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Abstract

We rigorously prove the passage from a Lotka-Volterra reaction-
diffusion system towards a cross-diffusion system at the fast reaction
limit. The system models a competition of two species, where one spe-
cies has a more diverse diet than the other. The resulting limit gives a
cross-diffusion system of a starvation driven type. We investigate the
linear stability of homogeneous equilibria of those systems and rule out
the possibility of Turing instability. Numerical simulations are included
which are compatible with the theoretical results.

Keywords. Cross-diffusion, starvation-driven diffusion, entropy, Turing instability.
2010 Mathematics Subject Classification. Primary : 35B25, 35B40, 35K57, 35Q92,
92D25. Secondary 35B45, 35K45

1 Introduction

1.1 Problem setting

We consider a semilinear reaction-diffusion system that models a competition dy-
namics when two species have partially different diets. The population densities of
the two species are denoted by u = u(t,z) and v = v(¢,x). The species u has a
more diverse diet and is divided into two substates u, = us(t, ) and up = up(t, )
so that u = u, 4+ up. The system is parametrized by a small parameter € > 0 and
written as

Ol = dg Aus + fo(us) +

M | =

Q(ug, uf, v°), in (0, +00) x 2,

1
Oruf = dyNuf + fo(uf, v°) = ZQ(ug, wf, v%),  in (0, +00) X €, (1.1)
0v® = dyAv® + fy(uj, v°), in (0,+00) x Q,
where Q ¢ RN, N > 1, is a bounded domain with a smooth boundary, and d,, d;,
and d, are diffusivities for the three populations. The unknown solutions depend

on the parameter ¢ and we denote it expliciltly if needed. The above system is
complemented with nonnegative initial data

us (0, ) = ufln(:c), up(0,x) = u})n(z) , 05(0,z) = v (z), z€EQ, (1.2)



and zero flux boundary conditions,
d Vui -0 =dpyVug, -0 =d,Vov* -0 =0, on (0,+00) x 99, (1.3)

where ¢ denotes the outward unit normal vector on the boundary 0f2.

In this paper, we want to see the effect of diet diversity in a competition con-
text through the system and the emergence of cross-diffusion triggered by such a
difference through its singular limit as € — 0. The competition dynamics is given
in the reaction terms. The reaction terms of order one are given by

falta) = naua (1 22,

a
fo(up, v) = Ubub(l - ub;rv), (1.4)
fo(up,v) := nvv(l — ub;—U) ,

where a,b > 0 are carrying capacities supported by two different groups of resources
and 74, m, and 1, > 0 are the intrinsic growth rates of u,, up, and v, respectively.
The competition of the two species, v and v, is for the resource b. However, the
species u has a diverse diet and can survive by consuming the other resource a
without competition. To model such a competition using a Lotka-Volterra type
system, the species u is divided into two substates u, and w; depending on their
diets. In the above reaction terms, u, takes a logistic equation type reaction, and uy
and v take Lotka-Volterra competition equations type reactions as given in (1.4).
Since competition exists only partially for the species u, the competition is weak
to u. However, the species v competes with u for all of its resources and hence the
competition is not weak in general and the competition result may depend on the
parameter € (see Sections 4 and 5).

The individuals of the species u may freely change the type of food depending

on the availability, which is modeled by the fast reaction term of order e,

%Q(Umubav) 21% {qb(ub;_?})ubw(%l) ua} : e>0. (1.5)

. . Uup + U\ . . o .
In this reaction term, ¢! qﬁ(bT) is the conversion rate for individuals in the

U
state up which switch to the other state ug,, and e~ ! 1/1(—“) is the conversion rate
a

in the other direction. The conversion rate (b(“b;’ ”) is assumed as a function of the

starvation measure “b;’ Y for the populations up and v. If the resource b dwindles or
the population up + v increases, the resource b becomes scarce relatively, and more
individuals of population u; will convert to u, and consume the other resource a.
Hence, we assume that ¢ is an increasing function of the starvation measure (see [16]
for more discussion on the starvation measure). In the same way, the conversion
rate ¢ is a function of the starvation measure “* for the population u, and is
assumed to be increasing. For this reason, it makes sense to call the conversion
dynamics given by (1.5) a starvation-driven conversion, which eventually results
in the starvation-driven cross-diffusion after taking the limit as e — 0 (see [5, 6]).
More specifically, we assume the following starvation-driven conversion hypothesis

(H1) ¢ and 1 in (1.5) are increasing functions belonging to C*([0, +00)); in addi-
tion, there exist strictly positive constants 6y, 04, Mg, and My such that,



for all z > 0,

P(x) > 6y >0, @) >d5 >0, ¢(x) <My, and ¢'(z) < My.

The main result of the paper is that, as & — 0, the (unique) solution (ug, uf, v°)
of the initial boundary value problem (1.1) — (1.5) converges to a limit (uq,up,v)
and this limit is a weak solution of the reaction cross-diffusion system

{atu = A(dgug + dpup) + falua) + fo(up,v), in (0,+00) x Q, (1.6)
0w = dyAv + fo (up, v), in (0,400) x Q,
where u, and uy, are (uniquely) determined by the nonlinear system
Ug+up=u and Q(ug,up,v) =0, (1.7)
complemented by the initial data,
u(0,z) = u'™(x) := ui™(z) + ul(z), ©(0,z)=0"(z), x€Q, (1.8)
and the zero flux boundary condition,
V(dgug + dyup) -0 =d,Vv -0 =0, in (0,+00) x 0N (1.9)

Note that the zero flux boundary conditions in (1.3) are equivalent to the homo-
geneous Neumann boundary conditions,

Vui -0=Vuy-c=Vv°-0=0, on (0,+00)x 0

(see [14] for similar diffusion operator for a single species with two phenotypes).
However, after taking the singular limit, we obtain the zero flux boundary conditions
(1.9), but not the homogeneous Neumann boundary conditions.

If d, = dp, the diffusion for the species u given in (1.6) is the homogeneous
linear diffusion. However, the diffusivity of a species usually depends on its food
(or prey) and d, # dp in general. In that case (d, # dp), the diffusion for the total
population in (1.6) contains cross-diffusion dynamics depending on the distribution
of the three populations groups, u,, us and v, through the relations in (1.7). This
explains the starvation-driven diffusion for the specific case of the paper, a concept
formally introduced by Cho and Kim [4]. Funaki et al. [12] derived a macroscopic
cross-diffusion model from a system of two phenotypes and a signaling chemical in
the context of chemotaxis.

The proof of convergence as ¢ — 0 is rigorously obtained via a priori estimates
for ug, u7, and v°. The main tool is the energy (or entropy) functional

E(ug, up, v) ::/hl(ua)dx—i—/hg(ub,v)dx, (1.10)
Q Q

where

hi(ug) = /Ouaz/J(Z)zdz, and  ha(up,v) ::/O%qﬁ(z—;;v)zdz. (1.11)

Notice here that the assumption (H1) implies that h; is positive, increasing, and
convex, and that hs is positive, increasing in both variables, and convex with respect




to the first variable. Therefore, the name entropy for the function given in (1.10)
is justified. We refer to [7] and [11] for the use of such entropies in the context of
triangular cross-diffusion systems (that is, systems in which only one of the two
equations includes a cross-diffusion term). For more general systems, we refer to
[2, 3, 8, 10, 15] among other works.

Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a sub-
sequence and conclude that the limit is a weak solution of (1.6) — (1.9). To use the
energy estimate, we take initial values with bounded energy, which is our second
hypothesis

(H2) ul" € LL(Q), ui® € L1 (Q), v™™ € L(), and E(ull, ui®, v'") < .

Remark 1. Under Hypothesis (H2), the initial data v, ui™ v*™ for the reaction dif-
fusion system (1.1) do not satisfy a priori the nonlinear equation Q(u2", u{™ v*™) =0
n (1.7). Thus, the appearance of an initial layer is expected (see also Section 5).

We conclude this introduction proposing a formal derivation of (1.1) out of a
microscopic system. We shall consider problem left open here (such as regularity,
uniqueness, stability and long time asymptotic behaviour of the macroscopic solu-
tions) in a forthcoming paper, where a more general class of cross-diffusion system
is analysed.

The rest of the paper is organised as follows. Section 2 is devoted to the state-
ment of the existence result. In Section 3.1, we prove a priori estimates, which are
the preliminary ingredients for the proof of the existence result obtained in Sec-
tion 3.2. The paper concludes with the existence and linear stability analysis of
trivial and non-trivial spatially homogeneous steady states, in Section 4 and Ap-
pendiz A, with a particular emphasis put on the coexistence state. Some numerical
tests in Section 5 illustrate the linear stability analysis.

