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Abstract

We introduce Torch-Points3D, an open-source frame-
work designed to facilitate the use of deep networks on
3D data. Its modular design, efficient implementation, and
user-friendly interfaces make it a relevant tool for research
and productization alike. Beyond multiple quality-of-life
features, our goal is to standardize a higher level of trans-
parency and reproducibility in 3D deep learning research,
and to lower its barrier to entry.

In this paper, we present the design principles of Torch-
Points3D, as well as extensive benchmarks of multiple state-
of-the-art algorithms and inference schemes across several
datasets and tasks. The modularity of Torch-Points3D al-
lows us to design fair and rigorous experimental protocols
in which all methods are evaluated in the same conditions.

The Torch-Points3D repository : https://github.
com/nicolas-chaulet/torch-points3d.

1. Introduction
In recent years, the field of automated analysis of 3D

data has been transformed by the development of new ded-
icated neural network architectures. This sudden spur in
methodological advancements is reminiscent of the revolu-
tion undergone by image analysis in the early 2010s, initi-
ated by AlexNet [23]. The number of methods and papers
dedicated to 3D data presented at major vision conferences
is now on par with images, and keeps growing each year.

The young field of deep learning for 3D has greatly
pushed forward the state-of-the-art performance of auto-
mated analysis of point clouds for numerous tasks. For ex-
ample, the top performance on the indoor dataset S3DIS

? equal contribution

Figure 1: Torch-Points3D supports multiple tasks such as
classification, segmentation, object detection, panoptic seg-
mentation, and registration. All visuals have been produced
by the framework.

1

ar
X

iv
:2

01
0.

04
64

2v
1 

 [
cs

.C
V

] 
 9

 O
ct

 2
02

0

https://github.com/nicolas-chaulet/torch-points3d
https://github.com/nicolas-chaulet/torch-points3d


[1] (6-fold) have gone from 41.7% mIoU points (mean In-
tersection over Union) in 2017 [33], to 62.1% only a year
later [25], and up to 70.6% in 2019 [38]. While this rapid
methodological development is of course beneficial to the
community, its fast pace comes with several shortcomings:

• Adding new datasets, tasks, or neural architec-
tures to existing approaches requires a substantial
commitment, often tantamount to a complete re-
implementation. This limits the use of new networks,
and prevents exhaustive comparisons.

• Handling large 3D datasets efficiently requires a sig-
nificant time investment, and overcoming many imple-
mentation pitfalls. This creates soft barriers to entry,
restraining the diffusion of new ideas.

• There is no standard approach for inference scheme
and metrics in research papers. This makes assessing
the intrinsic performance of new algorithms difficult,
and their reproducibility not always straightforward.

In this paper, we introduce Torch-Points3D, a flexible and
powerful development framework aiming to address these
issues. In short, the purpose of our framework is to be-
come for 3D point clouds what torchvision [31] or
pytorch-geometric [13] have become for images and
graphs respectively. More generally, our goal is to address
the growing technical debt pervasive to machine learning
research codes. This is particularly crucial for 3D data, for
which many steps require special care in order to not inval-
idate investigations, from data loading and preprocessing
to the computation of performance metrics. By proposing
tried and tested implementations, which only get more ro-
bust as the user community grows, we aim to further in-
crease the rigor of 3D deep learning.

Torch-Points3D is intended for novices as much as ex-
perts. It provides intuitive interfaces with most open-
access 3D datasets, re-implementations of many of the top-
performing networks, classic data augmentation schemes
and validated performance metric. This allows researchers
to focus on the development of core algorithms and test
them on all available datasets with minimal effort. The dif-
ferent components of Torch-Points3D are highly customiz-
able and can be plugged into one another with a unified
system of configuration files. Users can then easily swap
backbone networks for a given task, leading to the efficient
selection of the best-suited algorithms, as well as facilitat-
ing comparison with new approaches. On this front, our
framework makes it easy to standardize experimental pro-
tocols, ensuring both reproducibility and that models’ per-
formances are evaluated on equal footing.

