(0) + ψ(0)
, ηv

}

and M(0, b) =

[

ηaφ1

φ1+ψ(0)
0

− ηvψ(0)
φ1+ψ(0)

−ηv

]

,

implying that the steady states (0, 0) and (0, b) are linearly unstable, both for the
macroscopic system and for the associated diffusion-less one, because of the zero
eigenvalue of the Laplacian.

(ii) In order to proceed with the investigation of the family of steady states
(ū3, v̄3) = (aλ+ bσ, 0), let us observe that from the first equation in (4.4), we have

(1− λ)(1 − σ) < 0 or λ = σ = 1 . (4.23)

Thus, according to the value of α, we get from (4.5): if α > 1, then λ ∈ (0, 1) and
σ > 1, i.e. ūa < a and ūb > b; if α < 1, then λ > 1 and σ ∈ (0, 1), i.e. ūa > a and
ūb < b; if α = 1, then λ = σ = 1 giving the optimal selection case ūa = a, ūb = b.

Next, let us rewrite the left equation in (4.4) as

σ(1 − σ) =
ηaa

ηbb
λ(λ − 1) =: K(λ) . (4.24)

If α > 1, as λ ∈ (0, 1), it follows that K(12 ) ≤ K(λ) < 0 and σ is upper bounded by
the positive root of the above equation with λ = 1

2 . Hence, (4.22) follows. If α < 1,
swapping the role between λ and σ, we obtain (4.21).

Furthermore, the entries (4.17) of the matrix M(P̄ ) =M(aλ+ bσ, 0) are now

M11(P̄ ) = ηa(1− 2λ)
γ

r
+ ηb(1− 2σ)

β

r
,

M12(P̄ ) =
(

ηa(1− 2λ)− ηb(1 − 2σ)
)θ

r
− ηb σ ,

M21(P̄ ) = 0 ,

M22(P̄ ) = ηv(1− σ) .
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As M21 = 0, the steady state is linearly stable for the diffusionless macroscopic
system if and only if M11 < 0 and M22 < 0. Hence, σ > 1 is a necessary condition
for the linear stability, and it holds only if α > 1.

In the case α = 1, giving the optimal selection case λ = σ = 1, M(a + b, 0)
has a zero eigenvalue, so that the equilibrium is a non hyperbolic equilibrium.
The contribution of the cross-diffusion term does not change the nature of the
equilibrium because of the zero eigenvalue of the Laplacian.

Let α > 1. The steady states under consideration satisfy Q(λa, σ(λ)b, 0) = 0,
where σ(λ) is defined in (4.6). Taking the derivative with respect to λ and using
(4.15), we obtain

a∂1Q(λa, σ(λ)b, 0) + b σ′(λ)∂2Q(λa, σ(λ)b, 0) = −β(λ)a+ γ(σ(λ), 0)b σ′(λ) = 0 .

Thus

σ′(λ) =
a

b

β(λ)

γ(σ(λ), 0)
.

Plugging σ′(λ) into the derivative of F

F ′(λ) = ηaa(1 − 2λ) + ηbb σ
′(λ)(1 − 2σ(λ)) , (4.25)

we now find

F ′(λ) = ηaa(1− 2λ) + ηba
β(λ)

γ(σ(λ), 0)
(1− 2σ(λ)) =

a

γ(σ(λ), 0)
rM11(P̄ ).

Hence, M11 is negative if and only if F ′(λ) is negative, which implies (ii) for the
diffusionless macroscopic system and for the cross-diffusion one.

(iii) Let α < 1. Since now (λ, σ, δ) = (1, α, 1− α), from (4.17), we have

M(ū4, v̄4) = −1

r

[

ηaγ + ηbαβ ηaθ + ηbα(r − θ)
ηv(1− α)β ηv(1− α)(r − θ)

]

. (4.26)

As r − θ > 0, it holds
trM < 0 . (4.27)

By r = β + γ and γ − θ = φ1, we have

detM =
ηv(1− α)

r2
[

(ηaγ + ηbαβ)(r − θ)− ηaθβ − ηbαβ(r − θ)
]

=
ηaηv(1− α)

r2
[

γ(r − θ)− θβ
]

