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Abstract. Plant activity in semi-arid ecosystems is largely
controlled by pulses of precipitation, making them partic-
ularly vulnerable to increased aridity that is expected with
climate change. Simple bucket-model hydrology schemes in
land surface models (LSMs) have had limited ability in ac-
curately capturing semi-arid water stores and fluxes. Recent,
more complex, LSM hydrology models have not been widely
evaluated against semi-arid ecosystem in situ data. We hy-
pothesize that the failure of older LSM versions to repre-
sent evapotranspiration, ET, in arid lands is because simple
bucket models do not capture realistic fluctuations in upper-
layer soil moisture. We therefore predict that including a
discretized soil hydrology scheme based on a mechanistic
description of moisture diffusion will result in an improve-
ment in model ET when compared to data because the tem-
poral variability of upper-layer soil moisture content better
corresponds to that of precipitation inputs. To test this pre-
diction, we compared ORCHIDEE LSM simulations from
(1) a simple conceptual 2-layer bucket scheme with fixed hy-
draulic parameters and (2) an 11-layer discretized mechanis-
tic scheme of moisture diffusion in unsaturated soil based on
Richards equations, against daily and monthly soil moisture

and ET observations, together with data-derived estimates
of transpiration / evapotranspiration, T/ET, ratios, from six
semi-arid grass, shrub, and forest sites in the south-western
USA. The 11-layer scheme also has modified calculations of
surface runoff, water limitation, and resistance to bare soil
evaporation, E, to be compatible with the more complex hy-
drology configuration. To diagnose remaining discrepancies
in the 11-layer model, we tested two further configurations:
(i) the addition of a term that captures bare soil evaporation
resistance to dry soil; and (ii) reduced bare soil fractional
vegetation cover. We found that the more mechanistic 11-
layer model results in a better representation of the daily
and monthly ET observations. We show that, as predicted,
this is because of improved simulation of soil moisture in
the upper layers of soil (top ∼ 10 cm). Some discrepancies
between observed and modelled soil moisture and ET may
allow us to prioritize future model development and the col-
lection of additional data. Biases in winter and spring soil
moisture at the forest sites could be explained by inaccurate
soil moisture data during periods of soil freezing and/or un-
derestimated snow forcing data. Although ET is generally
well captured by the 11-layer model, modelled T/ET ratios
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were generally lower than estimated values across all sites,
particularly during the monsoon season. Adding a soil re-
sistance term generally decreased simulated bare soil evapo-
ration, E, and increased soil moisture content, thus increas-
ing transpiration, T , and reducing the negative bias between
modelled and estimated monsoon T/ET ratios. This negative
bias could also be accounted for at the low-elevation sites by
decreasing the model bare soil fraction, thus increasing the
amount of transpiring leaf area. However, adding the bare
soil resistance term and decreasing the bare soil fraction both
degraded the model fit to ET observations. Furthermore, re-
maining discrepancies in the timing of the transition from
minimum T/ET ratios during the hot, dry May–June period
to high values at the start of the monsoon in July–August
may also point towards incorrect modelling of leaf phenol-
ogy and vegetation growth in response to monsoon rains. We
conclude that a discretized soil hydrology scheme and associ-
ated developments improve estimates of ET by allowing the
modelled upper-layer soil moisture to more closely match the
pulse precipitation dynamics of these semi-arid ecosystems;
however, the partitioning of T from E is not solved by this
modification alone.

1 Introduction

Semi-arid ecosystems – which cover ∼ 40 % of the Earth’s
terrestrial surface and which include rangelands, shrublands,
grasslands, savannas, and seasonally dry forests – are in
zones of transition between humid and arid climates and are
characterized by sparse, patchy vegetation cover and lim-
ited water availability. Moisture availability in these ecosys-
tems is therefore a major control on the complex interac-
tions between vegetation dynamics and surface energy, wa-
ter, and carbon exchange (Biederman et al., 2017; Haverd
et al., 2016). Given the sensitivity to water availability, semi-
arid ecosystem functioning may be particularly vulnerable to
projected changes in climate (Tietjen et al., 2010; Maestre
et al., 2012; Gremer et al., 2015). IPCC Earth system model
(ESM) projections and observation-based datasets indicate
these regions will likely experience more intense warming
and droughts, increases in extreme rainfall events, and a
greater contrast between wet and dry seasons in the future
(IPCC, 2013; Donat et al., 2016; Sippel et al., 2017; Huang
et al., 2017).

To simulate the impact of climate change on semi-arid
ecosystem functioning, it is essential that the land sur-
face model (LSM) component of ESMs accurately repre-
sent semi-arid water flux and storage budgets (and all asso-
ciated processes). In the last 2 to 3 decades, LSM groups
have progressively updated their hydrology schemes from
the more simplistic “bucket”-type models included in earlier
versions (Manabe, 1969). The resulting schemes typically in-
clude more physically based representations of vertical diffu-

sion of water in unsaturated soils (Clark et al., 2015). In ad-
dition to increasing the complexity of soil hydrology, several
studies have attempted to address the issue that models tend
to miscalculate partitioning of evapotranspiration (ET) into
transpiration (T ) and bare soil evaporation (E), with models
systematically underestimating T/ET ratios (Wei et al., 2017;
Chang et al., 2018). One such mechanism that models have
introduced is an evaporation resistance term that reduces the
rate of water evaporation from bare soil surfaces (Swenson
and Lawrence, 2014; Decker et al., 2017). The development
of these more mechanistic soil hydrology schemes should
mean that LSMs better capture high temporal frequency to
seasonal and long-term temporal variability of water stores
and fluxes. However, it is not always apparent that increasing
model complexity provides more accurate representations of
reality (as encapsulated by observations of different vari-
ables at multiple spatio-temporal scales). Further, increasing
model complexity comes at a cost of increased computational
resources and unknown parameters. Therefore, it is imper-
ative that we test models of increasing complexity against
multiple types of observations at a variety of sites represent-
ing different ecosystem types.

New-generation LSM water flux and storage estimates
have been extensively tested at multiple scales from the site
level to the globe (Abramowitz et al., 2008; Dirmeyer, 2011;
Guimberteau et al., 2014; Mueller and Senerviratne, 2014;
Best et al., 2015; Ukkola et al., 2016b; Raoult et al., 2018;
Scanlon et al., 2018, 2019). Model–data biases are observed
across all biomes; however, a key finding common to these
studies is that models do not capture seasonal to inter-annual
water stores and fluxes well during dry periods and/or at
drier sites (Mueller and Senerviratne, 2014; Swenson and
Lawrence, 2014; De Kauwe et al., 2015; Best et al., 2015;
Ukkola et al., 2016a; Humphrey et al., 2018; Scanlon et al.,
2019). Mueller and Senerviratne (2014) showed that CMIP5
models overestimated multiyear mean daily ET in many re-
gions, with the strongest bias in dryland regions (particu-
larly western North America). Likewise, Grippa et al. (2011)
and Scanlon et al. (2019) demonstrated that LSMs underes-
timate seasonal amplitude of total water storage in semi-arid
(and tropical) regions. However, compared to more mesic
ecosystems, semi-arid ecosystem LSM water flux and stor-
age simulations have rarely been tested extensively against
in situ observations, apart from a few exceptions (Hogue
et al., 2005; Abramowitz et al., 2008; Whitley et al., 2016;
Grippa et al., 2017). Whitley et al. (2016) compared carbon
and water flux simulations from six LSMs at five OzFlux sa-
vanna sites. Their study highlighted two key deficiencies in
modelling water fluxes: (i) modelled C4 grass T is too low;
and (ii) models with shallow rooting depths typically under-
estimate woody plant dry season ET. As part of a model
inter-comparison for western Africa (the AMMA LSM In-
tercomparison Project – ALMIP), LSM water storage, fluxes,
runoff, and land surface temperature were evaluated against
in situ and remote sensing data in the Malian Gourma region
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of the central Sahel (Boone et al., 2009; De Kauwe et al.,
2013; Lohou et al., 2014; Grippa et al., 2011, 2017). These
studies highlight that temporal characteristics of water stor-
age and fluxes in this monsoon-driven semi-arid region are
captured fairly well by models; however, the studies also
point to various model issues, including difficulties in sim-
ulating bare soil evaporation response to rainfall events (Lo-
hou et al., 2014); underestimation of dry season ET (Grippa
et al., 2011); the need for greater water and energy exchange
sensitivity to different vegetation types and soil characteris-
tics (De Kauwe et al., 2013; Lohou et al., 2014; Grippa et at.,
2017); and overestimation of surface runoff (Grippa et al.,
2017). How models prescribe or predict leaf area index (LAI)
has also been highlighted as a driver of hydrological model–
data differences (Ukkola et al., 2016b; Grippa et al., 2017).

The aim of this study was to contribute a new LSM hydrol-
ogy model evaluation in a semi-arid region not previously
investigated: the monsoon-driven semi-arid south-western
United States (hereafter, the SW US). The density and diver-
sity of research sites in the SW US provide a rare opportunity
to test an LSM across a range of semi-arid ecosystems. The
semi-arid SW US has also been identified as one of the key
regions of global land–atmosphere coupling (Koster et al.,
2004) and the most persistent climate change hotspot in the
US (Diffenbaugh et al., 2008; Allen, 2016). Expected future
soil moisture deficits in this region will result in strong at-
mospheric feedbacks, with consequent high temperature in-
creases (Senerivatne et al., 2013) and a potential weakening
of the terrestrial biosphere C sink (Berg et al., 2016; Green
et al., 2019). Several studies based on model predictions,
instrumental records, and paleoclimatic data analyses have
suggested that over the coming century the risk of more se-
vere, multi-decadal drought in the SW US will increase con-
siderably (Ault et al., 2014, 2016; Cook et al., 2015). In fact,
models suggest that a transition to drier conditions is already
underway (Seager et al., 2007; Archer and Predick, 2008;
Seager and Vecchi, 2010). Investigating how well LSMs cap-
ture hydrological stores and fluxes in this region therefore
provides a crucial test for how well models can produce ac-
curate global climate change projections.

Here, we tested the ability of the ORCHIDEE (ORganiz-
ing Carbon and Hydrology in Dynamic EcosystEms) LSM
to simulate multiple water-flux- and storage-related vari-
ables at six SW US semi-arid Ameriflux eddy covariance
sites spanning forest and shrub- and grass-dominated ecosys-
tems (Biederman et al., 2017). We tested two versions of the
ORCHIDEE LSM with hydrological schemes of differing
complexity: (1) a simple 2-layer conceptual bucket scheme
(hereafter, 2LAY) with constant water-holding capacity (de
Rosnay and Polcher 1998) and (2) an 11-layer mechanistic
scheme (hereafter, 11LAY) based on the Richards equation
with hydraulic parameters based on soil texture (de Ros-
nay et al., 2002). Besides the change in the soil hydrol-
ogy between the 2LAY and 11LAY versions, several other
hydrology-related processes have also been modified due to

increases in the complexity of the model. These modifica-
tions are described further in Sect. 2.2 and summarized in
Table 2. The 2LAY scheme was used in the previous CMIP5
runs, whereas the 11LAY scheme is the default scheme in
the current version of ORCHIDEE that is used in the ongo-
ing Coupled Model Intercomparison Project (CMIP6) simu-
lations (Ducharne et al., 2020).

