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Abstract

The integration of numerical simulation and experimental measurements in cellular materials at the
sub-cellular scale is a real challenge. On the experimental side, the almost absence of texture makes
displacement fields measurement tricky. On the simulation side, it requires the construction of reliable
and specimen-specific geometric and mechanical models from digital images. For this purpose, high order
based fictitious domain approaches have proven to be an efficient alternative to boundary conforming
finite elements for the analysis of geometrically complex objects. A number of discretization parameters
needs to be set by the user by making a trade-off between accuracy and computational cost. In addition
to numerical errors (interpolation, integration etc.), there are additional geometric and model errors
due to the pixelation of the image (e.g., quantization, sampling, noise). In the literature, discretization
parameters are often analyzed without taking pixelation into account, which can lead to over-calculations.
In this paper, these parameters are adjusted to obtain (a) the best possible accuracy (bounded by
pixelation errors) while (b) ensuring minimal complexity (concept of fair price). In order to analyze
the different sources of error, various two-dimensional synthetic experiments are generated by mimicking
the image acquisition process from high-resolution numerical simulations considered as a reference. The
approach leads to a modeling that outperforms conventional approaches both in terms of accuracy and
complexity. Eventually, it is shown that the presented image-based models provide a unique opportunity
to assist digital volume correlation and allow the measurement of relevant local kinematics within cellular
materials.

Keywords: Image-based models, Isogeometric analysis, Immersed boundary methods, B-splines,
Cellular materials, Elastic image registration.

1. Introduction

Recent advances in micro-tomography provide a unique opportunity to characterize and model the
behavior of architectured materials [1]. On the one hand, the acquired volumetric images can be used
to build fine Finite Element Digital Image-Based (FE-DIB) models that account for the architecture
[2, 3, 4] or even the micro-structure [5, 6, 7, 8, 9, 10, 11, 12]. On the other hand, the addition of specific
experimental test means makes it possible to study the behavior of the material in situ [13]. Within this
context, Digital Volume Correlation (DVC) aims at measuring full field volume displacement fields at
several loadings [14].

Concerning the image-based model aspect, multiple approaches are conceivable. A voxel-based hex-
ahedron mesh has the merit of being immediate to build [15]. It should be noted that one could hope
avoiding the segmentation step by using the gray-level value to adjust the voxel behavior [16]. However,
such a structured mesh may generate unphysical stress concentrations [2]. In addition, such approaches
usually lead to huge FE problems and excessive computational burdens which require the development of
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specific high performance computing tools [17, 12]. An alternative is to construct a tetrahedron based FE
mesh that conforms to the architecture [18]. The automation of such a procedure is still not obvious and
the size of the problem to be solved remains a real bottleneck. As a result, a current trend in the field of
image-based models consists in resorting to fictitious domain type approaches that offer the opportunity
to dissociate the shape function basis from the actual geometry [19, 8, 9, 10, 20]. More precisely, when
combined with higher order and regular functions, these embedded domain (also referred to as immersed
boundary, or unfitted, or even cut) finite-element techniques seem to meet their full potential. In fact,
they allow for an accurate description of the mechanical fields while saving a large amount of degrees
of freedom compared to standard low-order boundary fitted strategies. This certainly explains their
current popularity in the computational mechanics community for the analysis of geometrically complex
objects (see [21, 22, 23, 24, 25, 26, 27, 28] to name a few). In the current study, we choose to resort to
immersed isogeometric analysis [29, 30, 31, 32, 33] which provides a natural framework for performing
fictitious domain analysis using smooth higher-order functions. After a first step devoted to the identi-
fication of a level-set based smooth boundary of the specimen that is imaged, we suggest constructing
an automated immersed boundary DIB model using a regular high order B-spline grid in the same spirit
as in [10]. The spline support will then be used as the discretization basis for image registration (same
idea as in [34, 35, 36, 37] for instance). Returning to the area of DIB models, the contribution of our
work is to adjust the modeling parameters (element size, polynomial degree, quadrature rule) so that
the discretization error is comparable to that produced through the imaging (i.e., pixelation) of the real
specimen. The proposed study thus breaks with the usual practice in the field where the numerical
convergence is most of time assessed with geometries deemed to be exact (such as in references [9, 10]
for instance). This enables us to end up with a fairly-priced DIB model in the sense that going to a
more refined model will not enable a better accuracy since the total error is dominated by the intrinsic
geometry error coming from the image generation process.

Concerning now the experimental aspect, as previously indicated, kinematic measurements by DVC
carried out during in-situ tests could constitute an interesting counterpart to the simulations. DVC
consists in essence of finding the coefficients of a given kinematic basis that performs the best possible
registration of the images recorded at rest and once the specimen loaded. DVC has been successfully
applied to a wide range of natural and artificial materials [14, 38, 39, 40] presenting, once imaged,
favorable textures at the macro-scale. The usual subset based approach [14] undertakes to solve a
collection of independent image registration problems in sub-volumes (the so-called subsets) distributed
in the Region Of Interest (ROI). In each subset, the displacement is usually assumed to be continuous
and interpolated using low-order shape functions. Although widely used to study the targeted materials
because of its simplicity and its computational efficiency, this approach may not appear relevant if the
objective is to establish a dialog between the measurements and the results of mechanical simulations (in
order to perform data assimilation for instance). As a result, a FE approach to DVC (often referred to as
global) was later introduced by [41] to conveniently bridge the experimental and simulation outputs. In
this variant, the images are registered by using a FE displacement field defined in the whole ROI. This
approach provides access to globally continuous displacement fields, which can be naturally compared
to the simulation results. A fine mesh would then be necessary to capture local kinematics when dealing
with complex micro-structures, which would make the DVC problem ill conditioned since the kinematic
basis becomes too rich with respect to the amount of (relevant) data provided by the imaging tool.
However, this formulation of DVC can be easily regularized using Tikhonov like methods [42, 43, 44, 45] to
compensate for a texture deficit under a given scale [46]. The idea is to add to the least-square correlation
functional a regularization term introducing a new a priori on the displacement field [45]. This can consist
in a ”smoothness constraint” [44] or even a mechanical constraint [47, 48, 49, 46]. Recent contributions
have for instance overcome the texture issue in trabecular bone samples [50] or wood cell materials
[51] using regularization schemes based mostly on second-order Tikhonov operators. In this work, we
consider a mechanically sound regularization similarly to [52]. From a global point of view, we seek here to
exploit the information coming from the movement of cell boundaries (i.e., the only significant gradients
available) and rely on a mechanical model to estimate displacements in the textureless micro-structure,
e.g., in walls and/or struts. The question then becomes: how to automatically and efficiently construct
a specimen-specific regularization term for the DVC to take into account the material architecture ?

In this context, it is appealing to get use of the previous image-based model and to use it both as a
support for the measurement and to define a mechanical model that regularizes the DVC problem.

As a first application, we focus here on cellular materials such as open-cell or closed-cell foams. We
next assume that they present only one characteristic structural scale, namely the cell scale. In addition,
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the constitutive material is taken as isotropic at the micro scale. With this approximation, the material
sample can be considered as a structure to which a mechanical model is applied. It is then possible to
use this mechanical model in order to regularize the ill-posed DVC problem. Without loss of generality,
the work presented here focuses only on two-dimensional cases. The proposed approach will then be
illustrated using a 2D DIC algorithm and 2D images. Generalization to 3D, with expected difficulties both
in terms of implementation and numerical complexity, will be addressed at a later stage. Lastly, rather
than resorting to real images grabbed during an experiment, synthetic images are generated instead. A
super resolved reference image Ir is created based on the CAD model of the cellular material. One can
then get a super resolved image Id in the deformed configuration by advecting Ir using the displacement
field u of a pre-computed virtual test based on high resolution (boundary fitted) FE simulations. The
resulting images and the computed displacement field used for their construction are next considered as
ground truth data. They serve to challenge the DIB and DIC procedures. For instance, the images are
downsampled at different resolutions in order to mimic the behaviour of the CCD sensor and evaluate the
influence of the image resolution. They allow to simulate the whole chain: experiments, image sampling
and quantization, noise, construction of a geometrical model, then a mechanical one (assigning properties
according to gray-level information), and finally regularized measurement. Knowing the reference FE
displacement field, one can then analyze the different sources of error (geometric error, numerical error,
ultimate error of the DIC, etc.). From the general point of view of DIC, Fig. 1 illustrates the main
ideas of our contribution. Given two images of the material captured during an in situ test, one in the
reference state and the other once the sample has been loaded, we seek to identify the displacement field
at a sub-cellular scale by DIC. To compensate for the poor texture, we suggest building an automated
DIB model to regularize the ill posed DIC problem.

Mechanical test

Reference con�guration  Deformed con�guration 

Image Ir  Image Id  

Image-based mechanical 

modeling:

Regularization

Use of the elastic description in order to regularize 

the inverse problem of DIC

x

Optical �ow problem

x

x+u(x)

Ir(x) = Id(x+u(x))

Description of the mechanical behavior: 

Stiffness matrix  K 

Figure 1: Synoptic view of the proposed approach to Digital Image Correlation (DIC) to perform displacement mea-
surements in cellular materials below the cell scale. The images do not exhibit any texture under the cell scale and the
DIC problem is therefore poorly conditioned below the cell scale. Similarly to [46], we propose here to use mechanical
regularization to obtain sub-cellular displacement fields. In this work, a stiffness matrix that accounts for the underlying
architecture is used. An immersed boundary approach is considered and fine-tuned to construct the latter. In this paper,
the idea is to specify how to realize such a regularized measurement while mastering the associated cost.