Finally, we propose a multitude of quality-of-life fea-
tures such as open logs with Weight and Biases [2], versatile
model configuration handling with Hydra [41], and bespoke

visualization functions as illustrated in Figure 1.
To illustrate the capabilities of Torch-Points3D, we pro-

pose several numerical experiments:

• We evaluated the performance of different backbone
networks in a recent object detection method.

• We benchmark different methods over several datasets
with a unified protocol, aiming to assess their inherent
performance.

• We quantify the benefit of implemented test-time en-
hancers, such as voting schemes.

• We present our point clouds registration implementa-
tion within our framework, combining recent papers
and reaching state-of-the-art performance.

• We share key findings about speed enhancing proce-
dures that can be leveraged on any model supported by
the framework.

2. Related Work
The first deep learning methods for 3D point clouds

analysis relied on image [3] or voxel-based representations
[36, 37]. PointNet [33, 34] was the first network whose
architecture was specifically designed to handle unordered
3D point clouds. Since then, a multitude of approaches have
been proposed, see the comprehensive review by Guo et al.
[17]. Manipulating large 3D point clouds requires exten-
sive implementations and to this end, several open-source
frameworks have been proposed.

Kaolin Krishna Murthy J. et al. from Nvidia shared a Py-
torch framework aiming to accelerate 3D deep learning re-
search [19]. It implements boilerplate code for handling
meshes, voxels, and point clouds.

Pytorch3D Nikhila Ravi et al. proposed another Pytorch-
based framework, similar to Kaolin, for 3D computer vi-
sion research [35]. Its key features include bespoke data
structure for storing and manipulating meshes, a differen-
tiable mesh renderer, camera position optimization, bundle
adjustment, and several mesh-based deep models [16].

Det3D Zhu Benjin. et al. open-sourced a 3D Object
Detection Pytorch toolbox [47], providing out-of-the-box
implementations of many 3D object detection algorithms
[26, 42], as well as compatibility with several datasets such
as KITTI [14] and nuScenes [4].

OpenPCDet and MMDetection3D [45] are open-source
3D object detection PyTorch toolboxes, part of the Open-

https://github.com/pytorch/vision
https://github.com/rusty1s/pytorch_geometric
https://github.com/NVIDIAGameWorks/kaolin
https://github.com/facebookresearch/pytorch3d
https://github.com/poodarchu/Det3D
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/mmdetection3d


MMLab project developed by CUHK Multimedia Lab.

However, a unifying framework for multi-tasks, multi-
models, multi-datasets for reproducible 3D point clouds
deep learning has yet to be proposed. In this paper, we in-
troduce Torch-Points3D, which aims to answer this need.

3. The Framework
Torch-Points3D was written from scratch according to

the following design principles: it should be modular, ex-
tendible, and support multiple models, tasks, and datasets.
Figure 2 illustrates the different components of our frame-
work and how they interact together. A key design principle
is that the components are independent from one another al-
lowing users to plug and play their own contributions. This
could be a dataset, a custom convolution or a new data aug-
mentation strategy for example. In this section, we illustrate
how these ideas translate into a versatile, easy-to-use inter-
face.

3.1. Dataset Handling

The growing number of large-scale 3D public datasets
has a beneficial effect on both the academic community and
industrial actors interested in automated 3D point clouds
analysis. While image formats have been standardized for
years, this is not the case for 3D data. Hence, downloading,
reading, cleaning, and processing data into a deep learning-
ready format requires specific implementations, discourag-
ing researchers to perform experiments on many datasets.

Building on pytorch-geometric implementations,
we propose an adapted interface for handling 3D datasets,
from automatic downloading to data-augmentation. To en-
sure maximum versatility, these operations can be set in
a compact and modular configuration file system.In Sec-
tion 3.6, we present the different datasets currently imple-
mented in Torch-Points3D.