Our analyses were organized as follows. First, we evalu-
ated how changing from the conceptual 2LAY bucket model
to the physically based 11LAY soil hydrology scheme – and
all associated modifications – has influenced the high tempo-
ral frequency and seasonal variability of semi-arid ecosys-
tem soil moisture, ET (and its component fluxes), runoff,
drainage, and snow mass/melt. Although there have been
many previous studies comparing simple bucket schemes vs.
mechanistic multi-layer hydrology, we include such a com-
parison in the first part of our analysis for the following rea-
sons: (a) the simple bucket schemes were the default hydrol-
ogy in some CMIP5 model simulations, and these simula-
tions are still being widely used to understand ecosystem re-
sponses to changes in climate; (b) variations on the simple
bucket schemes are still implemented by design in various
types of hydrological models (Bierkens et al., 2015); (c) there
have not yet been extensive comparisons of these two types
of hydrology model for semi-arid regions, and especially not
for the SW US; and (d) so that the 2LAY scheme can serve
as a benchmark for the 11LAY scheme. Second, we eval-
uated the temporal dynamics of the 11LAY model against
observations at three specific soil depths (shallow: ≤ 5 cm;
mid: 15–20 cm; deep: ≥ 30 cm) to assess whether the physi-
cally based discretized scheme accurately captures moisture
transport down the soil profile. Note that when evaluating
the 11LAY model soil moisture against observations, our pri-
mary focus was on the temporal dynamics – rather than the
absolute magnitude – given the difficulty of comparing ab-
solute values of volumetric water content between the mod-
els and the data (see Sect. 2.3.2 for more details). Therefore,
in the model–data comparison, we scale the observations to
the 11LAY model simulations via linear CDF matching. Fi-
nally, having evaluated the standard (default) 11LAY model
against in situ semi-arid water stores and fluxes, a novel
component of our study was to investigate whether some
of the site-scale semi-arid LSM hydrology model discrep-
ancies outlined above (e.g. underestimation of C4 grass T ,
weak dry season ET and therefore low T/ET ratios, ET is-
sues related to incorrect representation of leaf area, and over-
estimation of surface runoff) are improved with recent OR-
CHIDEE hydrology model developments. Where the model
does not capture observed patterns, we investigated which
model processes or mechanisms in the 11LAY scheme might
be responsible for remaining model–data discrepancies. In
particular, we assessed the impact of (a) decreasing the bare
soil fraction (thus, increasing leaf area) and (b) including
the optional bare soil resistance term in the 11LAY scheme
(Ducharne et al., 2020). Given the sparsely vegetated nature
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of the low-elevation semi-arid grass- and shrub-dominated
sites in our study, we hypothesized that inclusion of this term
may counter any dry season ET underestimate. Throughout,
we explored whether there are any discernible differences
across sites due to elevation and vegetation composition.

Section 2 describes the sites, data, model and methods
used in this study; Sect. 3 details the results of the two-part
model evaluation (as outlined above); and Sect. 4 discusses
how future studies may resolve remaining model issues in
order to improve LSM hydrology modelling in semi-arid re-
gions.

2 Methods and data

2.1 South-western US study sites

We used six semi-arid sites in the SW US that spanned a
range of vegetation types and elevations (Biederman et al.,
2017). The entire SW US is within the North American
Monsoon region; therefore, these sites typically experience
monsoon rainfall during July to October, preceded by a hot,
dry period in May and June. Table 1 describes the dom-
inant vegetation, species and soil texture characteristics at
each site, together with the observation period. The four
grass- and shrub-dominated sites (US-SRG, US-SRM, US-
Whs and US-Wkg) are located at low elevation (<1600 m)
in southern Arizona with mean annual temperatures be-
tween 16 and 18 ◦C (Biederman et al., 2017). These four
sites are split into pairs of grass- and shrub-dominated sys-
tems: US-SRG (C4 grassland site) and US-SRM (mesquite-
dominated site) are located at the Santa Rita Experimental
Range ∼ 60 km south of Tucson, AZ, whilst US-Whs (cre-
osote shrub-dominated site) and US-Wkg (C4 grassland site)
are located at the Walnut Gulch Experimental Watershed
∼ 120 km to the south-east of Tucson, AZ. Moisture avail-
ability at these low-elevation sites is predominantly driven by
summer monsoon precipitation; however, winter and spring
rains also contribute to the bi-modal growing seasons at these
sites (Scott et al., 2015; Biederman et al., 2017). The US-Fuf
(Flagstaff Unmanaged Forest) and US-Vcp (Valles Caldera
Ponderosa) sites are at higher elevations (2215 and 2501 m).
Both high-elevation sites experience cooler mean annual
temperatures of 7.1 and 5.7 ◦C, respectively, and are dom-
inated by ponderosa pine (Anderson-Teixeira et al., 2011;
Dore et al., 2012). The high-elevation forested sites have
two annual growing seasons with available moisture com-
ing from both heavy winter snowfall (and subsequent spring
snowmelt) and summer monsoon storms. US-Fuf is located
near the town of Flagstaff in northern AZ, whilst US-Vcp is
located in the Valles Caldera National Preserve in the Jemez
Mountains in northern–central New Mexico. Groundwater
depths across all sites are typically tens to hundreds of me-
ters. Flux tower instruments at all six sites collect half-hourly
measurements of meteorological forcing data and eddy co-

variance measurements of net surface energy and carbon ex-
changes (see Sect. 2.3.1).

2.2 ORCHIDEE land surface model

2.2.1 General model description

The ORCHIDEE LSM forms the terrestrial component of
the French IPSL ESM (Dufresne et al., 2013), which con-
tributes climate projections to IPCC Assessment Reports.
ORCHIDEE has undergone significant modification since
the “AR5” version (Krinner et al., 2005), which was used to
run the CMIP5 (Coupled Model Inter-comparison Project)
simulations included in the IPCC 5th Assessment Report
(IPCC, 2013). The model code is written in Fortran 90. Here,
we use ORCHIDEE v2.0 that is used in the ongoing CMIP6
simulations. ORCHIDEE simulates fluxes of carbon, water,
and energy between the atmosphere and land surface (and
within the sub-surface) on a half-hourly time step. In uncou-
pled mode, the model is forced with climatological fields de-
rived either from climate reanalyses or site-based meteoro-
logical forcing data. The required climate fields are 2 m air
temperature, rainfall and snowfall, incoming longwave and
shortwave radiation, wind speed, surface air pressure, and
specific humidity.

Evapotranspiration, ET, in the model is calculated as the
sum of four components: (1) evaporation from bare soil,
E; (2) evaporation from water intercepted by the canopy;
(3) transpiration, T (controlled by stomatal conductance);
and (4) snow sublimation (Guimberteau et al., 2012b). There
are two soil hydrology models implemented in ORCHIDEE:
one based on a 2-layer (2LAY) conceptual model, the other
on a physically based representation of moisture redistribu-
tion across 11-layers (11LAY). In this study, the soil depth
for both schemes was set to 2 m based on previous studies
that tested the implementation of the soil hydrology schemes
(de Rosnay and Polcher, 1998; de Rosnay et al., 2000, 2002).
Further modifications to the model have been made since the
implementation of the 11LAY scheme to augment the in-
creased complexity: in the 2LAY scheme, runoff occurred
when the soil reached saturation, whereas in the 11LAY
scheme, surface infiltration, runoff, and drainage are treated
more mechanistically based on soil hydraulic conductivity
(see Sect. 2.2.2). In the 2LAY scheme, there was an im-
plicit resistance to bare soil evaporation based on the depth
of the dry soil for the bare soil plant functional type (PFT).
In the 11LAY scheme, there is an optional bare soil evapo-
ration resistance term based on the relative soil water con-
tent of the first four soil layers, based on the formulation
of Sellers et al. (1992) – (see Sect. 2.2.3). Both resistance
terms aim to describe the resistance to evaporation exerted
by a dry mulch soil layer. Similarly, the calculation of mois-
ture limitation on stomatal conductance has changed. In the
2LAY version, moisture limitation depended on the dry soil
depth of the upper layer, whereas in the 11LAY version, the
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Table 2. Summary of differences between 2LAY and 11LAY model versions. All other parameters and processes in the model, including
the PFT and soil texture fractions (Table 1), the vegetation and bare soil albedo coefficients (Sect. 2.2.1), and the multi-layer intermediate-
complexity snow scheme (Sect. 2.2.5), are the same in both versions.

Model process Model version

2LAY 11LAY

Soil moisture
(Sect. 2.2.2)

2-layer bucket scheme – upper layer variable to
10 cm depth and can disappear

1D Richards equation describing moisture dif-
fusion in unsaturated soils

Maximum water-holding (field) capacity
Sect. 2.2.2)

Constant (150 kgm−2) for all soil types Derived using van Genuchten (VG) relation-
ships for characteristic matric potentials and
vary with soil texture

Runoff/drainage
(Sect. 2.2.2)

When soil moisture exceeds field capacity
5 % partitioned as surface runoff and 95 % as
groundwater drainage

Calculated soil hydraulic conductivity deter-
mines precipitation partitioning into infiltration
and runoff. Drainage in form. Of free gravita-
tional flow at bottom of soil.

Bare soil evaporation resistance
(Sect. 2.2.3)

Based on depth of dry soil for bare soil PFT. Not
optional – included by default

Empirical equation based on relative water con-
tent of the 1st four layers. Optional – not in-
cluded by default

Empirical plant water stress function, β
(Sect. 2.2.4)

Based on dry soil depth of upper layer Based on plant water availability for root water
uptake throughout soil column

E and T over vegetated grid cell fraction
(Sect. 2.2.1)

Only T occurs Both T and E occur over effective vegetated
and effective bare soil fraction, respectively.
Calculation of effective fractions based on LAI
(Beer–Lambert approach)

limitation is based on plant water availability for root wa-
ter uptake throughout the soil column. Finally, in the 2LAY
scheme there is no E from the vegetated portion of the grid
cell (only T ), whereas in the 11LAY scheme, both E and T
occur (see Sect. 2.2.1). The main differences between the two
ORCHIDEE configurations used in this study are described
in the sections below and are summarized in Table 2.

In ORCHIDEE, a prognostic leaf area is calculated
based on phenology schemes originally described in Botta
et al. (2000) and further detailed in MacBean et al. (2015 –
Appendix A). The albedo is calculated based on the aver-
age of the defined albedo coefficients for vegetation (one
coefficient per PFT), soil (one value for each grid cell, re-
ferred to as background albedo) and snow weighted by their
fractional cover. Snow albedo is also parameterized accord-
ing to its age, which varies according to the underlying PFT.
The albedo coefficients for each PFT and background albedo
have recently been optimized within a Bayesian inversion
system using the visible and near-infrared MODIS white-sky
albedo product at 0.5◦× 0.5◦ resolution for the years 2000–
2010. The prior background (bare soil) albedo values were
retrieved from MODIS data using the EU Joint Research
Center Two Stream Inversion Package (JRC-TIP).

As in most LSMs, all vegetation is grouped into broad
PFTs based on physiology, phenology, and, for trees, the
biome in which they are located. In ORCHIDEE, by default,
there are 12 vegetated PFTs plus a bare soil PFT. The 13 PFT
fractions are defined for each grid cell (or for a given site, as

in this study) in the initial model set-up and sum to 1.0 (un-
less there is also a “no bio” fraction for bare rock, ice, and ur-
ban areas). Independent water budgets are calculated for each
“soil tile”, which represent separate water columns within a
grid cell. In the 2LAY scheme, soil tiles directly correspond
to PFTs; therefore, a separate water budget is calculated for
each PFT within the grid cell. In the 11-layer scheme there
are three soil tiles: one with all tree PFTs sharing the same
soil water column, one soil column with all the grass and crop
PFTs, and a third for the bare soil PFT. Therefore, three sep-
arate water budgets are calculated: one for the forested soil
tile, one for the grass and crop soil tile, and one for the bare
soil PFT tile (Ducharne et al., 2020; see Sect. 2.2.2 to 2.2.5
for details on the hydrology calculations). In the two-layer
scheme there is no E from the vegetated tiles (only transpi-
ration). In the 11-layer scheme, both T and E occur in the
vegetated (forest and grass/crop) soil tiles. T occurs for each
PFT in the “effective” vegetated sub-fraction of each soil
tile, which increases as LAI increases, whereas E occurs at
low LAI (e.g. during winter) over the effective bare soil sub-
fraction of each soil tile. Note that the bare soil sub-fraction
of each vegetated soil tile is separate from the bare soil PFT
tile itself. The effective vegetated sub-fraction is calculated
using the following equation that describes attenuation of
light penetration through a canopy f jv = f j (1−e(−kextLAIj )),
where f j is the fraction of the grid cell covered by PFT j

(i.e. the unattenuated case), f jv is the fraction of the effec-
tive sub-fraction of the grid cell covered by PFT j , and kext
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is the extinction coefficient and is set to 1.0. The effective
bare soil sub-fraction of each vegetated soil tile, f jb , is equal
to 1− f jv . The total grid cell water budget is calculated by
vegetation fraction weighted averaging across all soil tiles
(Guimberteau et al., 2014; Ducharne et al., 2020). Soil tex-
ture classes and related parameters are prescribed based on
the percentage of sand, clay, and loam.