=
ηaηv(1− α)

r
φ1 > 0,

(4.28)

i.e. the equilibrium (ū4, v̄4) is stable for the diffusionless macroscopic system.
The expression form (4.26) for M implies for Nn, n ∈ N, by (4.19), that

tr Nn < 0 ,

and
detNn = Aλ2n +Bλn + C ,

with

A := dv
daγ + dbβ

r
> 0,

B :=
(da − db)θ

r
M21 −

daγ + dbβ

r
M22 − dvM11, (4.29)

C := detM > 0.
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Furthermore, using the definition of r and the strict negativity of all the entries of
M(ū4, v̄4), we find for B in (4.29)

B = −(da − db)
ηvθβ(1 − α)

r2
+ (daγ + dbβ)

ηv(r − θ)(1 − α)

r2
− dvM11

=
ηv(1 − α)

r2

(

− daθβ + darγ − daθγ + dbrβ
)

− dvM11

=
ηv(1 − α)

r
(daφ1 + dbβ)− dvM11 > 0,

which implies that detNn > 0, for all n ∈ N. Therefore, the equilibrium (ū4, v̄4)
remains linearly stable by adding the cross-diffusion terms.

4.2 Uniqueness of semi-trivial states with extinction of v

One possibility to ensure uniqueness of the steady state (ū3, v̄3) = (aλ+ bσ, 0) is to
impose, in the case α > 1, that the net flux of the individuals of the species u goes
from the state ub to the state ua, when the population ub reached the capacity of its
resource and the population ua has only halved the capacity of its resource. When
α < 1, the opposite switching mechanism has to be imposed. A precise version is
the following.

Proposition 4.2. Consider Λ(λ) = λψ(λ)/ψ1 and Σ(σ) = σφ(σ)/φ1, with φ, ψ
satisfying assumption (H1). Assume that

αΛ(1/2) ≤ 1 , if α > 1 , (4.30)

and
α−1Σ(1/2) ≤ 1 , if α < 1 . (4.31)

Then, there exists a unique solution of (4.4). Furthermore, the corresponding steady
state (4.8) is linearly stable if α > 1, and unstable if α < 1.

Proof. Let α > 1. For the proof recall the function λ 7→ σ(λ) from (4.6). Then,
σ(0) = 0, while the increasing behaviour of Λ and Σ together with condition (4.30)
imply that, for λ ∈ (0, 1/2],

σ(λ) ≤ Σ−1(αΛ(1/2)) ≤ Σ−1(1) = 1 .

Hence, for λ ∈ (0, 1/2], the function F from (4.7) is strictly positive.
Now, let λ̄ be the smallest zero of F , so that (aλ̄+ bσ(λ̄), 0) is one of the steady

states under consideration. By the above argument λ̄ > 1/2, and by Theorem 4.1,
α > 1 implies that σ(λ̄) > 1. Therefore, the monotonicity of λ 7→ σ(λ) again implies
that σ(λ) > 1, for any λ ≥ λ̄.

Finally, we find from (4.25) that F ′(λ) < 0, for all λ ≥ λ̄. Hence there exists a
unique stationary state and the claimed stability follows from Theorem 4.1.

The case α < 1 follows changing the role between the variables λ and σ and
between the functions Λ and Σ, i.e. defining λ(σ) := Λ−1(α−1Σ(σ)) and analyzing
the behaviour of G(σ) := ηaaλ(σ)(1 − λ(σ)) + ηbbσ(1 − σ), instead of F (λ). The
claimed instability follows again by Theorem 4.1.
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Conditions (4.30) and (4.31) can be rephrased in terms of the ratio b
a , respect-

ively as
1
2ψ(

1
2 )

φ1
≤ b

a
<
ψ1

φ1
and

ψ1

φ1
<
b

a
≤ ψ1

1
2φ(

1
2 )
.

They are not necessary conditions. Indeed, we provide below a family of conver-
sion rates ψ, φ, for which the uniqueness of the stationary states (4.8) holds true,
whatever is b

a . For that family of conversion rates, some numerical test are shown
in Section 5.