1.2 Formal derivation of the reaction-diffusion system with
fast switching
We explain here how the mesoscopic scale model (1.1) is obtained at a formal level

from a microscopic scale model in which the resources inducing the competition
explicitly appear. Consider

1 51
051 = 5 [7“181 (1 - A_l) —P181U1}
= ol 2) oo
t52 = 5 282 A, Pp252U2 — pv S2
1 U 1% U
0Uy = D1AU; + kipi1siU; + - {‘P(%)Ug — \I/(p; 1)U1] (1.12)
2 1
1 Us +pyV U
atUQ = DyAU; + k2p252U [ {@(M)UE _ \I](M)Ul}
3 So S1
OV = Dy AV + kypysaV,

where § > 0 is the microscopic reaction time scale and ¢ is the mesoscopic one (hence
§ < £ < 1). These equations describe the time evolution of a small ecosystem with
two prey population densities (or vegetal resources), s; and s, and two predator
population densities (or harvesters of the vegetal resources), U and V. Moreover, the
population U is composed of two subpopulations U; and Us depending on the prey



they consume, i.e., s; and so, respectively. The prey species s; follows the logistic
dynamics with a carrying capacity A; and an intrinsic growth rate r;. The predator
species consume a certain amount of preys which is proportional to the prey density
with proportionality factors p1, p2 and py. The harvested prey mass is converted to
the predator mass with conversion rates k1, ko and ky. The subpopulations U; and
U, convert to each other depending on the availability of the prey. The two functions
® and U are the conversion rates which are respectively increasing functions of the
starvation measures M and 221 1U1 . The other species V' consumes only the
second prey so. Hence, the active competmon is only between V' and Us, while Uy
competes with V' passively (via conversion). Finally, since the dispersal rate of a
predator species usually depends on the nature of its prey, D1 # D in general.

Remark 2. If the heterogeneity of prey densities s1 and s is considered, one needs
to add diffusion terms in the first two equations of (1.12) in order to include random
migration of prey species. However, the lack of the diffusion terms does not affect
the formal derivation of the mesoscopic system since we take 6 — 0 anyway.

Next, we make the asymptotic approximation as § — 0 with fixed € > 0 for the
prey (or resources) densities s1, s2, and formally obtain a mesoscopic scale model.
First, we have

U
81(7’177;14811 7p1U1):0 — 51 =0 or 81:A1(17p1r11),
and
U- 14
SQ{TQ(l—Zi)—ngg—va} =0 = s9=0 or 82:A2(1—%).
2 2

Only the nontrivial case, s1 # 0 # s2, is meaningful (since s1 = 0 and so = 0
correspond to unstable equilibria), and we obtain two relations
ptUi . n pUa+pyV 12 1

=——— and —W—MmW = = — —,
S1 S1 Aq 52 52 Ay

Therefore, the last three equations in (1.12) turn into
1
0:Uy = D1AU; + Alk/’lplUl (1 — %) + g [(I)Ug — \I/Ul]

1
Uz = Dy AUy + AskapsUs (1 — B2EZERL) — — [0U, — WU (1.13)

OV = Dy AV + AskypyV (1 — 22U2tevl)

T2

where the conversion rates ® and ¥ read as

79 79 1 71
@:@(_,_) d \1::\1/(—*—),
A an S1 A1

and the Lotka-Volterra reaction dynamics of competition type naturally appears.
Now we consider the relationship between the variables in (1.1) and in (1.13).
First, we define

pv
ug = Uy, up = Uy, v° := p—V,
2



and keep the same diffusivity coefficients
da = Dl, db = Dg, d'u = DV .

Then, the coefficients in the Lotka-Volterra type competition dynamics, f,, f and
fuv, are given as

r r
Na = p1Aikr, M= padaka, 1 i=pydsky, a=-—, b:=-—>. (114)
b1 P2
Finally, the mesoscopic conversion rates are given as
T2 X T1 x
::q)(— ) ::\1:(— ) 1.15
o) = o(E =), vl = (G (1.15)

After replacing the previous coefficients with the new ones, the system (1.13) be-
comes our system (1.1).

Remark 3. (i) The conversion rates of the microscopic model, ® and ¥, are func-
tions of the starvation measures % and %, instead of simply L2V

52
g—ll, in order to take into account the difference in the harvesting rates pa and py .

(ii) The mesoscopic conversion rates ¢ and ¥ in (1.15) are increasing functions,
since ® and ¥ are chosen to be increasing functions. (iii) It is worth noticing
that the carrying capacities a and b for the predator species are proportional to the
growth rates 1;’s of the prey species and that the prey carrying capacities A;’s are
also involved in deciding ¢ and i (see (1.14) and (1.15)). (iv) The macroscopic sys-
tem reduces to the classical Lotka-Volterra system of competition type with linear
diffusion, whenever the conversion rates ¢ and 1) are both constant.

and

2 Statement of the main result

Before stating our main result in Theorem 2.2 below, we introduce some notations
that will be used in the sequel, and the definition of the very weak solutions of (1.6)
— (1.9), with the reaction terms in (1.4).

We denote

Ol = CH([0, +00) x )
= {u =u(t,z): 3T >0s.t. ue C"([0,T) x Q) and suppu € [0,T) x Q},

and, for all p € [1,400),

= L

loc

L:D

p (0, +00) x Q) = {u:u(t,:z:) :VT>0,ueLP(QT)},
with Qp == (0,7T) x Q. Similarly, for p = +o0,

L. =L ((0,400) x Q) == {u =u(t,z): VT >0, esssup |u(t,z)| < +oo}.
(t,Z)EQT

It is worth noticing here that, due to hypothesis (H1), the function

q(up, u,v) := Q(u — up, up, v) = ¢(Ub;'U)ub — z/J(u _aub)(u —up), (2.1)



defined for (up,u,v) € [0,u] x (0,400) x (0,400), satisfies (for given u > 0,v > 0)

bt ) = (5] 20 () () ()

and
q(05u7v)<07 q(u7u,v>>0'

Hence, for any given (u,v) € R?, there exists a unique u}(u, v) € (0, u) zero of ¢, and
thus a unique solution of the nonlinear system (1.7) is well defined. Furthermore,
the implicit function theorem guarantees the continuity (and even the C! character)
of uj with respect to (u,v).

Definition 2.1. Let Q) be a smooth bounded domain of RN, N > 1. Assume u™ €
LY (), and v'™ € L(Q) be nonnegative initial densities. We say that the pair
of nonnegative functions (u,v) is a very weak solution of (1.6) — (1.9) over
(0, +00) x Q, with reaction terms (1.4), if the following conditions are satisfied

o (u,v) belongs to L?, x L2

loc loc 7

o for all test functions &1,& € C2, with V& -0 = V-0 =0 on [0, +00) x 05,
and for uq,up defined as the unique solution of (1.7), a.e. on (0,+00) x Q,
it holds

—+o00 “+o00
—/ /(&fl)u dedt — [ &(0, )u"dz —/ / A& (daua + dbub)dzdt
0 Q Q 0 Q

+o0
- / /Q &1 (fuluta) + folup, ) drdt, (2.2)

and

+oo +o0
— / / (0s&2) vdadt — | &(0,-)v™dx — d, / / A&y vdxdt
0 Q Q 0 Q

:/+00/ & folup,v)dzdt. (2.3)
0 Q

We observe that all terms in (2.2) — (2.3) are well-defined thanks to the as-
sumptions (H2) on the initial densities u'™,v'", to the L? integrability of the sub-
population densities u,, up and to the L> bound for v. Remember that the logistic

structure of the reaction functions f,, fy, f, involves at most quadratic nonlinear-
ities.

Theorem 2.2. Let §) be a smooth bounded domain of RN, N > 1. Assume (H1) and
(H2) on parameters and initial data ul™, ui™, v'", respectively. We denote (us, ug, v°)
the unique global strong (for t > 0) solution of system (1.1) — (1.3) with those
initial data. Then, the triplet (ug,u$,v®) converges a.e. (t,x) € (0,400) x £ (up
to extraction of a subsequence) towards a nonnegative triplet (uq,up,v), as € — 0.
Moreover, the functions u := u, 4+ uyp, v satisfy the nonlinear system (1.7), for a.e.
(t,z) € (0,400) x Q, and the following bounds: uw € Li(Qr) for ¢ = 2+ 2/N if
N>3,¢g<3ifN=2andq=3if N=1;v e L®(Qr); |Vu| € L?>(Qr); and
for the same previous q, |Vv| € L*(Qr); 0y, 2,v,00 € LI(Qr), i,5 = 1,...,N.
Finally, (u,v) is a very weak solution of the macroscopic system (1.6) — (1.9) with
the reaction terms (1.4), in the sense of Definition 2.1.



3 Proof of the main Theorem

We first recall that for any € > 0, there exists a unique global strong (for ¢t > 0)
solution (ug,u,v®) solution to system (1.1) — (1.3), under the assumption on the
initial data of Theorem 2.2. We refer for example to [9, 21] for obtaining such a
result.