The present paper is organized as follows: after this introduction, Section 2 is devoted to the construc-
tion of the fairly-priced immersed boundary DIB model. In particular, a careful numerical convergence
analysis is conducted in order to properly adjust the numerical model parameters while taking into ac-
count the intrinsic geometry error coming from the image generation process. Then, in Section 3, the
proposed DIB model is used to assist DIC in order to measure mechanically sound displacement fields
at the sub-cellular scale. Finally, Section 4 concludes on this work by summarizing our most important
points and motivating future research based on the proposed procedure.
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2. A fairly priced image-based mechanical model

In this section, we present our strategy for generating a mechanical DIB model. We thereafter rely on a
2D cellular like material as shown in Fig. 1. Let us assume that we capture a representative digital image
Ir of the sample, i.e., in our case, that we record an undistorted fronto parallel picture. Such a digital
image usually results from a relatively complex process, particularly in the case of tomography. However,
the latter is generally composed of a set of regularly arranged pixels or voxels carrying information that
may at first be related to a physical property (see step 1 of Fig. 2). The contrasts in the image plane are
here assumed to result only from the underlying architecture. We consequently assume that the observed
texture is binary and that it is simply quantized by the pixel.

The idea is to build, from the set of gray-levels data set grabbed in the ROI, a fairly priced mechanical
model that accounts at best for the assumed local behavior of the real sample. Fig. 2 summarizes the
different steps for the construction of a mechanical image-based model. In the context of this work,
where only synthetic tests are performed, the images are generated by a simple algorithm that consists
in assigning, for a given pixel region, a gray-value that represents the volume fraction and then quantizes
it. We must emphasize that this procedure does not represent the sophisticated mechanism of real image
acquisition and that other more realistic models exist, those including filling factors for instance [53].
Other external parameters such as noise can also induce non negligible errors. In this first study regarding
the image-based model construction, the effect of noise is not examined for the sake of clarity. It will,
however, be taken into account later on in Section 3 (see Section 3.2.4) that focuses on the application
to DIC. In the following, we first present the process of constructing a geometric model from gray level
data (see step 2 in Fig. 2). Based on this geometric model, we then construct an automated analysis
model that approximates the elastic behavior of the image being observed (see step 3 in Fig. 2). Finally,
a numerical convergence study is conducted in order to properly fix the parameters of the constructed
mechanical model (element length, order of approximation and quadrature rule) such that the error
obtained at step 3 of Fig. 2 is in the same order of magnitude as the one coming from the intrinsic
geometry discrepancy produced through steps 1 and 2 of Fig. 2. In that sense, we will characterize our
constructed image-based model (i.e., including the correct parameter settings) as a fairly priced model.
To the best of our knowledge, such a study has never been carried out in the field of image-based models.
Indeed, the convergence of numerical methods in this context seems to be essentially investigated with
geometries deemed to be exact (see, e.g., references [9, 10]), and thus the existing unfitted image-based
models certainly lead to over-calculations (too fine meshes and/or too high polynomial degrees).

True shape
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Mechanical 
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Figure 2: Summary of the different steps of the construction of a mechanical digital image-based model.

2.1. From gray-levels to geometric models

One of the main challenges in modeling complex materials with imaging is the segmentation of the
different phases that constitute the material and their geometric representation. In the context of this
work, a focus will be made on cellular-type materials (i.e., with only one phase), therefore we will only
use a binary geometrical representation which differentiates between void and material.

The description of the boundary can be classified into two main approaches: meshing methods and
level-set methods. The meshing approach consists in thresholding the gray-scale data, then extracting
a surface representation (using strategies such as the marching cubes algorithm [54, 18] for instance)
and finally applying a meshing algorithm in order to produce a watertight finite element mesh (see Fig.
3c). Converting each preserved pixel into a linear finite element (see Fig. 3b) also allows to extract an
implicit volume representation but presents geometric irregularities especially for low resolved images
[2] in addition to a large computational cost. Generally, meshing methods need smoothing operations
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before proceeding to the meshing step. The interested reader can also find other techniques based on
the meshing of reconstructed surfaces from oriented point clouds [55]. Finally, it may be noted that
recent works based on nested Cartesian grids (see, e.g., [11]) allow to improve pure pixel models with
hierarchical refinement, whose process is actually close from isogeometric refinement using hierarchical
splines [29, 10]. Conversely, level-set methods consist of finding regular contours of elements directly

(a) Synthetic image of a rectangular plate
with a quarter hole.

(b) Conversion of the binary image into a
Q4 finite element mesh.

(c) Finite element mesh resulting from the
curve boundary obtained with the

marching squares algorithm.

Figure 3: Conversion of an image into a finite element mesh.

within the initial images. A large class of level-sets named evolution level-sets propagate an initial curve
using the convection-diffusion equation in order to fit the different regions in the image [56, 57, 58].
Another manner of identifying regular contours in images is to find a smooth physical representation
with minimal oscillations and that conserves the local variations of the target images. A regular contour
can therefore be obtained by taking an iso-value of the physical representation. This is the approach
adopted in this work. We justify this choice because the obtained boundary is smooth and also by
the fact that this geometry parametrization is mesh-free, which appears appealing in image registration
(see Section 3 below). The Q4 voxel based model and the marching squares algorithm will be used for
comparison purposes only, as they can appear as the current practice in the field.

More precisely, our geometry description will be based on the smoothing B-spline surface [10] defined
by (1)-(2)-(3). Let g be a piece-wise representation of an image of pixel size equal to ∆x and ∆y into
the x and y directions, respectively. Using the Cox–deBoor formula [59], B-spline basis functions can be
defined over the pixel domain denoted Ω. A general form for the smooth representation of the image g
could be viewed as a linear combination of the B-spline basis functions:

∀(x, y) ∈ Ω f(x, y) =

m∑
i=1

Nq
i (x, y)ai, (1)

where Nq
i is the set of m two-dimensional B-spline basis functions defined over open knot vectors of

constant step size equal to pixel size ∆x and ∆y. The order q is practically chosen in {1, 2, 3} depending
on the image resolution and the degree of noise. A Cq−1 regularity is applied on the interior knots.
Using the isogeometric analysis formalism, the coefficients ai are interpreted as the control points of the
smoothing surface. In order to overcome the computational cost of a standard L2 projection for fixing
the coefficients ai, it is possible to proceed as follows (see again [10]):

ai =

∫
Ω

g(x, y)Nq
i (x, y)dxdy∫

Ω

Nq
i (x, y)dxdy

. (2)

Each coefficient ai is the weighted average of the image over a region of a maximum of (q + 1)2 pixels
due to the compact support property of B-spline functions. It can also be viewed as an L2 lumped
projection. The smoothing function obtained with the use of these coefficients has properties that make
it suitable for extracting a smooth boundary by simply considering an iso-value equal to a threshold
value. More precisely, the function is locally bounded by the minimum and maximum gray scale values.
Furthermore, the authors in [10] have shown that this smoothing approximates a convolution with a
Gaussian kernel. In the end, once the smoothing function is computed using (1)-(2), it is possible to
characterize the boundary geometry by considering a threshold value gt such as:

(x, y) ∈ Ωp ⇐⇒ f(x, y) ≥ gt, (3)
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where Ωp is the physical domain to be studied. Fig. 4 shows the obtained curve after thresholding the
smooth representation of the image.

(a) Level sets of the cubic smoothing function defined in (1)-
(2).

(b) Red: Iso-value of the cubic smoothing function using the
level set defined in (1)-(2). Orange: marching squares

boundary.

Figure 4: Extraction of a smooth boundary from an image of a one-phased sample.

2.2. From an image-based level-set geometry to mechanical analysis

Unlike the first class of methods (see, e.g., Figs. 3b and 3c), the approach based on level-sets is not
well suited for direct meshing since it only allows to obtain a spatial interrogation function of any physical
point. With this representation, unfitted boundary meshing techniques such as the Finite Cell Method
(FCM) [21], the Cut-FEM method [24] or the Extended Finite-Element Method (X-FEM) [60, 5] are
more appropriate. The use of the X-FEM for building image-based models was suggested in [5, 6, 7] and
was applied to two phases materials such as those which present inclusions. Roughly speaking, all these
methods have the same purpose which is to accurately integrate discontinuous functions. We choose to
adopt here the B-spline FCM due to its computational simplicity related to the tensor product nature of
B-spline basis functions and its high regularity. That is also interesting for the regularization of image
registration [36, 61] (see Section 3 below). The B-spline FCM consists in embedding the domain of
analysis in a simple rectangular domain and transferring the geometrical representation from the mesh
to the integration scheme. In this case, the only role played by the mesh is the generation of a set of
functions suited for analysis. It has been successfully used for image-based analysis for, e.g. a metal
foam specimen [30] and a trabecular bone specimen [10]. In the following, we briefly recall this method
and present our implementation to build our image-based model. In particular, we make use of most of
the treatments suggested in [10].