Since the population densities ua and ub are of the same species, it is natural to
expect that the conversion dynamics from ua to ub is similar to that from ub to ua.
So, in order to be consistent with the modelling considerations in Subsection 1.2,
(see (1.15)), we choose

ψ(x) = ω1φ(ω2x), ω1 > 0 , ω2 ≥ 0 , (4.32)

and we prove the following.

Proposition 4.3. Consider ψ as in (4.32) and

φ(x) = θ1x+ θ2, θ1 ≥ 0 , θ2 > 0 , (4.33)

Then there exists a unique stationary state (ū3, v̄3) = (aλ + bσ, 0). It is linearly
stable if b

a < ω1φ(ω2)/φ1, and unstable otherwise.

Proof. Let σ(λ) be as in (4.6). As observed previously, the stationary states (4.8)
corresponds to the zeros of the function F (λ) in (4.7). Taking the second derivative
of F , gives

F ′′(λ) = b ηb
[

σ′′(λ) − 2(σ′(λ))2 − 2σ(λ)σ′′(λ)
]

− 2a ηa . (4.34)

By (4.33) and (4.32), we have

σφ(σ)

φ1
= θ̄σ2 + (1− θ̄)σ , θ̄ =

θ1
θ1 + θ2

,

and
λψ(λ)

ψ1
= ω̄λ2 + (1− ω̄)λ , ω̄ =

ω2θ1
ω2θ1 + θ2

.

Hence, equation (4.5) reads as

θ̄σ2(λ) + (1− θ̄)σ(λ) = α[ω̄λ2 + (1− ω̄)λ] =:W (λ) , (4.35)

and

σ(λ) =
θ̄ − 1

2θ̄
+

1

2θ̄
[(θ̄ − 1)2 + 4θ̄ W (λ)]

1

2 .

Furthermore, deriving twice (4.35) with respect to λ, we obtain the identity

2(σ′(λ))2 + 2σ(λ)σ′′(λ) = 2α
ω̄

θ̄
+ (1 − 1

θ̄
)σ′′(λ) .

Plugging the latter into (4.34), we end up with

F ′′(λ) =
b ηb

θ̄
σ′′(λ) − (2α

ω̄

θ̄
b ηb + 2a ηa) .

22



Finally, observing that W ′2 − 2W W ′′ = α2(1− ω̄)2, we compute

σ′′(λ) =

(

W ′(λ)

[(θ̄ − 1)2 + 4θ̄ W (λ)]
1

2

)′

=
W ′′[(θ̄ − 1)2 + 4θ̄ W ]− 2θ̄W ′2

[(θ̄ − 1)2 + 4θ̄ W ]
3

2

=
2αω̄(θ̄ − 1)2 − 2θ̄(W ′2 − 2W W ′′)

[(θ̄ − 1)2 + 4θ̄ W ]
3

2

= 2α
ω̄(1 − θ̄)2 − αθ̄(1− ω̄)2

[(θ̄ − 1)2 + 4θ̄ W (λ)]
3

2

.

If ω̄(1 − θ̄)2 − αθ̄(1 − ω̄)2 ≤ 0, the function F is strictly concave and therefore
has a unique zero. If ω̄(1 − θ̄)2 − αθ̄(1 − ω̄)2 > 0, then σ′′(λ) is a strictly positive
decreasing function that converge to 0 as λ → +∞, and consequently F has at
most one inflection point and a unique zero. Moreover, F is decreasing around its
unique zero. So that it gives a stable stationary point if α > 1.

4.3 Linear stability analysis for the mesoscopic system

A triple (ūεa, ū
ε
b, v̄

ε) is a homogeneous stationary solutions of the mesoscopic scale
problem (1.1) if and only if

fa(ū
ε
a) +

1

ε
Q(ūεa, ū

ε
b, v̄

ε) = fb(ū
ε
b, v̄

ε)− 1

ε
Q(ūεa, ū

ε
b, v̄

ε) = fv(ū
ε
b, v̄

ε) = 0.