3.1 A priori estimates

In this section we shall obtain a priori estimates on the subpopulation densities
ug, u§, on the total population densities u® := uf + uf and v, and on Q(ug, uf, v°).
More specifically, we take advantage of the triangular structure of the system that
give us a priori estimates on the density v® and its derivatives (see Lemma 3.1).
The reaction functions f, and f; of competition type allow us to control the total
mass [, u®(t) dz, and to get an L*(Qr) estimate on u® (see Lemma 3.2). The latter
will be employed in Lemma 3.3 to obtain estimates on Vu$, Vuj and Q(ug, uj, v°),
through the use of the energy functional (1.10) — (1.11). In addition, the triplet
(ug, uf, v®) will be shown to have finite energy £(T') as well, for all T > 0.

Hereafter, all constants C' and Cr are strictly positive and may depend on (2,
the initial data ul®, u})“, v, the coefficients in system (1.1), the transition functions
¢, and on T, but never on £. They may change also from line to line in the
computations.

Lemma 3.1. Under the hypothesis of Theorem 2.2, the following statements hold
true

(i) there exists a constant C > 0 such that for all e > 0
[0%][ Lo (0, 400y x02) < C'; (3.1)

(ii) for all q € (1,+00) there exists a constant C(q) > 0 such that, for all € > 0,
T>0andalli,j=1,..,N,

10| Laary + 1022, 0%l Lo (@r) < C@A + lugllLory);  (3:2)

(iii) for all q € (1,4+00) there exist C(q,N) > 0 and C(q) > 0 such that, for all
e>0andalT >0,

V0 2% 1y < Cl@N)(1+ [[05] %00y + Cla) T (3.3)

Remark 4.
In the sequel, the value of q in (3.2) — (3.3) will be first chosen equal to 2 (see
Lemma 3.2), and then to a different number after Corollary 3.4.

Proof. 1t is easily seen that
0<v(t,2) < K :=max { [0 1(q); b}, forae. (t,z) € (0,+00)xQ. (3.4)

Indeed, by the existence result of strong solution for (1.1), we know that the nonneg-
ativity of v° is preserved in time. Concerning the upper bound in (3.4), it is obtained



by multiplying the equation for v¢ in (1.1) by (v* — K)* := max{0,v* — K} and
integrating over 2, to obtain for all £ > 0,

[ - de < [ - Kz =0,

Next, by the maximal regularity property of the heat equation (see [17] and the
references therein), for all ¢ € (1,400) there exists a strictly positive constant C,
which only depends on 2 and ¢, such that for all 7,5 =1, .., N,

||8tv6||L"(QT) + ||8xi,xjvg||L"(QT) < C(ny(ui,’UE)HLq(QT) + ||’Uin||Lq(Q))
< C(l + ||U’Z||LQ(QT))’ (35)

so that estimate (3.2) holds. Then, thanks to the Gagliardo-Nirenberg inequality
[20], for all ¢ € (1,400), there exists C(g) > 0, such that, for all ¢ > 0 and
i=1,...N, we have

1/2 1/2
102,0° ()] 20 (@) < Z 10,2, (B 50y 105 (D2 @) + C@Iv* ()| (0 -
Integrating the above inequality over (0,7) and using (3.1) and (3.5), we get es-
timate (3.3). O

Lemma 3.2. Under the hypothesis of Theorem 2.2, for all T > 0 there exists
Cr > 0 such that for all € > 0 the following estimates hold:

sup /(uz +ug)(t)de < Cr and lue +upll 2o,y < Cr- (3.6)
tef0,1] Jo

Proof. Adding the first two equations in (1.1) and using the positivity of uS, u§, v°,
we get

€

Or(uf, +ug) < doAuf, + dpAuj + naug (1 — u_) + myug (1 - %ZE’) (3.7)
< do AU + dpAug, + 1 (ana + bipy). (3.8)
Then, integrating (3.8) over €, the inequality becomes
@ ), (ug +ug)(t)de < C,
implying, for all ¢ in [0, T, that
llug () +up (D) 1 (o) < [[ul + u%:n”Ll(Q) +CT. (3.9)

In order to obtain the L?(Qr) estimate for ué +u$, we integrate inequality (3.7)
first over © and then over (0,t), for ¢ € (0,T"), to obtain

/(u;+ug)()dz+”" (us) dzdtJr% (S)” de dt
Q a Jo, Qq

< lul + wl L) + Cllug, + ugllLr @) -

The second estimate in (3.6) follows, using the first one. O



Lemma 3.3. Under the hypothesis of Theorem 2.2, for oll T > 0, there exists
Cr > 0 such that, for all € > 0, the global solution of (1.1) satisfies

1
€ (ug ug, v)(T) + OV 72 (r) + ClIVUR I L2(r) + Z1QE, 45, v) 720y < Cr-
(3.10)

Proof. We shall analyse the evolution of £, along the trajectories of the solution of
(1.1). Thus, from the first equation in (1.1) and assumption (H1), we have

&€

& | it do = [ @ug)uz o) do
o [ [o(52) + By (48)] Dz o
b [ e(t)as [ o() o
g—daéw/ |Vug |? da
Q

+C Q(UZ)Q(l—%Z)]l{uiSa}dx—i—i/ wsp (2 )Qfdx

(3.11)
Concerning the second term in the energy (1.10), we see that
d g g
| o, v) do = / (Ovu) uj o~ v )do + / (800°) Dy ha (uf, v%) de
dt Q b Q
(3.12)

= Il+[2.

Using the second equation in (1.1), I; rewrites as follows

zlsfdb/ Vg ? {aﬁ <%> vy (“"Z ﬂ dx

7db/ ub¢ (ubJrv >Vu§~Vv€d:c

15 1 £ 15
+C/ ( ubzv)ﬂ{uz+us<b}d$——/ulf¢(ub+v)Qsdw-
g Jo b

(3.13)

On the other hand, observing that

ouatunt) = [ 58T de o™ - [T o, @)

by the positivity of ¢’, 9,hs is positive as well and

e € e & € €N 0\E ug+va
avh?(ubav )fv(ubav )dl‘ <y ath(uba'U )U (1 - b )]l{uiJrvfgb} dx
Q Q

us +v ui + v°
/ upp(———) v (1 — bb V1 fus +oe <y do.

10



Therefore, we obtain
I <-— dv/ Opwha(ug, v°)| Vo |2 da — dv/ Ovuy, P2 (ug, v¥)Vug - Vo© do
Q Q

u; + v°¢ uz + v
/ub¢( b ) 8(1* b b )]1{u§+ufgb}d~’0-

(3.15)

Computing from (3.14)

U +U
auuth(uba )_ ¢( b

)5

and plugging estimates (3.13) and (3.15) into (3.12), we end up with the estimate

d
dt

hQ(’Mbv )dxﬁfdb/[@b(@) ub¢(

Q

”b“’ )][Vug 2 da

- dv/ Ovwha (uf, v¥)| Ve | da
Q

ub+v

f(derdv)/ b g Vs - Vo da

o (3.16)
+C/Q(Ul€))2(1 _ b b )Il-{ui-i-’uagb} dZL'

uy + v uy + v
+77v /Q Uigb( b b )’Us(l ] b )Il.{ug_;’_vagb} d.fC

1 e up Ut
-2 et @ s
Q

3

Next, using the positivity of ¢’ again, we estimate the third term in (3.16) with a
weight n > 0 as

,(db+dv)/ “b(b(“b“’ YWug - Vo da

dy + dy
<@+d)d [ Fo VP e+ 2R [ (M e
Thus, choosing 7 € (0,2dy(dy + dy) ™), gives C(n) := (dp — (dp + dy)2) > 0, and
inequality (3.16) becomes

d

pr hg(ub, )dx < — db5¢/ |V |* do — d /8wh2 ug, v°)| V| do

*C(n)/ U g (B T

) [ gy,
n

1

Finally, by assumption (H1), the derivative

(3.17)

ub—i—v

) Q° dx

up +v up + v v WYy v z.,dz
Ouoha(un ) = 6 () (D) ol = [ 16 (-GN E
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satisfies w
|6wh2(ub, ’U)| S 2 M¢/ ? .

Therefore, adding (3.11) and (3.17), and using the boundedness of ¢’ again, we
arrive at the following estimate for the time derivative of the energy

d
GO0, (1) <~ didy [ Ve do =g, [ [V o
Q
us us Jrv
e >/Q Y () Gt 2 da (3.18)
+ Ol + 4§ 22y IV 2y — / (Qe)*d + C.

Integrating in time over [0, T the latter inequality, estimate (3.10) is proved by the
means of Lemma 3.1 (with ¢ = 2), Lemma 3.2 and the boundedness of the initial
energy. |

We conclude this section by giving improved estimates from interpolation ar-
guments.

Corollary 3.4. Under the hypothesis of Theorem 2.2, for all T > 0, the following
estimates hold:

[Jug + ugll <Cr, (3.19)

2 ([0,71; H' (%))
and
lug + ugllLar) < Cr, (3.20)

where

(3.21)

_J2+2)N if N> 2;
"3, if N=1.

and ¢ < 3 if N =2.