As in (3), we refer to Ωp as the physical domain known by a level-set function. After embedding
this domain in a rectangle, the complementary of Ωp is called the fictitious domain and is denoted Ωf .
In linear elasticity, with the absence of volume forces, the fictitious domain method consists in solving
the principle of virtual work with a penalization of the stress tensor σ. The constitutive behavior law is
modified by considering the penalized stress tensor [30] defined by:

σα(x, y) = α(x, y)σ, (4)

with

α(x, y) =

{
αp = 1 ∀(x, y) ∈ Ωp

αf = 10−n << 1 ∀(x, y) ∈ Ωf
. (5)

The Finite Cell Method consists in solving the variational problem using a classical Galerkin approach on
a structured grid with high-order basis functions. The elasticity problem is therefore reduced to a linear
system Ku = f where u is the vector of displacements at the control points of the embedding B-spline
grid (defined on Ω = Ωp ∪ Ωf ), f is the force vector and K is the stiffness matrix. The integration
of the penalized term coming from (4)-(5) with the standard Gauss quadrature is no longer valid in
a cut element due to the discontinuity introduced. Knowing the parametrization of the boundary of
the physical domain, a geometrical approximation can be performed using a quad-tree decomposition.
Each element of the structured mesh (called a cell in the FCM terminology) is divided into four sub-
cells if it cuts the boundary (see Fig. 5a). The sub-cells that do not cut the geometric boundary are
integrated with a full Gauss quadrature. This decomposition is repeated until a predefined maximum
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level is reached. Of course, the larger the number of quad-tree levels the higher the accuracy of the Finite
Cell Method. This induces a large number of integration points which increases the numerical cost of the
method. In order to tackle this problem, multiple recent methods were developed for the integration of
cut cells (such as linear tessellation strategies [10], smart boundary conforming octrees [62] and moment
fitting methods [63, 64, 65]).

In this work, for simplicity and robustness, we make the choices below for building the fictitious
domain-type stiffness matrix K. We remind here that the objective of next section will be to properly fix
the parameters of this simple scheme to allow for the construction of a fairly priced mechanical model.

• Linearization of the boundary for the integration on the physical domain: when using the smooth
physical representation (1)-(2)-(3), we perform a linearization of the geometric boundary [10] (see
Fig. 5c). At a certain level of decomposition, a cut sub-cell is detected by an interrogation of
sampled points uniformly distributed along its boundary. If at least one point has a value greater
than the threshold value, in the opposite of the other points, the sub-cell intersects the material
interface and the quad-tree algorithm subdivides it into four new sub-cells. In the contrary, if the
level-set function has values greater or smaller than the threshold value on all sampling points, the
sub-cell is homogeneous and it is subsequently integrated with a full Gauss quadrature. For the
last cut sub-cell, the boundary intersection with each sub-cell side is approximated by considering
the iso-value of the linearized level-set function at the sub-cell vertices (see again [10] for more
details). The intersection points including the cell boundary vertices define a convex hull that is
then given to a triangulation routine such as the Delaunay algorithm [66]. An exact quadrature
rule is subsequently used for the integration of the closure simplices (see Fig. 5c).

• Fictitious domain integration: Using the additivity of the integral, the integration of the penalized
term is obtained using the following equality:∫

Ω

αrdxdy =

∫
Ωp

(αp − αf )rdxdy +

∫
Ωp∪Ωf

αfrdxdy, (6)

where r is a function defined on Ω. The final stiffness matrix is therefore given by:

K = KΩ(αf ) + KΩp(αp − αf ). (7)

With this approach, KΩ is assembled with a standard Gauss integration scheme (see Fig. 5b) and
KΩp is assembled with a quad-tree complemented by a tessellation scheme (see Fig. 5a). Such a
treatment allows to save some integration points and thus some computational time in contrast
to the more rudimentary approach consisting in performing KΩf (αf ) + KΩp(αp). Indeed, the
immersed boundary is addressed here for only one cut domain (only Ωp and not Ωf , see [30] for
more information).

KΩp(αp−αf)

(a) Integration only on the physical
domain with a penalization equal to

αp − αf .

KΩ(αf)

(b) Integration on the total domain with a
penalization equal to αf .

Ωp

Ωf

(c) Integration of a cut element. Zoom on
the cut element of Fig. 5a. Red points are

the Gauss integration points.

Figure 5: Quad-tree scheme for the integration of elements. The orange grid represents the embedding B-spline space.
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For even more computational efficiency and for conditioning improvement, the fictitious degrees of
freedom, which are associated to the basis functions that have a complete support lying in the fictitious
domain could be removed because they do not influence the solution in the physical domain. In this work,
we keep all the basis functions as they are integrated with the penalization factor αf (see again Eq. (5))
and solve the linear stiffness system using a direct solver. We will see in Section 3 that such a treatment
also simplifies the implementation of the regularization scheme for performing image registration. In all
the following numerical tests, we consider a penalization factor αf = 10−8. Regarding the convergence
of such FCM schemes, it has been shown (e.g. in [67]) that they meet the same convergence properties
as the standard boundary fitted methods.

Remark 1 (Boundary conditions). In this work, Dirichlet boundary conditions are imposed only on
complete (exterior) horizontal or vertical boundaries. In this simple case, Dirichlet boundary conditions
are directly imposed on the degrees of freedom of a whole side of the embedding domain. In more general
situations, let us notice that Dirichlet boundary conditions can no longer be directly applied and weak
boundary condition strategies are used [68, 30].

2.3. Analysis of the geometry error and its propagation in the mechanical solution

We now truly apply the B-spline variant of the Finite Cell Method to synthetic images using the
level-set function defined in (1)-(2)-(3). We start by conducting a geometry convergence study in order
to fix the sufficient number of quad-tree levels that should be chosen practically and then present a
numerical investigation of the immersed boundary method applied to level-set images in order to set the
other discretization parameters (mesh size h and polynomial degree p). We recall that our objective is
to end up with a fairly-priced mechanical model in the sense that going to a more refined model will not
offer better accuracy since the total error will become dominated by the intrinsic geometry error coming
from the image generation process.

2.3.1. Numerical investigation of the level-set geometry error

To start with, we consider a very simple, one-dimensional example. More precisely, we undertake to
compute the length of the support of a step function represented by a one-dimensional image. Given an
analytical step function V defined by:

V (x) =

{
vmax x ∈ [0, c[

vmin x ∈]c, l]
with vmax > vmin and c < l, (8)

we assume that we have acquired a one-dimensional image defined by a set of pixels (gi)i∈J0,nK and that
represents a sampled version of V (see Fig. 6, left and middle). We construct an image by assigning a
maximum gray-level value denoted vmax to all the pixels that are completely in the domain [0, c[ and
a minimum value denoted vmin to those in the domain ]c, l]. The pixel that cuts the discontinuity of
the step function is assigned with a mean gray-level value weighted by the intersection lengths. Fig. 6
(middle and right) shows the procedure that consists in constructing the smooth representation of the
image.

True interface

Image acquisition 

Sampling

+ 

Quantization

+

Noise (ommited) 

Smooth 

representation of 

the image.   

Figure 6: Steps for constructing the synthetic image and the use of a smooth representation of the image.

Starting from a one-dimensional mesh, we apply the one-dimensional version of the quad-tree scheme
of Fig. 5c in order to estimate the value of the true interface c. We denote this quad-tree approximation
of the interface ca. In addition, we denote c̃ the abscissa of the threshold value of the smoothing function
(see Fig. 6 right). As (1) cannot be inverted directly, c̃ is found using a Newton-Raphson algorithm
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in a small neighborhood near the interface. The geometric approximation of the interface induces that
c 6= c̃ 6= ca (see Fig. 7). We introduce the three errors listed below:

• Intrinsic geometry error:

E =

∣∣∣∣c− c̃c
∣∣∣∣ , (9)

it represents the difference between the true interface and the exact value of the ”false” interface.

• Total geometry error:

Ē =

∣∣∣∣ca − cc

∣∣∣∣ , (10)

it represents the difference between the estimation of the false interface (using the one-dimensional
quad-tree scheme) and the true interface.

• Domain integration error:

Ẽ =

∣∣∣∣ca − c̃c̃

∣∣∣∣ , (11)

it represents the quad-tree integration error with respect to the false geometry. More precisely, this
error comes from the linearization of the interface in the last sub-cell. In other words, it measures
how we accurately integrate the false geometry.

Cut element

Sub-cell integration 

element

Homogeneous physical 

element

Homogeneous �ctitious 

          element 

True interface 

Level set interface after 

thresholding the smoothing 

function 

Full Gauss integration

on the linearized interface 

Linearized interface 

Figure 7: The different interfaces of the geometry approximation.

The position of the interface c within one pixel influences the accuracy of the geometry approxima-
tion. Fig. 8 shows that the acquisition process induces an error when the pixel does not intersect the
interface symmetrically. The error is minimal when the interface is located exactly at the center or at
the boundaries of a pixel. The maximum error is about 5× 10−2 pixels (i.e. a 2% relative error).
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Figure 8: Evolution of the intrinsic geometry error in pixel size unit when translating the true geometric interface all over
one pixel.

