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3D Hybrid Model of the Axial Flux Motor Accounting Magnet Shape 
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This paper presents a generalization of an analytical model of an axial flux permanent magnet machine to any magnet shape. It uses 

an existing model which computes the 3D magnetic flux density by the separation of variables and finite difference method. The 

original magnet shape is modified by adding a radial dependency to the Fourier series description of permanent magnets 

magnetization. The model is then developed for a general complex magnet shape. As an example, the model will be computed for a 

circular magnet shape and will be compared to a finite element analysis.  

 
Index Terms— Axial flux, finite difference method, Fourier series, magnetic scalar potential, magnet shape, permanent magnet, 

separation of variables. 

I. INTRODUCTION 

HE structures of Axial Flux Permanent Magnet (AFPM) 

machine structures are still under development [1]. Thus, 

modeling some of their particularities is becoming an issue. In 

axial flux surface mounted permanent magnet machines, 

permanent magnets are often considered as sector shaped 

magnets. However, others magnet shapes can be found in 

some AFPM structures [1], [2], [3]. Nevertheless, considering 

3D analytical modeling, despite the variety of the methods 

used, only sector shaped magnets have been considered [4], 

[5], [6].  

The method developed in [6] consists in a combined 

resolution with analytical and finite difference method (FDM). 

The resolution is based on the image method where the 

geometry is repeated infinitely in the axial direction [5]. This 

way, the problem can be described by a double Fourier series 

in the axial and angular directions. The Laplacian is then 

solved by separation of variables. However, Bessel functions 

given for the radial solutions are not chosen because of their 

complexity. Instead, the r dependent function is kept unknown 

and solved by a 1D FDM.  

This model is adaptable to any magnets distributions thanks 

to the Fourier series description. It is also adaptable to 

multistage machines thanks to the image method. 

Nevertheless, only sector shaped magnets can be modeled by 

this method. Benefiting from the FDM in the radial direction, 

this paper proposes to extend the model to any magnet shapes 

by modifying the Fourier series description for each 

discretized radius. Subsequently, the solution will be 

computed for circular magnet shape and compared to finite 

element analysis (FEA). 

II. GENERALIZATION OF THE MAGNET SHAPE 

 A single sided AFPM machine with axially magnetized 

surface mounted permanent magnets is considered in this 

paper. 

As in [6], the following assumptions are made: 

- Because of the air-space between the magnets, we assume 

that the permeability of magnets and the air is the same and 

equal to µ0. 

- Back-irons have infinite permeability so the boundary 

conditions (BC) at the planes z = 0 and z = hm + g is taken as 

normal flux boundary conditions. Where g is the airgap width 

and hm the permanent magnet width. 

- The problem is limited in the radial direction with parallel 

flux boundary conditions on cylinders at r = R0 and r = R1.  

Using magnetic scalar potential formulation (MSP), Ω, the 

partial differential equation to be solved is deduced from 

Maxwell equations:  

∆Ω = 𝑑𝑖𝑣 𝑴          (1) 
  

with M the magnetization vector. 

To reduce the number of regions to consider, the image 

method is used to replace the normal flux BC by a periodical 

extension in the axial direction [6]. This leads to a double 

Fourier series description of the magnetization of the 

permanent magnets in the azimuthal θ and axial z directions. 

A complex magnet shape is considered in Fig. 1. To be able 

to compute this magnet shape, the Fourier series description 

has to be modified depending on the radial position. The 

parameters necessary to characterize any shape are the arc 

pole αp and the phase β between the origin and the center 

position of the angular opening as shown in Fig. 1. Thus, a 

general Fourier series describing the magnetization Mz of any 

magnet shape can be expressed as follows. 

𝑀𝑧(𝑟, 𝜃, 𝑧) =∑ 

  

𝑛

∑𝑀𝑛𝑘(𝑟) cos(𝑛𝑝𝜃 + 𝛽(𝑟)) cos (
𝑘𝜋

𝜏
𝑧)

 

𝑘

          (2) 

where p is the number of pole pairs, τ = hm+g is the half period 

of the magnetization in the z-direction.  