2.2.2 Soil hydrology

Two-layer conceptual soil hydrology model

In the “AR5” version of ORCHIDEE used in the CMIP5 ex-
periments, the soil hydrology scheme consisted of a concep-
tual two-layer (2LAY) so-called “bucket” model based on
Choisnel et al. (1995). The depth of the upper layer is vari-
able up to 10 cm and changes with time depending on the
balance between throughfall and snowmelt inputs, and out-
puts via three pathways: (i) bare soil evaporation, limited by
a soil resistance increasing with the dryness of the topmost
soil layer; (ii) root water extraction for transpiration, with-
drawn from both layers proportionally to the root density
profile; and (iii) downward water flow (drainage) to the lower
layer. If all moisture is evaporated or transpired or if the en-
tire soil saturates, the top layer can disappear entirely. Three
empirical parameters govern the calculation of the drainage
between the two layers, which depends on the water content
of the upper layer and takes a non-linear form, so drainage
from the upper layer increases considerably when the wa-
ter content of the upper layer exceeds 75 % of the maximum
capacity (Ducharne et al., 1998). Transpiration is also with-
drawn from the lower layer via water uptake by deep roots.
Finally, runoff only occurs when the total soil water content
exceeds the maximum field capacity, set to 150 kgm−2 as
in Manabe (1969). It is then arbitrarily partitioned into 5 %
surface runoff to feed the overland flow and 95 % drainage
to feed the groundwater flow of the routing scheme (Guim-
berteau et al., 2012b), which is not activated here.

Eleven-layer mechanistic soil hydrology model

The 11LAY scheme was initially proposed by de Rosnay
et al. (2002) and simulates vertical flow and retention of
water in unsaturated soils based on a physical description
of moisture diffusion (Richards, 1931). The scheme im-
plemented in ORCHIDEE relies on the one-dimensional
Richards equation, combining the mass and momentum con-
servation equations, but is in its saturation form that uses
volumetric soil water content θ (m3 m−3) as a state variable
instead of pressure head (Ducharne et al., 2020). The two
main hydraulic parameters (hydraulic conductivity and dif-
fusivity) depend on volumetric soil moisture content defined
by the Mualem–van Genuchten model (Mualem, 1976; van
Genuchten, 1980). The Richards equation is solved numer-
ically using a finite-difference method, which requires the

vertical discretization of the 2 m soil column. As described
by de Rosnay et al. (2002), 11 layers are defined: the top layer
is ∼ 0.1 mm thick and the thickness of each layer increases
geometrically with depth. The fine vertical resolution near
the surface aims to capture strong vertical soil moisture gra-
dients in response to high temporal frequency (sub-diurnal
to a few days) changes in precipitation or ET. De Rosnay
et al. (2000) tested a number of different vertical soil dis-
cretizations and decided that 11 layers was a good compro-
mise between computational cost and accuracy in simulat-
ing vertical hydraulic gradients. The mechanistic represen-
tation of redistribution of moisture within the soil column
also permits capillary rise and a more mechanistic represen-
tation of surface runoff. The calculated soil hydraulic con-
ductivity determines how much precipitation is partitioned
between soil infiltration and runoff (d’Orgeval et al., 2008).
Drainage is computed as free gravitational flow at the bottom
of the soil (Guimberteau et al., 2014). The USDA soil tex-
ture classification, provided at 1/12◦ resolution by Reynolds
et al. (2000), is combined with the look-up pedotransfer
function tables of Carsel and Parrish (1988) to derive the
required soil hydrodynamic properties (saturated hydraulic
conductivity Ks, porosity, van Genuchten parameters, resid-
ual moisture), while field capacity and wilting point are de-
duced from the soil hydrodynamic properties listed above
and the van Genuchten equation for matric potential, by as-
suming they correspond to potentials of −3.3 and −150 m,
respectively (Ducharne et al., 2020). Ks increases exponen-
tially with depth near the surface to account for increased soil
porosity due to bioturbation by roots and decreases exponen-
tially with depth below 30 cm to account for soil compaction
(Ducharne et al., 2020).

The 11LAY soil hydrology scheme has been implemented
in the ORCHIDEE trunk since 2010, albeit with various
modifications since that time, as described above and in the
following sections. The most up-to-date version of the model
is described in Ducharne et al. (2020). Similar versions of
the 11LAY scheme have been tested against a variety of
hydrology-related observations in the Amazon basin (Guim-
berteau et al., 2012a, 2014) for predicting future changes in
extreme runoff events (Guimberteau et al., 2013) and against
a water storage and energy flux estimates as part of ALMIP
in western Africa (as detailed in Sect. 1 – d’Orgeval et al.,
2008; Boone et al., 2009; Grippa et al., 2011, 2017).

2.2.3 Bare soil evaporation and additional resistance
term

The computation of bare soil evaporation,E, in both versions
is implicitly based on a supply and demand scheme.E occurs
from the bare soil column as well as the bare soil fraction of
the other soil tiles (see Sect. 2.2.1). In the 2LAY version, E
decreases when the upper layer gets drier, owing to a resis-
tance term that depends on the height of the dry soil in the
bare soil PFT column (Ducoudré et al., 1993). In the 11LAY
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version,E proceeds at the potential rateEpot unless the water
supply via upward diffusion from the water column is limit-
ing, in which case E is reduced to correspond to the situation
in which the soil moisture of the upper four layers is at wilt-
ing point. However, since ORCHIDEE v2.0 (Ducharne et al.,
2020), E can also be reduced by including an optional bare
soil evaporation resistance term, rsoil, which depends on the
relative water content and is based on a parameterization fit-
ted at the FIFE grassland experimental site at Konza Prairie
Field Station in Kansas (Sellers et al., 1992):

rsoil = exp(8.206− 4.255W1), (1)

where W1 is the relative soil water content of the first four
layers (2.2 cm – Table S1 in the Supplement). W1 is calcu-
lated by dividing the mean soil moisture across these layers
by the saturated water content. The calculation for E then
becomes

E =min(Epot/(1+ rsoil/ra),Q), (2)

where Epot is the potential evaporation, ra the aerodynamic
resistance, Q the upward water supply from capillary diffu-
sion through the soil, and rsoil the soil resistance to this up-
ward exfiltration. In all simulations, the calculation of ra in-
cludes a dynamic roughness height with variable LAI, based
on a parameterization by Su et al. (2001). By default, in the
11LAY version there is no resistance (rsoil = 0). Note that
there is no representation of below-canopy E in this version
of ORCHIDEE given there is no multi-layer energy budget
for the canopy. Note also that the same roughness is used for
both the effective bare ground and vegetated fractions.

2.2.4 Empirical plant water stress function, β

The soil moisture control on transpiration is defined by an
empirical water stress function, β. Whichever the soil hy-
drology model, β depends on soil moisture and on the root
density profile R(z)= exp(−cjz), where z is the soil depth
and cj (in m−1) is the root density decay factor for PFT j .
In both model versions for a 2 m soil profile, cj is set to 4.0
for grasses, 1.0 for temperate needleleaved trees, and 0.8 for
temperate broadleaved trees. In 11LAY, a related variable is
nroot(i), quantifying the mean relative root density R(z) of
each soil layer i, so that

∑
nroot(i)= 1.

In the 2LAY version, β is calculated as an exponential
function of the root decay factor cj and the dry soil height
of the topmost soil layer (hd

t ):

β = exp
(
−cj ,h

d
t
)
. (3)

In 11LAY, β is rather based on the available moisture across
the entire soil moisture profile and is calculated for each
PFT j and soil layer i and then summed across all soil layers
(starting at the second layer given no water stress in the first
layer – a conservative condition that prevents transpiration,

T , from inducing a negative soil moisture from this very thin
soil layer):

β(j)=

11∑
i=2

nroot(i)

·max

(
0,min

(
1,max

(
0,
(Wi,v −Wwpt)(
W%−Wwpt

) ))) , (4)

where Wi is the soil moisture for that layer and soil tile in
kgm−2, Wwpt is the wilting point soil moisture, and W% is
the threshold above which T is maximum – i.e. above this
threshold T is not limited by β. W% is defined by

W% =Wwpt+p%(Wfc−Wwpt), (5)

where Wfc is the field capacity and p% defines the threshold
above which T is maximum. p% is set to 0.8 and is constant
for all PFTs. This empirical water stress function equation
means that, in 11LAY, β varies linearly between 0 at the wilt-
ing point and 1 at W%, which is smaller than or equal to the
field capacity. LSMs typically apply β to limit photosynthe-
sis (A) via the maximum carboxylation capacity parameter
Vcmax or to the stomatal conductance, gs, via the g0 or g1 pa-
rameters of the A/gs relationship, or both (De Kauwe et al.,
2013, 2015). In ORCHIDEE there is the option of applying
β to limit either Vcmax or gs, or both. In the default configu-
ration used in CMIP6, β is applied to both (based on results
from Keenan et al., 2010; Zhou et al., 2013, 2014); therefore,
this is the configuration we used in this study.

2.2.5 Snow scheme

ORCHIDEE contains a multi-layer intermediate complexity
snow scheme that is described in detail in Wang et al. (2013).
The new scheme was introduced to overcome limitations of
a single-layer snow configuration. In a single-layer scheme,
the temperature and vertical density gradients through the
snowpack, which affect the sensible, latent, and radiative en-
ergy fluxes, are not calculated. The single-layer snow scheme
does not describe the insulating effect of the snowpack or
the links between snow density and changes in snow albedo
(due to aging) in a physically mechanistic way. In the new
explicit snow scheme, there are three layers that each have a
specific thickness, density, temperature and liquid water and
heat content. These variables are updated at each time step
based on the snowfall and incoming surface energy fluxes,
which are calculated from the surface energy balance equa-
tion. The model also accounts for sublimation, snow settling,
water percolation, and refreezing. Snow mass cannot exceed
a threshold of 3000 kgm−2. Snow age is also calculated and
is used to modify the snow albedo. Default snow albedo coef-
ficients have been optimized using MODIS white-sky albedo
data as per the method described in Sect. 2.2.1. Snow frac-
tion is calculated at each time step according to snow mass
and density following the parametrization proposed by Niu
and Yang (2007).

Hydrol. Earth Syst. Sci., 24, 5203–5230, 2020 https://doi.org/10.5194/hess-24-5203-2020
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2.3 Data

2.3.1 Site-level meteorological and eddy covariance
data and processing

Meteorological forcing and eddy covariance flux data for
each site were downloaded from the AmeriFlux data por-
tal (http://ameriflux.lbl.gov, last access: 5 November 2020).
Meteorological forcing data included 2 m air temperature
and surface pressure, precipitation, incoming longwave and
shortwave radiation, wind speed, and specific humidity. To
run the ORCHIDEE model, we partitioned the in situ precip-
itation into rainfall and snowfall using a temperature thresh-
old of 0 ◦C. The meteorological forcing data were gap-
filled following the approach of Vuichard and Papale (2015),
which uses downscaled and corrected ERA-Interim data to
fill gaps in the site-level data. Eddy covariance flux data
were processed to provide ET from estimates of latent en-
ergy fluxes. ET gaps were filled using a modified look-up
table approach based on Falge et al. (2001), with ET pre-
dicted from meteorological conditions within a 5 d moving
window. Previous comparisons of annual sums of measured
ET with site-level water balance measurements at a few of
these sites show an average agreement within 3 % of each
other, but could differ by −10 % to +17 % in any given year
(Scott and Biederman, 2019). Estimates of T/ET ratios were
derived from Zhou et al. (2016) for the forested sites and
both Zhou et al. (2016) and Scott and Biederman (2017)
for the more water-limited low-elevation grass- and shrub-
dominated sites. Zhou et al. (2016) (hereafter Z16) used
eddy covariance tower gross primary productivity (GPP), ET,
and vapour pressure deficit (VPD) data to estimate T/ET
ratios based on the ratio of the actual or apparent underly-
ing water use efficiency (uWUEa) to the potential uWUE
(uWUEp). uWUEa is calculated based on a linear regression
between ET and GPP multiplied by VPD to the power 0.5
(GPP×VPD0.5) at observation timescales for a given site,
whereas uWUEp was calculated based on a quantile regres-
sion between ET and GPP×VPD0.5 using all the half-hourly
data for a given site. Scott and Biederman (2017) (hereafter
SB17) developed a new method to estimate average monthly
T/ET from eddy covariance data that was more specifically
designed for the most water-limited sites. The SB17 method
is based on a linear regression between monthly GPP and ET
across all site years. One of the main differences between the
Z16 and SB17 methods is that the regression between GPP
and ET is not forced through the origin in SB17 because
at water-limited sites it is often the case that ET 6= 0 when
GPP= 0 (Biederman et al., 2016). The Z16 method also as-
sumes the uWUEp is when T/ET= 1, which rarely occurs in
water-limited environments (Scott and Biederman, 2017). In
this study, T/ET ratio estimates are omitted in certain winter
months when very low GPP and limited variability in GPP
results in poor regression relationships.