Another important user-defined parameter for estimating the interface is the threshold value. A
pragmatic choice is adopted here: we set this value denoted gt (see Eq. (3)) to the mean gray value:

gt =
vmin + vmax

2
. (12)
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The threshold gt is dependent of the chosen level-set method (i.e. the manner how the physical represen-
tation of the image is constructed) and the image resolution. The determination of the threshold criteria
is still a practical open question. We believe that experimental calibration strategies could help adjusting
the threshold criteria with respect to physical properties of the imaged specimen. The interface ca is
calculated by summing the lengths of the integration sub-cells. We recall that we perform a linearization
of the level-set at the finest level (one-dimensional version of the tessellation shown in Fig. 5c). Denoting
xmin and xmax the extremities of the last sub-cell and fmin and fmax the evaluation of the smoothing
function at xmin and xmax respectively, the linear approximation of the interface denoted ca can actually
be computed as:

ca =
gt − b
a

, with a =
fmax − fmin
xmax − xmin

and b =
fminxmax − fmaxxmin

xmax − xmin
. (13)

In order to fix the sufficient sub-cell level, we conduct a convergence study using the different errors
E, Ē and Ẽ defined in (9), (10) and (11), respectively. We vary the quad-tree algorithm’s maximum level.
Due to the influence of the location of the boundary interface as shown in Fig. 8, each error considered
is computed for the worst acquisition configuration, i.e., the configuration in which the geometry error
is maximum (see Fig. 8 again). Fig. 9 shows the evolution of the two errors Ē and Ẽ for two image
resolutions. The corresponding intrinsic geometry error E is also put on this figure. We observe that the
error Ē converges to the intrinsic geometry error E and that the image resolution improves the geometry
approximation (the intrinsic geometry error is reduced from left to right). The integration error Ẽ goes
down to zero and intersects the geometry error E for a sub-cell size equal to the pixel size. This induces
that there is no interest for refining the domain of integration beyond the size of a pixel since the intrinsic
geometry error is already achieved. In other words, going to higher quad-tree integration levels would
necessary lead to over-calculations.
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(a) 6 pixels in the image.
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(b) 12 pixels in the image.

Figure 9: Intrinsic geometry error E displayed along with the evolution of the errors Ē and Ẽ with respect to the size of
the smallest sub-cell in pixel size units (1D test case).

We then reproduce the previous numerical experiment for a two-dimensional case by considering the
geometry depicted in Fig. 3a. The image is generated with a gray-level filling algorithm based on volume
fraction similar to the one used in the 1D example related to Eq. 8. The pixels that are respectively inside
and outside the circle’s boundary are assigned with a minimum gray-level value vmin and a maximum
gray-level value vmax. The pixels that intersect the circle’s boundary are assigned with a mean gray-level
value. Using the level-set method, we approximate the circle boundary by setting again a threshold value
defined by (12). In order to quantify the geometry error, we detect a large number of radii spanning
θmin = 0 to θmax = π/2 of the smoothing function by applying a Newton-Raphson algorithm on the
radial axis. The exact geometry for Fig. 3a is defined for the exact radius R = 1 and a length of the
plate equal to L = 4.

We investigate the convergence of the quad-tree algorithm by considering the approximation of the
area of the plate. Similarly to the one-dimensional study, we define the following errors, i.e. the intrinsic
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geometry error E, the total geometry error Ē and the domain integration error Ẽ such that:

E =
|Ã−A |

A
, Ē =

|Aa −A|
A

Ẽ =
|Aa − Ã|

Ã
. (14)

Aa is the approximation of the area bounded by the level-set. It is equal to the sum of areas of the
integration sub-cells. Ã is the area of the level-set geometry defined by:

Ã = L2 −
∫ θ=θmax

θ=θmin

∫ r=R(θ)

r=0

rdrdθ, (15)

where R(θ) is the radius of the level-set approximated circle, which depends on the angle θ. Ã can be
numerically computed by:

Ã = L2 − θmax − θmin
2nθ

nθ∑
i=1

R2
i , (16)

where each Ri is the radius abscissa, i.e. such that the smoothing function is equal to the threshold
iso-value, and nθ is the number of angles considered (here nθ = 106). A is the exact area of the plate
defined by:

A = L2 − (θmax − θmin)R2

2
. (17)

In Fig. 10, we plot the evolution of the errors E, Ē and Ẽ with respect to the size of the smallest
integration sub-cell, similarly as in Fig. 9. We perform the numerical test for two different image
resolutions. We obtain the same behavior as in the one-dimensional case. As a consequence, a sufficient
quad-tree level can be chosen so that the smallest integration element has approximately a size equal to
the pixel size. Let (nx, ny) be the number of pixels of an image and (nex, n

e
y) the number of elements of

the B-spline embedding mesh. From a practical view point, the sufficient quad-tree level for an accurate
estimation of the area can thus be chosen using the following formula:

l =

⌈
1

2
log2

(
nxny
nexn

e
y

)⌉
, (18)

where d•e denotes the ceiling function. In the rest of this work, the number of integration sub-cells will
be fixed by the constant defined in (18).
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(a) 30× 30 pixels in the image.
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(b) 60× 60 pixels in the image.

Figure 10: Intrinsic geometry error E displayed along with the evolution of the errors Ē and Ẽ with respect to the size of
the smallest sub-cell in pixel size units (2D open-hole plate test case).

In order to study local curvatures influence, the same analysis was undertaken on more complex
geometries. For instance, polar curves defined by R(θ) = R+ 0.1 sin(ωθ) were considered (inspired from
[69]). For the tests performed with ω = 8 and ω = 16, a similar error evolution as the one shown in
Fig.10 was obtained.
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2.3.2. Numerical convergence of the image-based model: adjustment of the last discretization parameters

After identifying the sufficient number of quad-tree levels, we study in this section the numerical
convergence of the mechanical solution of the image-based level-set geometry. For this purpose, we start
by considering the same geometry as the one presented in Fig. 3a to which we now add the boundary
conditions depicted in Fig. 11. This test case is equivalent to solving an infinite open-hole plate in
tension. We fix the material properties as follows: E = 105Pa and ν = 0.3, where E is the Young’s
modulus and ν is the Poisson ratio. When considering a far-field traction denoted Tx that we fix to
10Pa, the stress field can be expressed in an analytical form (see, e.g., [70] for the formula). This one is
applied at the top and right boundaries.
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(a) Mechanical problem definition.
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(b) An example of the embedding B-spline elements with the
corresponding boundary conditions.

Figure 11: Mechanical problem definition: elastic plate with a quarter hole.

In the following, we investigate the convergence of the image-based immersed boundary model defined
previously under mesh refinement and confront it to three other reference FE image-based models listed
below:

• Q4 voxel-based model: Threshold of the initial image and conversion of the pixel connectivity
into Q4 finite elements after a binary segmentation [2] (see Fig. 3b).

• Marching squares without smoothing: Contour detection using the linear Marching squares
algorithm (two-dimensional version of the marching cubes algorithm [54, 71]) and meshing of the
closed curve boundary (see Fig. 3c).

• Mechanical properties based on gray-levels: Converts each image pixel to a Q4 finite element
which has an elastic behavior based on the pixel’s gray-level value. More precisely, the model’s
Young’s modulus (denoted here Y ) can be defined as a linear function of gray-levels:

Y (v) =
v − vmin

vmax − vmin
Emax +

vmax − v
vmax − vmin

Emin (19)

where v is the element’s gray-level value, Emax = E and Emin = αE with α a penalization
parameter equal to αf = 10−8. This method has always a number of elements equal to the number
of pixels and therefore induces a large number of degrees of freedoms. However, it has a particular
interest when dealing with heterogeneous materials that have different material properties [12].

Based on the exact solution defined over the exact domain Ωex, we consider the error in energy norm
defined as:

Eh =

√∫
Ωex

(σex − σh) : (εex − εh)dx∫
Ωex

σex : εexdx
, (20)

where ex and h subscripts stand for, respectively, the exact and the image-based solutions for each of
the methods listed above. A : B is defined by A : B = tr(AB), where tr is the trace of a square matrix.
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(a) 30× 30 pixels in the image.
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(b) 60× 60 pixels in the image.

Figure 12: Evolution of the error in energy norm under mesh refinement for the elastic plate with a quarter hole.

Fig. 12 shows the results obtained in terms of convergence under mesh refinement for two image
resolutions. More precisely, ”deg 1 Fcm”, ”deg 2 Fcm”, ”deg 3 Fcm” and ”deg 4 Fcm” denote the
solution of the proposed image-based immersed boundary model when considering the quad-tree level of
Eq. (18) and for polynomial degree p = 1, p = 2, p = 3 and p = 4, respectively. We observe that the
theoretical convergence rate is obtained. The convergence is of order O(hp) ≈ O(ndof)−p/2, where ndof
is the number of degrees of freedom and h is the equivalent size of the element. However, the high order
solutions converge to an asymptotic value. This result is totally novel and breaks with what is more
usually encountered in the field where the convergence of numerical methods is most of time assessed
from resulting geometries deemed to be exact (e.g., see [9, 10] again). Here, since we take into account
the additional error due to the pixelation of the image (see step 1 in Fig. 2), we are able to observe an
asymptotic constant behavior which means that there is no need to go to too fine models for optimal
accuracy. Indeed, after a certain refinement level, the total error becomes dominated by the intrinsic
geometry error coming from the initial image generation process. Last but not least, Fig. 12 shows that
the proposed image-based model is significantly more accurate (for a given number of degrees of freedom)
than the three voxel-based methods represented by the triangular dots and the cross dot. In fact, the
cubic variant of the proposed model allows to gain approximately one order on the computational cost
and precision. This accounts for the use of an advanced image-based, higher-order, fictitious domain
type model in comparison to more standard voxel-based methods even when taking into account the
intrinsic geometry error inherent to the image generation process.