Proof. The following argument is performed for the subpopulation u;. It can be
applied similarly to uj and thus to ug + ug.

Lemma 3.2 and 3.3 give that ug is bounded in L?([0,7]; H'(Q2)). Thus, by the
Sobolev embedding theorem, we have that uS is bounded in L2([0,T]; LN (Q)),

with N* = T if N> 2 N*€[2,400) if N =2 and N* = o0 if N = 1. Since we
also know that u¢ is bounded in L>([0,T]; L'(Q2)), by interpolation we obtain that
ug is bounded in LI(Qq), with ¢ as in (3.21). O

Remark 5. At this point, using Lemma 3.1 again, we see that 0;v¢ and VV v are
bounded in L1(Qr).

3.2 End of the proof of the main result

End of the proof of Theorem 2.2. The proof is divided in four steps and uses com-
pactness to identify limits along subsequences. The first and the second one focus
on the identification of the limit (as e — 0) of the densities v® and u® = uj + uj,
a.e. in [0,T] x Q, respectively. In the third step we obtain the a.e. convergence of
the subpopulation densities u, uj and we identify the obtained limit as the unique
solution of the nonlinear system (1.7). The convergence argument is also extended

12



globally in time by a diagonal argument. Finally, the proof is concluded in the
fourth step, taking the limit as € tends to zero, in the very weak formulation of the
system satisfied by u® = u;, + uj and v°.

First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density
v° given in Lemma 3.1 and to the boundedness of uf + u§ in L?(§27) obtained
in Lemma 3.2, we have that (v¢). is bounded in L*([0,T]; W4(Q)) and (dyv°).
is bounded in L2([0,T]; L?*()). Therefore, by applying Rellich’s Theorem, there
exists a subsequence, still denoted v¢, and v € L*(21) such that, as e — 0,

v (t, ) — v(t, x), a.e. on [0,7] x Q. (3.22)

Moreover,
Vov© — Vo in L*(Qr), (3.23)
and due to Lemma 3.1 again, v is nonnegative and belongs to L (Qr), while Vv

lies in L*(Qr).

Second step. We rewrite the parabolic equation satisfied by the density u® = uj +uj
as
Opu® = A(dg ul, + dpui) + fo(ul) + fo(ug,v%). (3.24)

Thanks to Corollary 3.4, we see that (uf). is uniformly bounded in L2([0,T]; H*(92))
and in L272%(Qr) for some & > 0, so that the reaction term in (3.24) is uniformly
bounded in L'*%(Q7). Then (9;(uS + u§)). is uniformly bounded in
LYF0([0,T]; W=1149(Q)). Thus, Aubin-Lions’ lemma (cf. [18]) yields a subsequence
(still denoted u¢), and a function u > 0, u € L?(Q2r), such that, as e — 0,

u®(t,x) = ui(t, x) + up(t,x) — u(t,x), a. e.in Qr, (3.25)
where the nonnegativity of u follows from that of u*. Furthermore,
Vu® — Vu in L*(Qr), (3.26)
and
f|lu HLZ(QT) = 8151% (| ug + uj HLZ(QT) <Cr,

||Vu HLZ(QT) < ligigf H Vu® HLZ(QT) < CT.

Third step. The energy estimate (3.10) yields the estimate

o)t - e

Therefore, Q(us, uf, v) converges to zero in L?(Qr), ase — 0, and (up to extraction
of a subsequence)

< . 2
L2Qr) — Velr (3:27)

¢(uizvg)ug,¢(%2)uz — 0, a.e.in Q. (3.28)

It remains to prove the existence of the a.e. limit of subsequences of (ug)e, (uf).
and to obtain that this limit is, a.e.over Qp, the unique solution of (1.7), corres-
ponding to the functions u and v obtained in (3.25) and (3.22), respectively.

13



Let us denote (u}(u,v),u;(u,v)) the unique solution of (1.7). Then, using the
function ¢ defined in (2.1), we get

Q(uzvuivvg) = Q(u;uivvg) - Q(UZ(usva)vuZ(usva)va)
= q(ug, u®,v%) — q(ug (u®,v%),u®, v°%)
= qu(C’ us, UE)(UZEJ - uz(ua, 'UE)) )

and thanks to hypothesis (H1) we obtain
|Q(ug, up, %) = (8g + 0y)|uj, — up (u®, v%)] -

Thus by (3.28), |uj — uj(u®,v°)] = 0 as € — 0, a.e. in Qp. Finally, the proved
convergence (3.25) and (3.22) and the continuity of u; with respect to its arguments,
yields the desired result, i.e.,

up = up(u,v), u =u® —up = us(u,v), €—0, a.e.in Qrp.

To conclude, let us remark that all the a.e. convergence results obtained so far
have been performed on [0, T], for any arbitrary T' > 0. Since (ug, uf,v®) is defined
on [0, 4+00), by extracting subsequences, these arguments can be replicated in the
time intervals [0, 277, [0,3T], and so on. Then by Cantor’s diagonal argument, the
convergences (3.22), (3.25) and (3.28), and the convergence of the pair (uj,u7) to-
wards the solution of (1.7) are verified a.e. in (0, +00) x 2.

Fourth step. We shall prove now that (u,v) is a weak solution of (1.6), in the sense
of Definition 2.1. For this purpose, let us consider two test functions &1, & in C2,
satisfying V&, -0 = V& -0 = 0, on [0, T] x 09Q. Multiplying the equation satisfied by
ug +uj by &1 and the third equation of (1.1) by & and integrating over (0, +00) x €,
we get,

/ / (0:&1) (uf, + ug) de dt — /51 ma+u;)n€)dz:

(3.29)
/ / A& (daug, + dyug ) dadt +/ & (fa(ud) + folug,v))dzdt,
Q 0 Q
_/00/ (012 ) v° dmdt—/fg(O)vi“’de:
o Ja @ (3.30)

dv/ / A&gvsdzdtJr/ /52 folug,v®) dedt.
0o Jo o Ja

Concerning the equation (3.29), the convergence results obtained in the previous
steps and the estimates in (3.6) allow us to pass to the limit as e — 0, in all the terms
of the equation, using Lebesgue’s dominated convergence theorem, thus obtaining
(2.2).

The same conclusion holds for equation (3.30). Indeed, the boundedness of v*
and its convergence (3.22), together with the estimates in (3.6), allow us to pass to
the limit in all terms of (3.30), using Lebesgue’s dominated convergence theorem
again, thus obtaining (2.3). The proof of Theorem 2.2 is now completed. O
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4 Linear stability analysis

In this section, we investigate the linear stability of spatially homogeneous steady
states of the macroscopic system (1.6) — (1.9), with reaction and fast reaction
functions given by (1.4) and (1.5), respectively. We shall also see the relationship
between the linear stability of the coexistence steady state at the mesoscopic and
macroscopic scale, as € — 0.

Let ¢ and ¢ be conversion rates satisfying assumption (H1). We introduce the
following few notations for later use,

and the parameter providing a criterion for the linear stability (see Theorem /.1

and Proposition 4.2),
a::ﬂg>0. (4.1)

o1 b
The pair (4, 7) € Ri is a spatially homogeneous steady state of the macroscopic
system if and only if @ = 4, + 4, and the triplet (@q,ap, ) satisfy the nonlinear
system

fa('aa) + fb(ﬂb,ﬁ) = fv(ﬂb,ﬁ) = Q(ﬂa, Up, ’l_)) =0. (42)

Extinction of u. From Q(%,, @, ) = 0 and the strict positivity of ¢ and 1), we
see that @, = 0 if and only if 4, = 0: no extinction of a single subpopulation of the
species u is admitted. Thus, for @, = @, = 0, we obtain the trivial and semi-trivial
steady states

(1_1,1, 1_)1) = (0, 0) and (’ELQ, ’L_)Q) = (0, b) , (43)

corresponding to the total extinction of the two species in the ecosystem and to a
partial extinction, respectively.

Survival of u and extinction of v. The other steady states with @, # 0 and
up # 0 are of main interest. The first case is with ¥ = 0. Denoting @, = Aa and
iy =0ob, \,o > 0, system (4.2) reduces to

M) _ b (4.4)

op(o) a
Such a semi-trivial state always exists but the uniqueness is non-trivial. Indeed, the
second equation in (4.4) can be written equivalently as

09(0) _ MO

1 P1

Due to assumption (H1), the functions A(X) := Mp(A\) /91 and X(0) := od(0)/P1
are strictly increasing functions from 0 to +o0o. Hence, for every A > 0 there exists
a unique o(A) > 0 solving (4.5) and given by

NaaA(1 = X)+mpbo(l—0) =0,

(4.5)

a(\) = 27 (aA(N). (4.6)

Plugging (4.6) into the left hand side equation in (4.4), the stationary states cor-
respond to the zeros of the function F' below

FA) :=n,a X1 = X)) +mba(A)(1 —o(N)). (4.7)
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Furthermore, by the competition structure, it follows that F' is positive for small
enough A and F(\) — —oo0 as A — +o00. Thus, the macroscopic system (1.4) — (1.7)
admits at least one semi-trivial equilibrium

(a3, v3) = (aX + bo,0), (4.8)

solution of system (4.4), with ¢ = o(\) uniquely determined by (4.6). Moreover, if
the equilibrium is unique, F is decreasing around the corresponding A, i.e. F’'(\) < 0.