Figure 1. Comparison of the 2LAY vs. 11LAY mean daily hy-
drological stores and fluxes: (i) evapotranspiration (ET, mmd−1 –
a); (ii) total soil moisture (SM, kgm−2) in the upper 10 cm of
the soil (b); (iii) total column (0–2 m) SM (c); (iv) surface runoff
(mmd−1, d); (v) drainage (mmd−1, e); and (vi) total runoff (sur-
face runoff plus drainage – f). Error bars show the SD for ET and
SM and the 95 % confidence interval for runoff and drainage. For
soil moisture, the absolute values of total water content for the up-
per layer and total 2 m column are shown for both model versions;
i.e. the simulations have not been re-scaled to match the temporal
dynamics of the observations (as described in Sect. 2.3.2); there-
fore, soil moisture observations are not shown. Observations are
only shown for ET.

2.3.2 Soil moisture data and processing

Daily mean volumetric soil moisture content (SWC, θ ,
m3 m−3) measurements at several depths were obtained di-
rectly from the site PIs. For each site, Table 3 details the
depths at which soil moisture was measured. Soil moisture
measurement uncertainty is highly site and instrument spe-
cific, but tests have shown that average errors are gener-
ally below 0.04 m3 m−3 if site-specific calibrations are made.
Given the maximum depth of the soil moisture measurements
is 75 cm (and is much shallower at some sites), we cannot
use these measurements to estimate a total 2 m soil column
volumetric SWC. Instead, we only used these measurements
to evaluate the 11LAY model (and the 2LAY upper-layer soil
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Table 3. Soil moisture measurement depths (and corresponding model layer in brackets – see Table S1).

US-SRM US-SRG US-Whs US-Wkg US-Fuf US-Vcp

Soil moisture depths 2.5–5 cm (5)
15–20 cm (7)
60–70 cm (9)

2.5–5 cm (5)
15–20 cm (7)
75 cm (9)

5 cm (6)
15 cm (7)
30 cm (8)

5 cm (6)
15 cm (7)
30 cm (8)

2 cm (4)
20 cm (8)
50 cm (9)

5 cm (6)
20 cm (7)
50 cm (9)

moisture – calculated for 0–10 cm) because, unlike the 2LAY
model, with the 11LAY version of the model we have model
estimates of soil moisture at discrete soil depths. However,
several factors mean that we cannot directly compare abso-
lute values of measured vs. modelled soil SWC, even though
11LAY has discrete depths. First, site-specific values for soil-
saturated and residual water content were generally not avail-
able to parameterize the model (see Sect. 2.4); instead, these
soil hydrology parameters are either fixed (in 2LAY) or de-
rived from prescribed soil texture properties (in 11LAY – see
Sect. 2.2.2). Therefore, we may expect a bias between the
modelled and observed daily mean volumetric SWC. Second,
while the soil moisture measurements are made with probes
at specific depths, it is not precisely known over which depth
ranges they are measuring SWC. Therefore, with the excep-
tion of Fig. 1 in which we examine changes in total water
content between the two model versions, for the remaining
analyses we do not focus on absolute soil moisture values
in the model–data comparison. Instead, we focus solely on
comparison between the modelled and observed soil mois-
ture temporal dynamics. To achieve this, we removed any
model–data bias using a linear cumulative density function
(CDF) matching function to re-scale and match the mean and
SD of soil moisture simulations to that of the observations for
each layer where soil moisture is measured using the follow-
ing equation:

θMod,CDF =
σθ,Obs(θMod− θ̄Mod)

σθ,Mod
+ θ̄Obs. (6)

Raoult et al. (2018) found that linear CDF matching per-
formed nearly as well as full CDF matching in capturing the
main features of the soil moisture distributions; therefore, for
this study we chose to simply use a linear CDF re-scaling
function. Note that while we do compare the re-scaled 2LAY
upper-layer soil moisture (top 10 cm) and 11LAY simula-
tions at certain depths to the observations (see Sect. 3.1), we
cannot compare the total column soil moisture given our ob-
servations do not go down to the same depth as the model
(2 m). Also note that because of the reasons given above, we
chose to focus most of the model–data comparison on in-
vestigating how well the (re-scaled) 11LAY model captures
the observed temporal dynamics at specific soil depths (see
Sect. 3.2).

2.4 Simulation set-up and post-processing

All simulations were run for the period of available site data
(including meteorological forcing and eddy covariance flux
data – see Sect. 2.3.1 and Table 1). Table 1 also lists (i) the
main species for each site and the fractional cover of each
model PFT that corresponds to those species; (ii) the maxi-
mum LAI for each PFT; and (iii) the percent of each model
soil texture class that corresponds to descriptions of soil char-
acteristics for each site – all of which were derived from the
associated site literature detailed in the references in Table 1.
The PFT fractional cover and the fraction of each soil texture
class are defined in ORCHIDEE by the user. The maximum
LAI has a default setting in ORCHIDEE that has not been
used here; instead, values based on the site literature were
prescribed in the model (Table 1). Note that ORCHIDEE
does not contain a PFT that specifically corresponds to shrub
vegetation; therefore, the shrub cover fraction was prescribed
to the forested PFTs (see Table 1). Due to the lack of avail-
able data on site-specific soil hydraulic parameters across
the sites studied, we chose to use the default model values
that were derived based on pedotransfer functions linking hy-
draulic parameters to prescribed soil texture properties (see
Sect. 2.2.2). Using the default model parameters also allows
us to test the default behaviour of the model.

At each site we ran five versions of the model: (1) 2LAY
soil hydrology; (2) 11LAY soil hydrology with rsoil flag not
set (default model configuration); (3) 11LAY soil hydrology
with rsoil flag not set and with reduced bare soil fraction (in-
creased C4 grass cover); (4) 11LAY soil hydrology with the
rsoil flag set (therefore, Eq. 2 activated); and (5) 11LAY soil
hydrology with the rsoil flag set and with reduced bare soil
fraction. Tests 3 and 5 (reduced bare soil fraction) are de-
signed to account for the fact that grass cover is highly dy-
namic at intra-annual timescales at the low-elevation sites,
and therefore during certain seasons (e.g. the monsoon) the
grass cover will likely be higher than was prescribed in the
model based on average fractional cover values given in the
site literature. The C4 grass cover was therefore increased to
the maximum observed C4 grass cover under the most pro-
ductive conditions (100 % cover for the Santa Rita sites, and
80 % cover for the Walnut Gulch sites). A 400-year spinup
was performed by cycling over the gap-filled forcing data
for each site (see Table 1 for period of available site data)
to ensure the water stores were at equilibrium. Following
the spinup, transient simulations were run using the forcing
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data from each site. Daily outputs of all hydrological vari-
ables (soil moisture, ET and its component fluxes, snowpack,
snowmelt), the empirical water stress function, β, LAI, and
soil temperature were saved for all years and summed or av-
eraged to derive monthly values, where needed. For certain
figures we show the 2009 daily time series because that was
the only year for which data from all sites overlapped and a
complete year of daily soil moisture observations was avail-
able. To evaluate the two model configurations, we calcu-
lated the Pearson correlation coefficient between the simu-
lated and observed daily time series for both the upper-layer
soil moisture (with the model re-scaled according to the lin-
ear CDF matching method given in Sect. 2.3.2) and ET. We
also calculated the RMSE, mean absolute bias, and a measure
of the relative variability, α, between the modelled and ob-
served daily ET. The latter is calculated as the ratio of model
to observed SDs (α = σm

σo
) based on Gupta et al. (2009). All

model post-processing and plotting was performed using the
Python programming language (v2.7.15) (Python Software
Foundation – available at http://www.python.org, last access:
2 November 2020), the NumPy (v1.16.1) (Harris et al., 2020)
numerical analysis package, and Matplotlib (v2.0.2) (Hunter,
2007) and Seaborn (v0.9.0) (Waskom et al., 2017) plotting
and data visualization libraries.

3 Results

3.1 Differences between the 2LAY and 11LAY model
versions for main hydrological stores and fluxes

Increasing the soil hydrology model complexity between the
2LAY and 11LAY model versions does not result in a uni-
form increase or decrease across sites in either the simulated
upper-layer (top 10 cm) and total column (2 m) soil mois-
ture (kgm−2) (Fig. 1b and c; also see Fig. S1 in the Sup-
plement for complete daily time series for each site). The
largest change between the 2LAY and 11LAY versions in
the upper-layer soil moisture were seen at the high-elevation
ponderosa forest sites (US-Fuf and US-Vcp – Figs. 1 and S1a
and b). In the 2LAY simulations, the upper-layer soil mois-
ture is similar across all sites, whereas in the 11LAY simu-
lations the difference between the high-elevation forest sites
and low-elevation grass and shrub sites has increased. At US-
Fuf, both the upper-layer and total column soil moisture in-
crease in the 11LAY simulations compared to 2LAY, which
corresponds to an increase in mean daily ET (Fig. 1a) away
from the observed mean and a decrease in total runoff (sur-
face runoff plus drainage – Fig. 1f). In contrast, at US-Vcp,
while there is an increase in the upper-layer soil moisture,
there is hardly any change in the total column soil mois-
ture. The higher upper-layer soil moisture at US-Vcp causes
a slight increase in mean ET (and ET variability) that better
matches the observed mean daily ET, and a decrease in total
runoff. Note that changes in maximum soil water-holding ca-

pacity are due to how soil hydrology parameters are defined.
In 2LAY, a maximum capacity is set to 150 kgm−2 across all
PFTs, whereas in 11LAY, the capacity is based on soil texture
properties and is therefore different for each site.

At the low-elevation shrub and grass sites (US-SRM, US-
SRG, US-Whs, and US-Wkg) the differences between the
two model versions for both the upper-layer and total column
soil moisture are much smaller (Fig. 1). Correspondingly, the
changes in mean daily ET and total runoff are also marginal
(although the mean total runoff is lower at Walnut Gulch:
US-Wkg and US-Whs). Across all sites both model versions
accurately capture the overall mean daily ET (Fig. 1). At
Santa Rita (US-SRM and US-SRG), the 11LAY soil mois-
ture is marginally lower than 2LAY, whereas at the Walnut
Gulch sites the 11LAY moisture is higher.

As described above, at all sites there is either no change
between the 2LAY and 11LAY simulations (Santa Rita) or
a decrease in total runoff (surface runoff plus drainage –
Fig. 1f). Across all sites, excess water is removed as drainage
in the 2LAY simulations, with little to no runoff (Fig. S1a–f,
3rd panel), whereas in the 11LAY simulations, excess water
flows mostly as surface runoff, with more limited drainage
(Fig. S1a–f, 2nd panel). This is explained by the fact that
in the 2LAY scheme, the drainage is always set to 95 % of
the soil excess water (above saturation), and runoff can ap-
pear only when the total 2 m soil is saturated. However, the
11LAY scheme also accounts for runoff that exceeds the in-
filtration capacity, which depends on the hydraulic conduc-
tivity function of soil moisture (Horton runoff). This means
that when the soil is dry, the conductivity is low and more
runoff will be generated. In the 11LAY simulations, the tem-
poral variability in total runoff (as represented by the er-
ror bars in Fig. 1) has also decreased. As just described, in
11LAY the total runoff mostly corresponds to surface runoff
(Fig. S1a–f). The lower drainage flux (and higher surface
runoff) in the 11LAY simulations corresponds well to the
calculated water balance at US-SRM (Scott and Biederman,
2019). The 11LAY limited drainage is also likely to be the
case at US-Fuf given that nearly all precipitation at the site
is partitioned to ET (Dore et al., 2012). In general, all these
semi-arid sites have very little precipitation that is not ac-
counted for by ET at the annual scale (Biederman et al., 2017
Table S1).