More precisely, we will consider p = 3 for our model since it seems that we do not increase the
accuracy with higher orders. This appears in contrast with what is usually advised in the current
literature, which is, once again, due to the fact that we take into account the pixelation error in the
process here. Regarding the size of the element, the idea would be to take the one corresponding to the
beginning of the stagnation of the error. It depends on the test case. However, we will see in Section
3 that for cellular materials we can consider a size of element such that it encompasses the thickness of
a fiber to correctly reproduce local bending. For completeness, Fig. 13 shows the evolution of the error
as a function of the number of quadrature points for the mesh refinement range used in Fig. 12. More
precisely, the proposed unfitted models with p = 2 and p = 3 are studied along with the two standard
voxel-based approaches, i.e. the Q4 voxel-based model and the model where the mechanical properties
are affected from the gray-levels. Since the chosen quad-tree level is such that the minimal sub-cell size
is not lower than the pixel size, we can observe the same global behavior as for the degrees of freedom in
Fig. 12; that is, for a given number of integration points, our unfitted image-based model is significantly
more accurate than the voxel-based methods. This confirms the fairly-priced property of our model.
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Figure 13: Evolution of the error in energy norm with respect to the number of integration points.

Remark 2. At this stage, we should note that such results depend on the volume fraction of the cellular
material since the number of degrees-of-freedom as well as the number of integration points for the
standard voxel-based strategies decrease with the diminution of the volume fraction. In other words,
when having a micro-structure with more holes than in the geometry of Fig. 11, the voxel-based strategies
may behave better than in Figs. 12 and 13. This would even be more pronounced if one makes use of, e.g.,
nested FE meshes methods [11] that can be viewed as improvements of standard voxel-based approaches.
However, let us note that some local mesh refinement techniques could also be used in the context of
immersed isogeometric methods to decrease the number of degrees-of-freedom and of integration points in
the void parts (see, e.g., [29, 10] that call upon of hierarchical B-spline functions).

In order to come closer to real cellular micro-structures, we consider a second numerical example,
for which we compare the different solutions visually. We investigate the mechanical problem defined in
Fig. 14a where the geometry is subjected to the displacement load u0 = −1. The center point of the
hexagonal geometry is (0, 0) and the other inclusion centers are the vertices of the hexagon centered at
(0, 0) and of length equal to L = 50. The inclusion radius is equal to R = 22. We set the material’s
properties to E = 73.1 × 109Pa and ν = 0.33. Fig. 14a displays the finite element mesh of the exact
geometry on the underlying constructed image while Fig. 14b shows the B-spline embedding mesh.

(a) Mechanical problem defined on a simplified micro-structure
displayed with a linear finite element mesh of the exact

geometry.

(b) Embedding B-spline mesh.

Figure 14: Mechanical problem: micro-structure with a hexagonal structure

We visualize in Figs. 15 to 18 the Frobenius norm of the strain tensor which can be viewed as an
equivalent Von Mises strain field:

εvm = ||ε||F =
√
tr(εT ε) =

√
ε2
xx + ε2

yy + 2ε2
xy. (21)
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We compare the strain norm for the different methods in Fig.12. In addition, we put on the right of
each figure the reference solution coming from a boundary fitted mesh that is more refined than the
one depicted in Fig. 14a. Obviously, the strain field obtained using the proposed model has the highest
smoothness compared to the other alternatives. We observe that the marching squares and the voxel
based models allow to obtain similar strain fields but with more roughness. Finally, Tab. 1 indicates the
number of degrees-of-freedom considered for each model. We emphasize that, in contrast to voxel-based
approaches that are constrained by the image resolution, the immersed approach has the advantage of
uncoupling the discretization of the solution space from that of the geometry, and therefore allows to
keep the same B-spline approximation space for different image resolutions.

Cubic Finite Cell
Method (Fig. 15)

Marching squares
algorithm (Fig.
16)

Q4 voxel based
model (Fig. 17)

Gray-level proper-
ties (Fig. 18)

50× 43 pixels 798 3276 1728 4488
100× 86 pixels 798 16432 5916 17574

Table 1: Comparison of the number of degrees of freedom for each image-based model (hexagonal micro-structure problem).

(a) 50× 43 pixels. (b) 100× 86 pixels. (c) Refined finite element solution.

Figure 15: Finite Cell Method using the level-set geometric representation. Cubic B-spline mesh corresponding to Fig.
14b.

(a) 50× 43 pixels. (b) 100× 86 pixels. (c) Refined finite element solution.

Figure 16: Marching squares algorithm solution.
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(a) 50× 43 pixels. (b) 100× 86 pixels. (c) Refined finite element solution.

Figure 17: Q4 voxel based model

(a) 50× 43 pixels. (b) 100× 86 pixels. (c) Refined finite element solution.

Figure 18: Mechanical properties based on gray-levels. Post-processed stress field on the complete mesh.

3. Specimen-specific regularization of digital image correlation

Let us now consider a pair of digital images before and after a virtual mechanical test on a cellular
specimen. We try, in this section, to identify the displacement and strain fields using Digital Image
Correlation. As mentioned in the introduction, DIC is an inverse problem which is particularly ill-posed
when focusing at the sub-cellular scale. The DIC algorithm used herein relies on a global interpolation
of the unknown displacement field using the same cubic B-spline functions. This Galerkin approach
naturally introduces a first kind of spatial regularization. Roughly speaking, the larger the size of the B-
spline grid elements the higher the regularization of the optimization problem. This regularization allows
to capture large disparities such as translations and rotations. However, when dealing with complex
micro-structures such as cellular materials, local strains are expected, which cannot be described using an
interpolation-based regularization with a coarse grid. Consequently, we need to reduce the impact of the
interpolation-based regularization by refining the embedding mesh and to add a more softly regularization
scheme in order to suppress non-physical local solutions. For that, most common algorithms consider
the Tikhonov regularization term which consists in smoothing the displacement field by either penalizing
the gradient norms or the curvature given by the norm of the Hessians of the displacement components.
Based on the same principle, another, more mechanically-sound, alternative exists especially in the field
of structural experimental mechanics: it can be referred to as an elastic regularization.

The image-based mechanical model built from the reference image is assumed to accurately describe
the elastic behavior of the observed region. We thus propose to use this specific model to regularize DIC
in the aim of estimating local strains fields within cellular materials.

3.1. Digital Image Correlation: brief overview and a focus on elastic regularization

DIC is a general computational method for finding spatial transformations between different image
configurations. Given two gray-scale images Ir and Id representing the reference and the deformed
configuration of a material sample, DIC can formally be expressed as the following optimization problem:

arg min
u∈[L2(Ω)]2

[S(u, Ir, Id) + λR(u)] , (22)
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where u : Ω ⊂ R2 → R2 is the unknown displacement field and Ω is the region of interest (ROI). S is a
distance of similarity between Ir and Id and R is a regularization term weighted by the factor λ. Under
the assumption of the conservation of gray-levels (see optical flow problem [44]), S can be chosen as the
squared L2 norm of the residual of gray-levels which is equal to Ir − Id ◦ (id+ u), where ◦ refers to the
composition operator between two functions and id to the identity function. In this case, S is defined
by

S(u, Ir, Id) =
1

2
||Ir − Id ◦ (id+ u)||2L2(Ω) =

1

2

∫
Ω

(Ir(x, y)− Id((x, y) + u(x, y)))
2
dxdy. (23)

The global approach, adopted in this work, considers the optimization over the whole region of interest in
the contrary of local matching techniques that consist of performing the minimization over small sub-sets
(see, e.g., [72, 73] and [74] for a review of the different local matching techniques). In order to capture
non-rigid deformations, we suggest using regular basis functions such as the B-spline functions of Section
2. This method, which has similarities with the FFD (free-form deformation) techniques [61], consists
in deforming objects by manipulating a control point mesh. With this approach, the ROI is simply
embedded in a cubic B-spline grid. It is defined by a set of two-dimensional control points. We denote
the vector containing their coordinates p ∈ R2n, where n is the number of control points. Denoting
u ∈ R2n the vector of unknown displacements of the degrees of freedom, the displacement field on a
spatial point (x, y) ∈ Ω is defined by the following linear combination:

u(x, y) = N(x, y)u (24)

where N(x, y) ∈ R2×2n is the standard shape function matrix. Problem (23) can be viewed as a non-linear
least squares problem and therefore can be solved numerically using a Gauss–Newton type algorithm
[75, 76].

