
HAL Id: hal-03012909
https://hal.science/hal-03012909

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Naturally Constrained Online Expectation Maximization
Daniela Pamplona, Antoine Manzanera

To cite this version:
Daniela Pamplona, Antoine Manzanera. Naturally Constrained Online Expectation Maximization.
International Conference on Pattern Recognition (ICPR 2020), Jan 2021, Milan, Italy. �hal-03012909�

https://hal.science/hal-03012909
https://hal.archives-ouvertes.fr

Naturally Constrained Online Expectation
Maximization

Daniela Pamplona
daniela.pamplona@ensta-paris.fr

U2IS, ENSTA Paris,
Institut Polytechnique de Paris,
828 Boulevard des Maréchaux,

91120 Palaiseau, France

Antoine Manzanera
antoine.manzanera@ensta-paris.fr

U2IS, ENSTA Paris,
Institut Polytechnique de Paris,
828 Boulevard des Maréchaux,

91120 Palaiseau, France

Abstract—With the rise of big data sets, learning algorithms
must be adapted to piece-wise mechanisms to tackle large-scale
calculations’ time and memory costs. Furthermore, for most
learning embedded systems, the input data are fed sequentially
and contingently: one by one, and possibly class by class. Thus,
learning algorithms should not only run online but cope with
time-varying, non-independent, and non-balanced training data
for the system’s entire life. Online Expectation-Maximization is
a well-known algorithm for learning probabilistic models in real-
time, due to its simplicity and convergence properties. However,
these properties are only valid in the case of large, independent
and identically distributed samples. In this paper, we propose
to constrain the online Expectation-Maximization on the Fisher
distance between the parameters. After presenting the algorithm,
we make a thorough study of its use in Probabilistic Principal
Components Analysis. First, we derive the update rules, and
then we analyze the effect of the constraint on major problems
of online and sequential learning: convergence, forgetting and
interference. Furthermore, we use several algorithmic protocols:
iid vs sequential data, and constraint parameters updated step-
wise vs class-wise.

Our results show that this constraint increases the convergence
rate of online Expectation-Maximization, decreases forgetting
and slightly introduces positive transfer learning.

I. INTRODUCTION

As the size of data sets grows, learning paradigms have to
process them in a piece-wise manner, in order to decrease
the time and memory of large scale calculations. Further-
more, many autonomous systems (e.g. self-driving vehicles,
humanoid robots and drones) must adapt to their environ-
ment continuously and online. In summary, online incremental
learning is becoming a frequent requirement when designing
intelligent systems; consequently, new algorithm development
questions are being raised. Moreover, in many situations, the
input data are presented in a sequential way, where consecutive
samples are correlated, thus in this case learning should not
only be online but also incremental [1].

In online learning, a well-defined consolidation paradigm
increases the learning velocity or reduces the number of
input samples needed for a good performance. In a sequential
learning framework, consolidation might increase learning
efficiency and mitigate catastrophic forgetting, hence avoiding
re-learning of classes or a dramatic drop in performance [2].

Another aspect to consider in incremental learning is the in-
terference of passed learned classes with future ones’ learning
process. First, the systems should be able to learn new classes
throughout their life, thus the consolidation process should
not impede progress and improvement over time. Second,
ideally, systems should use previously learned skills to boost
the learning of new ones, thus past knowledge should transfer
to future one [3].

Although the memory consolidation problem, particularly
the question of catastrophic forgetting, has been posed for
more than 30 years (see, for instance, [4], [5]) and thoughtfully
studied in the field of neuroscience [6], it is only recently -
due to technological advances - that it has gained attention
from the machine learning community. There are mainly three
approaches to model incremental learning. i) Architecture
based, where the system is divided into reusable parts that are
less prone to changes and other parts devoted to individual
tasks. They are typically ad hoc designed and suffer of the
scalability problem (see, for instance, [7], [8]). ii) Memory
based, where the system relies on episodic memory to store
or generate data from previous tasks, which might suffer again
of the scalability problem or might not be possible for many
autonomous systems (see, for instance, [9]). iii) Regularization
based, where the system protects parameters against radical
changes when a new class arrives, which typically introduce
more parameters and require a high level of hand tuning (see,
for instance, [10], [11]). There are many other interesting
works on regularization methods in the context of neural
networks; however, much less attention has been paid to
the context of probabilistic latent variables. Under Bayesian
approaches, [12] introduced the variational continual learning,
which was later combined with an automated the architecture
building process in [13] and [14] incrementally matches the
moments of the posterior of a Bayesian neural network. For
an in-depth review of the state of the art, see [13].