If v̄ε = 0, then either ūεa = ūεb = 0, which gives the totally trivial steady state
corresponding to the trivial macroscopic one (ū1, v̄1), or ū

ε
a 6= 0 and ūεb 6= 0. In the

second case the triplet (ūεa, ū
ε
b, 0) satisfies the system











ηaū
ε
a(1 −

ūεa
a
) +

1

ε

[

φ(
ūεb
b
) ūεb − ψ(

ūεa
a
) ūεa

]

= 0,

ηbū
ε
b(1−

ūεb
b
)− 1

ε

[

φ(
ūεb
b
) ūεb − ψ(

ūεa
a
) ūεa

]

= 0,

it can be non unique, as in the macroscopic case, and it converges to a macroscopic
equilibrium (ū3, v̄3), in the limit ε→ 0.

If v̄ε 6= 0, then from fv(ub, v) = 0 we have ūεb + v̄ε = b. Hence, for all ε > 0,
fb(ū

ε
b, v̄

ε) = Q(ūεa, ū
ε
b, v̄

ε) = 0 and we obtain the two stationary states (ūεa, ū
ε
b, v̄

ε) =
(0, 0, b) and

(ūεa, ū
ε
b, v̄

ε) = (a, bα, b(1− α)) , (4.36)

provided that α < 1. These equilibria do not depend on ε > 0, so that we shall drop
the ε exponent in the sequel. In the limit ε → 0, they correspond to the linearly
unstable equilibrium (ū2, v̄2) and to the positive linearly stable equilibrium (ū4, v̄4),
respectively.

Hereafter, we focus on the totally nontrivial spatially homogeneous steady
(4.36), and we see that, for all ε > 0, it is also stable for the mesoscopic system
(1.1) and the corresponding ODEs system. Indeed, setting

uεa = ūa + τũεa uεb = ūb + τũεb, vε = v̄ + τ ṽε, |τ | ≪ 1,

the linearization of (1.1) around (ūa, ūb, v̄) writes as

∂tw̃
ε = diag{da, db, dv}∆w̃ε +M εw̃ε + o(1), w̃ε :=

(

ũεa, ũ
ε
b, ṽ

ε
)T
,
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with

M ε :=









−ηa + 1
ε∂1Q̄

1
ε∂2Q̄

1
ε∂3Q̄

− 1
ε∂1Q̄ −ηbα− 1

ε∂2Q̄ −ηbα− 1
ε∂3Q̄

0 −ηv(1 − α) −ηv(1 − α)









.

Again, we need to analyse the stability of the matrix M ε above and Nε
n below

Nε
n := −λndiag{da, db, dv}+M ε,

i.e.

Nε
n =









−daλn − ηa +
1
ε∂1Q̄

1
ε∂2Q̄

1
ε∂3Q̄

− 1
ε∂1Q̄ −dbλn − ηbα− 1

ε∂2Q̄ −ηbα− 1
ε∂3Q̄

0 −ηv(1− α) −dvλn − ηv(1− α)









.

For that, we apply the Routh-Hurwitz criterion [19] and we obtain the result below,
proved in Appendix A.

Proposition 4.4. Under the assumption α < 1, for all ε > 0 and λn ≥ 0, the
matrices M ε and Nε

n are stable, i.e. all their eigenvalues have negative real part.

To complete the analysis, we shall see below how the previous linear stability
property is preserved in the limit as ε→ 0. Indeed, two eigenvalues of Nε

n converge
to those of Nn in (4.19), while the third one goes to −∞.

Let us denote
Dε(µ) := Nε

n − µI3,

where I3 stands for the 3× 3 identity matrix. The goal of the computations below
is to compute |Dε| = detDε(µ), (see also [20]).

First, adding the second row of Dε to the first one, we get

|Dε| =

∣

∣

∣

∣

∣

∣

∣

∣

−(daλn + ηa + µ) −(dbλn + ηbα+ µ) −ηbα
− 1
ε∂1Q̄ −(dbλn + ηbα+ µ)− 1

ε∂2Q̄ −ηbα− 1
ε∂3Q̄

0 −ηv(1 − α) −
(

dvλn + ηv(1 − α) + µ
)

∣

∣

∣

∣

∣

∣

∣

∣

.

Recalling from (4.15) that r = ∂2Q̄−∂1Q̄ and ∂3Q̄ = σ φ′(σ+ δ), we find for σ = α
and δ = 1− α that

∂3Q̄+ (∂1Q̄ − ∂2Q̄)
αφ′1
r

= 0.