The problem of registering two images is ill posed due to multiple reasons. First, from a data view
point, a pixel has only one information which is its gray level value but the unknown displacement for
each pixel has two components. It results that there are more unknown variables than input variables.
More generally, the convexity of the functional S is not guaranteed and depends of the nature of the
images which leads to the non-unicity of the displacement solution. In addition to the treatment based
on the Galerkin approximation (i.e., given by the approximation space related to the basis functions
gathered in N), term R in (22) can help further regularizing the problem in challenging situations where
the gray-level distribution is not sufficient, i.e. when the image gradient is either small or has a dominant
direction, which is the case in this work. Such a term also allows to softly introduce a prior knowledge
on the physics behind the deformation of the sample. Multiple approaches can be adopted in order to
choose R. A common choice used when dealing with cellular micro-structures, or in general irregular
displacement fields, seems to be the use of Tikhonov regularization denoted T which consists in either
minimizing large variations of the displacement components [77] or their gradients [61, 51, 50]. In this
work, we will limit the use of this regularization scheme only to regions where no physical information
is available. More precisely, we will consider the Tikhonov first order version that is based on:

T (u) =
1

2

∫
Ω

‖∇ux‖22 + ‖∇uy‖22dxdy =

∫
Ω

(
∂ux
∂x

)2

+

(
∂ux
∂y

)2

+

(
∂uy
∂x

)2

+

(
∂uy
∂y

)2

dxdy. (25)

The discrete form directly coming from T is given by:

T̃ (u) =
1

2

∫
Ω

4∑
i=1

||Li(x, y)u||2dxdy =
1

2
uT

(∫
Ω

4∑
i=1

LTi (x, y)Li(x, y)dxdy

)
u =

1

2
uTLu, (26)

where Li are first order partial differential operators. L is called the Tikhonov linear operator. In order
to properly select the DOF where the Tikhonov regularization will be applied, we will eventually consider
a slightly different discrete cost function, based on the euclidean norm of the action of the Tikhonov
operator instead of the scalar product:

T̃ (u) =
1

2
||Lu||22. (27)

On the contrary, in the part of the ROI where physical information is available, we will rather use an
elastic regularization that has proved to be efficient in the field of experimental solid mechanics [52, 46].
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Indeed, as will be seen on the below numerical results, the previous Tikhonov regularization does not
allow capturing physical strain fields because the regularization lacks of physical meaning. More precisely,
this mechanically sound regularization scheme is based on the equilibrium gap method [52] whose discrete
form reads:

M̃(u) =
1

2
‖Ku− f‖22, (28)

where K and f are the stiffness matrix and vector force of the considered region, respectively. Practically,
when acquiring images of deformed samples in solid mechanics, f can be reasonably assumed to be zero
everywhere expect on the Dirichlet and non-zero Neumann boundaries. Indeed, we do not know well
the distribution of the reaction forces or loading on such boundaries (we can only experimentally access
to one component of the resultant force vector). That is why a special treatment of the boundaries on
which f is not well known is considered. We denote Γd the union of these boundaries. In addition to the
boundary control points, a stabilization is also used on the basis functions which have minimal values
on the physical domain (i.e., the cell struts). Overall, the control points regularized with the Tikhonov
functional are the one defined by the index set IT defined by:

IT = {i/ pi ∈ Γd and s(i) < tol << 1} with s(i) =

∫
Supp(Npi )∩Ωp

Np
i (x, y)dxdy∫

Supp(Npi )

Np
i (x, y)dxdy

∈ [0, 1]. (29)

We note that the selection criterion given by the function s defined in (29) depends on the considered
geometry. The bigger the volume fraction the smaller s is chosen. For the geometry that will be studied
in Section. 3.2 (see Fig. 19), we consider a tolerance value tol = 10−3.

The considered optimization will consist in employing a Tikhonov regularization at the control points
whose indices are in IT and the mechanical equilibrium at the control points whose indices are in the
complementary of IT . All in all, the discrete optimization problem is defined as follows:

arg min
u∈R2n

[S(u) + λMM(u) + λTT (u)] , (30)

where S is the Galerkin discretizations of S and T and M come from (27) and (28), respectively, and
are defined such that:

T (u) =
1

2
||DTLu||22, M(u) =

1

2
||DMKu||22, (31)

where DT and DM are binary selection operators that respectively select the control points whose indices
are in IT and in its complementary. These two operators verify: DTDM = 0 and DT + DM = I. λT
and λM are parameters that are related to characteristic lengths that act as cut-off frequencies of two
low-pass filters [46, 78]. It is important to note at this stage that the elastic behavior is not prescribed
in a strong way, but in a weak sense with the help of the penalization factor λM . It is actually only used
as a low pass filter to alleviate noise effects. As a result, the methodology does not appear in conflict
with the measurement of kinematic fields exhibiting more complex, possibly anisotropic and non-linear,
behaviors. In our case where the region observed represents a cellular material, the stiffness operator K
is obtained by the automated, fairly priced, image-based model defined in Section 2.

The resolution of the regularized non-linear least squares problem (30) is performed using the following
descent scheme:

u(k+1) = u(k) + d(k), (32)

where d(k) is the solution of the following Gauss–Newton system:(
HS(u(k)) + λMHM (u(k)) + λTHT (u(k))

)
d(k) = −

(
∇S(u(k)) + λM∇M(u(k)) + λT∇T (u(k))

)
(33)

and where HS is an approximation using only first-order derivatives of the Hessian matrix of S. HM

and HT are respectively the Hessian matrices of M and T and ∇S ,∇M ,∇T are respectively the gradient
vectors of S, M and T . The definition of these six operators is given by equations (34), (35), (36) and
(37), see below:

∇S(u(k)) = −
∫

Ω

(
Ir(x, y)− Id

(
(x, y) + N(x, y)u(k)

))
N(x, y)T∇Ir(x, y)dxdy; (34)
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∇M(u(k)) = KTDT
MDMKu(k), ∇T (u(k)) = LTDT

TDTLu(k); (35)

HS(u(k)) =

∫
Ω

N(x, y)T (∇Id)
(

(x, y) + N(x, y)u(k)
)T

(∇Id)
(

(x, y) + N(x, y)u(k)
)

N(x, y)dxdy; (36)

HM = KTDT
MDMK, HT = LTDT

TDTL. (37)

Practically, the descent direction d(k) is obtained by approximating ∇Id ◦ (id+u) by ∇Ir. This approx-
imation was discussed in [76, 79]. In this case, the matrix HS does not depend on the displacement u(k)

and the left hand side of the Gauss–Newton linear system is assembled only once in a pre-processing
step. Even more interestingly, the left-hand side can be factorized in a pre-processing step so that only
triangular systems need to be solved at each DIC iteration. As a consequence, the incorporation of the
stiffness matrix K for the mechanically regularized scheme does not add significant extra cost during
the DIC algorithm. Only the right-hand side is updated during the descent iterations. The integration
of the terms in (34)-(35)-(36)-(37) is performed using a rectangle integration with a subdivision length
equal to the element resolution, i.e. a number of integration points in one element equal to the number
of its pixels [80]. The optimization algorithm is stopped using a stagnation criteria defined by

||u(k+1) − u(k)||2
||u(k+1)||2

< 10−3. (38)

In order to measure the registration quality of the displacement solution, we consider the dimensionless
correlation residual equal to the standard deviation of the residual of gray-levels divided by the dynamic
of the initial image Ir:

η =
1

max Ir −minIr
std(Ir − Id ◦ (id+ u)), where std(h) =

√
h̄2 −

(
h̄
)2
, h̄ =

1

A(Ω)

∫
Ω

hdΩ, (39)

and where A(Ω) is the area of the region of interest.
Regarding the initialization of the Gauss–Newton algorithm, it is common to use efficient and fast

strategies for finding the initial guess u(0). The idea is to rapidly reach a displacement field that satisfies
small values of the residual of gray-levels. In the next numerical examples, the initial guess u(0) is the
vector equal to zero. Multiple initialization strategies exist in the literature. We list for example the
maximization of the cross-correlation function in the Fourier space using the Fast Fourier Transform
(FFT) [40], the use of coarse to fine schemes and multi-level strategies [81, 82] (see section 3.2.1 for a
multi-level mesh refinement strategy) or optimal transport for diffeomorphic registration [83].

In order to improve the Tikhonov regularization at the boundaries, we suggest considering an iterative
procedure in which the weight of the parameter λT is reduced after each optimization in order to attain
small correlation residuals. A summary of the DIC algorithm in addition to this iterative procedure are
detailed in Algorithm 1.
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Algorithm 1 Registration algorithm

Input data:

• Images Ir and Id

User defined input parameters:

• Region of interest. It defines the domain Ω

• Image sub-pixel evaluation method (here: cubic B-spline smoothing defined in (1)-(2))

• Discretization length of the B-spline elements (fixed by the accuracy of the DIB model)

• Degree of the B-spline functions (as seen in Section 2, we consider cubic B-splines for non-rigid
transformations)

• Regularization parameters: λT and λM (see (30))

• Mechanical model’s parameters: tentative Young’s modulus E, tentative Poisson coefficient ν, the
fictitious domain method penalization parameter αf defined in (5) and the threshold value gt for
constructing the geometry level-set.

• Initial guess u0 (Here set to zero)

Gauss–Newton algorithm:

function Registrate(u0, λM , λT )
Runs the Gauss-Newton algorithm defined in (32)-(33)
return u(∗), η, where u(∗) is the solution at convergence and η is the correlation residual defined

in (39).