Probabilistic latent variables models are commonly used
in machine learning and applications. They provide a way
to model the data taking into account unobserved variability
and measurements’ noise. In the case of online latent models,
a stochastic approximation procedure based on the Fisher
metrics was proposed by [15]. Despite its guarantees of con-

vergence in probability under the usual regularity conditions,
this method is inefficient since at each time step it is necessary
to update and invert a matrix (the Fisher information matrix),
whose size quadratically depends on the number of parameters.
In [16] was proposed an Online Expectation-Maximization
(online EM) method that is guaranteed to converge in prob-
ability and - in most usual cases - able to run in real-time.
However, this method assumes independence between samples
and only converges after many samples; thus, it is not suitable
for an embedded incremental learning set-up.

In this paper, we propose a method of constraining
the update of online learned parameters using Expectation-
Maximization (EM) called Naturally Constrained Online
Expectation-Maximization (NAT-oEM). Based on [9], we pro-
pose that, at each time step, model parameters should not
change radically in a statistical sense, either with respect to
consecutive parameters or with respect to last class optimal
parameters. We analyze this constraint on Probabilistic Prin-
cipal Components Analysis under several protocols: (i) the
(in)dependence of the input data and (ii) the updating policy
of the constraint: class-wise vs step-wise, which corresponds
to whether the system knows (or not) when the learning class
changes.

II. BACKGROUND

A. The Natural Constraint

In the case of neural networks, the most used method
for online learning is the Stochastic Gradient Descent (SGD)
[17], which is very simple and robust under Independent and
Identically Distributed (iid) samples, but not in the case of
sequential learning [18]. In the seminal work of [18], an algo-
rithm has been proposed to reduce the catastrophic forgetting
in incremental learning. This method, called Elastic Weights
Consolidation (EWC), is based on the idea of constraining the
difference between parameters with respect to their importance
for the model. Built on the idea of natural learning of [19],
they proposed to use the diagonal of the Fisher information
matrix to prevent the parameters from changing too strongly
(in the Riemann space) from the optimal parameters to the
previous tasks, thus avoiding catastrophic forgetting.

One problem of EWC is the lack of scalability: it is
necessary to save all the optimal parameters for all the
tasks; therefore, the system may run out of memory in an
incremental learning set-up. To respond to this problem, online
EWC was proposed by [9]. This method uses a Laplacian
approximation of the Fisher Information matrix so that the
number of parameters for consolidation is constant during
learning. Notably, this method solves the scaling problem of
EWC without significantly reducing its performance [20].

B. Online Expectation-Maximization

Expectation-Maximization is a standard iterative algorithm
introduced by [21], to estimate the parameters θ that maxi-
mize the observable data log likelihood L(X; θ). It is used,
for instance, when the maximum likelihood estimation is
intractable or in the presence of latent variables. It assumes

the existence of latent variables Z distributed according to
f(Z, θ), a parametric family of probability density functions
indexed by a parameter θ. The observation X is then viewed
as a function of Z. Since usually it is not given the complete
data set {X,Z}, but only the observable data X , in EM, it is
considered instead the expectation of the log likelihood of the
complete data set, with respect to the conditional distribution
of Z given X .