Adding to the third column the difference between the first and the second column,

both multiplied by
αφ′

1

r , we thus obtain

|Dε| =

∣

∣

∣

∣

∣

∣

∣

∣

−(daλn + ηa + µ) −(dbλn + ηbα+ µ) N12

− 1
ε∂1Q̄ −(dbλn + ηbα+ µ)− 1

ε∂2Q̄ d23

0 −ηv(1− α) N22 − µ

∣

∣

∣

∣

∣

∣

∣

∣

,

with Nij the entries of the matrix Nn in (4.19) and

d23 := (dbλn + ηbα+ µ)
αφ′1
r

− ηb α.
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Furthermore, as by (4.15) it follows

∂1Q̄(αφ′1 + φ1) + ∂2Q̄β = 0 ,

adding the second column, multiplied by β
r , to the first one, multiplied by

αφ′

1
+φ1

r ,
we get

(1− β

r
)|Dε| =

∣

∣

∣

∣

∣

∣

∣

∣

N11 − µ −(dbλn + ηbα+ µ) N12

−(dbλn + ηbα+ µ)βr −(dbλn + ηbα+ µ)− 1
ε∂2Q̄ d23

N21 −ηv(1− α) N22 − µ

∣

∣

∣

∣

∣

∣

∣

∣

.

Finally, subtracting the first column to the second one, multiplied by β
r , we have

β

r
(1− β

r
)|Dε| =

∣

∣

∣

∣

∣

∣

∣

∣

N11 − µ d12 N12

d21 − 1
ε
β
r ∂2Q̄ d23

N21 0 N22 − µ

∣

∣

∣

∣

∣

∣

∣

∣

, (4.37)

with

d12 := µ
(

1− β

r

)

−
(

dbλn + ηbα
)β

r
−N11,

d21 := −(dbλn + ηbα+ µ)
β

r
.

Thus, (4.37) rewrites as

β

r
(1− β

r
) |Dε(µ)| = −1

ε
β
(

1− β

r

)

det(Nn − µ I2) +R(µ) ,

where

R(µ) = −β
r

(

1− β

r

)

µ3 + p(µ) ,

with p(µ) a polynomial function of degree two that does not depend on ε. Con-
sequently

|Dε(µ)| = −µ3 − r

ε
det(Nn − µ I2) +

r2

β(r − β)
p(µ) , (4.38)

with
det(Nn − µ I2) = µ2 − (trNn)µ+ detNn . (4.39)

Let γi, i = 1, 2 denote the eigenvalues of Nn and let µεi denote the eigenvalues
of Nε

n, i = 1, 2, 3. It has been shown that ℜ(γi) < 0 and ℜ(µεi ) < 0. Moreover,
observe that µεi is a root of (4.38) if and only if it is a root of

−εµ3 − r det(Nn − µ I2) + ε
r2

β(r − β)
p(µ) . (4.40)

Plugging in (4.40) the simple asymptotic expansion in ε of µεi = νi0+εν
i
1+ε

2νi2+· · · ,
the zero order terms gives −r det(Nn − νi0 I2) = 0. Therefore,

µεi = γi +O(ε) , i = 1, 2 , (4.41)
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and

µε1 + µε2 = tr Nn +O(ε),

µε1µ
ε
2 = detNn +O(ε) .

On the other hand, writing |Dε(µ)| = −(µ−µε1)(µ−µε2)(µ−µε3), from (4.38)–(4.39),
we deduce the identities below

µε1 + µε2 + µε3 = −r
ε
+O(1),

µε1µ
ε
2 + µε3(µ

ε
1 + µε2) = −r

ε
tr Nn +O(1),

µε1µ
ε
2µ
ε
3 = −r

ε
detNn +O(1) ,

so that,

µε3 = −r
ε
+O(1) .