Multi-level Tikhonov regularization algorithm:

k = 0
u(k) = 0
while Residual difference < 0 do

u(k+1), ηk+1 = Registrate(u(k), λM , λT )
Reduce Tikhonov regularization parameter λT
Residual difference = ηk+1 − ηk
k = k + 1

Optimal solution = u(k−1)

Remark 3. An important question in DIC is the sub-pixel evaluation of images. Due to the discontinuous
nature of images, interpolation can induce non-negligible errors. The evaluation of the image on physical
points can be performed with various strategies such as nearest-neighbor evaluation, bi-linear interpolation
or bi-cubic spline interpolation. In order to decrease interpolation errors and increase the regularization
of the DIC problem, it is possible to blur the reference and deformed images Ir and Id by filtering
them using a Gaussian filter. This means that the new unknown displacement is searched for such that
(Gσ ∗ Ir) = (Gσ ∗ Id) ◦ (id + u), where Gσ is a Gaussian kernel for example. In order to evaluate the
images Ir and Id we suggest using the cubic B-spline description defined in (1)-(2) which approximates
a Gaussian filter [10]. This same strategies had been used in [37] for efficient gradient computation in
image registration. This allows us to perform in the same time, the blur of the images, the sub-pixel
evaluation of the image and its gradient, and the construction of the level-set description of the observed
cellular material.

3.2. Numerical example: application to a synthetic cellular material

We assess in this part, the performance of the developed DIC algorithm. To do so we consider a
set of synthetic images representing a cellular material with a complex micro-structure composed of
several random holes. The micro-structure’s geometry is similar to a slice of a cellular foam. Regarding
the material behavior at the micro-scale, although it may be very complex in practice (anisotropic,
elasto-plastic, etc.), we consider in this preliminary work a simple, isotropic, linear elastic constitutive
law with Young’s modulus and Poisson coefficient set to E = 73.1 × 109Pa and ν = 0.33, respectively.
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Our objective in what follows is to measure local strain fields in this regime, which is not possible with
standard approaches. In order to validate the results of the registration algorithm, we will conduct a
comparison of the strain field obtained from the suggested algorithm with the strain field of a reference
finite element solution. Fig. 19a shows a finite element mesh of the exact geometry on which we
consider a compression test under plane stress assumption. A displacement of value u0 = −3× 10−3 m
is imposed in the x direction at the right boundary. The left boundary is fixed. The corresponding
global longitudinal strain at the right boundary is equal to εxx ≈ 2.72%. The finite element solution is
displayed in Fig. 20. In the following numerical tests, we will confront the results of the registration
algorithm with the solutions coming from the finite element calculation of Fig. 19. For each test, we will
display the euclidean norm of the displacement field and the Von Mises strain defined in (21).

(a) Mechanical problem. (b) Zoom on a region of Fig. 19a

Figure 19: Virtual finite element test.

(a) Euclidean norm of the displacement field. (b) Von Mises strain norm.

Figure 20: Finite element solution of the problem of the mechanical problem defined in Fig. 19a.

The input data of the DIC problem, which are the reference and deformed images Ir and Id are
generated from a pixelation of the finite element mesh of Fig. 19 before and after deformation. More
precisely, the images are created by generating very high resolution binary images and afterwards down-
sampling them by pixel aggregation. They are shown in Fig. 21 with a chosen ROI. The acquisition
of the images is a crucial step from a practical point of view. In addition to noise and distortion for
two-dimensional images or artifacts for volume images, an important parameter is the image resolution.
The chosen resolution is such that the number of pixels in the cell struts is equivalent to the smallest
geometric thickness of the real acquisition of a closed-cell foam with a low resolution µ-CT scan set. In
the images of Fig. 21, we have approximately 4 pixels in the cell struts thickness. As the dimensions of
the true specimen are known, we assign to the pixel a physical dimension, therefore the image space is
the physical space with the same unit as the specimen shown in Fig. 19a. In general, the displacement
field is expressed in pixel units. However, depending on the experimental setup, it is possible to estimate
the pixel size using the information given by the camera-setup or the µ-CT scanner.
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(a) Reference configuration: image Ir. (b) Deformed configuration: image Id.

Figure 21: DIC inputs resulting from a virtual compression test.

As mentioned in Eq. (24), the unknown displacement field is searched in the B-spline space. It
results that the B-spline domain is simply defined over a user-defined region of interest (see Fig. 21 for
an example of a ROI).

We will test the three following B-spline DIC cases: a case where no regularization term is added, a
case using only Tikhonov regularization on the whole ROI and finally our approach using a mechanical
regularization (except on the Dirichlet boundaries where the Tikhonov regularization is used).

3.2.1. Global B-spline DIC without external regularization

We set here λT = λM = 0 in (30). The only regularization considered in this case is the B-spline
approximation of the displacement field. Therefore the B-spline element size determines the amount of
regularization used [46]. When considering cubic B-splines, the idea is to start by a mesh and gradually
decrease the elements size as suggested in [81]. Using the knot insertion algorithm for B-splines, it is
possible to define a refinement operator for going from a coarse displacement field to a refined one (see
[84, 85] for more details of the knot insertion algorithm). This grid refinement strategy detailed for
example in [86] can be applied to large variety of inverse problems. It has been recently applied in [87]
for solving for example the shape measurement problem in setero-DIC. A multi-level refinement approach
is summarized in Algorithm 2. Starting from a coarse mesh (see Fig. 22a), large disparities are corrected
gradually in order to capture more local displacement fields. The solution of the registration algorithm
is displayed in Fig. 23.

(a) 20 × 20 elements. (b) 21 × 21 elements. (c) 24 × 24 elements.

Figure 22: Multi-level refinement scheme using cubic B-splines. At each step, the orange grid represents the B-spline grid
defined over the region of interest.
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Algorithm 2 Multi-level refinement based on one scale of image resolution

Multi-level algorithm:

k = 0
u(k) = u(i) = 0
Registrate(u(k), λM = 0, λT = 0)
while Residual difference < 0 do

Refine B-spline mesh by decreasing element length (dividing by 2 the element length).
Perform the mapping from the coarse mesh to the fine mesh:
u(i) = CTu(k) where C is the knot refinement operator.
u(k+1), ηk+1 = Registrate(u(i), λM = 0, λT = 0) (see definition of Registrate in Algorithm 1).
Residual difference = ηk+1 − ηk
k = k + 1

Optimal solution = u(k−1)

(a) Euclidean norm of the displacement field. (b) Von Mises strain norm.

Figure 23: Solution of the global method without any penalization using a multi-level refinement strategy.

With the multi-level refinement approach, a correlation residual η = 0.77% is attained. This residual
is reached at a level of 4 subdivisions corresponding to the mesh shown in Fig. 22c and in which the
element resolution is equal to

√
(hx/∆x)(hy/∆y) ≈ 11.11 pixels, where hx, hy,∆x,∆y are respectively

the element size and the pixel size in x and y directions. Beyond this mesh resolution, the algorithm
diverges and becomes unstable. The displacement field solution has the same homogeneity as the finite
element solution, however, the differentiation of the solution, gives a strain field solution that presents
high strain concentrations with values that drastically surpass the reference finite element strain field
(see Fig. 23 in comparison to Fig. 20).

3.2.2. B-spline DIC with only Tikhonov regularization

We consider in this case a classic Tikhonov regularization by setting λM = 0. Here, the regularization
acts on all the control points, so we set DT = I in (31). Using the Tikhonov parameter reduction strategy
shown in Algorithm 1, λT is varied from 105 to 101. When using this regularization, the Gauss–Newton
algorithm converges independently of the element size. When considering for example a mesh that has
an element size equal to 4.74 pixels (see Fig. 25), which is the same mesh resolution that will be used
for the mechanical regularization in the next section, we obtain at convergence the following residuals:
η = 3.62% for λ = 105, η = 0.93% for λ = 104, η = 0.49% for λ = 103, η = 0.38% for λ = 102 and
η = 0.34% for λ = 101. This numerically confirms the existing trade-off between the conservation of
gray-levels and the regularity of the solution given by the cost function (30). However, in all cases, the
registered solution using this type of regularization presents high strain concentrations in the cell struts
(see Fig. 24). It thus seems that the Tikhonov regularization enables to get a good solution in terms of
residuals but the solution clearly does not live in a mechanically consistent space.
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(a) Euclidean norm of the displacement field for λT = 101. (b) Von Mises strain norm for λT = 101.

(c) Von Mises strain norm for λT = 103. (d) Von Mises strain norm for λT = 105.

Figure 24: Solution using the multi-level Tikhonov regularization.

3.2.3. B-spline DIC with FCM-based Mechanical regularization

Finally we consider the mechanical regularization scheme with all the regularization terms: λT 6= 0
and λM 6= 0. λM and λT are fixed in an iterative way similarly to the one detailed in the Multi-level
Tikhonov regularization algorithm (see Algorithm 1). As mentioned in Eq.(29), a Tikhonov regularization
is applied to the control points belonging to the index set IT (see Eqs. (30)-(31)). For the B-spline grid,
we take the same discretization as the one which enabled to get our fairly priced image-based mechanical
model in Section 2, so that we are optimal in terms of computational cost and accuracy. Obviously, we
could consider larger elements for the B-spline mesh and still make the algorithm converge thanks to the
mechanical regularization. However, we would obtain less accurate results in this case since the B-spline
mesh would be too coarse to properly describe the mechanical behavior at the sub-cellular scale of the
sample. The chosen mesh here has an element size equal to 4.74 pixels and is displayed in Fig. 25.