Each EM iteration is decomposed in two steps: the E-
step computes the expectation Q of the data log likelihood
(equation 1) and the M-step maximizes Q (equation 2):

Q(θ, θk) = EZ|X,θk [L(X,Z; θk)] (1)
θk+1 = argmax

θ
Q(θ, θk) (2)

In batch mode, as defined in equations 1 and 2, EM is
guaranteed to maximize the likelihood function and converges
after few iterations, however each iteration is computationally
costly [22]. Additionally, in practice the E-step is actually
never calculated as defined theoretically, but only the data
statistics, here denoted Si(X, θ), that are sufficient to calculate
the M-step.

More recently, with the development of new big data
bases and the gained autonomy of intelligent systems, on-
line algorithms re-gained interest from the machine learning
community. However, to our best knowledge, the first online
parameter estimation procedure for latent data models was
proposed in [15]. In this work, it was proposed to use a
stochastic approximation method based on Fisher information
matrix F (θ) to update the parameters at each time step, data
point by data point, considering a learning rate γk changing
over time: 1

θk+1 = θk + γF
−1

θk
∇θL(xk+1; θk) (3)

The Fisher information of a parameter θ quantifies the amount
of information that an observation x carries about θ. Formally,
it is defined as the variance of the score of the observable like-
lihood function. In case the likelihood is twice differentiable,
the Fisher information is equal to the second derivative of
the likelihood function. In other words, the Fisher information
can be seen as the curvature of the likelihood function (these
equalities are summarized in equation 4, see [23] for more
details).

I(θ) = EX

[(
dL(x; θ)

dθ

)2
]
= −EX

[
d2L(x; θ)

d2θ

]
(4)

Despite its beauty and formal simplicity, in practice this
algorithm is computationally intractable when the number of
parameters is large. To avoid this problem, [16] proposed an
online EM algorithm where the expectation step is replaced by
a stochastic approximation step while keeping the maximiza-
tion step unchanged. Thus, in the online version, the sufficient
statistics Si of the E-step are updated stochastically using a

1For the sake of simplicity, in the remaining of the text we will simply
refer to Si(X, θ) as Si, F (θ) as F , and γk as γ.

function si depending on only one data point x and θ. This
means that, in the online version, the equation 5 is used to
estimate the E-step statistics, while the equation 2 remains
unchanged.

Sik+1 = Sik + γ
(
si − Sik

)
(5)

The online EM algorithm proposed by [16] does, in fact,
reduce the computational cost of the stochastic algorithm
proposed by [15] and it has similar properties of convergence.
However, this convergence is usually slow and it is not
valid for the case of sequential data, where the subsequent
observations are not independent.

III. NATURALLY CONSTRAINED ONLINE
EXPECTATION-MAXIMIZATION

Based on the Online Elastic Weights Consolidation (online
EWC) method, we propose that the update of the model
parameters in the online expectation-maximization method
proposed by [16] is constrained by their uncertainty. In other
words, to consolidate the knowledge previously learned, at
each M-step, the new parameters should be constrained to
avoid large deviations, in a statistical sense, from the previ-
ously learned ones. As proposed in [18], we approximate the
Fisher information matrix F by its diagonal matrix, reducing
the quadratic dependency to a linear one.

A. Overview

Formally, we propose that the M-step defined in equation 2
is now constrained by the difference between the current new
parameter and a reference one, θ∗, on the Riemann space
generated by the reference:

θk+1 = argmax
θ

(Q(θk, θ)− β||θ − θ∗||F∗) (6)

where β is a parameter that controls the weight of the
constraint. The second term can be maximized using gradient
ascent in the Riemann space induced by F .

Then finally, the NAT-oEM is defined in three steps: E-
step (as defined by [16] in equation 5), M-step (as defined
in the usual EM in equation 2 and R-step as defined below
(equation 7)

θk+1 reg = θk+1 − βF−1
(θk+1 − θ∗) (7)

We distinguish between two experimental set-ups: a) the
system does not know when the learning class is changing. In
this case, the reference parameters are equal to the previous
iteration parameters, and the constraint is defined on the Fisher
information of these parameters. Specifically, this means that
for each step k, θ∗ is set to θk−1 and F ∗ is set to Fθk−1

.
b) the system knows when the learning class is changing. In
this case, the reference parameters and the Fisher matrix are
updated only when the learning class changes (i.e. θ∗ is set to
θk−1 and F ∗ is set to Fθk−1

if and only if xk−1 was the last
data point of a class).