5 Numerical simulations

For the numerical simulations we consider the linear conversion rates

φ(x) = x+ δ and ψ(x) = θx + γ , (5.1)

with δ = 0.5, θ = 5 and γ = 1, together with the growth rates

ηa = 3, ηb = 2, ηv = 40 . (5.2)

Depending on the choice of a and b we consider two cases: the v extinction case

a = 1.5, b = 6, ⇒ α = 1, (5.3)

and the coexistence case

a = 1.5, b = 8, ⇒ α < 1. (5.4)

In the case of the ODE system associated to the mesoscopic system (1.1) with
(1.4) and (5.1), the numerical solution is illustrated in Figure 2 (α = 1) and Figure 4
(α < 1). The expected initial layer for the subpopulations uεa and u

ε
b can be observed

in Figure 3 and 5 (see Remark 1).
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Figure 2: α = 1. Solution of the mesoscopic ODE system with parameters
given in (5.1),(5.2) and (5.3), for ε = 10−1, 10−2, 10−3 (from left to right),
with extinction of vε, and convergence of uε = uεa + uε

b
towards a+ b. Here

the maximal time is T = 30.
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Figure 3: α = 1. Zoom of the solution in Figure 2 in a right neighbourhood
of t = 0 for ε = 10−1, 10−2, 10−3 (from left to right).
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Figure 4: α < 1. Solution of the mesoscopic ODE system with parameters
given in (5.1),(5.2) and (5.4), for ε = 10−1, 10−2, 10−3 (from left to right),
with convergence of (uε, vε) = (uεa + uε

b
, vε) towards (a+ bα, b(1−α)). Here

the maximal time is T = 30.
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Figure 5: α < 1. Zoom of the solution in Figure 4 in a right neighbourhood
of t = 0 for ε = 10−1, 10−2, 10−3 (from left to right).

The effect of the spatial dispersal of the species by diffusion is shown in Figure 6
(α = 1) and Figure 7 (α < 1) below, in the case of the one dimensional spatial
domain [0, 1]. Additionally, we provide videos in the supplements along with the
used code. All the parameters are kept as in the previous computations and the
diffusion coefficients are

da = 2, db = 0.1, dv = 0.1 ,
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and the initial conditions has been chosen as

uina (x) = cos(4πx) + 4 , uinb (x) = (x− 1) sin(4πx2) + 2 ,

vin(x) = cos(4πx) + cos(2πx) + 2.5 .
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Figure 6: α = 1. Solution of the mesoscopic PDE system (1.1) in the extinc-
tion case.
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Figure 7: α < 1. Solution of the mesoscopic PDE system (1.1) in the coex-
istence case.

6 Concluding remarks and discussion

In this paper we derive a (macroscopic) reaction-cross-diffusion system with no flux
boundary conditions for two species u and v in competition for resources, from a
(mesoscopic) diffusion system with slow and fast reaction terms and homogeneous
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Neumann boundary conditions. At the mesoscopic scale, the fast reaction term gov-
erns the switching of the individuals of two sub-populations ua and ub of the species
u, into each other, a strategy to optimise the two available ressources consumed by
u. The individuals of the species v follow a monodiet and evolve competing solely
with ub. As a consequence, no cross-diffusion term appears in the macroscopic
equation for v. In other words, the reaction-cross-diffusion system is triangular.

Examples of cross-diffusion systems (triangular and not) derived by taking a
fast-reaction limit can be found in [10, 15, 5, 6, 12, 14, 21, 2]. A different but equally
popular approach for the derivation of cross-diffusion systems (not pursued in this
paper) is the mean-field limit of interacting particles, e.g. [17, 11, 4, 16].

For the mathematical analysis, a cross-diffusion term can break general para-
bolic estimates including the maximum principle, so only local existence results are
usually obtained [1]. For global existence, one needs for instance an entropy func-
tional to get a priori estimates and construct a weak solution [14, 21, 16]. Uniqueness
is a major problem as well. The key mathematical contribution of this paper is the
identification of the entropy functional (1.10), which behaves well under diffusion
and the fast-reaction term (1.5). By the obtained control, we are able to undergo
the fast reaction limit, to identify the limit densities u and v and prove along this
way that (u, v) is a global in time weak solution. Further studies for the regularity
and uniqueness of the solution of a larger class of triangular cross-diffusion systems,
including (1.6), are the objects of future works.