3.2. Modular Model Configuration

The majority of competitive deep learning networks for
3D analysis rely on the 3-step, U-net like approach initially
proposed by PointNet++ [34]:

(i) Encoding: The input point cloud is iteratively sub-
sampled, and local features are computed for each
point of a subsampling level based on neighboring
points in the previous subsampling level. This step is
built upon a down_conv operation, which varies for
different networks.

(ii) InnerMost: A global descriptor per instance is com-
puted by pooling the last subsampling level into a sin-
gle vector. This embedding can be processed further
with fully connected layers.

Listing 1: Configuration file shapeNet-fixed.yaml
for the Shapenet dataset, with a fixed number of sampled
points per object.

data:
class: shapenet.ShapeNetDataset
task: segmentation # associated task
dataroot: ./data #data path
normal: True #use normals
pre_transforms: # preprocessing
- transform: NormalizeScale #to unit sphere
- transform: GridSampling3D

params: #size of voxel
size: 0.02

train_transforms: # Train data augmentation
- transform: FixedPoints

lparams: [2048] # random sampling
- transform: RandomNoise

params: #Gaussian noise
sigma: 0.01
clip: 0.05

test_transforms: #Test data augmentation
- transform: FixedPoints

lparams: [2048] # random sampling

(iii) Decoding: The learned features are interpolated back
from lower sub-samplings levels, up to the original
point clouds, and processed based on their neighbors’
features, forming the up_conv operation. Features
at mirror-level of subsampling for the encoder can be
concatenated for additional spatial precision, through
so-called skip connections. The result of the inner-
most module can also be concatenated with point fea-
tures at different subsampling level.

Based on this versatile architecture, we propose a system
of configuration files able to encode most segmentation net-
works. For example, the official single-scale PointNet++
is implemented by the configuration file in Listing 2. The
model pointnet2 described above can now be trained on
any supported dataset such as Shapenet [5] with a simple
command:

python train.py task=segmentation \
dataset=shapenet-fixed model_type=pointnet2 \
model_name=PointNet2

3.3. Implemented Networks

Torch-Points3D implements several convolution meth-
ods which present an interest in terms of performance
or versatility: PointNet, RandLANet, KPConv, RS-CNN,
and Minkowski Engine. The PointNet-based architectures
[33, 34] are the simplest point convolution methods, making
them both easy to use and understand. The convolution ker-
nels for RandLANet [18] allows for efficient point clouds
processing with a random sampling strategy. KPConv [38]
proposes a kernel-based generalization of 2D convolution to

https://github.com/rusty1s/pytorch_geometric


Dataset Dataloader Model Prediction Metrics

Data
transforms

Batch collate
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Convolution
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Figure 2: Overall architecture of the framework, with data flow highlighted in red. Dataset implements the core loading
mechanism of raw data and creates objects containing the points’ positions, relevant features, and labels. Those objects are
then passed through data augmentation transforms and aggregated into batches in the Dataloader. They are finally passed
to the Model, which outputs the prediction. A tracker evaluates the performance from predefined Metrics and publish
results on the console and/or directly on Weight and Biases (wandb.ai).

Listing 2: Configuration file for PointNet++ [34].

pointnet2:
class: pointnet2.PointNet2 # Model class
conv_type: "DENSE" # Convolution type
down_conv: #encoder

module_name: PointNetMSGDown
npoint: [512, 128] #subsampling levels
radii: [[0.2], [0.4]] #neigh. radius
nsamples: [[64], [64]] #neigh. count
down_conv_nn: [[[FEAT+3, 64, 64, 128]],

[[128+3, 128, 128, 256]]]
innermost: #process learned feature

module_name: GlobalDenseBaseModule
nn: [256 + 3, 256, 512, 1024]

up_conv: #decoder
module_name: DenseFPModule
up_conv_nn:

[[1024 + 256, 256, 256],
[256 + 128, 256, 128],
[128 + FEAT, 128, 128, 128]]

skip: True # use skip connection
mlp_cls: #produce class scores

nn: [128, 128]
dropout: 0.5

3D point clouds, and RS-CNN [29] capture the complexity
of local shapes by modeling spatial relationships between
points. Minkowski Engine [7] relies on a fine-grained vox-
elization of point clouds, efficiently processed with sparse-
convolutions.