Figure 25: B-spline mesh defined for solving the DIC problem.

As explained previously, the mechanical regularization term M is defined by the stiffness operator
K which describes the elastic behavior of the ROI. A choice thus needs to be done for the associated
material’s mechanical parameters E and ν. Here, we take the same parameters as the ones assumed
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for the behavior of the true micro-structure. However, we emphasize that since the stiffness matrix is
proportional to E, E has no effect on the regularization. In addition, we conducted different numerical
tests with different Poisson ratios (ranging from 0.1 to 0.5) for the regularization term. Indistinguishable
results were obtained which is consistent since, once again, the elastic behavior in the regularization is
prescribed in a weak sense, only to alleviate noise effects in DIC. More precisely, the obtained solution
fields are shown in Fig. 26.

(a) Euclidean norm of the displacement field. (b) Von Mises strain norm.

Figure 26: Solution using the equilibrium gap regularization.

With λM = 10−11, the displacement field solution achieved a correlation residual η = 0.72%. We
observe in Fig. 26, that the strain field solution is very close to the one used for generating the images Ir
and Id at the bulk of the sample. Thanks to the high accuracy of the mechanical model, regular and local
bendings are observed at the cellular beams (see Fig. 27). This shows that, under elastic deformations,
the suggested mechanical regularization surpasses the two previous DIC methods and allows to estimate
local strain fields at the sub-cellular scale. These results appear very promising for the long-term goal of
treating real 3D image data. It is worth noting again that the present situation is very challenging given
the poor textures considered (no speckle pattern and only about three pixels per strut), which may make
most of today correlation strategies fail.

(a) Strain norm of the finite element
simulation.

(b) Strain norm of the registered solution. (c) Reference image Ir.

Figure 27: Zoom on a region in the ROI.

In order to quantify the measurement error of the different DIC approaches, we consider the uncer-
tainty of the measurements. As the reference FE solution that is used to advect the reference image Ir
is known and defined over the FE mesh depicted in Fig.19, the comparison between the measured field
denoted Fmes and the reference field denoted F fem is not immediate. In fact, the two fields are defined
over two different geometries, i.e. the level-set geometry and the FE mesh geometry. The measurement
error is therefore computed on a point cloud belonging to the intersection of the two geometries. Denoting
np the number of points belonging to the intersection of the two domains, we consider the measurement
uncertainty:

S(F ) =

√√√√ 1

np − 1

np∑
i=1

(
Fmesi − F femi

)2

. (40)
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In the above equation, each component Fi stands for the evaluation of the field of interest at each
interrogation point of the point cloud. We report the uncertainty for each method in Tab. 2. These
results clearly show that the mechanically regularized method is the most precise in terms of measure-
ments of displacement and strain fields compared to the two standard DIC methods. In addition, when
using standard methods (with or without Tikhonov regularization), it can be observed that the strain
measurement uncertainty is always greater than the reference strain we want to measure, which proves
quantitatively what could be observed qualitatively on Figs. 23 and 24.

S(ux) (pixels) S(uy) (pixels) S(εvm)
Standard multi-level DIC 4.5× 10−1 1.9× 10−1 1.9× 10−1

Tikhonov regularization 1.6× 10−1 1.1× 10−1 5× 10−2

Mechanical regularization 2× 10−2 3× 10−2 4.7× 10−3

Table 2: Uncertainty of the measurements.

3.2.4. Noise sensitivity analysis

In classical 2D imaging, the noise sensitivity of the DIC algorithm is usually studied by considering
a white noise, i.e. more precisely, by perturbing the images Ir and Id with a random Gaussian variable
of zero mean and with a standard deviation σ ∈ {0, 1, 2, 3} gray-levels. For each value of σ, 10 random
variables are generated. We therefore consider the mean uncertainty over these 10 random tests. Figs.
28a-28b show, respectively, the evolution of the global displacement uncertainty defined by 〈 12 (S(ux) +
S(uy))〉 and of the Von Mises strain uncertainty 〈S(εvm)〉 with respect to the noise standard deviation.
〈.〉 stands for the mean over the 10 noise tests and S is defined in Eq. (40). No significant error change
is observed with respect to noise (same value along the Y axis). This is consistent with Remark 3: the
sub-pixel evaluation based on the smooth representation defined in (1)-(2) appears to act as a pre-filter
for the images, which is another interest of our combined image-based model — DIC approach.
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(a) Evolution of the displacement uncertainty in pixel unit.
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(b) Evolution of the Von Mises strain uncertainty.

Figure 28: Noise sensitivity analysis for fixed regularization parameters.

We should note that other more complex noises can be encountered in 3D image acquisitions (we can
quote, for example, ring artifacts and beam hardening [88]). That is why, acquired images are generally
pre-processed with noise reduction algorithms.

4. Conclusion and perspectives

In the first part of this work, we attempt to shed a new quantitative light on the construction of proper
unfitted image-based models. More precisely, a special care is taken to analyze the numerical approxi-
mation error while taking into account the intrinsic geometry error resulting from the image generation
process (sampling + quantization). This study thus breaks with the usual practice in the field where the
modeling error and the convergence of numerical methods are most of the time assessed with geometries
deemed to be exact, which is not the case with image-based models in general. By means of various
two-dimensional numerical experiments, we show that, in addition to being dependent on the modeling
parameters (element size, polynomial degrees, quadrature rule), the numerical approximation error is
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related to the pixel size which controls the intrinsic geometry error. More specifically, the geometry error
propagates into a mechanical model error and, in turn, into an error on the measured fields from DIC. In
this context, we propose rules that allow for automatic determination of the discretization parameters.
For the quadrature rule in particular, the number of integration sub-cells is adjusted according to the
definition of the images in order to achieve asymptotic precision with a minimal computational effort.
Then the polynomial degree and element size can be properly chosen to reach the best possible accuracy
while avoiding excessive and unnecessary calculations. In particular, it is shown that we do not need to
go to higher orders than p = 3, while it is often stated in the literature (see, e.g., [9, 30]). In that sense,
the resulting image-based model is characterized as a fairly-priced model. The model constructed in this
way is far more accurate with up to an order of magnitude less number of unknowns compared to all other
classical (boundary fitted) approaches considered (Marching squares, Voxel-based with segmentation or
with mechanical properties related to gray-levels).

In the second part of this work, we show that it is possible to estimate displacements and their deriva-
tives within the strut thickness of a mechanically stressed cellular sample using Digital Image Correlation
without texture at the sub-cell scale. No classical method of the literature has been able to correctly
estimate local strains. Therefore our approach, consisting in exploiting the sample-specific model and
the image gradient information contained in the domain boundaries by a DIC-type metric, appears
as a promising strategy to investigate the mechanics of structured materials at their micro-structural
scale. To some extent, our strategy shares many similarities with the newly-introduced mechanical shape
correlation [89], although the latter requires greater confidence in the mechanical model.

The main perspectives of this work is to apply this approach to real experiments on cellular samples
and to generalize the approach to three-dimensional images. First, in terms of application, this undoubt-
edly goes with the extension of the proposed methodology to measure and identify the plastic behavior at
the sub-cellular scale. Even if the considered regularization is based on a simple elastic behavior, it has to
be noted here that it is not incompatible with the measurement of more complex non-linear phenomena.
Indeed, the elastic behavior is not prescribed in a strong way, but in weak sense. The elastic model is
actually only used as a low-pass filter to alleviate noise effects. This framework thus appears promising
also in the non-linear context and could be complemented by other existing devices to address the me-
chanical characterization at the sub-cellular scale (see, e.g., [90] for damage and [91] for elasto-plastic
regimes). Then, from an algorithmic point of view, the following research axes might be pursued for the
generalization to 3D. The level-set coefficients ai defined in (2) could be substituted by the gray-level
input data directly to reduce memory requirements in 3D (see, e.g., [92]). Then, in order to treat large
scale Digital Volume Correlation problems, dedicated domain coupling methods such as those suggested
in [93, 94] could be used for the development of parallel domain decomposition solvers. Furthermore,
other methods based on low-dimension approximation such as the proper generalized decomposition
(which is particularly appropriate considering the tensor structure of B-Splines) [95, 17, 96] could help
further reducing the computational cost of the DVC algorithm. In this trend, iterative solvers for unfitted
methods [10, 97, 98, 32] could also be considered for realistic three-dimensional generalization.

Finally, a series of other prospects could also be envisioned such as adaptive refinement for materials
with multi-scale micro-structures [10, 36], extension to multi-phase (> 2) materials using more advanced
modellings such as those based on the Cut-FEM method [28]. In addition, we recall that the threshold
value used for characterizing the geometric level-set is a user-defined parameter herein and is one of
the crucial parameters. Experimental calibration strategies or acquiring multiple images of the material
sample could help minimizing the uncertainties related to both threshold and interpolation.
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[97] J. N. Jomo, N. Zander, M. Elhaddad, A. Özcan, S. Kollmannsberger, R.-P. Mundani, E. Rank, Parallelization of the
multi-level hp-adaptive finite cell method, Computers & Mathematics with Applications 74 (2017) 126 – 142. 5th
European Seminar on Computing ESCO 2016.

[98] J. Jomo, F. de Prenter, M. Elhaddad, D. D’Angella, C. Verhoosel, S. Kollmannsberger, J. Kirschke, V. Nübel, E. van
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