An interesting mathematical issue left open in this paper is the discrepancy
between the boundary conditions for the mesoscopic and macroscopic systems: for
the mesoscopic system (1.1), the no-flux and the Neumann boundary conditions
are equivalent, but for the limit system (1.6) we naturally obtain no-flux boundary
conditions (1.9). Formally, the no-flux boundary conditions (1.9) are

[

da + (db − da)∂1u
∗
b

]

∇u · σ +
[

(db − da)∂2u
∗
b

]

∇v · σ = 0 and ∇v · σ = 0,

where u∗b = u∗b(u, v) is the unique solution to (1.7) for given u and v. Differentiating
the condition Q(u− u∗b(u, v), u

∗
b(u, v), v) = 0 with respect to u yields

∂1u
∗
b =

ψ
(

u−u∗

b

a

)

+
u−u∗

b

a ψ′
(

u−u∗

b

a

)

φ
(

u∗

b
+v

b

)

+
u∗

b

b φ
′
(

u∗

b
+v

b

)

+ ψ
(

u−u∗

b

a

)

+
u−u∗

b

a ψ′
(

u−u∗

b

a

) .

Hence by our assumptions ∂1u
∗
b ∈ (0, 1), which implies

[

da + (db − da)∂1u
∗
b

]

> 0.
Therefore, the no-flux boundary condition is formally equivalent to the Neumann
boundary condition. It would be interesting to see whether singularities can break
this equivalence.

From a modelling point of view, we show that the competition between u and
v described above, can be modelled by a Lotka-Volterra competitive type system,
with competitive coefficients derived by the population dynamics. To the best of the
author’s knowledge, the meaning of the classical Lotka-Volterra competition system
is only abstract, and connecting the system coefficients to specific situations is rarely
been done. We are able to answer to this fundamental question in the specific model
of the paper. Indeed, dropping the diffusion terms, the competition system (1.6)–
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(1.7) reads as














∂tu = ηaua

(

1− ua
a

)

+ ηbub

(

1− ub + v

b

)

,

∂tv = ηvv

(

1− ub + v

b

)

,

(6.1)

and

u = ua + ub, φ
(ub + v

b

)

ub = ψ
(ua
a

)

ua . (6.2)

Let

ra(ua, ub, v) :=

(

1 +
ψ(ua

a )

φ(ub+v
b )

)−1

and rb(ua, ub, v) :=

(

1 +
φ(ub+v

b )

ψ(ua

a )

)−1

.

(6.3)
Then, it holds

ua = rau, ub = rbu, ra + rb = 1, 0 < ra, rb < 1,

and the system can be rewritten in terms of u and v, as the following Lotka-Volterra
system

{

ut = ηu(1− b11u− b12v)u,

vt = ηv(1− b21u− b22v)v,
(6.4)

where the competition coefficients are given by

b11 =
ηar

2
a/a+ ηbr

2
b/b

ηara + ηbrb
, b12 =

ηbrb/b

ηara + ηbrb
, b21 =

rb
b
, b22 =

1

b
, (6.5)

and the growth rates are

ηu = ηara + ηbrb and ηv . (6.6)

The fundamental difference between the classical Lotka-Volterra competition
system and our model (6.4)-(6.6) is in the solution dependency of the coefficients ra
and rb in (6.3) and thus of the bij ’s. Our understanding is that the classical Lotka-
Volterra competition system with constant coefficients bij should be considered
locally, where the coefficients variation is small, while (6.4)-(6.6), can be considered
globally. In this viewpoint, we can still call the competition modelled by system
(6.4)-(6.6) a strong competition if b12/b11 > 1 and b21/b22 > 1 for all solutions.

A systematic study on the derivation of advection and cross-diffusion terms
from a given population dynamics with meaningful parameter regimes is performed
in [9, Section 4].

Again from a modelling perspective, a motivation to consider reaction-cross-
diffusion systems is the possibility to find instabilities due to the cross-diffusion,
where a normal diffusion cannot induce instabilities. The identification of these
cross-diffusion induced instabilities is a very active research area [20, 31, 3]. This
has been the motivation of our investigation of spatially homogeneous stationary
states and their linear stability in Section 4. For semi-trivial stationary states with
v = 0, we see that the fast-reaction term can lead to non-trivial behaviour (lack of
uniqueness), see also [23]. On the other hand, the totally non-trivial homogeneous
steady state (coexistence state) is unique and linearly stable. Thus, the possibility
of cross-diffusion induced instability is ruled out in that case.