In general it is possible to have several semi-trivial states of type (4.8). As an
example, take

01 ifz<16
a=b=1, 17,=02 m=1 oé=1, )= BE=00 0 (49)
0.3 otherwise.

The corresponding F(A) is shown in Figure 1, from where we see that there exist
three semi-trivial states.

0.2 - -

Figure 1: Reaction term F'()) for the example (4.9).

We will discuss the uniqueness issue in Proposition 4.2, where a sufficient condi-
tion for uniqueness of (4.8) is given, and Proposition 4.3, where we exhibit a family
of conversion rates functions ¢, for which uniqueness of (4.8) holds true.

Coexistence of u and v. Finally, if @, # 0, ay # 0, 0 # 0, from f, (4, 7) =0
we get 4y + 0 = b and thus @, = a. Then, from Q(@,, Uy, ) = 0 and the definition
of « it follows that @, = ba. Therefore, system (4.2) has a unique totally nontrivial
solution given by

(T4,74) = (@ + ba, b(1 — @), (4.10)

provided that o < 1.

We shall see in the following subsection (see Theorem 4.1) that the stationary
states (4.3) are unstable, so that the total extinction of the species u never occurs.
The species u always survives and its coexistence with the species v is conditioned
by the switching strategy that the subpopulations u, and wu; adopt when both
resources run out, quantified through the parameter «. Indeed, the coexistence
occurs if the switch from the state up to the state u, is faster than the opposite
switch, i.e. @ < 1. On the other hand, v goes extinct only if o > 1.

The relationship between the linear stability of the mesoscopic and macroscopic
coexistence steady states, as ¢ — 0, is seen in Subsection /.3.
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4.1 Linear stability analysis for the cross-diffusion system
Let us introduce the partial starvation measures

Uq

A=—=>0, o=—2>0, 0=-¢€{0,1-0},
a

c~|@\

so that each of the above steady states can be identified with the triplet (X, o, )
and written as -
P = (u,v) = (Aa+ ob, db) . (4.11)

Linearizing around P the ODEs system associated to (1.4) — (1.7), in the sense
of small perturbation 7, |7| < 1, i.e.

Uy = Ug +TU, and up=1up+ 71U

U= ug + up = (g + Up) + 7(Ug + Up) = 0 + 7, (4.12)
V=U+T0,
we obtain
i = 1a(1 = 2\) i + 7(1 — 20 — )ity — Mo ¥ + o(1), (4.13)
O= -0y + (1 — 0 —20)0+ o(1). '
Moreover, from the linearization of Q(uq,up,v) around (g, @y, ), we have
01Q Ui + 02Q iy, + 03Q D + 0o(1) = 0, (4.14)

where 9;Q = 0;Q (i, Uy, v) and

hQ=—1p(\) = ' (\) = —B(N) <0,
02Q = ¢(0 +6) + U¢/(U 8) =:7v(o,6) >0, (4.15)
03Q = 0¢/ (0 + 6) =: 0(c,8) > 0.

Using @ = 4, + Up, from (4.14) we obtain 4, and @y in terms of @ and ¢ as follows
~ 1 .1 R - 1 .1 -
g = —(0,0)u+—0(c,0) 0+ 0o(1), ap=—PBAN)t——0(c,6)v+0(1), (4.16)
r r r r

where r = 7()\,0,0) == 02Q — 01Q = B(A\) + v(0,6) > 0. Thus, system (4.13)
becomes )

S

W= M@+ o(1), w:(

and the matrix M = M (P) has the following entries

Mua(P) = 2(1 = 20)7(0,6) + (1 = 20 — 8)B(N),
Myy(P) = i (1 - 20)6(0,9) - ™1 - 20— 86)0(c,8) — mo,
B n " (4.17)
Mai(P) = =26 B(N)
)=

Mo (P —U59(J,5)+7]U(170'725).
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Next, for u, and up as in (4.12), using (4.16) again, the linearization of the
cross diffusion operator in (1.6) reads as

BN 0(o,0)

)
A(daua + dbub) = 7'(daM + db—)Aa + 7(dg — dp) AD + o(T),
r r r
and the linearized cross-diffusion macroscopic system writes
o = JAD + Mw + o(1),
with
o [d, 120y g, B (d — dy) 2420)
0 d, '

Finally, denoting {\, },, the eigenvalues sequence associated to the operator —A
with the Neumann boundary condition (0 = Ag < A1 < ... < A, < ...),_the matrix
to be analyzed for the stability of the macroscopic system is N = —\,J + M, i.e.

_%(da'Y"'dbﬁ))‘n""Mll _%(da_db)e)\n'i‘Mm
N = (4.18)

Moy —dyAp + Moo

We are now ready to prove the following stability result.

Theorem 4.1. Let 1 and ¢ be conversion rates satisfying assumption (H1) and
a > 0 defined as in (4.1). Then, the following holds true.

(i) The trivial and semi-trivial steady states (41,v1) = (0,0) and (2, 02) = (0,b)
are linearly unstable.

(ii) The family of semi-trivial steady states (us,v3) = (aX + bo,0) satisfies

c=\A=1, fa=1, (4.19)

11 b
D<o<la<A<ct /1422 fa<t, (4.20)
2 2 ang

and the swapped relation

11 . .
O<i<l<o<-+= 1+ fa>1. (4.21)
2 2 b?]b

Furthermore, they are linearly unstable if « < 1, and if o > 1, they are
linearly stable if and only if the function F in (4.7) is strictly decreasing
around A, i.e. F'(X) <O0.

(i11) If a < 1, there exists a unique strictly positive steady state given by (Uy,U4) =
(a+ ba,b(1 — ) and it is linearly stable.

Proof. (i) From (4.17) and (4.15), we have

a0 + mh(0) sgem O
M(0,0)=d —_—— d M(0,b) = )
00 = deel gy ) MO [w’iﬁ%%) -
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implying that the steady states (0,0) and (0, b) are linearly unstable, both for the
macroscopic system and for the associated diffusion-less one, because of the zero
eigenvalue of the Laplacian.

(#1) In order to proceed with the investigation of the family of steady states
(t3,73) = (aX 4+ bo,0), let us observe that from the first equation in (4.4), we have

(1-XN(1-0)<0 or A=c=1. (4.22)

Thus, according to the value of o, we get from (4.5): if & > 1, then A € (0,1) and

o>1ie i, <aand i >b;ifa <1, then A >1and o € (0,1), i.e. 4, > a and

up < b; if a =1, then A = ¢ = 1 giving the optimal selection case @, = a, Uy = b.
Next, let us rewrite the left equation in (4.4) as

Na@

o(l—o0)= b

AN = 1) = K(N). (4.23)

If a > 1, as A € (0,1), it follows that K(4) < K(X) < 0 and o is upper bounded by
the positive root of the above equation with A = % Hence, (4.21) follows. If o < 1,
swapping the role between A and o, we obtain (4.20).

Furthermore, the entries (4.17) of the matrix M(P) = M (aX + bo, 0) are now

3

)
p
.
0

Miz(P) = (na(1—2X) — (1 — 20))r —mo,
My (P) =0,

MQQ(P) = 771;(1 70’).

As My = 0, the steady state is linearly stable for the diffusionless macroscopic
system if and only if : M7 < 0 and Mss < 0. Hence, o > 1 is a necessary condition
for the linear stability, and it holds only if o > 1.

In the case o = 1, giving the optimal selection case A = 0 =1, M(a +b,0) has
a zero eigenvalue, so that the equilibrium is a non hyperbolic equilibrium. Adding
the contribution of the cross diffusion term, it does not change the nature of the
equilibrium because of the zero eigenvalue of the Laplacian.

Let o > 1. The steady states under consideration satisfy Q(Aa,o(\)b,0) = 0,
where o()\) is defined in (4.6). Taking the derivative with respect to A and using
(4.15), we obtain

ad1Q(Aa,5(A)b,0) + b’ (N\)02Q(Na,a(N\)b,0) = —B(N)a + v(a(N),0)bo’(A\) =0.
Thus

B

"N =m0

Plugging o’(\) into the derivative of F'

F'(A) = nqa(l = 2X\) + mbo’ (N (1 — 20(N)) , (4.24)
we now find
FO) = a1 = 2) + ma= Bl (1= 20(0) =~ (P)



Hence, My is negative if and only if F'()) is negative, which implies (i) for the
diffusionless macroscopic system and for the cross-diffusion one.