Across all sites, the magnitude of temporal variability
of the total column soil moisture (represented by the error
bars in Fig. 1c) only increases slightly between the 2LAY
and 11LAY model versions. In the upper layer (top 10 cm),
the soil moisture temporal variability again only increases
marginally between 2LAY and 11LAY for the high-elevation
forest sites (Fig. 1b error bars); however, the magnitude of
variability decreases considerably in the 11LAY model for
the low-elevation shrub and grass sites (also see Fig. S2 in
the Supplement). At all sites the 2LAY upper-layer soil mois-
ture simulations fluctuate considerably between field capac-
ity and zero throughout the year, including during dry periods
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Table 4. Model evaluation metrics comparing the 2LAY and 11LAY daily upper-layer soil moisture (re-scaled via linear CDF matching)
and daily ET simulations to observations across the whole time series (where data are present – see Fig. S2). Metrics include correlation
coefficient (R), root mean squared error (RMSE), mean absolute bias, and a measure of the relative variability, α, between the model and
the observations. The mean absolute bias=model− observations; therefore, a negative value represents a mean model underestimation of
observed ET. α = σm

σo
(see Sect. 2.4, with “ideal” values approaching 1).

Site Model
version

Upper-layer
(0–10 cm)
soil moisture R

ET R ET RMSE
(mmd−1)

ET mean bias
(mmd−1)

ET relative
variability, α

US-Fuf 2LAY 0.30 0.36 1.04 −0.08 1.08
11LAY 0.78 0.76 0.86 0.38 1.33

US-Vcp 2LAY 0.27 0.26 1.39 −0.54 0.79
11LAY 0.37 0.59 1.02 −0.27 0.82

US-SRM 2LAY 0.52 0.53 0.84 −0.03 0.70
11LAY 0.85 0.84 0.53 −0.07 0.87

US-Whs 2LAY 0.56 0.54 0.68 −0.03 0.67
11LAY 0.90 0.85 0.43 −0.02 0.89

US-SRG 2LAY 0.48 0.52 1.02 0.01 0.70
11LAY 0.67 0.88 0.57 −0.11 0.90

US-Wkg 2LAY 0.46 0.62 0.63 0 0.71
11LAY 0.76 0.9 0.37 −0.01 1.07

with no rain. These fluctuations are due to the fact that in the
two-layer bucket scheme the top layer can disappear entirely
(see Sect. 2.2.2). In 11LAY, however, the temporal dynamics
of the upper-layer moisture simulations correspond more di-
rectly to the timing of rainfall events (see Fig. 2 bottom panel
for an example at three sites in 2009 and Fig. S2 for the com-
plete time series for each site). This results in a much better
fit of the 11LAY model to the temporal variability seen in the
observations (Figs. 2 and S2). This improvement in upper-
layer soil moisture temporal dynamics is also indicated by
the strong increase in correlation at all sites between the re-
scaled modelled and observed 11LAY upper-layer soil mois-
ture compared to 2LAY (increases in R ranged from 0.1 to
0.48 – Table 4). Note that not only is the upper high fre-
quency temporal variability therefore arguably more realistic
in the 11LAY version, but the finer-scale discretization of the
uppermost soil layer in this version will also allow a much
easier comparison with satellite-derived soil moisture prod-
ucts that can only “sense” the upper few centimeters of the
soil (Raoult et al., 2018).

A major and important consequence of the changes in the
upper-layer soil moisture temporal dynamics is a consider-
able improvement across all sites in the 11LAY-simulated
daily ET (Fig. 2a–c, second panels, which shows 2009 for
three sites; Fig. S2a–f show the complete time series for
all sites). Across all sites, the 11LAY RMSE between daily
modelled and observed ET has decreased in comparison to
2LAY and the correlation has increased by a fraction of 0.3
to 0.4 (Table 4). With the exception of US-Vcp, the mean
absolute daily ET model–data bias has increased slightly be-

tween the 2LAY and 11LAY versions (Table 4), which is due
to the fact that the 2LAY version both underestimates and
overestimates ET in the spring and summer, respectively, re-
sulting in a smaller mean absolute bias (Fig. S3 in the Sup-
plement). However, the 11LAY model only slightly under-
estimates mean daily ET at most sites, except at US-Fuf. In
both model versions, the biases correspond to less than 10 %
of the mean daily ET across all low-elevation sites. At the
high-elevation sites, the 11LAY bias corresponds to ∼ 20 %
of the mean daily ET – an increase (decrease) compared to
2LAY at US-Fuf (US-Vcp). The ratio of modelled to ob-
served SD in ET, α, is also provided as a measure of relative
variability in the simulated and observed values (Table 4).
With the exception of US-Fuf, α values tend closer to 1.0
in the 11LAY simulations compared to 2LAY – highlighting
again that the 11LAY version does a better job of captur-
ing the daily variability. The higher ET model–data bias and
α at US-Fuf is mostly due to model discrepancies in spring
(Fig. S2a), which we discuss further in Sect. 3.3. As previ-
ously discussed, the increase in 11LAY model upper-layer
moisture content at the high-elevation forest sites (Figs. 1b
and 2a bottom panel have resulted in an increase in E and
T at those sites, which in turn results in a lower ET RMSE
between the model and the observations (Table 4, and see
Figs. 2 and S2 2nd panel) if not a decrease in the mean ET
bias for US-Fuf (Table 4 and Fig. 1). At the low-elevation
shrub and grass sites, the improvement in ET is also related
to changes between the two versions in the calculation of
the empirical water stress function, β (Figs. 2 and S2 5th
panel), which acts to limit both photosynthesis and stomatal
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Figure 2. Comparison of daily time series (for 2009) of upper-layer soil moisture, surface water fluxes, and related variables between the
2LAY (green curve) and 11LAY (blue curve) simulations. Changes between the two versions are shown for three sites representing the main
vegetation types: left column: high-elevation tree-dominated site (US-Fuf); middle column: low-elevation mesquite shrub-dominated site
(US-SRM); right column: low-elevation C4 grass site (US-SRG). At each site, top panel: LAI; 2nd panel: ET compared to observations (black
curve); 3rd panel: bare soil evaporation; 4th panel: transpiration; 5th panel: empirical water limitation function (β) that scales photosynthesis
and stomatal conductance; bottom panel: model soil moisture (re-scaled via linear CDF matching) expressed as volumetric soil water content
(SWC) in the uppermost 10 cm of the soil compared to observations (black curve). Precipitation is shown in the grey lines in the bottom
panel for each site. (Note: full time series across all years are shown for all site in Fig. S2a–f.) Light brown shaded zones show periods of
maximum plant water limitation (β) at Santa Rita and consequent troughs in T and SWC.

conductance (therefore, T ) during periods of moisture stress
(Sect. 2.2.4). With the new calculation in the 11LAY ver-
sion (see Sect. 2.2.4), we see a stronger, more rapid decrease
in β (increased stress) during warm, dry periods that corre-
spond to strong reductions in T (light brown shaded zones
in Fig. 2). Aside from T and E, the other ET components
(interception and sublimation) did not change much between
the two hydrology schemes (results not shown); therefore,
these terms are not contributing to improvements between
the 2LAY and 11LAY versions.

The improvement in daily ET temporal dynamics re-
sults in an 11LAY mean monthly ET that is also well cap-
tured by the model throughout the year, including both the
warm, dry May–June period followed by monsoon summer
rains, particularly for low-elevation grass and shrub sites
(Figs. 3 and S3). As previously discussed, the improved,
higher monthly ET in the 11LAY version during the pe-
riod of maximum productivity (i.e. the spring and summer
for the high-elevation sites and the summer monsoon for the

low-elevation sites – Fig. 3) is likely due to the increase in
plant-available water (Figs. 1b and c and S1). Despite the
improvement in the 11LAY temporal variability at the high-
elevation forest sites, there is still a bias in the mean monthly
ET magnitude between the 11LAY model and observations:
at US-Fuf there is a distinct overestimation of ET during the
spring (Fig. S3a), whereas at US-Vcp there is a noticeable
underestimation of ET during the spring and monsoon pe-
riods (Fig. S3b). We will return to these remaining 11LAY
ET model–data discrepancies in Sect. 3.3 after having evalu-
ated the 11LAY soil moisture against observations at differ-
ent depths.

3.2 Comparison of 11LAY soil moisture against
observations at different depths

Figure 4 compares model vs. observed daily volumetric soil
water content time series for 2009 at three different depths
(see Fig. S4 in the Supplement for the full time series at
each site). The complete model time series were re-scaled
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Figure 3. Evapotranspiration (ET) monthly mean seasonal cycle
comparing the 2LAY (green curve) and 11LAY (blue curve) sim-
ulations with observations (black curve). Individual site simula-
tions have been averaged over the high-elevation tree-dominated
sites (a) and across all the low-elevation grass- and shrub-dominated
sites (b). Units are millimeters per month (mmmonth−1).

via linear CDF matching to remove model–observation bi-
ases (see Sect. 2.3.2); however, the linear CDF matching pre-
serves the mean and SD of the temporal variability. As seen
in Sect. 3.1 and Fig. 2 (bottom row showing upper 10 cm soil
moisture), in Fig. 4 the high-frequency temporal variability
of the 11LAY soil moisture in the uppermost layer almost
perfectly matches the observed one, particularly at the low-
elevation shrub- and grass-dominated sites (US-SRM, US-
SRG, US-Whs, US-Wkg). At most of the low-elevation sites
the soil moisture drying rates in the upper 20 cm of soil are
well captured by the model, with the small exception of the
Santa Rita sites between January and March, in which the
model appears to dry down at a faster rate than observed
(Fig. 4 US-SRM and US-SRG, top and middle rows).

In contrast, the temporal mismatch between the obser-
vations and the model in the uppermost layer is higher at
the forest sites. The US-Fuf and US-Vcp 11LAY simula-
tions appear to compare reasonably well with observations
in the upper 2 cm of the soil from June through to the end of
November (end of September in the case of US-Vcp) (Fig. 4).
However, in some years the model appears to overestimate
the SWC at both sites during the winter months (positive
model–data bias) and underestimate the observed SWC dur-
ing the spring months (negative model–data bias), particu-
larly at US-Fuf. Although US-Fuf and US-Vcp are semi-arid
sites, their high elevation means that during winter precipi-
tation falls as snow; therefore, these apparent model biases
may be related to (i) the ORCHIDEE snow scheme; (ii) in-
correct snowfall meteorological forcing; and/or (iii) incorrect
soil moisture measurements under a snowpack. During the
early winter period the model soil moisture increases rapidly
as the snowpack melts and is replenished by new snowfall,
whereas the observed soil moisture response is often slower
(Fig. 5a and b, light blue shaded zones). This often coincides

with periods when the soil temperature in the model is be-
low 0 ◦C (Fig. 5b), suggesting that in the field soil freezing
may be negatively biasing the soil moisture measurements.
An alternative explanation is that ORCHIDEE overestimates
snow cover (and therefore snowmelt and soil moisture) at the
forest sites because it assumes that snow is evenly distributed
across the grid cell, whereas in reality the snow mass/depth
is lower under the forest canopy than in the clearings.