B. NAT-oEM for PPCA

Although proposed a long time ago, Principal Component
Analysis (PCA) is still one of the most used algorithms in
machine learning due to its simplicity and efficiency [24].
Furthermore, its probabilistic version (Probabilistic Principal
Components Analysis (PPCA)) is well known to be very robust
in the case of missing data [25].

We denote Z the set of latent variables, which are indepen-
dent samples of a standard Gaussian distribution. These vari-
ables are transformed linearly by the matrix W and an additive
component µ, both unknown. Furthermore, this transformation
is corrupted by an additive Gaussian noise ε, with zero mean
and covariance matrix proportional to the identity matrix. X ,
the set of the observations, is then formally given by:

X =WZ + µ+ ε (8)
Z∼N (0, I)
ε∼N (0, σ2I)

Under this model, X is also Gaussian distributed, with mean µ
and covariance C =WWT+σ2I. The final goal is to estimate
the parameters θ =W,µ, σ2.

If we denote M = WTW + σ2I, for an observable x, the
expected latent variable z is given by z =M−1W (x− µ). In
PPCA there are 4 sufficient statistics [26], which are evaluated
on a single point x and the constrained parameters of the
previous iteration µ,M,W :

s0(x, µ) = (x− µ)T (x− µ) (9)

s1(x, z) = (x− µ)zT (10)

s2(x, σ,M) = σ2M
−1

+ zzT (11)

s3(x) = x (12)

In the E-step these statistics are stochastically integrated as
in equation 5. The M-step is then defined with respect to the
sufficient statistics Si:

µk+1 = S3 (13)

Wk+1 = S1S2
−1

(14)

σ2
k+1 =

1

d
(S0 − 2Tr(S1WT) (15)

+Tr(S2WTW))

And the R-step is then defined with respect to the updated
parameters, here marked with ∗:

µk+1 reg = µk+1 − βF ∗
−1

µ (µk+1 − µ∗) (16)

Wk+1 reg =Wk+1 − βF ∗
−1

W (Wk+1 −W ∗) (17)

σ2
k+1 reg = σ2

k+1 − βF ∗
−1

σ2

(
σ2
k+1 − σ2∗

)
(18)

If we denote [i, j] the entry cell (i, j) of matrices, additionally
Ji,j is the single entry matrix, a matrix of zeros except
for Ji,j [i, j] = 1 (see [27] for more details), Tr and Diag

are the trace and diagonal matrix operators, then the Fisher
information matrices are defined as follows 2:

Fµ = Diag(C−2) (19)

FW[i,j]
= Tr((C

−1

k (WJTi,j + Ji,jWT))2) (20)

Fσ2 = Tr(C
−1
) (21)

IV. EXPERIMENTAL DETAILS

A. Input Data

For the PPCA experiment we used synthetic data, generated
directly by the model as described below.

Dataset generation: We set d = 16 and q = 3, and
generated a matrix R of size d × q with random values
uniformly distributed between −0.5 and 0.5. To ensure that
the transformation matrix columns were independent, we set
W equal to the left matrix of the singular value decomposition
of the matrix R. In this case, we set µ = 0, and σ to a random
value between 0 and 1. Thereafter, we generated the latent
variables Z using the pseudo-random numbers generator of
NumPy. And finally, observations were generated according
to the model described in equation 8. Following this process
we generated 106 training data points and 106 testing data
points.

Class assignment: The definition of the concept ”class”
under the PPCA generative model is not trivial since there are
no classes explicitly defined. Therefore we defined a criterion
to assign data points to classes that is not trivial and does
not depend directly on the model parameters. We started by
setting the number of classes to 4, class A, B, C and D. For
each class, a centroid was randomly selected from the training
data and added some noise. Finally, each of the data points
(training and testing) was assigned to the class whose centroid
is closest, in a Euclidean sense.