(#11) Let o < 1. Since now (A, 0,0) = (1,,1 — ), from (4.17), we have
I L nay +maB Nabt + nea(r — 0)
M =—— 4.2
o) =2 a-as a0 a0 (4:25)

Asr—0> 0, it holds
trM < 0. (4.26)

By r=p84vand v — 0 = ¢1, we have

det M =M [(nay + maB)(r — 0) = nadB — mafB(r — 0)]

:W [v(r—0) — 0] = w ¢1 >0, (4.27)

i.e. the equilibrium (@4, 4) is stable for the diffusionless macroscopic system.
The expression form (4.25) for M implies for N, by (4.18), that

tr N <O,
and
det N = AN2 + B, + C,
with
A= dUM > 0’
T
do — dp)0 doy +d
B = u]\421 — MM22 - della (428)
r T
C :=det M > 0.

Furthermore, using the definition of r and the strict negativity of all the entries of
M (4, 74), we find for B in (4.28)

77u95(1 - Oé)

B=—(d, - db)T + (doy + du 3

)w — dy My,

v 1-
= % ( — da0B + dary — daby + dbrﬁ) — dy My,

(1l — «
= %(daﬁbl + dyB) — dy M1 > 0,

which implies that det N > 0, for all n € N. Therefore, the equilibrium (a4, 74)
remains linearly stable by adding the cross-diffusion terms. O

4.2 Uniqueness semi-trivial states with extinction of v

One possibility to ensure uniqueness of the steady state (@3, 03) = (aX\+bo,0) is to
impose, in the case a > 1, that the net flux of the individuals of the species u goes
from the state u;, to the state u,, when the population u; reached the capacity of its
resource and the population u, has only halved the capacity of its resource. When
«a < 1, the opposite switching mechanism has to be imposed. A precise version is
the following.
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Proposition 4.2. Consider A(X\) = Mp(N\) /Y1 and X(0) = o¢(o)/d1, with ¢, ¥
satisfying assumption (H1). Assume that

al(1/2) <1, if  a>1, (4.29)

and
a”'¥%(1/2) <1, if  a<l. (4.30)

Then, there exists a unique solution of (4.4). Furthermore, the corresponding steady
state (4.8) is linearly stable if & > 1, and unstable if o < 1.

Proof. Let o > 1. For the proof recall the function A — o(X) from (4.6). Then,
0(0) = 0, while the increasing behaviour of A and ¥ together with condition (4.29)
imply that, for A € (0,1/2],

c(A) <N aA(1/2)) <27 (1) =1.

Hence, for A € (0,1/2], the function F' from (4.7) is strictly positive.

Now, let A be the smallest zero of F, so that (aX+ba (), 0) is one of the steady
states under consideration. By the above argument A > 1/2, and by Theorem 4.1,
a > 1 implies that o(\) > 1. Therefore, the monotonicity of A — o()\) again implies
that o(\) > 1, for any A > .

Finally, we find from (4.24) that F’(\) < 0, for all A > X. Hence there exists a
unique stationary state and the claimed stability follows from Theorem 4.1.

The case a < 1 follows changing the role between the variables A and ¢ and
between the functions A and ¥, i.e. defining A(0) := A= (a"!%(0)) and analyzing
the behaviour of G(o) := ngaX(o)(1 — A(0)) + mbo(l — o), instead of F(\). The
claimed instability follows again by Theorem 4.1. O

Conditions (4.29) and (4.30) can be rephrased in terms of the ratio 2, respect-
ively as

< <¢1 and ¢1<a§§¢(%).

They are not necessary necessary conditions. Indeed, we provide below a family of
conversion rates ¢, ¢, for which the uniqueness of the stationary states (4.8) holds
true, whatever is %. For that family of conversion rates, some numerical test are
shown in Section 5.

Since the population densities u, and u; are of the same species, it is natural
to expect that the conversion dynamics from u, to up is similar to that from u to
Ug. S0, in order to be consistent with the modelling considerations in Subsection
1.2, (see (1.15)), we choose

30(3) _b Y1 b
a

Y(r) = wid(wez), w1 >0,ws >0, (4.31)
and we prove the following.
Proposition 4.3. Consider ¢ as in (4.31) and

o(x) = 012 + O, 01 >0,02>0, (4.32)

Then there exists a unique stationary state (us,v3) = (aX\ + bo,0). It is linearly
stable Zf% < wi¢p(we)/d1, and unstable otherwise.
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Proof. Let o()\) be as in (4.6). As observed previously, the stationary states (4.8)
corresponds to the zeros of the function F()\) in (4.7). Taking the second derivative
of F', gives

F"(\) =bmp[o”(A) —2(c"(N)? = 20(N\)a” (V)] — 2an, . (4.33)

By (4.32) and (4.31), we have

op(o) a2 & ~ 01
=0c°+(1—-0)o, 0= ——,
P1 ( ) 01 + 62
and AV 0
= oA+ (1— @)\ 5= 22
h OATF (=@, “ waby + 02
Hence, equation (4.5) reads as
00*(\) + (1 = 0)o(\) = af@A? + (1 — @)\ = W(N\), (4.34)
and _
W= Lig oz aawo
o(A) = —+ =[(0 - 7.
20 20

Furthermore, deriving twice (4.34) with respect to A, we obtain the identity

200" (\)? + 20(\)o” (\) = 2a= + (1 —

: Yo" ().

|~

Plugging the latter into (4.33), we end up with
b _
F'(X) = 2286"(\) = (205 bm + 2ama)
Finally, observing that W2 — 2W W” = o?(1 — @)?, we compute

( W'(\) )’ W0 - 1)+ 40W] — 200"
[(B—1)2+40W N2/ [(0—1)2 +40W)3

U//(A) —

200(0 —1)2 — 20(W"2 — 2W W") 5
= — — 3 = 2
[(0—1)2+40W)3

o(1 —0)? — af(1 — ©)?
[(0—1)2+40W (N2

If ©(1 —0)? — af(1 — @)? < 0, the function F is strictly concave and therefore
has a unique zero. If ©(1 — 0)? — af(1 — @)? > 0, then ¢”()) is a strictly positive
decreasing function that converge to 0 as A — +oo, and consequently F' has at
most one inflection point and a unique zero. Moreover, F is decreasing around its
unique zero. So that it gives a stable stationary point if a > 1. O

4.3 Linear stability analysis for the mesoscopic system

A triple (ag, 4, v°) is a homogeneous stationary solutions of the mesoscopic scale
problem (1.1) if and only if

i) + QUG ,0°) = fu(a, o) — ZQ(a, 1, 7°) = £l 0%) = 0.
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If v* = 0, then either u; = uj = 0, which gives the totally trivial steady state
corresponding to the trivial macroscopic one (@1, ¥1), or @5 # 0 and 4§ # 0. In the
second case the triplet (@, @f, 0) satisfies the system

ag, 1. us u

matis (1 — =2) + = [o(FL) @ — (=) 5] =0,
7€ 1 7€ 77 €
mis (1 — ) — < [6(31) 7 - w(=) az] = o,

it can be non unique, as in the macroscopic case, and it converges to a macroscopic
equilibrium (@3, ¥3), in the limit € — 0.

If v # 0, then from f,(up, v) = 0 we have uj + v° = b. Hence, for all ¢ > 0,
fo(ag,v°) = Q(uf, uj,v°) = 0 and we obtain the two stationary states (a5, a7, v°) =
(0,0,b) and

(ﬁ27 627 66) = (av bOé, b(l - Oé)) ) (435>

provided that o < 1. These equilibria do not depend on £ > 0, so that we shall drop
the € exponent in the sequel. In the limit ¢ — 0, they correspond to the linearly
unstable equilibrium (%2, 2) and to the positive linearly stable equilibrium (@4, 74),
respectively.

Hereafter, we focus on the totally nontrivial spatially homogeneous steady
(4.35), and we see that, for all ¢ > 0, it is also stable for the mesoscopic system
(1.1) and the corresponding ODEs system. Indeed, setting

u, = Ug + TU up = Up + TU, ¢ =10+ T0%, 7| < 1,

the linearization of (1.1) around (@, Up, D) writes as

Oyio® = diag{da, dp, dy }AG + M9 + o(1), @ = (@5, @5,7°) ",
with
—Na +101Q £020Q 205Q
we| 100 me-190 ma-10Q
0 (1 —a) (1 —a)

Again, we need to analyse the stability of the matrix M¢ above and N¢ below

NE = _)\ndiag{da, dba dv} + ME’

i.e.
7da)\n — Na + %alQ %82@ %QBQ
N = “19,G —dpha —mpa—1Q  —ma—18;Q
0 —7711(1 — a) —dyAp — 7711(1 - a)

For that, we apply the Routh-Hurwitz criterion [13] and we obtain the result below,
proved in Appendix A.