At US-Fuf, it appears that the model melts snow quite
rapidly after the main period of snowfall (Fig. 5a, light green
shaded zones). Once all the snow has melted, the model soil
moisture also declines; however, the observed soil moisture
often remains high throughout the spring – causing a negative
model–data bias (Fig. 5a). Unlike US-Fuf, a similar nega-
tive model–data bias at US-Vcp often coincides with periods
when snow is still falling, although the amount is typically
lower (Fig. 5b, light green shaded zones); however, the model
does not always simulate a high snow mass during these pe-
riods. These periods coincide with rising surface tempera-
ture above 0 ◦C. Although snow cover, mass, or depth data
have not been collected at these sites, snow typically re-
mains on the ground until late spring after winters with heavy
snowfall, suggesting the continued existence of a snowpack
and slower snowmelt that replenishes soil moisture until late
spring when all the snow melts. Therefore, the lack of a sim-
ulated snowpack into late spring could explain the negative
model–data soil moisture bias. To test the hypothesis that the
model melts or sublimates snow too rapidly, thereby limiting
the duration of the snowpack and also allowing surface tem-
peratures to rise, we altered the model to artificially increase
snow albedo and decrease the amount of sublimation; how-
ever, these tests had little impact on the rate of snowmelt or
the duration of snow cover (results not shown). Aside from
model structural or parametric error, it is possible that there is
an error in the meteorological forcing data. Rain gauges may
underestimate the actual snowfall amount during the periods
when it is snowing (Rasmussen et al., 2012; Chubb et al.,
2015). If the snowfall is actually higher than is measured, it
may in reality lead to a longer lasting snowpack than is es-
timated by the model. To test this hypothesis, we artificially
increased the meteorological forcing snowfall amount by a
factor of 10 and re-ran the simulations. Although this artifi-
cial increase is likely exaggerated, the result was an improve-
ment in the modelled springtime soil moisture estimates at
US-Fuf (Fig. S5 in the Supplement). However, the same test
increased the positive model–data bias in the early winter
at US-Fuf and degraded the model simulations at US-Vcp.
This preliminary test suggests that inaccurate snowfall forc-
ing estimates may play a role in causing any negative model–
data bias spring soil SWC, but more investigation is needed
to accurately diagnose the cause of the springtime negative
model–data bias.

Overall, there is a decrease in the model ability to capture
both high frequency and seasonal variability with increasing
soil depth. At all sites the temporal dynamics of the deep-

Hydrol. Earth Syst. Sci., 24, 5203–5230, 2020 https://doi.org/10.5194/hess-24-5203-2020



N. MacBean et al.: Testing water fluxes and storage from two hydrology configurations 5217

Figure 4. Daily simulated volumetric soil water content (SWC – m3 m−3) in 2009 (re-scaled via linear CDF matching) compared to obser-
vations at each site for three depths (upper, middle, lower) in the soil profile. The soil depths and their corresponding model layers are given
in Table 3. Precipitation is shown in the grey lines in the bottom panel for each site.

est observations are not well represented in the model (Fig. 4
bottom row for each site). At the high-elevation forest sites
(US-Fuf and US-Vcp), the model does not capture the re-
sponse of observed soil moisture in the deepest layer to sum-
mer storm events. In contrast, at the low-elevation shrub and
grass sites the 11LAY SWC is far too dynamic in the deep-
est layer. The smoother model temporal profile at depth at
the forest sites compared to the sites with higher grass frac-
tion is likely related to impact of rooting depth on expo-
nential changes in Ks towards the surface (see Sect. 2.2.2).
As the forests have deeper roots, the increase in Ks starts
from a lower depth in the soil profile than the more grass-
dominated sites, which in turn allows for a quicker infiltra-
tion of moisture to deeper layers. The higher Ks at depth
also allows for a higher drainage and therefore decreased
soil moisture temporal variability. However, this description
of the model behavior does not explain the model–data dis-
crepancies. The poor model–data fit at lower depths may be
related to the discretization of the soil column with a geomet-
ric increase in internode distance. Therefore, the soil layer
thicknesses increase substantially beyond ∼ 2–4 cm (7th and
8th soil layers – Table S1). For the deeper soil moisture ob-
servations, it is therefore harder to match the depth of the
observations with a specific soil layer. Alternatively, it is
possible that the model description of a vertical root den-
sity profile, which is used to calculate changes in Ks with
depth, is too simplistic for semi-arid vegetation that typically

has extensive lateral root systems that are better adapted for
water-limited environments. It is also possible that assign-
ing semi-arid tree and shrub types to temperate PFTs, as we
have done in this study in the absence of semi-arid-specific
PFTs, has resulted in a root density decay factor that is too
shallow. In contrast to temperate forests, semi-arid trees and
shrubs also often have deep taproots for accessing ground-
water. Finally, changes in soil texture that may occur in real-
ity with depth in the soil could alter hydraulic conductivity
parameters; in the model, however, hydraulic conductivity
only changes (exponentially) with depth owing to soil com-
paction (see Sect. 2.2.2). In addition, semi-arid region soils
often have a higher concentration of rock and gravel (Grippa
et al., 2017) – neither of which are represented in the OR-
CHIDEE soil texture classes.

3.3 Remaining discrepancies in ET and its component
fluxes

Despite the improvement in seasonal ET temporal dynamics
in the 11LAY model, particularly the timing of the reduc-
tion during the dry season, key model–data discrepancies in
ET remain during spring (March–April) and monsoon (July–
September) periods: (i) at US-Fuf, the 11LAY ET is overes-
timated during the spring and early summer (Fig. S3a); (ii) at
US-Vcp, the model underestimates ET for much of the grow-
ing season, likely due to low LAI values in the earlier and
later years of the simulation (Fig. S3b); (iii) at US-SRM, the
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Figure 5. (a) US-Fuf and (b) US-Vcp 11LAY (blue curve) daily time series (2007–2010) of model (re-scaled via linear CDF matching)
vs. observed volumetric soil water content (middle panel SWC – m3 m−3) (black curve), compared to simulated snow mass (top panel)
and soil temperature from the corresponding 2 cm soil thermal layer (bottom panel). Snowfall is also shown as grey lines in the SWC time
series. In the bottom panel the grey horizontal dashed line shows a 0 ◦C threshold. Light blue shaded zones show periods where the model
overestimates the observations; light green shaded zones show periods where the model underestimates the observations.

11LAY model overestimates springtime ET (in contrast to
other low-elevation monsoon sites) (Fig. S3c); and (iv) the
11LAY model still slightly underestimates peak monsoon ET
at the low-elevation shrub sites (US-SRM and US-Whs –
Fig. S3c and d), as seen in a previous semi-arid model evalu-
ation study (Grippa et al., 2011).

The model overestimate in spring ET at US-Fuf could be
related to the snowfall issues that are causing the model to
underestimate spring soil moisture during the same period
(Figs. 4 and 5 and see Sect. 3.2). The lack of a persistent
snowpack in the model during this period can explain the
positive bias in spring ET because in reality the presence of

snow would suppress bare soil evaporation. As discussed in
Sect. 3.2, to accurately diagnose this issue we would need
further information on snow mass or depth. Further support
for the suggestion that modelled spring E is overestimated
comes from comparing the model with estimated T/ET ratios
(Fig. 6). Although both E and T increase in the US-Fuf (and
US-Vcp) 11LAY simulations (compared to 2LAY – Fig. S3a
and b) due to the increase in upper-layer soil moisture (as
previously described in Sect. 3.1 and Figs. 2 and S2a and b),
the stronger increase in 11LAY E compared to T resulted
in lower 11LAY T/ET ratios across all seasons (Fig. S3a
and b). While the model captures the bimodal seasonality at
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Figure 6. Comparison of modelled and data-derived estimates of
mean monthly T/ET ratios for each site. Forest site (US-Fuf and
US-Vcp) T/ET estimates are derived using the method of Zhou
et al. (2016 – Z16 – green curve). Monsoon low-elevation grass-
and shrub-dominated site T/ET estimated are based on both Zhou
et al. (2016) and Scott and Biederman (2017 – SB17 – orange
curve). Blue curves show the model ratios at each site. Please see
Sect. 2.3.1 for details on methods for data-derived T/ET estimates.

the forested sites as seen in the Z16 data-derived estimates
(Fig. 6), the magnitudes of model T/ET ratios appear to be
too low in all seasons given the 100 % tree cover at these sites
with a maximum LAI of ∼ 2.4. Whilst low spring 11LAY
T/ET ratios at US-Fuf may be due to overestimated E as a
result of higher soil moisture and underestimated snow cover,
the generally low bias in T/ET ratios across all seasons at
both US-Fuf and US-Vcp may also point to the issue that no
bare soil evaporation resistance term is included in the de-
fault 11LAY version. This may explain why the model T/ET
ratios do not increase as rapidly as estimated values at the
start of the monsoon (Fig. 6). However, discrepancies in the
timing of T/ET ratio peak and troughs between the model
and data-derived estimates at the forested sites could also
be due to the fact that evergreen PFTs have no associated
phenology modules in ORCHIDEE; instead, changes in LAI
are only subject to leaf turnover as a result of leaf longevity,
which may be an oversimplification.

At US-SRM, the modelled spring T/ET ratio overesti-
mates the Z16 estimate and underestimates the SB17 esti-
mate (Fig. 6). The current state of the art is that different
methods for estimating T/ET typically compare well in terms
of seasonality but differ in absolute magnitude; therefore,
the uncertainty in data-derived estimates of T/ET magni-
tude during the spring at US-SRM makes it difficult to glean
any information on whether T or E (or both) are responsi-

ble for the 11LAY overestimate of modelled springtime ET
(Fig. S3c). If the SB17 method is more accurate, then it is
probable that modelled springE at this site is too high (T/ET
underestimated), again potentially due to the lack of the bare
soil evaporation resistance term in the default 11LAY con-
figuration. However, if the Z16 estimate is accurate, then it is
likely that spring T is overestimated at US-SRM, potentially
due to an overestimate in LAI. The model–data bias in spring
mean monthly ET appears to correlate well with modelled
spring mean LAI at US-SRM (Fig. S6 in the Supplement). If
model LAI at US-SRM is too high during the spring, it is im-
possible to determine whether the shrub or grass LAIs are in-
accurate without independent, accurate estimates of seasonal
leaf area for each vegetation type, which are not available at
present; however, in the field the spring C4 grass LAI is typi-
cally half that of its monsoon peak – a pattern not seen in the
model (Fig. S6).

During the monsoon at the low-elevation grass- and shrub-
dominated sites, both data-derived estimates of T/ET agree
on the seasonality and, while different in magnitude, both
are higher than the model T/ET values (Fig. 6). Given this
agreement, both sets of estimated values can help to diagnose
why the 11LAY model also underestimates monsoon peak
ET at the low-elevation shrub sites (US-SRM and US-Whs
– Fig. S3c and d). The underestimate in modelled monsoon
T/ET ratios across all grassland and shrubland sites could be
either because T is too low or E is too high. At the shrubland
sites (US-SRM and US-Whs), both monsoon ET and T/ET
are underestimated; therefore, for these sites it is plausible
that the dominant cause is a lack of transpiring leaf area. As
was the case for spring ET at US-SRM, monsoon model–data
ET biases are better correlated with LAI at shrubland sites
compared to grassland sites (Fig. S8 in the Supplement). In
contrast, at the grassland sites (US-SRG and US-Wkg) mon-
soon ET is well approximated by the 11LAY model; thus,
the underestimate in T/ET ratios suggests that both the tran-
spiration is too low and the bare soil evaporation too high.
Furthermore, although 11LAY does capture the decrease in
ET during the hot, dry period of May to June at the grass and
shrub sites (which is a significant improvement compared to
2LAY – see Sect. 3.1), the 11LAY T/ET ratios are slightly
out of phase with the estimated values. Both data-derived es-
timates agree that T/ET ratios at all grass and shrub sites de-
cline in June during the hottest, driest month (as expected);
however, the model T/ET ratios reach a minimum 1 month
later in July (Fig. 6). This 1-month lag in model T/ET ra-
tios is apparent despite the fact that the ET minimum is ac-
curately captured by the model (Figs. 3b and S3c–f). The
modelled T/ET ratios also do not increase as rapidly as both
estimates during the wet monsoon period (July–September),
which can be explained by the fact that the model E at the
start of the monsoon increases much more rapidly than mod-
elled T . Taken together, these results suggest that LAI is not
increasing rapidly enough after the start of monsoon rains
(see Fig. S7 in the Supplement), resulting in negatively bi-
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Figure 7. Monthly mean seasonal cycle for ET, T/ET ratios, T ,
andE averaged across all low-elevation grass- and shrub-dominated
sites comparing the default 11LAY simulations (blue curve) with a
simulation in which bare soil fraction is decreased. C4 grass cover
increased (yellow curve). ET is compared to observations (black
dashed curve) and T/ET ratios are compared to the data-derived
estimates from Scott and Biederman (2017 – orange dashed curve)
and Zhou et al. (2016 – green dashed curve). Units are millimeters
per month (mmmonth−1).

ased T/ET ratios in July. Meanwhile the increase in avail-
able moisture from monsoon rains, potentially coupled with a
lack of bare soil evaporation resistance in the default 11LAY
version, is causing a positively biased model E that compen-
sates for the lower T . These compensating errors result in
accurate ET simulations. The underestimate in modelled leaf
area during the monsoon could either be (i) incorrect timing
of leaf growth for either grasses or shrubs and an underes-
timate of peak LAI and/or (ii) due to the fact that the static
vegetation fractions prescribed in the model do not allow for
an increase in vegetation cover during the wet season (i.e. the
model lacks the ability to grow grass in interstitial bare soil
areas).