B. Training and Testing Data Sets and Meta-parameters

Each condition was run five times with different initializa-
tions. All the figures refer to the average log-likelihood over
the five runs. The number of data points for training and testing
was the same for all three experimental set-ups. In the online
learning the points were fed to the algorithm independently of
their class. In the sequential learning, the algorithm was fed
class by class. Tab. I shows the exact number of data points for
training and testing. Both meta-parameters γ and β depended
on the iteration number k and, after running the algorithm one
time, the value that raised higher log-likelihood was selected.
As shown in [26], the exponent of γ must lie within]0.5, 1[,
we tested for 0.6 and 0.9 in the online unconstrained case. Also
in [26] is shown that the multiplicative scalar of this parameter
must be within]0.5, 1[; we selected the higher decimal value
that allowed the algorithm to converge. The exponent of β was
defined to agree with the exponent of γ and the multiplicative
scalar was tested for 10i with i = J−2, 2K for each condition
separately.

2The detailed derivation of the Fisher Information matrix for the PPCA is
available in the appendix.

TABLE I
TRAINING AND TESTING DATA SETS SIZES AND META-PARAMETERS.

N Training 3200
N Testing 800
γ online EM 0.9k−0.9

γ NAT-oEM-step 0.9k−0.9

γ NAT-oEM-class 0.5k−0.9

β k−0.9

V. RESULTS

A. NAT-oEM with iid Samples

We start this section with the case where input data are fed
to the system independently of the class. This corresponds to
the conditions where online EM was designed: iid samples.
Evidently, in this case, there is no catastrophic forgetting; this
case’s interest is to measure the convergence of online EM
with the natural constraint. Furthermore, since we are not in
the case of sequential learning, the Fisher information matrix
is updated at each time step.

In Fig. 1 which shows the evolution of the testing data
average log-likelihood over time, it is clear that for the
same number of iterations, the average log-likelihood of NAT-
oEM is higher than the online EM. After 500 iterations,
the likelihood lines become parallel, which means that the
log-likelihood difference between the constrained and uncon-
strained case is constant. Thus, the natural constraint is a more
efficient solution than usual online EM.

Fig. 1. Average log-likelihood of the testing dataset in function of the learning
iteration in the case of iid samples. From the initial iterations the average log-
likelihood is higher in the constrained case and the difference between the
two log-likelihoods is constant.

B. NAT-oEM with Sequential Samples

In the most real world learning systems, the input data
are generally presented class by class, so consecutive training
samples are not independent. Under this scenario, we consider
two updating policies of the reference Fisher information
matrix and parameters: i) NAT-oEM-step: they are updated at
each time step and ii) NAT-oEM-class: they are only updated
at the end of each class.

On the one hand, NAT-oEM-step requires many computa-
tions, so it is fairly slow. On the other hand, NAT-oEM-class
requires the system to be notified of each learning class’s end.
This information might not be available in all the systems,

although it might sometimes be possible to detect it from
the data’s basic statistics. Besides, in the case of embedded
systems like robots, autonomous vehicles, or drones, the
transition between classes is not clearly defined. For instance,
for visual data, a bathroom is clearly from a different class of
a kitchen, but since a domestic robot does not jump between
rooms, the transitions are smooth and hard to define.

In the case of sequential learning, there are three major
problems to be addressed: i) the possibility of the system
getting stuck in local maximum, ii) the possibility of the
system forgetting what has been learned, iii) the possibility
that learned classes interfere negatively with the ability of the
system learning new tasks.

To investigate problem i) we measure the average log-
likelihood over the entire test data set, even for the classes
that were not learned. If the algorithm is stuck in a local
maximum, then the average log-likelihood does not increase
over time. Fig. 2 shows the average log-likelihood over time
for the three cases: online EM, NAT-oEM-step and NAT-
oEM-class. In the case of unconstrained learning, the average
log-likelihood behaves erratically and can decrease over time
(during the learning of class C). This problem is a direct
consequence of sequential samples. In the case of non iid
samples, the guarantees of convergence of online EM are not
any more valid; therefore, this problem may arise frequently.
In the case of constrained learning with the policy of updating
the Fisher information matrix at each step (NAT-oEM-step),
the average log-likelihood increases over time, the learning
curve is abrupt at the beginning of a new class furthermore,
the difference between the likelihood of this constrained policy
and unconstrained increases over time.