Proposition 4.4. Under the assumption o < 1, for all € > 0 and A, > 0, the
matrices M€ and N€ are stable, i.e. all their eigenvalues have negative real part.
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To complete the analysis, we shall see below how the previous linear stability
property is preserved in the limit as € — 0. Indeed, two eigenvalues of N¢ converge
to those of NV, while the third one goes to —oo.

Let us denote

DF () = N* - ul,

where I3 stands for the 3 x 3 identity matrix. The goal of the computations below
is to compute det D¢(u), also denoted by |D¢|, (see also [14]).
First, adding the second row of D¢ to the first one, we get

—(daAn +Na + 1) —(dpAn, + npex + 1) e
|D°| = —101Q —(dpAn + M + 1) — £2Q —1pe — £93Q
0 (1 — ) ~(doAn +mu(1 =) + )
Then, using the identity
_ _ _ad
25Q +(01Q - 0:0) D = 0.

and adding to the third column the difference between the first and the second
column, both multiplied by O‘%ﬁl, we obtain

—(daAn + Mo + 1) —(dpAn + mpx + 1) Ni2
|DF| = —101Q —(dyAn + Mo+ p) — 18:Q das |,
0 (1 — ) Nog —

with "
v
dog := (dyAn, + My + 1) 7,1 - Q.

Furthermore, using ~ ~
01Q(ag) + ¢1) +0:Q8 =0,
and adding the second column, multiplied by g, to the first one, multiplied by

_ad>’1+¢17 we get
Nip—p —(dpn + mpx + 1) Nia
ﬁ _
(1- ;)|DE| = |=(dpAn +ma + H)é —(dpAn + Mo + p) — 202Q das
Ny (1l — ) Nog —

Finally, subtracting the first column to the second one, multiplied by g, we have

Ny —p di2 Nig
B B =
—(1=2)Df[=|  dx -185,Q dos |, (4.36)
N21 0 N22 —

with
B B
dig := ,u(l - ;) — (dpAn +77ba); — N,
do1 = —(dp A + moex + H)g .
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Thus, (4.36) rewrites as

202y dernr ) = 28 (1= 0 der(N o) + RO
where
R(p) = *g(l - g) w4 p(p)

with p(u) a polynomial function of degree two that does not depend on e. Con-
sequently

7“2

r
det(Df(p)) = —p® — = det(N — pI) + ———p(p), 4.37
with
det(N — p ) = p? — (trN)pu + det N . (4.38)
Let «;, ¢ = 1,2 denote the eigenvalues of N and let p denote the eigenvalues of

N¢,i=1,2,3. It has been shown that R(vy;) < 0 and R(u$) < 0. Moreover, observe
that u$ is a root of (4.37) if and only if it is a root of

7,2

Br—p5)"

Plugging in (4.39) the simple asymptotic expansion in e of ué = vi+evi+e?vi+- .-,
the zero order terms gives —r det(N — v Iz) = 0. Therefore,

—ep® —rdet(N —pl) +¢ (1) . (4.39)

p; =7 +0(), i=12, (4.40)
and

ui + p5 =tr N+ 0O(e),
uips =det N+ O(e) .

On the other hand, writing det(D®(u)) = — (1 — p5) (1 — p§) (1 — p§), from (4.37)—
(4.38), we deduce the identities below

r
it g+ ps = -2 +0(),
r
ping + ps(pi + p3) = ——tr N+ O(1),
r
pinzus = ——det N +0(1),
so that,
r
ps=—-+0(1).
€
5 Numerical simulations
For the numerical simulations we consider the linear conversion rates
plx)=x+9¢ and P(x) =0z + 1, (5.1)
with 6 = 0.5, § =5 and v = 1, together with the growth rates

Na = 3, m =2, 1, = 40. (5.2)
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Depending on the choice of a and b we consider two cases: the v extinction case
a=15 b=6, =a=1, (5.3)
and the coexistence case
a=15 b=8 =a<l (5.4)

In the case of the ODE system associated to the mesoscopic system (1.1) with
(1.4) and (5.1), the numerical solution is illustrated in Figure 2 (o = 1) and Figure 4
(av < 1). The expected initial layer for the subpopulations u¢ and u§ can be observed
in Figure 3 and 5 (see Remark 1).

’ Densities: - - - Uq Up e U — ‘

e=10"" e=10"? e=10"3
8 [ [ -8 [ | - | | .
6 - - 6 -6 -
4 - - 4 — 4 ,

0 1 | | [ 0 1 | | [ 0 1 | | [
0 10 20 30 0 10 20 30 0 10 20 30

time ¢t time ¢t time ¢t

Figure 2: a = 1. Solution of the mesoscopic ODE system with parameters
given in (5.1),(5.2) and (5.3), for e = 1071,1072,10~3 (from left to right),
with extinction of v®, and convergence of u® = uj + uj towards a + b. Here
the maximal time is T = 30.
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Densities: - - - Ug === Up  -oooo U —v

e=10"1 e =102 e=10"3
| | |
4 e G OOOEOnOs , 4 - cchecccocooonoooe _ 4 ............................... o
2 - -2 - 2] .
0 | | I 0 - | I 0 - | I
0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
time ¢ time ¢ time ¢

Figure 3: @ = 1. Zoom of the solution in Figure 2 in a right neighbourhood
of t =0 for e = 1071,1072,1073 (from left to right).

Figure 4: a < 1. Solution of the mesoscopic ODE system with parameters
given in (5.1),(5.2) and (5.4), for ¢ = 1071,1072,1073 (from left to right),
with convergence of (u®,v®) = (uf + uy,v®) towards (a + b, b(1 — «v)). Here
the maximal time is 7" = 30.
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e=10"1 e =102 e=10"3
| | |
4 . o aoooanoaoonnns o 4 . - ccheccoocoocnnnee _ 4 ............................... _
9wzl T -2 -2 -
0 | | I 0 - | I 0 - | I
0 0.01 0.01 0 0.01 0.01 0 0.01 0.01
time ¢ time ¢ time ¢

Figure 5: oo < 1. Zoom of the solution in Figure 4 in a right neighbourhood
of t =0 for e = 1071,1072,1073 (from left to right).

The effect of the spatial dispersal of the species by diffusion is shown in Figure 6
(o =1) and Figure 7 (o < 1) below, in the case of the one dimensional spatial do-
main [0, 1]. Additionally, we provide a video in the supplements. All the parameters
are kept as in the previous computations and the diffusion coefficients are

do=2.  dy=01, dy=01,
and the initial conditions has been chosen as
in(z) = cos(4nz) + 4, ul™(z) = (z — 1) sin(472?) + 2,
Ui“(ac) = cos(4mz) + cos(2mx) + 2.5.

u

| Densities: - == ta -ty e u —v
t = 0.000 t = 0.002 t =0.020 t = 0.200

8 _ | [ 8 _ | [ 8 _ | [ 8 _ | [
; R .

g :

2 _ -

0 | | [ O [ | [ 0 [ | [ O [ | [
o 05 1 0 05 1 0 05 1 0 05 1

T X xr T

Figure 6: o = 1. Solution of the mesoscopic PDE system (1.1) in the extinc-
tion case.

28



Densities: - - - Uq 77— U —

t = 0.000 t = 0.002 t = 0.020 t = 0.200

8 _ | [ 8 _ | [ 8 _ | [ 8 _ | [
6 s -

4 _ _

_\_’—

2 - -

0 [ | [ O [ | [ 0 [ | [ O [ | [
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

T X xr T

Figure 7: a < 1. Solution of the mesoscopic PDE system (1.1) in the coex-
istence case.

A Proof of Proposition 4.4

Proof. The Routh matrix associated to M¢ writes as (see [13])

1 dets M*
—trMe —det M¢©
Bye = | (dety M?)(trM*) — det M® )
0
trMe
—det M¢ 0

with
dety M*© == [M*]11 + [M®]a2 + [M*]33,

and where [M¢];; are the following minors:

[ [
Ms, M5,
[ [
Ms, M5,

€ (>
My, Miq
€ €
M3, M5,

[ [
M:, Mg,

M)y = , MF)ag = .
M ‘ M2 M5 Ms,

o [Mfss = }

By the Routh-Hurwitz criterion [13], M¢ is stable if and only if there are no sign
variations in the first column entries of Ry, i.e., if and only if M€ satisfies

trMe <0,
(dety M#)(trMe) — det M© < 0, (A1)
det M* < 0.

From the expression of M¢, we get

tYMgz—Ua—UbOé—%(l—a)—g<0a
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and

«
[M]11 =m0 - $1 >0,

[Mf]22 = (1 — ) (na + g) >0,

1 1
[MFTa3 = nama + —na(r = B) + —mafs > 0,
which imply
deto Me® > 0.
Furthermore,

11—«

detM‘S = (—na—i—%@l()) [ME]H—U—U&Q (626_2—63@) = —@(1—0&) <0.