These convolution schemes can be integrated into a
backbone network architecture for semantic segmentation
or object classification for example. We propose several
such backbone, from a simple U-Net, to a multi-scale ar-
chitecture, and more modern ResNet-like architectures as

proposed in [7] or [38].
Finally, the framework also implements task-specific

heads for object detection and Panoptic segmentation. In
aprticular, VoteNet [32] uses Hough voting to regress
bounding boxes on 3D point clouds, and PointGroup [20]
uses a clustering scheme to perform instance segmentation.

While the compact configuration format described in the
last section is designed to make U-Net-like networks easier,
users can also easily define their own types of configura-
tion file and model architectures in Torch-Points3D. For ex-
ample, VoteNet and PointGroup use custom configurations.
Our configuration system is meant to be flexible, and ex-
isting configurations serve more as guides for newcomers
than rigid templates. At the time of writing, superpoint-
based [25, 24] and multi-modal methods (eg. 3D points +
images [11]) are not yet implemented. However, we plan to
add both in the near-future.

3.4. Multi-Task Support

The ability of our framework to handle different tasks
ensures its versatility and allows multi-source supervision
[28]. We have currently implemented five tasks, illustrated
in Figure 1, and their associated losses and metrics: classifi-
cation, semantic segmentation, panoptic segmentation [22],
registration, and object detection.

Adding new tasks with their associated datasets and met-
rics can be done in isolation from the rest of the project, al-
lowing users to extend the framework without necessarily
understanding its inner working in details.

3.5. Transparency and Reproducibility

Reproducibility of experiments is not only necessary
when assessing the suitability of different networks to a

wandb.ai


given task or dataset, but also to back scientific claims in
academic papers. To this end, we have ensured the inte-
grated compatibility of our framework with the Hydra con-
figuration system [41] as well as the experiments tracker
Weight and Biases [2] (wandb.ai). This online tool can
store training runs along with their logs, metric visualiza-
tion, configuration files, git commit hash, and our custom
Pickle-based checkpoints. This total transparency allows
users to compare their own experiments with our reference
runs, and the models can be directly downloaded for fine-
tuning tasks. In the Appendix, we reports an example of log
visualization hosted on wandb.ai.

Another benefit of our unified approach is standardizing
the learning and testing procedure. Indeed, the field of 3D
analysis lacks a common ground when it comes to evalua-
tion and augmentation strategies, both at test and training
time. This makes experiments across different papers hard
to compare, and could potentially obscur the intrinsic per-
formance of new models. In Section 4.2, we propose stan-
dard protocols for different datasets and reproduce an array
of experimental results.

3.6. Supported Datasets

Torch-Points3D supports multiple academic datasets
with automatic data download, pre-processing, as well as
automatic result submission when available.

• ScanNet is an indoor RGBD dataset containing 1 201
train scenes and 312 test scenes [10]. It can be used for
semantic segmentation, object detection, and panoptic
segmentation.

• S3DIS is a large-scale indoor RGB point cloud dataset
covering three separate office buildings, over 6 000m2,
and containing 278 million points with instance-level
object and semantic annotations. We implement three
different sampling for batch-training, based on rooms
[1], cubes [34], or spheres [38].

• ModelNet10/40 is a dataset composed of over 12 000
CAD models from 10 and 40 categories [39].

• Shapenet is a collection of over 200 000 CAD models
annotated across a hierarchy of 3 135 classes [5]. On
top of classification and semantic segmentation, Torch-
Points3D also implements the task of hierarchical se-
mantic segmentation, as well as adapted metrics.