Finally, in the case of constrained learning with the policy of
updating the Fisher information matrix only by the end of each
class (NAT-oEM-class), the average log-likelihood increases
steadily and slowly over time. However, the average log-
likelihood by the end of learning is similar to the unconstrained
case.

Fig. 2. Average Log-likelihood of the test data set in function of the learning
iteration in the case of sequential samples. The beginning of each class is
marked with a vertical dashed lines. The average log-likelihood of the online
EM is the lowest and it behaves erratically: it decreases when learning the
class C. The average log-likelihood of the NAT-oEM-step always increases
over time and, after some initial iterations, it is always higher than the online
EM. The average log-likelihood of the NAT-oEM-class is always crescent, but
in a rather slow way.

To study problem ii) we measure the average log-likelihood

of each class independently during the sequential learning
process. If the log-likelihood of a class decreases when later
classes are learned, then we say that the algorithm has for-
gotten what it has learned. This is measured in the Fig. 3.
The end of each class learning sequence is marked with
vertical dashed lines. For each class, the test data average
log-likelihood is shown on the columns. The log-likelihood is
calculated from the beginning of the learning sequence until
the end of the learning process. For the online EM case, there
is clear forgetting of some classes, namely, the average log-
likelihood of A decreases when B and C are learned, and the
average log-likelihood of C decreases when D is learned. For
the NAT-oEM-step case, there is no visible forgetting, except
for class A. Finally, for the NAT-oEM-class case, there is no
visible forgetting, even for class A.

Fig. 3. Class by class average Log-likelihood of the test data set in function of
the learning iteration. The beginning of each class is marked with a vertical
dashed line. Rows correspond to the average log-likelihood of each class.
For the three cases online EM, NAT-oEM-step and NAT-oEM-class, there
is forgetting of class A, although stronger in the unconstrained case. In the
online EM there is also forgetting of C while learning D. In general the natural
constraint reduces forgetting episodes.

In order to analyze the impact of problem iii) we measure,
for each possible pair of classes (i, j), the log-likelihood
of j starting from the output of learning i, and compare it
with the likelihood of learning j from scratch with random
initialization. Fig. 4 shows the three ”interference matrices”,
each corresponding to the case of online EM, NAT-oEM-step
and NAT-oEM-class. The matrix reads as follows: each row
is the class that was initially learned, and each column is the
class that was learned next. Each value of the matrix (i, j) is
then equal to the difference of the log-likelihood of the second
class j after learning i then j, with log-likelihood of the second
class j learned from scratch. If this interference matrix’s values
are negative, then there was negative interference, meaning
the fact that the system learned first i reduced its ability to
learn j. If the matrix values are zero, then there was no
interference, meaning, the fact that the system learned first
i does not change its ability to learn j. If the matrix values
are positive, then there was positive interference (also called
transfer), meaning that the system learned first i increases its
ability to learn j. In the case of online EM, there is only non
positive interference: most of the interference matrix values

are zero or close to zero. Thus, the interference is negative
or non-existent. In the case of NAT-oEM-step there is a light
negative interference and a strong positive interference from
class D to A, B, C. Thus, there is a substantial transfer from
class D to all the others. In the case of NAT-oEM-class there
is a fair negative interference between all the classes, except
for the transfer between class C and D. In summary, the
positive interference was only possible when the algorithm
was naturally constrained, but the negative interference was
not avoided even in this case.

Fig. 4. Interference matrices for the three cases: online EM, NAT-oEM-step
and NAT-oEM-class. Each row corresponds to the class initially learned, and
each column corresponds to the class learned thereafter. The interference was
measured by subtracting the log-likelihood of the second class learned from
scratch from the log-likelihood of the second class learned after the first one.
In the unconstrained case there is only negative transfer, while some positive
transfer was found in the naturally constrained case, both step and class wise.