We attempted to explore both the hypotheses that could
explain discrepancies in model ET and T/ET ratios (incorrect
T due to lack of transpiring leaf area at low-elevation grass
and shrub sites or overestimated E across all sites) with two
further tests. These final tests and their results are described
in the following section.

3.4 Testing decreased bare soil cover and the addition
of the 11LAY bare soil resistance term

To further investigate the possibility that summer ET and
T/ET ratios are underestimated at low-elevation sites be-
cause of a lack of transpiring leaf area, we reduced the bare
soil fraction and increased C4 grass fraction to the maximum
observed C4 grass cover under the most productive condi-
tions. This decrease in bare soil fraction increased ET and
T/ET ratios during the monsoon period at all low-elevation
grass- and shrub-dominated sites and also increased ET dur-
ing spring at the Santa Rita sites (Fig S9 in the Supplement;

mean across low-elevation sites in Fig. 7). However, although
the T/ET ratios reduced the negative model biases in the
summer monsoon period when compared to the data-derived
estimates, the model now overestimated ET in all seasons
(Figs. 7 and S9). Furthermore, the spring ET model–data bias
at US-SRM was further exacerbated by the decrease in bare
soil fraction (Fig. S9), and the mean estimated T/ET ratios
across all low-elevation grass and shrub sites were a closer
match to the original 11LAY version (Fig. 7). Finally, while
the decrease in the bare soil fraction (increase in C4 grasses)
may have partially accounted for the negative bias in T/ET
ratios at the start of the monsoon, the changes did not correct
the phase discrepancy between the estimated and modelled
T/ET seasonal trajectories: the estimated T/ET still declined
to a minimum in June (as expected during the hot, dry pe-
riod), whereas the model declined 1 month later. Putting the
latter points together, this new test gives further weight to
the suggestion put forward in Sect. 3.3 that the model is not
capturing the correct increase in leaf area at the start of the
monsoon – i.e. the problem is not just that there is a lack in
the overall amount of transpiring leaf area (or a too high bare
soil fraction) – due to issues with the model phenology for in-
dividual PFTs and/or its ability to capture dynamic changes
in seasonal vegetation cover.

As described in Sect. 3.3, the remaining model ET issues
(and its component fluxes) in both high-elevation forest sites
and low-elevation shrub- and grass-dominated sites could
also be due to the fact that the model simulates too much
bare soil evaporation. The 11LAY version has an optional
bare soil evaporation resistance term that is not activated in
the default version; therefore, the 11LAY simulations pre-
sented thus far have not included any such a resistance term.
Therefore, we tested the inclusion of the bare soil resistance
term at all sites. Although there is no bare soil fraction at
the high-elevation forested sites (US-Fuf and US-Vcp), in
the 11LAY version E still occurs over the bare soil sub-
fraction of the vegetated soil tiles. The bare soil sub-fraction
of the vegetated soil tiles increases at low LAI during winter
months (see Sect. 2.2.1); therefore, including the bare soil
resistance term caused a reduction in E during the winter
(lower LAI– Fig. 8a bottom panel). The reduction in winter
E at the forested sites in turn allowed for higher overall soil
moisture content (Fig. S10a and b in the Supplement) and
therefore a greater T (and E) during the spring and summer
(Fig. 8a). As a result, T/ET ratios were increased with the
addition of the bare soil evaporation term, thus potentially
partially resolving the issue of negatively biased T/ET ratios
seen in the default 11LAY simulations (see Sect. 3.3). The
increase in plant-available moisture with the addition of the
resistance term also led to a strong increase in LAI at US-Vcp
from a mean around 0.5 to a mean around 2.1 (Fig. S10b),
which is much closer to the observed LAI for the site. How-
ever, the dramatic increase in T resulted in a simulated ET at
both forest sites that strongly overestimated the observations
(Figs. 8 and S10a and b); therefore, overall the addition of
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Figure 8. Monthly mean seasonal cycle for evapotranspiration (ET), transpiration, T , and bare soil evaporation, E, averaged across all high-
elevation forest sites (a) and low-elevation monsoon grass- and shrub-dominated sites (b) for the default 11LAY simulations (blue curve)
compared to a simulation that included an additional bare soil evaporation resistance term (red curve). ET is also compared to observations
(black curve). Units are millimeters per month (mmmonth−1).

the bare soil evaporation resistance term did not improve the
ET model–data fit at these sites. As discussed in Sect. 3.2,
spring ET may also be overestimated at these sites due to the
lack of a persistent snowpack.

At all the low-elevation grass and shrub sites the addi-
tion of the bare soil resistance term resulted in a strong de-
crease in soil evaporation during the monsoon season and
a lesser, but non-negligible, decrease to almost zero evapo-
ration during the winter (Fig. 8 – right column). Bare soil
evaporation remained much the same during the spring and
the hot, dry season months of May and June. As seen for the
forest sites, the decline in bare soil evaporation during the
monsoon period results in a slightly higher moisture storage
(Fig. S10c–f), which in turn fractionally increases T through-
out the year (Fig. 8). The net effect is a reduction in ET dur-
ing summer and winter and an increase in spring and dry
season ET (Fig. 8). However, as for the forested sites, this
net effect in the simulated ET produces a worse fit to the
data. Therefore, the addition of this term does not resolve the
ET issues documented in Sect. 3.3: a further positive bias in
spring ET estimates is observed at US-SRM (Fig. S10c), and
the underestimate in monsoon ET at US-SRM and US-Whs
(Fig. S10c and d) is further exacerbated. Furthermore, the
near-zero evaporation in the winter months with the introduc-

tion of the bare soil resistance term results in an increase in
winter T/ET ratios. Therefore, at the low-elevation sites the
monthly seasonality of T/ET differs quite considerably from
the default 11LAY model runs (Fig. S10c–f) and generally
does not follow the seasonal trajectories estimated by either
Zhou et al. (2016) or Scott and Biederman (2017) (Fig. 6).

In a final test, we combined both the decrease in bare soil
fraction with the addition of the bare soil resistance term for
the low-elevation sites. The addition of the bare soil resis-
tance term reduced the positive bias seen with the increase
in C4 grass (decrease in the bare soil fraction) (Fig. S11 in
the Supplement). However, as seen in the bare soil resistance
tests with the original vegetation and bare soil fractions, the
addition of the resistance term increased spring T due to the
higher spring soil moisture – thus exacerbating the positive
bias in ET. It is clear that neither of these tests fully deal
with remaining ET model–data biases in the 11LAY ver-
sion – nor do they account for the issues in the model sea-
sonality of T/ET ratios. The ET seasonal temporal dynamics
remain much the same in all tests. We point out however that
the model fit to ET observations was still greatly improved
in the 11LAY version compared to 2LAY, and many of the
remaining model–data discrepancies are less significant by
comparison. It is therefore possible that some combination
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of the additional bare soil evaporation resistance term, de-
creased bare soil fraction, improved semi-arid leaf phenol-
ogy schemes, and further calibration of hydrology, phenol-
ogy, stomatal conductance, and water-limitation parameters
would be able to resolve most, if not all, of the remaining
model–data discrepancies in ET and T/ET estimates at these
sites. This is beyond the scope of this study, but the options
are discussed more in Sect. 4.

4 Discussion

This study showed that in comparison to a simple bucket
model (Manabe, 1969), a discretized soil hydrology scheme
based on the Richards equation – and associated model de-
velopments – results in considerable improvements in sim-
ulated semi-arid site soil moisture temporal dynamics that
exhibit a more realistic response to rainfall events (contrary
to the model–data comparison of Lohou et al., 2014). As a
result, we see dramatic improvements in high temporal fre-
quency to seasonal ET simulations. Previous studies have
also demonstrated that the more mechanistic descriptions of
soil hydrology included in the latest LSM versions have re-
sulted in improvements to surface latent and sensible heat
fluxes (de Rosnay et al., 2002; Best et al., 2015); however,
few studies have specifically compared these two model ver-
sions across a range of semi-arid ecosystems, as we have at-
tempted in this study. However, there remain a number of
missing hydrological processes that have not yet been in-
corporated into LSMs and/or inadequate existing processes,
which will clearly have an impact on semi-arid hydrological
modelling (Boone et al., 2009; Grippa et al., 2017) and may
resolve some of the remaining model–data discrepancies we
were not able to address in this study. We highlight these in
the sections below.

4.1 Issues with modelling vegetation dynamics in
semi-arid ecosystems

Our analysis has suggested that biases in low-elevation shrub
and grassland site ET might be due to incorrect simulations
of seasonal vegetation dynamics; therefore, in order to ob-
tain realistic estimates of ET and its component fluxes, it is
important that the model can accurately simulate seasonal
changes in leaf area and/or grass vs. bare soil fractional
cover. The connection between vegetation fractional cover
and LAI is a particular issue in sparsely vegetated regions
when low LAI effectively means more bare soil is coupled
with the atmosphere and E increases. To account for this in
ORCHIDEE, the bare soil fraction is slightly increased when
LAI is low (see Sect. 2.2.1), which is often the case at these
sites; however, there are only limited observations to sup-
port this model specification. Similarly, there are not many
LAI measurements for grasses and shrubs in these ecosys-
tems; therefore, we have relied on estimating the LAImax

parameter from MODIS LAI data. While different satellite
LAI products often correspond well to each other in terms
of temporal variability, there is often a considerable spread
in their absolute LAI values (Garrigues et al., 2008; Fang
et al., 2013); therefore, the MODIS LAI peak values may
not be accurate for these ecosystems. In any case, the satel-
lite LAI values represent a mix of different vegetation types,
and unlike satellite reflectance data it is not possible to lin-
early unmix the satellite LAI estimates based on fractional
cover. More field LAI measurements are needed from differ-
ent vegetation types (especially annual vs. perennial grasses
and shrubs) to verify what the likely maximum LAI is for
each PFT.

As mentioned in the results, it is also possible that LSMs
contain an inaccurate representation of different semi-arid
vegetation phenology, including drought-deciduous shrubs
and annual vs. perennial C4 grasses. The model does yet dis-
cern between perennial grasses and annual C4 grasses that
only grow during the warmest, wettest periods (Smith et al.,
1997). It is possible that LSMs need new phenology models
that account for annual C4 grass strategies in order to obtain
accurate simulations of semi-arid water and carbon fluxes.
Finally, it is possible that incorrect seasonal LAI trajectories
are also causing the issues in the T/ET seasonality seen at
the higher-elevation forested sites due to the lack of an ev-
ergreen phenology module in ORCHIDEE. Recently, a new
evergreen phenology module has been implemented in OR-
CHIDEE (Chen et al., 2020); however, this scheme was de-
veloped for humid tropical forests. Testing it for evergreen
trees in semi-arid regions is beyond the scope of this study
but will be investigated in future work. Again, seasonal LAI
measurements of different high-elevation semi-arid vegeta-
tion types would significantly help to improve or further de-
velop semi-arid phenology models.

Alternatively, it may be that other model parameters and
processes involved in leaf growth – for example phenol-
ogy, root zone plant water uptake, water-limitation, and
photosynthesis-related parameters – are inaccurate and in
need of statistical calibration (e.g. MacBean et al., 2015).
Incorrect representations of how we model low tempera-
ture and high VPD constraints on stomatal conductance may
also play a role. At the high-elevation sites, we assumed
the ponderosa pine trees should be modelled as temperate
needleleaved evergreen PFT. The default model parameters
assigned to this PFT may not be appropriate for modelling
this plant functional type in water-limited semi-arid envi-
ronments. Another likely issue for modelling low-elevation
sparsely vegetated semi-arid ecosystems with ORCHIDEE
is that there is no specific shrub PFT, although a recent OR-
CHIDEE version includes shrub PFTs for high-latitude tun-
dra ecosystems (Druel et al., 2017). In future work we will
adapt similar shrub parameterizations for semi-arid environ-
ments.