• 3DMatch is an RGBD dataset [44] widely used for 3D
reconstruction and point cloud registration.

• KITTI Odometry contains 21 sequences of LiDAR
frames [15], with ground truth poses for the first ten.
KITTI Odometry is commonly used as benchmmark
for SLAM LIDAR, but can also be used to train and
evaluate point cloud registration networks ([8]).

Figure 3: Several of the visualization tools available.

3.7. Built-in Visualization

Torch-Points3D provides several custom visualization
tools directly available within notebooks and using the
dashboarding library panel. This feature can be used to ex-
plore datasets, debug models, or illustrate predictions, as
shown in Figure 3.

3.8. Ease-of-Use

As corroborated by the numerous pull-requests submit-
ted by contributors, and testimonies from industrial part-
ners, Torch-Points3D is accessible despite the quantity of
code. Adding new datasets, new models or new base mod-
ules can be done without interfering with the rest of the
code base while benefiting from existing methods for data
augmentation, metric evaluation or training procedures at
zero cost. A convenient way to start familiarizing one self
with the framework, is by running the proposed illustrative
IPython notebooks. More details as well as installation in-
structions are available in the Appendix.

4. Numerical Experiments
In this section, we present several case studies demon-

strating some of the capabilities of Torch-Points3D , such
as backbone swapping and fair benchmarking. The detailed
configuration of the experiments, along with the evolution
of metrics along the runs, are available as WandB projects

https://github.com/wandb/client
wandb.ai
https://docs.python.org/3/library/pickle.html
wandb.ai.
http://kaldir.vc.in.tum.de/scannet_benchmark/
http://buildingparser.stanford.edu/dataset.html
https://modelnet.cs.princeton.edu/
www.shapenet.org 
https://3dmatch.cs.princeton.edu/
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://github.com/holoviz/panel
https://github.com/nicolas-chaulet/torch-points3d/tree/master/notebooks


accessible through the framework GitHub repository.

4.1. VoteNet with Different Backbones

The VoteNet network, introduced by Qi et al. [32], per-
forms end-to-end object detection in 3D point clouds. It re-
lies on a PointNet++-like backbone network to extract point
features, which are then used by an object-center voting
module and a box-proposal module.

In Table 1, we assess the performance of different net-
works by replacing the PointNet++ backbone with more re-
cent alternatives, such as RS-CNN [29], KPConv [38], and
Minkowski Engine [7].We used the same architecture than
the ones used in our semantic segmentation benchmark, see
Section 4.2. Further adaptation to the task, such as trun-
cating the decoder as recommend in VoteNet, would cer-
tainly be beneficial but are out of the scope of this paper.
Otherwise, we use the hyper parameters, training and data
augmentation procedures proposed in the original work.
Changing the backbone is as simple as editing the model’s
configuration file as presented in Listing 3.

While the RS-CNN and KPConv backbones underper-
formed, the mean average precision 50% IoU is improved
slightly by switching to a Minkowski Engine network.
Overall, the PointNet++ architecture seems particularly
well-suited to the task of object detection, as also observed
by Xi et al. [40].

Note that our results differ slightly from the original pa-
per, as our metric implementation is slightly altered: suc-
cessful box recoveries only count as positive for a given
class if the predicted class is correctly inferred as well.

Listing 3: Model configuration used for switching the back-
bone of VoteNet [32] to KPConv [38].

VoteNetKPConv:
class: votenet2.VoteNet2
conv_type: "PARTIAL_DENSE"
define_constants:

num_proposal: 256 # num. box proposals
num_classes: 18 # semantic classes

backbone:
model_type: "KPConv" # backbone type
extra_options:

in_grid_size: 0.05 # input grid size

4.2. Benchmarking with Torch-Points3D

As one of the first and easiest to use datasets, S3DIS [1]
has been used as a standard measure of the performance of
state-of-the-art methods. However, there is a large discrep-
ancy in how methods are evaluated, which makes it hard to
compare their performance.We propose a common evalua-
tion protocol, largely inspired by the one proposed by [38].