VI. CONCLUSIONS

In this paper, we introduced a constraint for Online
Expectation-Maximization based on the Fisher information of
the parameters to be estimated, called NAT-oEM. We tested
this constraint on PPCA with two scenarios: independent and
sequential learning. In the last scenario, we considered two
update policies: with and without the information on when
each learning class is over. Under these experimental set-ups,
NAT-oEM-step was more effective than NAT-oEM-class in
terms of convergence and forgetting mitigation, and both more
efficient than online EM.

However, in terms of knowledge transfer from previous
classes, NAT-oEM was not clearly different from online EM.

In general, it can be seen that the class-wise policy brings
benefits with respect to the unconstrained case: it avoids
systematically catastrophic forgetting. The step-wise policy is
computationally heavier because the parameters are updated
every step, but it turns out to be much more effective in terms
of online learning, consolidation and transfer. Furthermore, it
is also more realistic in terms of natural learning, since the
”learning class signals” may not be available or even not exist
at all when the change is too smooth from one class to another.

Due to limited space constraints, it was left out two other
problems to address in sequential learning: the number of
samples to be used from each class and the class order of

learning. Our preliminary results indicate (data not shown)
that this study’s major properties are kept with other sample
sizes. However, as Fig. 4 suggests, changing the class order
might positively impact the average log-likelihood.

Possible future work directions might include: to analyze
this method with more complex data models, or with more
realistic data, and test other policies to update the Fisher
information matrix and reference parameters, for instance,
using hybrid solutions between the step and class rules like
an update every N steps, or exploit (weak) sequence change
signals to activate updating.

ACKNOWLEDGMENT

This research has been made under financial support
from the French Government Defense Procurement Agency
(DGA/AID).

REFERENCES

[1] A. Gepperth and C. Karaoguz, “A Bio-Inspired Incremental Learning
Architecture for Applied Perceptual Problems,” Cognitive Computation,
vol. 8, no. 5, pp. 924–934, 2016.

[2] R. M. French, “Catastrophic Forgetting in Connectionist Networks:
Causes, Consequences and Solutions,” Trends in Cognitive Sciences,
vol. 3, no. 4, pp. 128–135, jan 1999.

[3] N. Dı́az-Rodrı́guez, V. Lomonaco, D. Filliat, and D. Maltoni, “Don’t
forget, there is more than forgetting: new metrics for continual learning,”
arXiv preprint arXiv:1810.13166, 2018.

[4] R. Ratcliff, “Connectionist Models of Recognition Memory: Constraints
Imposed by Learning and Forgetting Functions,” Psychological Review,
vol. 97, no. 2, pp. 285–308, 1990.

[5] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[6] E. M. Robertson, A. Pascual-Leone, and R. C. Miall, “Current concepts
in procedural consolidation,” Nature Reviews Neuroscience, vol. 5, no. 7,
pp. 576–582, 2004.

[7] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[8] O. Ostapenko, M. Puscas, T. Klein, P. Jähnichen, and M. Nabi, “Learning
to remember: A synaptic plasticity driven framework for continual
learning,” arXiv preprint:1904.03137, 2019.

[9] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” arXiv preprint arXiv:1805.06370,
2018.

[10] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” Proceedings of machine learning research, vol. 70, p.
3987, 2017.

[11] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr, “Riemannian
Walk for Incremental Learning: Understanding Forgetting and Intransi-
gence,” arXiv preprint 1801.10112, no. 1, 2018.

[12] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual
learning,” 2018.

[13] T. Adel, H. Zhao, and R. E. Turner, “Continual learning with adaptive
weights (claw),” in International Conference on Learning Representa-
tions, 2020.

[14] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, “Overcoming
catastrophic forgetting by incremental moment matching,” in Advances
in neural information processing systems, 2017, pp. 4652–4662.