 
Fig. 1.  Complex magnet shapes with the arc pole and the phase depending on 
radial position. 

T 
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The coefficients Mnk have to be determined in function of 

αp(r) and the phase β(r) which represents purely the 

asymmetrical feature of the magnet shape. Fig. 2 shows the 

angular and axial dependency of the magnetization for a given 

radius. The image method repeats the geometry in the axial 

direction, so Mz(z) is not impacted by the magnet shape. 
 

 
Fig. 2. Angular (a) and axial (b) dependency of the magnetization. 

III. HYBRID MODELING METHOD 

Thanks to the double Fourier series description, there are 

three regions to be considered separated by cylindrical 

surfaces at r = Rint and r = Rext. Air regions I (Rint ≥ r ≥ R0) and 

III (R1 ≥ r ≥ Rext), and the PM region II (Rext ≥ r ≥ Rint). The 

new magnet shape must be included in the magnet region 

between Rint and Rext. 
 

 
Fig. 3. Representation of the different regions considered in the problem. 
 

In order to make the solution easier to handle, the Fourier 

series of the magnetization (2) is written in terms of cosine 

and sine functions. 

𝑀𝑧(𝑟, 𝜃, 𝑧) =∑ 

  

𝑛

∑𝑀𝑐𝑛𝑘
(𝑟) cos(𝑛𝑝𝜃) cos (

𝑘𝜋

𝜏
𝑧)

 

𝑘

+∑ 

  

𝑛

∑𝑀𝑠𝑛𝑘
(𝑟) sin(𝑛𝑝𝜃) cos (

𝑘𝜋

𝜏
𝑧)

 

𝑘

        (3) 

 

All the magnets are axially magnetized. Therefore, the 

magnetization 𝑴 has only a component in the axial direction. 

The second member of the equation (1) is reduced to: 

𝜕𝑀𝑧

𝜕𝑧
=∑ 

 

𝑛

∑−
𝑘𝜋

𝜏
𝑀𝑐𝑛𝑘

(𝑟) cos(𝑛𝑝𝜃) sin (
𝑘𝜋

𝜏
𝑧)

 

𝑘

+∑ 

 

𝑛

∑−
𝑘𝜋

𝜏
𝑀𝑠𝑛𝑘

(𝑟) sin(𝑛𝑝𝜃) sin (
𝑘𝜋

𝜏
𝑧)

 

𝑘

        (4) 

 

The separation of variables consists in assuming that the 

solution Ω is the product of three functions f, g and h: 

                                       Ω(𝑟, 𝜃, 𝑧) = 𝑓(𝑟). 𝑔(𝜃). ℎ(𝑧)                            (5) 
 

Combining (1) and (5) leads to three ordinary differential 

equations for each function f, g and h. The solutions for f are 

Bessel functions and cosine and sine functions both for h and 

g. To avoid using Bessel functions, f is kept unknown and will 

be determined by FD method. The principle of superposition 

allows writing the solution as follows: 

Ω(𝑟, 𝜃, 𝑧) =∑ 

∞

𝑛

∑𝜔𝑐𝑛𝑘(𝑟) cos(𝑛𝑝𝜃) sin (
𝑘𝜋

𝜏
𝑧)

∞

𝑘

+∑ 

∞

𝑛

∑𝜔𝑠𝑛𝑘(𝑟) sin(𝑛𝑝𝜃) sin (
𝑘𝜋

𝜏
𝑧)

∞

𝑘

     (6) 

  

The function f is now replaced by ωcnk and ωsnk which 

depend on the harmonic rank, np and kπ/τ are respectively the 

periodicities in the angular and axial direction. Thus, inserting 

(6) in the partial differential equation (1) yields to three 

ordinary differential equations in each region I, II and III over 

the new unknowns ωcnk and ωsnk. 