The importance of vegetation cover and seasonal changes
in leaf area for modelling hydrological fluxes – particu-
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larly T – is not a new observation (e.g. Ha et al., 2015;
Grippa et al., 2017). Baldocchi et al. (2010) found that LAI
was important at five Mediterranean sites in California and
Europe for determining how much carbon is assimilated and
how much water is lost. Hogue et al. (2005) also found the
Noah LSM was not able to replicate monsoon period LE in-
creases at the Walnut Gulch sites, which they suggested may
be related to inaccuracies in the satellite greenness fraction
estimates that are used to run the model. Whitley et al. (2016,
2017) also proposed that any improvements needed for ter-
restrial biosphere modelling of savanna ecosystems should
include modifications to the phenology schemes and the split
between fractional cover of trees and grasses.

4.2 ET partitioning (T/ET ratio)

In agreement with this study, Lian et al. (2018) also show
that CMIP5 models vastly underestimate T/ET ratios. They
estimated a new global T/ET ratio of 0.62± 0.06, which
is similar to the upscaled estimate of 0.57± 0.07 of Wei
et al. (2017), and suggest that model underestimates could be
caused by misrepresentation of vegetation structure impacts
on canopy light use, interception loss, and root water up-
take. Their conclusions lend further weight to our suggestion
that further improvements in T/ET ratios may result from
more accurate simulations of seasonal phenology and frac-
tional vegetation cover (see Sect. 3.3). Alternatively, Chang
et al. (2018) have suggested that neglecting to account for
lateral redistribution of moisture is responsible for model in-
ability to capture T/ET partitioning. Current LSM versions
do not simulate extensive shallow root systems that are typ-
ical of semi-arid vegetation that is more adapted to water-
limited conditions. However, they also mention other LSM
issues that might be affecting the T/ET ratio, such as the lack
of root dynamics, vegetation shading, topographic effects,
and the representation of bare soil evaporation. In order to
properly diagnose whether discrepancies in modelled T/ET
are caused by inaccurate representation of lateral moisture re-
distribution, we need to perform a comparison of a spatially
distributed model simulation with a high-density network of
hydrological observations. Nevertheless, in spatially hetero-
geneous mixed shrub–grass ecosystems it seems likely that
missing model processes will need to be accounted for before
accurate simulations of T/ET ratios can be achieved. One ex-
ample of this might be the need to include in the model a rep-
resentation of shrub understory and below-canopy E. Diag-
nosing and addressing discrepancies between modelled and
estimated T/ET is important, specifically for dryland ecosys-
tems where increases in vegetation productivity and/or cover
in response to rising atmospheric CO2 appear to be driving
higher T/ET rates (Lian et al., 2018).

4.3 Bare soil evaporation

The addition of a term that simulates bare soil evaporation re-
sistance to dry soil served to alleviate discrepancies in T/ET
ratios compared to data-derived estimates; however, result-
ing changes in modelled ET provided a worse fit to the ob-
servations. It is possible that the bare soil resistance is only
part of the solution, as discussed in Sect. 3.4. Future stud-
ies could also investigate the impact of uncertainty in the use
of pedotransfer functions (e.g. Mermoud and Xu, 2006) in
deriving soil hydraulic parameters from soil texture informa-
tion. The low-elevation sites typically have a very cobbly,
rocky soil surface that is not accounted for in ORCHIDEE.
Including soil texture variability with different soil horizons
could further improve ORCHIDEE’s capability to capture
the correct E, ET, and T/ET ratios. Alternatively, the rela-
tively simple implementation of a bare soil resistance term
(Eq. 2 – Sect. 2.2.3) might need to be adapted to include bare
soil evaporation resistance across a litter or biocrust layer.
At the sparsely vegetated grass- and shrub-dominated sites in
southern Arizona, biological soil crusts (biocrusts) composed
of assemblages of lichens, bryophytes, cyanobacteria, algae,
and microbes form across much of the bare soil surface (Bel-
nap et al., 2016). Biocrust layers may significantly alter bare
soil evaporation (and other aspects of ecosystem ecology and
functioning – Ferrenberg and Reed, 2017) in sparsely vege-
tated regions in ways that have not yet been considered in any
LSM bare soil evaporation scheme. Therefore, it is possible
that in addition to a more mechanistically based formulation
of resistance to bare soil evaporation due to a litter layer (as
per Swenson and Lawrence, 2014, or Decker et al., 2017),
separate formulations of evaporation through biocrust/mulch
layers may need to be developed (e.g. Saux-Picard et al.,
2009).

4.4 High-elevation model snowpack and snowmelt
predictions

The model also needs to be tested at other high-elevation
semi-arid mountainous sites (such as the Sierra Nevada in
California) for which spring snowmelt is the predominant
(and controlling) annual source of moisture. More specifi-
cally, more information on snow cover, depth, or mass, par-
ticularly under closed forest canopies, would be useful to
diagnose potential sources of bias in the snowfall simula-
tions. It is crucial that LSMs accurately capture semi-arid
high-elevation snowfall temporal dynamics if we are to have
unbiased projections in future moisture availability and pro-
ductivity for these regions.

4.5 Implications for modelling plant water stress

Similar to Whitley et al. (2016), the original 2LAY ver-
sion of the model underpredicted wet monsoon season ET.
The peak ET fluxes were generally much better captured in
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the 11LAY version. However, in contrast to the findings of
Whitley et al. (2016), the 2LAY simulations overestimated
ET during the hottest, driest period between May and June.
Our results demonstrated that a modified empirical beta wa-
ter stress function (used to downregulate stomatal conduc-
tance during periods of limited moisture) that takes into ac-
count available soil moisture, and root density across the en-
tire soil column (Sect. 2.2.4) helped to better capture dry
season ET dynamics. These results are interesting in light
of previous studies showing that LSMs employing empiri-
cal beta water stress functions show considerable differences
in their simulated response to water-stressed periods (Med-
lyn et al., 2016; De Kauwe et al., 2017). These studies argue
for more evidence-based formulations of plant response to
drought. De Kauwe et al. (2015) also highlight the need for
models to incorporate dynamic root zone soil moisture up-
take down profile as the soil dries. It is therefore possible
that while the modified beta function used in 11LAY does
help to capture seasonal water stress, as seen across sites in
this study, new mechanistic plant hydraulic schemes that can
track transport of water through the xylem (e.g. Bonan et al.,
2014; Naudts et al., 2015) may be needed when simulating
plant response to prolonged drought periods. However, com-
paring beta functions vs. plant hydraulic schemes under se-
vere water-stressed periods was not within the scope of this
study. When discussing woody plant responses to drought, it
is also worth noting that many LSMs to date are also miss-
ing any representation of groundwater (Clark et al., 2015).
As described in Sect. 2.1, the water table is typically very
deep (tens to hundreds of meters) at these sites. Previous
modelling studies have shown that only rather shallow wa-
ter tables (∼ 1 m) are likely to significantly increase ET in
the SW US (e.g. by ≥ 2.4 mmd−1 in Fig. 4g of Wang et al.,
2018). However, the fact that LSMs typically do not include
adequate descriptions of groundwater (and deeper tap roots)
could impact their ability to simulate semi-arid ecosystem
water uptake in the dry season given that drought-deciduous
shrubs are more resilient to droughts due to their ability to
access groundwater reserves (e.g. Miller et al., 2010). A new
groundwater module is being developed for ORCHIDEE and
will be tested in future studies.

5 Conclusions

These results strongly suggest that a more complex, process-
based hydrology model – in particular, one which contains
fine-scale discretization of the upper soil moisture layers and
associated improvements in bare soil evaporation and plant
water stress functions – improves daily to seasonal predic-
tions of the upper-layer root-zone soil moisture dynamics and
ET (as seen in de Rosnay et al., 2002). In particular, there
is a dramatic improvement in the model’s ability to capture
the decline in ET during the hot, dry May–June period. As-
sociated changes in the calculations of runoff, soil moisture

infiltration, and bottom-layer drainage also appear to result
in more plausible (lower) simulations of total runoff (surface
runoff plus drainage) at the forest sites given that across all
these semi-arid sites most precipitation is accounted for by
ET at the annual scale. Such improvements might counter
previous work highlighting that models tend to overestimate
runoff (Grippa et al., 2017).

ORCHIDEE CMIP5 simulations used the two-layer con-
ceptual bucket scheme of Manabe (1969); therefore, OR-
CHIDEE CMIP5 predictions of semi-arid water availability
and consequent impacts on ecosystem functioning and feed-
backs to climate were likely inaccurate. Despite the appeal of
simplicity and low calculation costs, two-layer simple bucket
hydrology models are likely unsuitable for accurate semi-
arid water flux simulations (at least in the semi-arid SW US).
The forthcoming ORCHIDEE CMIP6 simulations will likely
provide more accurate and reliable results of semi-arid soil
moisture availability and evapotranspiration.

Remaining discrepancies in both overestimated and under-
estimated winter and spring soil moisture at high-elevation
semi-arid forested sites might be, respectively, related to is-
sues with soil moisture data during periods of soil freez-
ing and/or underestimated snowfall forcing data causing a
limited duration snowpack, with consequent implications
for predictions of water availability in regions that rely on
springtime snowmelt. However, biases in soil moisture at
both the forested sites do not translate into the same biases in
modelled ET, suggesting other factors such as issues in ever-
green phenology or the lack of resistance to bare soil evapo-
ration may also play a role.

The addition of an empirical bare soil evaporation resis-
tance term by itself did not improve estimates of ET in these
ecosystems, although T/ET ratios were increased, potentially
reducing the negative biases in the monsoon season when
comparing to data-derived T/ET estimates. The increase in
transpiring leaf area (from a reduction in bare soil fraction) at
the low-elevation forest sites also could account for the same
monsoon season T/ET bias. However, issues in the timing
of the simulated transition from low to high T/ET ratios at
the start of the monsoon remain. Our analysis shows that re-
maining discrepancies in semi-arid site ET simulations (and
its constituent fluxes) might therefore be related to a combi-
nation of factors impacting both the amount and timing of
transpiring leaf area and resistance to bare soil evaporation.
We recommend that future work on improving LSM semi-
arid hydrological predictions focuses not only on issues high-
lighted in previous studies such as dynamic root zone mois-
ture uptake, inclusion of ground water, lateral and vertical
redistribution of moisture (e.g. Whitley et al., 2016, 2017;
Grippa et al., 2017) but also on (i) multi-variable calibra-
tion of vegetation and hydrology-related parameters across
all sites; (ii) more data to better evaluate the seasonal trajec-
tory of LAI across all sites as well as the vegetation frac-
tional cover and peak LAI magnitude at low-elevation sites;
(iii) more data to test modelled snow mass or depth at high-
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elevation sites; and (iv) testing of a more mechanistic de-
scription of resistance to bare soil evaporation.

Code availability. The ORCHIDEE v2.0 model code and docu-
mentation are publicly available via the ORCHIDEE wiki page
(http://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE_
2_0/ORCHIDEE/, Peylin et al., 2020) under the CeCILL license
(http://www.cecill.info/index.en.html, CeCILL, 2020). The OR-
CHIDEE model code is written in Fortran 90 and is maintained
and developed under an SVN version control system at the Institute
Pierre Simon Laplace (IPSL) in France. Simulation post-processing
and plotting scripts were performed in Python and are pro-
vided on NM’s GitHub repository: https://github.com/nmacbean/
SW-US-Hydro-Model-Eval-HESS (last access: 2 November 2020;
https://doi.org/10.5281/zenodo.4198088, MacBean, 2020).

Data availability. Meteorological forcing and evapotranspiration
data for each site can be downloaded via the Ameriflux site: https:
//ameriflux.lbl.gov/data/download-data/ (US-SRM: Scott, 2004a–
Present; US-SRG: Scott, 2008–Present; US-Whs: Scott, 2007–
Present; US-Wkg: Scott, 2004b–Present; US-Fuf, Dore and Kolb,
2006–2010; US-Vcp: Litvak, 2007–Present). Soil moisture was
obtained directly from site PIs. Vegetation and soil texture char-
acteristics were derived from the published literature, as speci-
fied in Table 1, and from site PIs. Model simulations are pro-
vided on NM’s GitHub repository: https://github.com/nmacbean/
SW-US-Hydro-Model-Eval-HESS.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-5203-2020-supplement.
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