[15] D. M. Titterington, “Recursive parameter estimation using incomplete
data.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 46, no. 2, pp. 257–267, 1984.

[16] O. Cappé and E. Moulines, “Online EM Algorithm for Latent Data
Models,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 71, pp. 593–613, 2007.

[17] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An Empirical Investigation of Catastrophic Forgetting in Gradient-
Based Neural Networks,” in International Conference on Learning
Representations, 2014.

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the national
academy of sciences, 2016.

[19] S.-i. Amari, “Natural Gradient Works Efficiently in Learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[20] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual
learning,” arXiv preprint arXiv:1904.07734, 2019.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society. Series B (methodological), pp. 1–38, 1977.

[22] C. J. Wu, “On the convergence properties of the em algorithm,” The
Annals of statistics, pp. 95–103, 1983.

[23] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[24] I. T. Jolliffe, “Principal component analysis and factor analysis,” in
Principal component analysis. Springer, 1986, pp. 115–128.

[25] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2013.
[26] O. Cappé, “Online expectation maximisation,” Mixtures: Estimation and

Applications, pp. 31–53, 2010.
[27] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Technical

University of Denmark, nov 2012, version 20121115. [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?3274

[28] D. Slepian, “Estimation of signal parameters in the presence of noise,”
Transactions of the IRE Professional Group on Information Theory,
vol. 3, no. 3, pp. 68–89, 1954.

[29] W. Bangs, “Array processing with generalized beam-formers,” Ph.D.
dissertation, Yale University, New Haven, CT, USA, 1972.

VII. APPENDIX: FISHER INFORMATION FOR PPCA
PARAMETERS

In this Appendix, we derive the Fisher Information matrix
of PPCA used in equations 16 - 21. For the sake of simplicity,
we removed all the subscripts k, denoting the parameters/data
values at iteration k. Additionally we replaced F (θk) by F .

For multivariate data Gaussian distributed Y∼N (µ,C) de-
pending on some parameters θ = [θ1, θ2, . . . , θK], the Slepian-
Bangs formula [28], [29] tells us that the entry m,n of the
Fisher information matrix (I) is given by:

I[m,n] = dµ

dθm

T

C
−1 dµ

dθn
+

1

2
Tr(C

−1 dC

dθm
C
−1 dC

dθn
) (22)

With
dµ

dθm
=

[
dµ1

dθm
, . . . ,

dµN
dθm

]
(23)

dC

dθm
=


dC1,1

dθm
. . .

dC1,N

dθm
...

. . .
...

dCN,1

dθm
. . .

dCN,N

dθm

 (24)

Particularly, in the Probabilistic PCA model defined in 8,
Y is Gaussian distributed and the set of parameters θ =[
µ1, . . . , µd,W1,1, . . . ,Wd,q, σ

2
]

has d+ d× q + 1 elements.
In terms of partial derivatives we have:

dµj
dµi

= δi,j (25)

dC

dW [i, j]
=WJTi,j + Ji,jWT (26)

dC

dσ2
= I (27)

Additionally, the expected value of Y only depends on µ and
the covariance depends on W and σ. Therefore all other partial
derivatives are equal to zero. The non zero values of I are
derived below. For 0 < m,n ≤ d,

I[m,n] = C
−1
[m,n] (28)

For d < m,n ≤ (d × q), gathering equations 22 and 26 we
have

I[m,n] = 1

2
Tr
(
C
−1
(WJTi,j + Ji,jWT)C

−1
(WJTk,l + Jk,lWT)

)
(29)

with m = i+ c ∗ j and n = k+ c ∗ l being the linear indexes
of the matrix entry (i, j). For (d× q) < m ≤ (d× q+1) and
m′ = m− (d× q)

I[m, d× q + 1] = (C−2W)m′ (30)

For (d× q) < n ≤ (d× q + 1) and n′ = n− (d× q)

I[d× q + 1, n] = (C−2W)n′ (31)

And finally,

I[d× q + 1, d× q + 1] =
1

2
Tr(C−2) (32)