{
 
 
 

 
 
 

𝑑2𝜔𝑐𝑛𝑘
𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑐𝑛𝑘

𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑐𝑛𝑘

𝐼 = 0

𝑑2𝜔𝑐𝑛𝑘
𝐼𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑐𝑛𝑘

𝐼𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑐𝑛𝑘

𝐼𝐼 = −𝑀𝑐𝑛𝑘

𝑘𝜋

𝜏

𝑑2𝜔𝑐𝑛𝑘
𝐼𝐼𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑐𝑛𝑘

𝐼𝐼𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑐𝑛𝑘

𝐼𝐼𝐼 = 0

(7) 

{
 
 
 

 
 
 

𝑑2𝜔𝑠𝑛𝑘
𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑠𝑛𝑘

𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑠𝑛𝑘

𝐼 = 0

𝑑2𝜔𝑠𝑛𝑘
𝐼𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑠𝑛𝑘

𝐼𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑠𝑛𝑘

𝐼𝐼 = −𝑀𝑠𝑛𝑘

𝑘𝜋

𝜏

𝑑2𝜔𝑠𝑛𝑘
𝐼𝐼𝐼

𝑑𝑟2
+
1

𝑟
 
𝑑𝜔𝑠𝑛𝑘

𝐼𝐼𝐼

𝑑𝑟
− ( 

𝑘2𝜋2

𝜏2
+ 
𝑛2𝑝2

𝑟2
 )𝜔𝑠𝑛𝑘

𝐼𝐼𝐼 = 0

(8) 

 

There are n x k equations to be solved in each region and for 

each cosine and sine component.  

The boundary conditions (9) and (10) over the cylinders r = 

R0 and r = R1 are taken as parallel flux so that no flux goes out 

of the region:  

                                                        𝐵𝑟
𝐼| 𝑟=𝑅0 = 0                                         (9)

                                                      𝐵𝑟
𝐼𝐼𝐼| 𝑟=𝑅1 = 0                                       (10)

 

 

The interface conditions (11) to (16) between the permanent 

magnet region II and the air regions (I and III) over the 

cylinders r = Rint and r = Rext are the continuity of the normal 

component of the magnet flux density Bn and the continuity of 

the tangential component of the magnetic field density Ht: 

                                            𝐵𝑟
𝐼| 𝑟=𝑅𝑖𝑛𝑡 = 𝐵𝑟

𝐼𝐼| 𝑟=𝑅𝑖𝑛𝑡                                 (11)

                                             𝐻𝜃
𝐼 | 𝑟=𝑅𝑖𝑛𝑡 =𝐻𝜃

𝐼𝐼| 𝑟=𝑅𝑖𝑛𝑡                                (12)

                                             𝐻𝑧
𝐼| 𝑟=𝑅𝑖𝑛𝑡 =𝐻𝑧

𝐼𝐼| 𝑟=𝑅𝑖𝑛𝑡                                (13)
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                                            𝐵𝑟
𝐼𝐼| 𝑟=𝑅𝑒𝑥𝑡 =𝐵𝑟

𝐼𝐼𝐼| 𝑟=𝑅𝑒𝑥𝑡                               (14)

                                            𝐻𝜃
𝐼 | 𝑟=𝑅𝑒𝑥𝑡 =𝐻𝜃

𝐼𝐼| 𝑟=𝑅𝑒𝑥𝑡                                (15)

                                            𝐻𝑧
𝐼| 𝑟=𝑅𝑒𝑥𝑡 =𝐻𝑧

𝐼𝐼| 𝑟=𝑅𝑒𝑥𝑡                                (16)

 

 

Continuity of the tangential component of the magnetic 

field density Ht leads to the continuity of the functions ωcnk 

and ωsnk, while the continuity of the normal component of the 

magnetic flux density Br yields to the continuity of ∂ωcnk/∂r 

and ∂ωsnk/∂r. 