9 9

It remains to check the second inequality in (A.1), that is a consequence of the
previous computations and of the identity

det M¢ = _na[ME]ll .
Indeed,
(deto M*)(tr M®)—det M® = ([M®]11 + [M*]2a + [M®]33)tr M® + 1o [M*]11

= ([M#]a + [M¥]s3)tr M* — [Mf]ll(nba (1 —a)+ g) <0.

Thus, M¢© is stable for all € > 0.
Concerning the matrix N¢, we define the quantities

Dy =d,+dp+d, >0, Dy:=dudy,+dpd, +dadpy >0, Ds:=d,dpd,, (A.2)

and

A= do (M3, + M33) + dp (M7, + M) + do (M7, + M5,) <0,

B = dyd, M5, + dody M5y + dody M3 < 0, (A.3)

C = do [M*]11 + dp[M®]22 + dy[M®]33 > 0.
Thus, using the previous computations, we obtain

tr N® =tr M® — D1\, <0,
dety N© = deta M® + Dy A2 — AN, > 0,

and
det N® = det M® — D3 \> + BX2 —C )\, < 0.

To conclude, it remains to check the sign of the quantity below:
(deta N®)(tr N°) — det N = (deto M*®)(tr M*®) — det M*®
+ A2 (=D1 Dy + D3) + \2(Datr M€ + AD; — B)
+ Ap(—Dideta M® — Atr M* + C).

The latter is indeed strictly negative, using again the negativity of the entries of
Me¢, the positivity of the minors [M¢];;, definitions (A.2) and (A.3) and

—D1Ds+ D3 <0, AD1*B<0, —Dideta M*+C <0.

Then, by the Routh-Hurwitz criterion again, V¢ is stable for all strictly positive ¢.
O

30



Acknowledgment The authors warmly thank Laurent Desvillettes for the fruitful
discussions about the model and his useful suggestions.

Furthermore, this international collaboration was made possible through the

International Research Network (IRN) “ReaDiNet” financed by CNRS, France,
and Korea Advanced Institute of Science and Technology (KAIST), Korea.

References

[1]

[10]

[11]

[12]

Agmon, S., Douglis, A., and Nirenberg, L. Estimates Near the Bound-
ary for Solutions of Elliptic Partial Differential Equations Satisfying Gen-
eral Boundary Conditions. I*, Comm. Pure Appl. Math. 2 (1959), 623-727,
(doi: 10.1002/cpa.3160120405).

Chen, L. and Jiingel, A. Analysis of a parabolic cross-diffusion population
model without self-diffusion, J. Diff. Egs., 224 (2006), 39-59.

Chen, X., Daus, E., and Jingel, A.. Global existence analysis of cross-diffusion
population systems for multiple species, Archive Rat. Mech. Anal. 227 (2018),
715-747.

Cho, E. and Kim, Y.-J. Starvation driven diffusion as a survival
strategy of biological organisms, Bull. Math. Biol. 75 (2013), 845-870.
(doi: 10.1007/s11538-013-9838-1)

Choi, B. and Kim, Y.-J. Diffusion of biological organisms: Fickian and
Fokker-Planck type diffusions, SIAM J. Appl. Math. 79.4 (2019), 1501-1527,
(doi: 10.1137/18M1163944).

Chung, J., Kim, Y.-J., Kwon, O., and Yoon, C. Biological advection and cross-
diffusion with parameter regimes, AIMS Mathematics 4.6 (2019), 1721-1744,
(doi: 10.3934/math.2019.6.1721).

Conforto, F., Desvillettes, L., and Soresina, C. About reaction-diffusion sys-
tems involving the Holling-type II and the Beddington-De Angelis functional
responses for predator prey models, Nonlinear Differ. Equ. Appl. 25 (2018),
(doi: 10.1007/s00030-018-0515-9).

Daus, E., Desvillettes, L., and Jiingel, A. Cross-diffusion systems and fast-
reaction limits, Bull. Sci. Math. 159 (2020), 102824.

Desvillettes, L., About Entropy Methods for Reaction-Diffusion Equations,
Rivista di Matematica dell’Universita di Parma, 7 (2007), pp. 81-123.

Desvillettes, L., Lepoutre, Th., Moussa A., and Trescases A., On the entropic
structure of reaction-cross diffusion systems, Communications in Partial Dif-
ferential Equations, 40, n.9, (2015), 1705--1747.

Desvillettes, L. and Trescases, A., New results for triangular reac-
tion cross diffusion system, J. Math. Anal. Appl. 430 (2015), 32-59,
(doi: 10.1016/j. jmaa.2015.03.078).

Funaki, T., Izuhara, H., Mimura, M., and Urabe, C. A link between microscopic
and macroscopic models of self-organized aggregation, Netw. Heterog. Media 7
(2012), 705-740.

31


http://dx.doi.org/10.1002/cpa.3160120405
http://dx.doi.org/10.1007/s11538-013-9838-1
http://dx.doi.org/10.1137/18M1163944
http://dx.doi.org/10.3934/math.2019.6.1721
http://dx.doi.org/10.1007/s00030-018-0515-9
http://dx.doi.org/10.1016/j.jmaa.2015.03.078

[13] Gantmacher, F. Applications of the theory of matrices, Chelsea Publishing
(1959).

[14] Tida, M., Mimura, M., and Ninomiya, H. Diffusion, Cross-diffusion
and Competitive Interaction, J. Math. Biol. 53 (2006), 617-641,
(doi: 10.1007/s00285-006-0013-2).

[15] Jiingel, A. The boundedness-by-entropy method for cross-diffusion systems,
Nonlinearity 28 (2015), 1963-2001.

[16] Kim, Y.-J. and Kwon, O. Fvolution of dispersal with starva-
tion measure and coexistence, Bull. Math. Biol. 78 (2016), 254-279.
(doi: 10.1007/511538-016-0142-8)

[17] Lamberton, D. Equations d’évolution linéaires associées d des semi-groupes
de contractions dans les espaces LP, J. Funct. Anal. 72 (1987), 252-262,
(doi: 10.1016/0022-1236(87)90088-7).

[18] Moussa, A. Some variants of the classical Aubin-Lions Lemma, J. Evol. Equ.
16 (2016), 65-93, (doi: 10.1007/500028-015-0293-3).

[19] Murakawa, H. A relation between cross-diffusion and reaction-
diffusion, Discrete Cont. Dyn.-S., Series S 5.1 (2012), 147-158.
(doi: 10.3934/dcdss.2012.5.147).

[20] Nirenberg, L. An extended interpolation inequality, Annali della Scuola Nor-
male Superiore di Pisa, Classe di Scienze 20.4 (1966), 733-737.

[21] Quittner, P. and Souplet, Ph. Superlinear parabolic problems. Blow-up, global
existence and steady states, Birkhduser Advanced Texts: Basel Textbooks,
Birkhauser Verlag, Basel, 2007.

[22] Shigesada, N., Kawasaki, K., and Teramoto, E. Spatial segreg-
ation of interacting species, J. Theor. Biol. 79 (1979), 83-99,
(doi: 10.1016/0022-5193(79)90258-3).

Email addresses:

Elisabetta Brocchieri : elisabetta.brocchieri@univ-evry.fr
Lucilla Corrias : lucilla.corrias@univ-evry.fr

Helge Dietert : helge.dietert@imj-prg.fr

Yong-Jung Kim : yongkim@kaist.edu

! Laboratoire de Mathématiques et Modélisation d’Evry (LaMME),

UEVE and UMR 8071, Paris Saclay University

23 Bd. de France, F-91037 Evry Cedex, France

2 Université de Paris and Sorbonne Université, CNRS, Institut de Mathématiques
de Jussieu-Paris Rive Gauche (IMJ-PRG), F-75013, Paris, France

Currently on leave and working at

Institut fiir Mathematik, Universitit Leipzig, D-04103 Leipzig, Germany

3 Department of Mathematical Sciences,

Korea Advanced Institute of Science and Technology,

291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea

32


http://dx.doi.org/10.1007/s00285-006-0013-2
http://dx.doi.org/10.1007/s11538-016-0142-8
http://dx.doi.org/10.1016/0022-1236(87)90088-7
http://dx.doi.org/10.1007/s00028-015-0293-3
http://dx.doi.org/10.3934/dcdss.2012.5.147
http://dx.doi.org/10.1016/0022-5193(79)90258-3

	Introduction
	Problem setting
	Formal derivation of the reaction-diffusion system with fast switching

	Statement of the main result
	Proof of the main Theorem
	A priori estimates
	End of the proof of the main result

	Linear stability analysis
	Linear stability analysis for the cross-diffusion system
	Uniqueness semi-trivial states with extinction of v
	Linear stability analysis for the mesoscopic system

	Numerical simulations
	Proof of Proposition 4.4