Table 1: Impact of the backbone choice on VoteNet per-
formances. mAP@r stands for the interclass mean average
precision with a detection threshold of r% IoU.

VoteNet
Backbone

mAP mAP
@25 @50

PointNet ++ [34] 54.2 30.1
RS-CNN [29] 51.6 29.5
KPConv [38] 48.9 29.2

Mink. Engine [7] 53.8 30.2

• Pre-processing: S3DIS is comprised of 6 folds, each
containing a collection of point clouds corresponding
to single rooms. We aggregate these clouds to obtain
one cloud per fold, each corresponding to one entire
level of an office building. We sample this cloud with
respect to a 4cm grid.

• Training: In each epoch, we sample 3 000 spheres of
radius 2m, centered around random points picked with
a probability inversely proportional to the square root
of their class frequency.

• Optimizers: The parameters of the optimizers are
given in the configuration file presented in Listing 4. In
our experiments, Stochastic gradient Descent (SGD)
had slower convergence but higher generalization than
momentum-based optimizers such as [21].

• Inference: 2m-radius spheres are sampled along a 2×
2 × 2m grid once. The class probability associated
to points present in several spheres are averaged. To
compute the final metrics on the original clouds, we
perform nearest neighbor interpolation.

• Metrics: We report the Overall Accuracy (OA) and
Mean Intersection over Union (mIoU) over classes ob-
tained by cross-validating over the 6-folds. We add an
early stopping scheme in which the model is evaluated
on the epoch whose model has the highest mIoU on a
validation set, obtained by withholding selected rooms
from the training set.

We also devise a similar protocol for ScanNet [10]. The
differing steps are as follows:

• Pre-processing: We subsample with a 5cm grid.

• Training: Batches are collections of rooms subsam-
pled to 50 000 points.

• Metrics: We report the OA and mIoU on the validation
set using the model of the last epoch.



Listing 4: Optimizer hyper-parameters used for training all
models on S3DIS.

epochs: 300 # Number of epochs
batch_size: 8
optim:

base_lr: 0.01 # Learning rate
grad_clip: 100 #gradient clipping
optimizer:

class: SGD # Optimizer
params: # SGD parameters

momentum: 0.02
lr: \${training.optim.base_lr}
weight_decay: 1e-3

lr_scheduler:
class: ExponentialLR
params:

gamma: 0.9885 # /10 every 200 ep.
bn_scheduler: # Batch Normalization Scheduler

bn_policy: "step_decay"
params:

bn_momentum: 0.02

Table 2: Benchmarking of four different methods on the
task of semantic segmentation for two different datasets:
S3DIS [1] with 6-fold cross validation and ScanNet [5]
evaluated on the valdiation set.

Model S3DIS 6-folds ScanNet

OA mIoU OA mIoU
KPConv [38] 86.4 66.3 85.5 59.9

Mink. Engine [7] 86.0 65.9 87.2 65.0
RS-CNN [29] 83.2 62.9 79.8 47.2

PointNet++ [34] 81.06 56.7 80.7 49.3

In Table 2, we report the performance of four networks
(PointNet++ [34], RS-CNN [29], Minkowski Engine [7],
and KPConv [38]) on both S3DIS and ScanNet. Each of
these algorithms share the exact same learning and infer-
ence procedure. This allows us to appreciate their perfor-
mances all other things being equal.

Ze Liu et al. [30] interestingly demonstrate in their recent
investigation that the choice of convolution type (pointnet-
like, pointCNN [27], KPConv, and their own PoolPos) have
little impact when evaluated with a shared architecture.
We can hence attribute the performance in Table 2 to the
difference in architectures, namely the depth and subsam-
pling/upsampling operations. We also remark that Ze Liu
et al.’s experiments are particularly easy to replicate with
Torch-Points3D on any of the proposed dataset, as most
convolution schemes are already implemented.