Adding the interface and boundary conditions bring about a 

matrix system for each harmonic rank gathering all equations 

mentioned before: 

                                                 𝐴𝑐𝑛𝑘
 . 𝑣𝑐𝑛𝑘

 = 𝐵𝑐𝑛𝑘
                                    (17) 

                                                 𝐴𝑠𝑛𝑘
 . 𝑣𝑠𝑛𝑘

 = 𝐵𝑠𝑛𝑘
                                    (18) 

 

The final expression of the axial magnetic flux density is 

deduced from the magnetic scalar potential solved by FD 

method: 

𝐵𝑧 = −𝜇0 [∑  

∞

𝑛

∑𝑣𝑐𝑛𝑘 . cos(𝑛𝑝𝜃) .
𝑘𝜋

𝜏
. cos (

𝑘𝜋

𝜏
𝑧)

∞

𝑘

                            

          +∑ 

∞

𝑛

∑𝑣𝑠𝑛𝑘 . sin(𝑛𝑝𝜃) .
𝑘𝜋

𝜏
. cos (

𝑘𝜋

𝜏
𝑧)

∞

𝑘

+𝑀𝑧(𝑟, 𝜃, 𝑧)]    (19) 

 

where vnk are functions of  𝑟. Differential equations are solved 

by FD method for each azimuthal n and axial k harmonics. 

The 1D FD method discretizes the problem in the radial 

direction and is continuous in the angular and axial directions 

thanks to the Fourier series description. The general method 

for any magnet shape was presented. In the next section, this 

model is applied to cylindrical magnet shape as an example. 

IV. CIRCULAR MAGNET SHAPE 

The model is applied to an AFPM machine with cylindrical 

magnets as shown in Fig. 4 and its parameters are given in 

Table 1. This magnet shape is often used in AFPM machines 

[1]. Thanks to the symmetrical shape of this type of magnet, 

the phase β(r)=0 and the Fourier series of the magnetization 

Mz is reduced to (20). 

𝑀𝑧(𝑟, 𝜃, 𝑧) = ∑  

∞

𝑛=1,3,5

∑𝑀𝑛𝑘(𝑟) cos(𝑛𝑝𝜃) . cos (
𝑘𝜋

𝜏
𝑧)

∞

𝑘=1

  

                     + ∑ 𝑀𝑛0(𝑟) cos(𝑛𝑝𝜃)

∞

𝑛=1,3,5

                                                (20) 

 
Fig. 4. 3-D view of the AFPM machine with circular magnets. 

TABLE I 

PARAMETERS OF THE AFPM MACHINE 

 

Parameter Value 

Magnetization (Remanence) 
M  

(Br) 

1.026 MA/m 

(1.29 T) 

Magnet height hm 5 mm 

Airgap height g 6 mm 

Minimum radius R0 10 mm 

Maximum radius R1 32 mm 

Magnet center radial position Rc 21 mm 

Magnets radius R 7.5 mm 

Pole pairs number p 4 

 

Mnk and Mn0 are the Fourier series coefficients: 
 

𝑀𝑛𝑘(𝑟) =  
8 𝑀

𝑛𝑘𝜋2
sin (𝑘𝜋

ℎ𝑚
𝜏
) sin (

𝑛𝛼𝑝(𝑟)𝜋

2
)                                 (21) 

𝑀𝑛0(𝑟) =
ℎ𝑚
𝜏

4𝑀

𝑛𝜋
sin (

𝑛𝛼𝑝(𝑟)𝜋

2
)                                                       (22) 

 

For each discretized radius r, the arc pole is calculated in 

order to create a circular shape.The arc pole expression is 

deduced from  Fig. 5 (a): 
 

                           𝛼𝑝(𝑟) = (𝑎𝑐𝑜𝑠
𝑅𝑐
2 + 𝑟2 − 𝑅2

2. 𝑅𝑐 . 𝑟
 )

𝜋

2𝑝
⁄                      (23)  

 

As seen in Fig. 4, Rc is the radial position of the center of 

the magnet and R the radius of the circular magnet. This 

allows creating an exact circular shape from the initial sector 

shape. The arc pole function is plotted in Fig. 5 (b). 