The existence of heterogeneous steady states of the macroscopic system is not
discarded, and it will be analyzed in a forthcoming paper.
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A Proof of Proposition 4.4

Proof. The Routh matrix associated to M ε writes as (see [19])

RMε :=

















1 det2M
ε

−trM ε − detM ε

(det2M
ε)(trM ε)− detM ε

trM ε
0

− detM ε 0

















,

with
det2M

ε := [M ε]11 + [M ε]22 + [M ε]33,

and where [M ε]ii are the following minors:

[M ε]11 :=

∣

∣

∣

∣

M ε
22 M ε

23

M ε
32 M ε

33

∣

∣

∣

∣

, [M ε]22 :=

∣

∣

∣

∣

M ε
11 M ε

13

M ε
31 M ε

33

∣

∣

∣

∣

, [M ε]33 :=

∣

∣

∣

∣

M ε
11 M ε

12

M ε
21 M ε

22

∣

∣

∣

∣

.

By the Routh-Hurwitz criterion [19], M ε is stable if and only if there are no sign
variations in the first column entries of RMε , i.e., if and only if M ε satisfies











trM ε < 0,

(det2M
ε)(trM ε)− detM ε < 0,

detM ε < 0.

(A.1)

From the expression of M ε, we get

tr M ε = −ηa − ηbα− ηv(1− α)− r

ε
< 0,

and

[M ε]11 = ηv
1− α

ε
φ1 > 0,

[M ε]22 = ηv(1− α)
(

ηa +
β

ε

)

> 0,

[M ε]33 = ηaηbα+
1

ε
ηa(r − β) +

1

ε
ηbαβ > 0,

which imply
det2M

ε > 0.

Furthermore,

detM ε =
(

−ηa+
1

ε
∂1Q̄

)

[M ε]11−
ηv
ε
∂1Q̄

1− α

ε
(∂2Q̄−∂3Q̄) = −ηaηvφ1

ε
(1−α) < 0 .

It remains to check the second inequality in (A.1), that is a consequence of the
previous computations and of the identity

detM ε = −ηa[M ε]11 .

Indeed,

(det2M
ε)(tr M ε)− detM ε =

(

[M ε]11 + [M ε]22 + [M ε]33
)

tr M ε + ηa[M
ε]11

=
(

[M ε]22 + [M ε]33
)

tr M ε − [M ε]11

(

ηbα+ ηv(1− α) +
r

ε

)

< 0 .
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Thus, M ε is stable for all ε > 0.
Concerning the matrix Nε, we define the quantities

D1 := da + db + dv > 0 , D2 := dadv + dbdv + dadb > 0 , D3 := dadbdv , (A.2)

and

A := da(M
ε
22 +M ε

33) + db(M
ε
11 +M ε

33) + dv(M
ε
11 +M ε

22) < 0,

B := dbdvM
ε
11 + dadvM

ε
22 + dadbM

ε
33 < 0,

C := da [M
ε]11 + db[M

ε]22 + dv[M
ε]33 > 0 .

(A.3)

Thus, using the previous computations, we obtain

tr Nε = tr M ε −D1λn < 0 ,

det2N
ε = det2M

ε +D2 λ
2
n −Aλn > 0,

and
detNε = detM ε −D3 λ

3
n +B λ2n − C λn < 0 .

To conclude, it remains to check the sign of the quantity below:

(det2N
ε)(tr Nε)− detNε = (det2M

ε)(tr M ε)− detM ε

+ λ3n(−D1D2 +D3) + λ2n(D2trM
ε +AD1 −B)

+ λn(−D1 det2M
ε −A trM ε + C) .

The latter is indeed strictly negative, using again the negativity of the entries of
M ε, the positivity of the minors [M ε]ii, definitions (A.2) and (A.3) and

−D1D2 +D3 < 0 , AD1 −B < 0 , −D1 det2M
ε + C < 0 .

Then, by the Routh-Hurwitz criterion again, Nε is stable for all strictly positive ε.
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[4] Chen, L., Daus, E.S., Jüngel, A.: Rigorous mean-field limit and cross-diffusion.
Z. Angew. Math. Phys. 70(4), 21 (2019). DOI 10.1007/s00033-019-1170-7.
Id/No 122
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