4.3. Inference Schemes

A common scheme to increase the performance of a
model is to perform several inference runs—with data aug-

Table 3: Improvement in terms of mIoU provided by
inference-time voting schemes on S3DIS 6-folds.

Models no voting with voting
KPConv [38] 66.3 67.2

Mink. Engine [7] 65.9 69.1
RS-CNN [29] 62.9 64.6

PointNet++ [34] 56.7 59.0

Figure 4: Segmentation predictions with and without vot-
ing. We can observe voting tends to create smoother, more
accurate predictions.

mentation, and to output their average probability. While
this method slows down inference, the increase in perfor-
mance can be justified for non time-sensitive applications
such as digital twin modeling.

In Table 3, we report the performance of different mod-
els with and without a 3-run average. The performance in-
crease is noticeable, with an average increase from 1 to 3
points of mIoU. Interestingly, we remark that the relative
order of performance of KPConv and Minkowski Engine
are reversed by a non-negligible margin when using this in-
ference scheme. In Figure 4, we illustrate the improvement
provided by this inference scheme.

4.4. Registration

Registration is the task of finding a rigid transforma-
tion aligning several 3D point clouds. Neural networks can
be trained to compute point features whose pairing deter-
mine the sought-after transformation, either end-to-end or
with robust nondifferentiable estimators such as RANSAC,
FGR[46], or the recent TEASER[43].

We implement a full registration pipeline within Torch-
Points3D, using a Minkowski Engine backbone as sug-



(a) Registration example on 3DMatch.

(b) Registration example on KITTI odometry.

Figure 5: Qualitative registration results between two point
clouds (in blue and yellow).

Table 4: Success rate (in %) on the 3DMatch and KITTI
odometry datasets. Results obtained within TorchPoints3D.
A success is defined by an error under 15 degree and 0.3 m
for 3DMatch, and 2 degrees and 0.6 m for Kitti Odometry.
? model taken from the paper’s repository.

Methods 3DMatch KITTI
DGR? 92.6 96.9

FCGF+ TEASER 93.6 99.8
FCGF+ RANSAC 94.3 99.6

gested by Choy et al. [8], and estimating transformations
with TEASER[43] and RANSAC. As reported in Table 4,
our implementation reaches state-of-the-art performance of
point cloud registration on two datasets available in Torch-
Points3D: 3DMatch [44] and KITTI Odometry [15]. In Fig-
ure 5, we present some qualitative illustrations.

4.5. CPU-Based Preprocessing

When training point-based neural networks on large
point clouds, the computation of neighbors and the sub-
sampling operations become the computational bottlenecks
rather than inference or backpropagation.

In modern deep learning frameworks such as PyTorch,
background processes prepare new batches of data to be

run through the network while the GPU simultaneously per-
forms tensor operations on previously prepared batches. As
suggested in [38], we off-load the radius search and sub-
sampling operations to those background processes oper-
ating on CPUs. As reported in Table 5, this allows us to
achieve an 8-times overall speed-up compared to perform-
ing all computations on the GPU. This particular implemen-
tation trick—one of many—exemplifies the numerous pit-
falls to overcome when implementing deep learning meth-
ods operating on 3D data.

Table 5: Training speed of the KPconv model, in thousands
of points processed per second (kpts/s) during training, with
radius search performed on either the GPU (Tesla T4) or the
CPUs (4× 2.2GHz).

S3DIS ScanNet
radius search on CPUs 199.9 197.4
radius search on GPU 38.6 29.2

5. Conclusion and Perspectives

We presented Torch-Points3D, a flexible and powerful
framework aiming to make deep learning on 3D data both
more accessible and rigorous. Our implementation al-
lows users to evaluate, improve and combine state-of-the-
art models on a growing number of tasks and datasets. The
community emerging around our framework provides us
with precious feedback, as well as much needed help in
keeping up with a such a fast-paced domain. We welcome
researchers, software engineers, and open-source enthusi-
asts in this endeavor.