The FEA is carried out on ANSYS/Emag 3D [7] and based 

on a magnetic scalar potential formulation. The FEA is done 

under the same condition as the model, that means on one pair 

of poles of the machine. Also, the same assumptions are made: 

the permeability of the magnets and BC. 

To validate the fact that the magnet shape has changed, both 

computation methods are compared on a radial line at the 

middle of the airgap z = hm + g/2 and for several angles θ = 0° 

(in front of the symmetrical axis), θ = 5.5° and θ = 7.5°.  

The results are computed for 16 harmonics. The root mean 

square (RMS) error between the hybrid model and the FEA on 

Fig. 6 are about 1.2% for the three plots. 
 

 
Fig. 5. Modification of magnets shape (a) and arc pole in function of the 

radius (b). 
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Fig. 6. Axial flux density as a function of the radial coordinate computed by 
hybrid analytical-FD method and FEA. 

 

The RMS errors are about 1.2% and 0.6% if we consider the 

influence of θ and z independently.  

Back electromotive force and torque can be easily comput-

ed from the Bz component of the magnetic flux density [6]. If 

the field created by eddy currents may be neglected, eddy 

current losses in the magnets can be estimated. The armature 

reaction field must be computed. The laplacian can be solved 

in 2D (𝜃, 𝑧)  using a MSP formulation [8]. Removing the 

magnets from this study and adding the boundary condition 

𝐻𝑡 = 𝐾 at the interface with the stator (𝑧 = ℎ𝑚 + 𝑔), where 𝐾 

is the current sheet modeling the winding distribution, allows 

to solve the problem. Then, the same method used to calculate 

eddy current losses in [8] can be applied. 

V. ACCURACY AND COMPUTATION TIME 

The results of the hybrid model presented Fig. 6 are 

computed for 1) FDM part of the model: a radial discretization 

of 141 points and n and k equals 16 harmonics 2) analytical 

part of the model: 91 points and 221 points respectively for the 

angular and axial discretization. The total number of nodes is 

then 2,087,787 in the volume considered.  

The computer used for the simulation is an Intel Core i7 at 

1.9 GHz and 32 Go RAM. The computation time for 16 

harmonics is 40 seconds to generate the entire solution. 

Nevertheless, the purpose here was to validate the model, so 

the computation time might be optimized. The addition of the 

radial dependency of the arc pole includes a loop into several 

initial nested loops, generating an increase of the computation 

time. It is approximately 4 times bigger than the one in [6], but 

remains much less than a FEA that took 74 seconds for 83,302 

nodes within the same volume.  

Fig. 7 presents the accuracy of the model and the 

computation time with respect to the number of harmonics.  

The RMS error mentioned above are the errors in the r-

direction for z = hm + g/2 and θ = 0, θ-direction for r = Rint + 

0.8(Rext-Rint) and z = hm + g/2 and z-direction for r = Rint + 

0.8(Rext-Rint) and θ = 0. Therefore, a good accuracy can be 

reached with a small number of harmonics, and the 

computation time is convenient to include the model into 

optimization studies for example. Thus, this model presents 

the advantage of being faster, easy to set up, and offering 

larger perspectives over the usual FEA. 

 

 
Fig. 7. Accuracy and computation time in function of the number of 

harmonics. 

VI. CONCLUSION 

This paper presents a generalization of a 3D analytical 

model of AFPM with sector shaped magnets to AFPM with 

more complex magnet shapes. The method consists in 

including a radial dependency to the Fourier series description 

of the magnetization to be able to compute any magnets shape. 

The model was developed for a general complex magnet shape 

and the specific case of circular magnet shape was taken as an 

example, the method was validated by comparison with FEA.   

The initial model is suitable to model a lot of particularities 

that can be found in axial flux machines such as multistage 

machines, different winding distributions and different 

magnets distributions. This paper extends the model to 

possibly any magnets shapes. Thus, this paper provides a 

method to model a lot of particularities of AFPM machines 

that usually require FEA. This allows further optimization 

studies over the magnet shape. 
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