Encouraged by the recent results of Xie et al. [40], we
believe in the potential of transfer learning across datasets
and tasks for 3D data. Our next focus will be to provide a
high-level API for pre-trained, self-supervised, self-trained,
and unsupervised deep learning approaches operating on 3D
point clouds.
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APPENDIX

A. Illustrative Notebooks
We propose two IPython notebooks to illustrate some of

the capacities of Torch-Points3D:

• A notebook illustrating the training of the Relation-
Shape CNN model for object classification with Torch-
Points3D: link.

• A notebook showing the inner working of encoding
and decoding in a KPConv model for part segmenta-
tion: link.

These notebook can be run on Google Colab from a browser
without any installations. They are self-contained and will
install automatically all required packages, as well as down-
load the relevant datasets. Be warned that the installation
of the necessary libraries and download of the datasets can
take up to 30minutes. You can otherwise download the
notebooks and run them locally, after installing the neces-
sary libraries, namely torch torch-points3d and pyvista.

pip install torch torch-points3d pyvista

B. Details on the Registration Experiment
B.1. Implementation

As described in the main paper, we implemented
FCGF model for point cloud registration. The encoder
is composed of 4 residual blocks with output sizes of
[32, 64, 128, 256]. Each block has a stride of 2 except for
the first block. The decoder is composed of residual blocks
of output sizes [64, 64, 64, 64]. We train with SGD with mo-
mentum of 0.8, a learning rate of 0.1, and a weight decay of
10−4. The same parameters are used for both Kitti Odome-
try and 3DMatch.

B.2. 3Dmatch

Since 3D match is a dataset of RGBD images, we need
to fuse depth images to obtain 3D point clouds. We use
a TSDF voxel grid as in [9] and obtain fragments. For the
training set and the validation set, 50 depth images are fused
to obtain each fragment. We use a voxel subsampling of size
0.02m in the FCGF network.

B.3. KITTI Odometry

Kitti Odometry contains LiDAR scans with their associ-
ated poses, however these do not have the precision neces-
sary to properly evaluate registration predictions. Choy et

al. [8] use these poses as initialization, and use ICP to re-
fine the transformation between each pairs. The pairs are
defined as LiDAR frames whose center is at least distant of
10m. We use IMLS SLAM [12] to compute the poses of
all sequences. As in [8, 6], the sequences 0, 1, 2, 3, 4, 5 are
used for training, 6, 7 for validation and 8, 9, 10 for testing.
For this dataset, we use a voxel subsampling of size 0.3m.

B.4. Evaluation

To evaluate registration, we measure the rotation error
and the translation error as :

δtrans = ||test − t?||2 (1)

δrot = arccos
trace(RestR

? T )− 1

2
(2)

where (test, Rest) is the estimated translation and rotation,
and (t?, R?) the associated ground truth. For 3DMatch, we
count a success when the rotation error is under 15 degrees,
and the translation error is less than 0.3 m, as suggested
by Choy et al. [6] For Kitti Odometry, the rotation error
must be less than 2 degrees and the translation error must
be under 0.6 m for a prediction to be considered successful.

Figure 6: Training logs hosted on wandb.ai for different
models on a S3DIS fold. These logs, along their trained
models and full configuration, are publicly available on the
contributor’s wandb.ai’s account (links provided on the
repository).

https://colab.research.google.com/drive/10Pryg73xoJzkkBuZB2pFgTbwLruO_0Za?usp=sharing
https://colab.research.google.com/drive/1wpPESfw7bSrcN-AE52Dr_V5b2ps90MHt?usp=sharing
wandb.ai
wandb.ai

